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Abstract
In order to solve a system of nonlinear rate equations one can try to use some soliton 
methods. The procedure involves three steps: (1) find a ‘Lax representation’ where all the 
kinetic variables are combined into a single matrix � , all the kinetic constants are encoded 
in a matrix H; (2) find a Darboux–Bäcklund dressing transformation for the Lax represen-
tation i𝜌̇ = [H, f (𝜌)] , where f models a time-dependent environment; (3) find a class of seed 
solutions � = �[0] that lead, via a nontrivial chain of dressings �[0] → �[1] → �[2] → … 
to new solutions, difficult to find by other methods. The latter step is not a trivial one since 
a non-soliton method has to be employed to find an appropriate initial �[0] . Procedures 
that lead to a correct �[0] have been discussed in the literature only for a limited class of 
H and f. Here, we develop a formalism that works for practically any H, and any explicitly 
time-dependent f. As a result, we are able to find exact solutions to a system of equations 
describing an arbitrary number of species interacting through (auto)catalytic feedbacks, 
with general time dependent parameters characterizing the nonlinearity. Explicit examples 
involve up to 42 interacting species.

Keywords  Rate equations · Soliton dynamics · Non-Kolmogorovian probability · 
Biodiversity

1  Introduction

The idea that formally ‘quantum’ structures may have interdisciplinary applications in pop-
ulation dynamics is not new, and can be traced back at least to the works of Jørgensen (Jør-
gensen 1990, 1995; Jørgensen et al. 2007), and (implicitly) Ulanowicz (Ulanowicz 1997, 
1999, 2009) in ecological modeling. Jørgensen makes an explicit reference to uncertainty 
principles, whereas Ulanowicz stresses the role of propensity theory (Popper 1982). The 
fact that propensity is naturally related to quantum probability was intuitively felt by Pop-
per himself, but a more recent analysis (Ballentine 2016) makes it very clear that quantum 
probabilities are in fact propensities. A theory that involves propensities and uncertainty 
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relations cannot be formally very different from quantum mechanics, at least from a certain 
point of view.

That such a possibility exists is not so surprising if one takes into account that the so-
called quantum structures occur in many areas of science, and are in fact ubiquitous (Aerts 
1986; Khrennikov 2010). If one adds that ecological, chemical or biological models nec-
essarily involve autocatalysis, one is almost inevitably led to the formalism of nonlinear 
density matrix equations (Aerts et al. 2013). The latter observation may be regarded as an 
outline of a whole research program for a generalized population dynamics. The present 
paper presents some results of this program, generalizing and extending the scope of (Aerts 
et al. 2013). The aim is to go beyond proof-of-principle and toy models, discussed in the 
literature so far, and develop a formalism that is flexible enough for real-life modeling.

Nonlinear density-matrix (von Neumann) equations discussed in (Aerts et  al. 2013) 
belong to a broad class of soliton systems. The equations were originally discovered in the 
context of fundamental physics (Czachor 1993, 1997) as a candidate theory for a putative 
nonlinear generalization of quantum mechanics. It was only later understood (Leble and 
Czachor 1998) that the system of differential equations one arrives at is in fact a soliton 
one.

A practical definition of a soliton system is the one where soliton techniques apply. 
Since soliton systems are known to possess a kind of universality, it is quite typical that 
a soliton equation discovered in one domain of science finds applications in other, com-
pletely unrelated fields. The classic example is the so-called nonlinear Schroedinger equa-
tion whose applications range from waves on deep ocean (Zakharov 1968) to optical soli-
tons (Kibler et al. 2010). It was not so surprising that the same happened with soliton von 
Neumann equations which turned out to be equivalent to systems of coupled ordinary dif-
ferential equations similar to rate equations occurring in biological and chemical modeling 
(Aerts et al. 2006; Aerts and Czachor 2006), while with a slight change of interpretation 
their dynamics could be related to replicating two-strand quantum systems, formal ana-
logues of DNA (Aerts and Czachor 2007), or to n-level atoms in quantum optics (Czachor 
et al. 2000). In yet another reformulation, von Neumann soliton equations were found to 
contain as particular cases various known or new lattice systems (Cieśliński et al. 2003).

The greatest advantage of soliton systems is the possibility of solving them exactly. The 
method, employed here and originally introduced for a simple quadratic nonlinearity in 
(Leble and Czachor 1998), belongs to the class of Darboux–Bäcklund dressing transfor-
mations (Doktorov and Leble 2007). The essence of the technique lies in finding a trans-
formation which maps one solution �(t) of a given equation into another solution �[1](t) 
of the same equation. Not all systems of differential equations possess this property but 
those that do, belong to a soliton class. Once we have found the transformation it remains 
to find a ‘seed’ solution � = �[0] which will allow us to start the chain of transformations: 
�[0] → �[1] → �[2] → … . A difficulty is that this initial step may be highly nontrivial.

There are two problems. The first one is obvious: � has to be found by other means. 
Sometimes it is easy to find a seed solution. For example, the celebrated Korteweg–de 
Vries soliton equation has a trivial zero solution which is nevertheless nontrivial enough 
to start the chain of transformations, leading to a solitary wave already after a single step 
(Matveev and Salle 1991). In the von Neumann case � = 0 implies �[1] = 0 , a fact illus-
trating the second difficulty. Namely, an appropriate theorem guarantees that a solution � 
will generate a solution �[1] . However, the theorem does not guarantee that we will be 
happy with �[1] . Examples are known where, after tedious calculations, one arrives at 
�[1](t) = �(t) , or �[1](t) = �(t − t0) . The art of soliton modeling is to find appropriate seed 
solutions by means of non-soliton methods.
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Let us illustrate the point on the simplest yet highly nontrivial example of a soliton von 
Neumann equation,

solved for the first time by soliton methods in (Leble and Czachor 1998). Here 𝜌̇ = d𝜌∕dt 
and [A,B] = AB − BA is the commutator. H is an operator which, from the point of view 
of rate equations, encodes the values of possible kinetic constants (Aerts et al. 2013). So, 
we have to begin with a solution � of (1) and then we know, by the theorem, that some �[1] 
will again satisfy

But how to find an initial � if we do not know how to solve (1)? A first try is a � which sat-
isfies �2 = � , so that �(t) = e−iHt�(0)eiHt is a solution of (1) since

Equation (3) is mathematically identical to the linear von Neumann equation from quan-
tum mechanics, so we know everything about it. However, it turns out that in such a case 
�[1]2 = �[1] as well, and the dynamics of the new solution is effectively as linear as the 
one of � . One of the tricks that give the right seed solution, invented in (Leble and Czachor 
1998), is to find a � satisfying �2 = a� + � , where a is a number and � is an operator com-
muting with H. Then

is effectively linear and can be easily solved. Still, an appropriate choice of a and � guaran-
tees that �[1] is qualitatively different from � , and some new purely nonlinear effects occur. 
Note that � = F(H) , for some function F, so possibilities of finding an appropriate � may 
crucially depend on properties of H.

The solutions �[1] found in (Leble and Czachor 1998) exhibited a new type of soliton 
phenomenon termed self-scattering. The theorem on dressing transformations was further 
generalized in (Ustinov et al. 2001) to the general equation

where f(x) was basically arbitrary, and explicit solutions were found. Subsequent works 
showed that self-scattering may look similar to opening of a double spiral (Aerts and Cza-
chor 2006), replication (Aerts and Czachor 2007), or morphogenesis (Aerts et al. 2003). 
Self-scattering also leads to a specific form of pattern formation, as shown in Fig. 1. Non-
linearity is here quadratic, f (�) = �2 , and H is a quantum harmonic oscillator Hamiltonian. 
Formation of the pattern from Fig. 1 is described by

(1)i𝜌̇ = [H, 𝜌2]

(2)i𝜌̇[1] = [H, 𝜌[1]2].

(3)i𝜌̇ = [H, 𝜌2] = [H, 𝜌].

(4)i𝜌̇ = [H, 𝜌2] = a[H, 𝜌] + [H,𝛥] = a[H, 𝜌],

(5)i𝜌̇ = [H, f (𝜌)]

Fig. 1   Change of pattern as a 
result of self-scattering
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The pattern itself is obtained through a contour plot of A(t, y) = �(t, y, y) . Such a two-
dimensional solution is sometimes termed a Harzian (Syty et  al. 2000). The example of 
(6) shows that soliton von Neumann equations, when written in space-time variables, are 
mathematically similar to infinitely-dimensional reaction-diffusion systems (Murray 1977; 
Fife 1979; Cross and Hohenberg 1993; Aerts et al. 2003), whose general form is

where 𝜔̂ = A∇2 , and A and 𝜔̂1 are, in general complex, matrices and X, f(X) are vectors. 
Particular cases of (7) are the Swift–Hohenberg, � − � , and Ginzburg–Landau models 
(Ginzburg and Landau 1950; Howard and Kopell 1977; Swift and Hohenberg 1977; Stew-
artson and Stuart 1971).

A transition between the reaction-diffusion and rate-equation forms of the soliton 
system is obtained if one appropriately chooses the basis in the space of solutions. In 
the harmonic oscillator case the basis is given by Hermite polynomials times a Gauss-
ian, which are eigenfunctions of H. The pattern from Fig. 1 is obtained if at t = 0 one 
starts with � written as a combination of such Hermite-polynomial eigenfunctions (in 
the variable y).

The choice of a harmonic-oscillator H is here not accidental, and is related to 
the structure of the spectrum of H. Namely, it is known that the harmonic oscilla-
tor is an example of a system whose energy levels are equally spaced: E1 = E0 + �E , 
E2 = E1 + �E,… En+1 = En + �E,… with �E being independent of n. Many different 
Hamiltonians share this property. However, when one translates the von Neumann equa-
tion into a set of coupled rate equations, one finds that the ‘energy levels’ play effectively 
the role of kinetic constants k, determining the dynamics of a kinetic (biological, chemical, 
ecological...) process.

Still, it is very unlikely that a real-life modeling will encounter a case where kinetic 
constants possess this type of regularity. On the contrary, it is typical that one will deal 
with basically arbitrary k values. Is it a problem? Yes, and a serious one: Practically all the 
explicit procedures of finding a seed � one can find in the literature are based on H whose 
spectrum is equally spaced, or at least contains an equally spaced subset of eigenvalues 
(my unpublished preprint (Kuna 2004) seems the only exception). So, the first goal of the 
present paper is to describe a method that works for all H whose spectrum is discrete, and 
thus with no restrictions whatsoever on the possible values of admissible kinetic constants 
(although still not for the most general form of nonlinearity, see the last section).

The second goal is to allow for arbitrary, explicitly time dependent functions

in (5). The formulas we will discuss will be valid for any choice of fj(t) . In practical exam-
ples, however, �(t) is an n × n Hermitian matrix (corresponding to an ecosystem with up to 
n2 populations existing at time t). For a finite n the infinite sum in (8) can be replaced by 
a finite sum, no matter which f we select (see “Appendix”). So, practically, our formulas 
are valid for nonlinearities described by polynomials of any order, with arbitrary time-
dependent coefficients. This is the second element extending our results beyond all that has 

(6)i𝜌̇(t, y, y�) =
(
−𝜕2

y
+ 𝜕2

y�
+ y2 − y�2

)
∫ dz 𝜌(t, y, z)𝜌(t, z, y�).

(7)iẊ = 𝜔̂X + 𝜔̂1f (X)

(8)f (�(t)) =

∞∑
j=0

fj(t)�(t)
j
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been known on soliton von Neumann equations so far. The number of independent popula-
tions encoded in an n × n matrix � can be reduced by imposing constraints such as Tr � = 1 
or the like.

Now, before we describe all the necessary technicalities and examples, let us clarify one 
more point. It is known that ecosystems such as plankton may involve tens or hundreds of 
species (Hutchinson 1961; Huisman and Weissing 1999; Wilson and Abrams 2005; Allesina 
and Levine 2011). There is practically no non-soliton technique that would allow us to find 
an exact solution for a system consisting of, say, 100 species coupled by various catalytic 
and autocatalytic feedback loops. Here, we will give examples of explicit solutions �[1](t) 
corresponding to 30 or 42 populations, interacting via (auto)catalytic feedbacks, in envi-
ronments that change in time. But in order to achieve it, we have start with a seed solution 
�(t) = �[0](t).

The way we proceed is the following. We first write the Hamiltonian H in a diagonal form 
(this is always possible since H is Hermitian),

where H(j) are blocks of dimension 2 or 3. We then choose the seed solution in a block-
diagonal form,

and solve the equation in question. The solution �(t) is typically not a very impressive one 
as involving an effectively linear coupling between pairs or triples of species. But recall 
that in the Korteweg–de Vries case the seed solution is just zero. What we are interested in 
is the solution �[1] it generates, and perhaps also �[2] , �[3] etc., since the procedure, once 
successfully started, can be iterated an arbitrary number of times. In our case, the seed 
solution is chosen in such a way that

where any 2 × 2 , 3 × 3 , 2 × 3 , or 3 × 2 block contains nonzero matrices. In standard termi-
nology �[1] is a single-soliton solution ( �[N] would be an N-soliton one). The interaction of 
all the species of a plankton-type community is described here through a soliton effect. We 
have to make sure that all �[1](kl) ≠ 0 , which is a nontrivial task described in detail in the 
following sections.

H =

⎛
⎜⎜⎜⎝

H(1) 0 0 ⋯

0 H(2) 0 ⋯

0 0 H(3) ⋯

⋮ ⋮ ⋮ ⋱

⎞
⎟⎟⎟⎠
,

� =

⎛⎜⎜⎜⎝

�(1) 0 0 ⋯

0 �(2) 0 ⋯

0 0 �(3) ⋯

⋮ ⋮ ⋮ ⋱

⎞⎟⎟⎟⎠

�[1] =

⎛
⎜⎜⎜⎝

�[1](11) �[1](12) �[1](13) ⋯

�[1](21) �[1](22) �[1](23) ⋯

�[1](31) �[1](32) �[1](33) ⋯

⋮ ⋮ ⋮ ⋱

⎞⎟⎟⎟⎠D
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2 � The Formalism

2.1 � States

A generic state of an ecosystem occurs only once in its history. This is basically why states 
represent propensities (tendencies) and not probabilities defined by the frequency approach. 
(As opposed to quantum mechanics, properties of an ecosystem cannot be tested on a great 
number of identically prepared ecosystems.) A state is described by an operator (or just 
a matrix) � satisfying: (a) Hermiticity �† = � , (b) positivity 𝜌 > 0 , and (c) normalization 
Tr � = 1 . A Hermitian operator is positive if it does not have negative eigenvalues. Any set of 
Hermitian positive operators Pk (‘propositions’), satisfying the resolution of unity 

∑
k Pk = I 

(I denotes the identity operator) defines a set of propensities by the formula pk = Tr (Pk�) 
(Ballentine 2016). We say that two propensities pk = Tr (Pk�) and p̃l = Tr (P̃l𝜌) are com-
plementary if the commutator [Pk, P̃l] = PkP̃l − P̃lPk = Qkl is nonzero. The propensities are 
complementary since their standard deviations (�p)2 = Tr (P2�) − (Tr (P�))2 satisfy the 
uncertainty relation

The model is non-Kolmogorovian, i.e. does not satisfy all the axioms of probability for-
malized in (Kolmogorov 1956). One can say that complementary propensities are associ-
ated with different contexts. The set of propensities pk is maximal if its corresponding set 
of propositions Pk sums to I. Complementary propensities belong to different maximal sets. 
Propensities belonging to different maximal sets do not have to sum to 1. It is sometimes 
useful to consider models where Tr � ≠ 1 . The propensities are then replaced by more gen-
eral kinetic variables, while Hermiticity and positivity of � guarantee that the associated 
variables are nonnegative at any moment of time.

A single density matrix nonlinear equation can be treated as a very compact form of a set of 
nonlinear rate equations involving variables belonging to several maximal sets (Aerts and Cza-
chor 2006; Aerts et al. 2006). In order to construct the nonnegative variables occurring in the rate 
equations one selects an orthonormal basis {�n⟩;⟨n�m⟩ = �nm} in the linear space which forms 
the domain of � . Then three families of propositions are constructed: the complete set of projec-
tors on basis vectors, {Pn = �n⟩⟨n�} , supplemented by two sets of projectors, {Pjk = �jk⟩⟨jk�} 
and {P�

jk
= �jk�⟩⟨jk��} , constructed from linear combinations of the basis vectors

for j ≠ k . Decomposing matrix elements of � into real and imaginary parts, 
�nm = ⟨n���m⟩ = xnm + iynm , we obtain three families of nonnegative variables,

(9)𝛥pk𝛥p̃l ≥ 1

2
|Tr (Qkl𝜌)|.

(10)�jk⟩ = 1√
2
(�j⟩ + �k⟩),

(11)�jk�⟩ = 1√
2
(�j⟩ − i�k⟩),

(12)

pn =TrPn� = xnn

pjk =TrPjk� = xjk +
1

2
(pj + pk)

p�
jk
=TrP�

jk
� = yjk +

1

2
(pj + pk)
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It is interesting that replicator equations, a typical tool in evolutionary game theory (Smith 
1982; Hofbauer and Sigmund 1998; Friedman and Sinervo 2016), can be written in a den-
sity matrix nonlinear von Neumann form, but with probabilities interpretable as pn (Gafi-
ychuk and Prykarpatsky 2004) ( pjk and p′

jk
 have no clear interpretation: xjk =

√
pjpk , 

yjk = 0 ). If � is a positive but non-normalized solution ( 𝜌 > 0 , Tr � ≠ 1 ) then the variables 
are nonnegative, but cannot be treated as probabilities or propensities. Of particular inter-
est is the case of a dynamics which does not preserve positivity of �(t) for all t. In such 
a case, starting with a positive initial condition 𝜌(0) > 0 , we will find dynamic variables 
that are nonnegative only for certain finite amounts of time. This type of solution could be 
interpreted as a system where certain species disappear or appear after some time. Unfortu-
nately, this very interesting possibility is beyond the scope of the present paper.

2.2 � Hierarchic Organization of Environments

Environments are organized hierarchically (Allen and Starr 1982). Subsystems are coupled to 
environments non-symmetrically (Aerts et al. 2013). The mathematical model is built on the 
basis of a hierarchically coupled set of rate equations,

The system described by �1 plays a role of environment for the remaining subsystems. The 
one described by �2 is the environment for �3 , �4 , and so on. The collection of rate equa-
tions has to be solved in a hierarchical way. One begins with �1 since the associated differ-
ential equation is closed. Once one finds a given �1(t) = r(t) , one switches to

At each level of the hierarchy (perhaps with the exception of �1 ), one has to solve a sys-
tem of coupled nonlinear rate equations with time dependent coefficients. The formalism 
described in the present paper assumes that the time-dependent coefficients are arbitrary. 
All the examples discussed below can be understood as corresponding to an n-th level of 
the hierarchy.

2.3 � Dressing Transformation from a Zakharov–Shabat Problem

We shall consider a pair of Zakharov–Shabat (ZS) problems (Matveev and Salle 1991),

(13)𝜌̇1 =F1(𝜌1),

(14)𝜌̇2 =F2(𝜌1, 𝜌2),

(15)𝜌̇3 =F3(𝜌1, 𝜌2, 𝜌3),

(16)⋮

(17)𝜌̇2 =F2(r, 𝜌2).

(18)z����⟩ =
�
1

�
� − H

�
���⟩

(19)i�𝜙̇𝜇⟩ = 1

𝜇
A�𝜙𝜇⟩
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where z� is a t-independent complex number. Differentiating (18) over t and multiplying 
(19) by −iz� we obtain two equations with identical left-hand sides. Compatibility of the 
right-hand sides is equivalent to

The second condition means that A is an arbitrary function of � , i.e. A = f (�) . Therefore 
the first condition is a nonlinear equation with respect to � . This is our nonlinear von Neu-
mann equation

We say that (18)–(19) is a Lax pair for (22), whereas (22) is a Lax representation of a sys-
tem of rate equations. This Lax pair was found in (Ustinov et al. 2001) and later general-
ized to yet more complicated von Neumann type equations in (Ustinov and Czachor 2002; 
Cieśliński et al. 2003). All the examples discussed below are based on the following theo-
rem, which is a particular case of the general result discussed, for example, in (Cieśliński 
et al. 2003).

Theorem 1  Assume ���⟩ is a solution of (18) and (19) and ⟨��� is a solution of

Let �[1] = T�T−1 = (1 +
�−�

�
P)�(1 +

�−�

�
P) and A[1] = TAT−1 with

In this case if � and A fulfill (20) and (21), then �[1] and A[1] satisfy (20) and (21) as well.

The notion of compatibility used before (20) is rather misleading, because it means that 
(20)–(21) is a sufficient condition for the existence of solutions of ZS problems. It is a part 
of the language we encounter in this field. The relation between (20)–(21) and ZS prob-
lems is given by Theorem 1. A more precise explanation of this theorem, as well as of the 
dressing transformation, is given in the “Appendix”. Setting � = � one obtains a unitary T, 
so that the dressing transformation preserves Hermiticity and positivity of �[1].

3 � Constructing Seed Solutions

This is the core part of the work. We will show how to construct seed solutions for all H, 
any time-dependent f, and arbitrary numbers of interacting species. In order to eliminate 
typing errors, all the explicit examples discussed later on in the paper were cross-checked 
in Wolfram Mathematica.

(20)i𝜌̇ =[H,A],

(21)[�,A] =0.

(22)i𝜌̇ =[H, f (𝜌)].

(23)z�⟨��� = ⟨���
�
1

�
� − H

�

(24)−i⟨𝜓̇𝜈� = ⟨𝜓𝜈�1
𝜈
A.

(25)P =
���⟩⟨���
⟨�����⟩ .
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3.1 � Building Seed Solutions with 2 × 2 Blocks

Assume the Hamiltonian has discrete spectrum, H =
∑

n hnQn , where Qn and hn are spectral 
projectors and eigenvalues of H, respectively. We start from an even-dimensional case. Now 
group all spectral projectors in pairs related to different eigenvalues hk and hk′ , generating pro-
jectors �(k) = Qk + Qk� on two-dimensional invariant subspaces (k) . Because H is Hermitian 
we have 

⨁
k (k) =  and (k) are mutually orthogonal. For simplicity of notation we put 

hk = h
(k)

1
 and hk� = h

(k)

2
 . We are interested in solutions

for �(k) = �
(k)��(k) and H(k) = �

(k)H�
(k).

Here, a notational digression. Whenever we perform explicit matrix calculations, we 
implicitly identify

The same notation applies to �(k) , ��(k)⟩ , ��(k)⟩ , etc. So, although, say ��(1)⟩ and ��(2)⟩ are, for 
calculational purposes, treated as 2-dimensional column matrices, their sum ��(1)⟩ + ��(2)⟩ 
is understood as a 4-dimensional column matrix. A mathematical purist would therefore 
rather write the sum as a direct sum. The convention we employ will not lead to ambigui-
ties. In a two-dimensional space, all functions of the operator �(k) (which is not proportional 
to the identity operator, so has two different eigenvalues �(k)

1
 and �(k)

2
 ) are equal to a linear 

function of �(k) by Cayley–Hamilton theorem (for details see “Appendix”),

where �(k)
1

=
f (�

(k)

1
)−f (�

(k)

2
)

�
(k)

1
−�

(k)

2

 and �0(k) = f (�
(k)

2
) − �

(k)

2
�
(k)

1
 . Note that although �(k)

j
 are time inde-

pendent, the parameters �(k)
j

 do depend on time if f itself is time dependent. Therefore, any 
such solution of (3.1) has the following form:

and also

Let us stress again that f (�(k)(0)) is time-dependent because f is a polynomial in �(k)(0) , but 
with coefficients which depend on time. Therefore, for this case

It is convenient to rewrite the Lax pair on the subspace (k) = �
(k) . First we use 

��(k)⟩ = U(k)†��(k)⟩ = ei ∫ t

0
�
(k)

1
d�H(k) ��(k)⟩ , so that

i𝜌̇(k) = [H(k), f (𝜌(k))]

H(k) = �
(k)H�

(k) ≡
�
h
(k)

1
0

0 h
(k)

2

�
≡
⎛⎜⎜⎜⎝

⋱ 0 0 ⋯

0 h
(k)

1
0 ⋯

0 0 h
(k)

2
⋯

⋮ ⋮ ⋮ ⋱

⎞⎟⎟⎟⎠
.

f (�(k)) = �
(k)

1
�(k) + �0

(k)
�

(k),

�(k)(t) = U(k)�(k)(0)U(k)† = e−i ∫ t

0
�
(k)

1
d�H(k)

�(k)(0)ei ∫ t

0
�
(k)

1
d�H(k)

,

f (�(k)(t)) = U(k)f (�(k)(0))U(k)† = e−i ∫ t

0
�
(k)

1
d�H(k)

f (�(k)(0))ei ∫ t

0
�
(k)

1
d�H(k)

.

f (�(k)(t)) = e−i ∫ t

0
�
(k)

1
d�H(k)

[�
(k)

1
(t)�(k)(0) + �0

(k)(t)�(k)]ei ∫ t

0
�
(k)

1
d�H(k)

.

(26)
z𝜇�𝜑(k)(t)⟩ =

�
1

𝜇
𝜌(k)(t) − H(k)

�
�𝜑(k)(t)⟩

i�𝜑̇(k)(t)⟩ = 1

𝜇
f (𝜌(k)(t))�𝜑(k)(t)⟩,
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turns into

Solving (27) and using the relation between ��(k)⟩ and ��(k)⟩ , we obtain

It is extremely important to realize that z� and � are the same for all the subspaces indexed 
by k. This degeneracy of the eigenvalue problem was one of the crucial tricks that led in 
(Leble and Czachor 1998) to the discovery of self-scattering solutions. The same is here, 
but the necessity of maintaining the degeneracy is one of the difficulties one encounters 
when trying to employ the method in arbitrary dimensions, and for arbitrary H.

Since � and z� are independent of k, any linear combination ��(t)⟩ = ∑
k �

(k)��(k)(t)⟩ fulfils

and therefore can be used to build the projector P from the dressing transformation,

where U(t) =
∑

k U
(k)(t),

(27)

z𝜇�𝜙(k)(t)⟩ =
�
1

𝜇
𝜌(k)(0) − H(k)

�
�𝜙(k)(t)⟩

i�𝜙̇(k)(t)⟩ =
�
1

𝜇
f (𝜌(k)(0)) − 𝜃

(k)

1
H(k)

�
�𝜙(k)(t)⟩

=

�
𝜃
(k)

1

�
1

𝜇
𝜌(k)(0) − H(k)

�
+

1

𝜇
𝜃0

(k)
�

(�)

�
�𝜙(k)(t)⟩

=

�
z𝜇𝜃

(k)

1
+

𝜃0
(k)

𝜇

�
�𝜙(k)(t)⟩.

(28)z���(k)(0)⟩ =
�
1

�
�(k)(0) − H(k)

�
��(k)(0)⟩

(29)��(k)(t)⟩ = e−i ∫ t

0
�
(k)

1
d�H(k)

e
−i ∫ t

0
[z��

(k)

1
+

�0
(k)

�
]d� ��(k)(0)⟩

(30)=U(k)(t)eu
(k)(t)+iv(k)(t)��(k)(0)⟩

z𝜇�𝜑(t)⟩ =
�
1

𝜇
𝜌 − H

�
�𝜑(t)⟩,

i�𝜑̇(t)⟩ = 1

𝜇
f (𝜌)�𝜑(t)⟩,

P(t) =
��(t)⟩⟨�(t)�
⟨�(t)��(t)⟩

=

∑
l,k �

(k)�(l)��(k)(t)⟩⟨�(l)(t)�∑
k ��(k)�2⟨�(k)(t)��(k)(t)⟩

=U(t)
�
l,k

ckl(t)��(k)(0)⟩⟨�(l)(0)�U(t)†,
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1 3

and we sum over all the blocks. U simultaneously generates the evolution of the seed solu-
tion �(t) = U(t)�(0)U(t)† . The difference between �(t) = �[0](t) and �[1](t) is precisely in 
the presence of nontrivial ckl(t) . The self-scattering phenomenon comes from ckl(t) . The 
essence of finding a nontrivial dressing transformation is in guaranteeing that ckl(t) depend 
on time. Otherwise, the dynamics would be as linear as the one of the seed solution.

To construct the dressing transformation it is enough to find two-dimensional operators 
which fulfill (28) for fixed H, � and z�.

The matrix representation of � in the basis of eigenvectors of H looks as follows:

Eigenvalue problem (28) implies two conditions:

where � = � + i� and �z� = x + iy . Note that � , � , x, y are independent of k. The above two 
conditions fix two parameters of the 2 × 2 matrix �(k) as a function of H(k) , � , z� and �(k)

2
:

The fourth parameter � (k) remains undetermined. (32) implies that (�h(k)
1

+ y)(�h
(k)

2
+ y) has 

to be negative. It means that − y

�
 is between h(k)

1
 and h(k)

2
 , for any k. It is easy to check that for 

any H we can also set all the parameters in such a way that � will be positive and 
normalized.

For such a �(k)(0) the eigenvector from (28) is given by

(31)ckl(t) =
�(k)�(l)e[u

(k)(t)+u(l)(t)]+i[v(k)(t)−v(l)(t)]

∑
i ��(i)�2e2u(i)(t)

,

� =

⎛
⎜⎜⎜⎝

�(1) 0 0 ⋯

0 �(2) 0 ⋯

0 0 �(3) ⋯

⋮ ⋮ ⋮ ⋱

⎞
⎟⎟⎟⎠
,

�(k) =�
(k)��(k) =

�
�
(k)

1
�c(k)�ei� (k)

�c(k)�e−i� (k) �
(k)

2

�

|c(k)|2 = (�
(k)

1
− x − �h

(k)

1
)(�

(k)

2
− x − �h

(k)

2
) − (�h

(k)

1
+ y)(�h

(k)

2
+ y),

0 = (�
(k)

1
− x − �h

(k)

1
)(�h

(k)

2
+ y) + (�

(k)

2
− x − �h

(k)

2
)(�h

(k)

1
+ y),

(32)�c(k)�2 = −

⎡⎢⎢⎣

�
�
(k)

2
− x − �h

(k)

2

�h
(k)

2
+ y

�2

+ 1

⎤⎥⎥⎦
(�h

(k)

1
+ y)(�h

(k)

2
+ y),

(33)�
(k)

1
= x + �h

(k)

1
− (�

(k)

2
− x − �h

(k)

2
)
�h

(k)

1
+ y

�h
(k)

2
+ y

.

(34)��(k)(0)⟩ = 1�
��h(k)

1
− h

(k)

2
�

⎛⎜⎜⎝

�
��h(k)

2
+ y�ei� (k)�

��h(k)
1

+ y� i−w(k)√
(w(k))2+1

⎞⎟⎟⎠
≡
�
�
(k)

1
(0)

�
(k)

2
(0)

�
,
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where

Now, we can use an equivalent form of the dressing transformation (Leble and Czachor 
1998; Kuna et al. 1999; Czachor et al. 2000), �[1] = � + 2i�[P,H] , and obtain

The latter formula shows another condition one has to guarantee in order to make �[1](t) 
qualitatively different from �(t) : the commutator at the right-hand side of (36) must be 
nonzero.

Representing �[1] in the bases of eigenvectors of H,

we get the 2 × 2 blocks of the form

with ckl given by (31),

�(i) an odd permutation of i ∈ {1, 2} , and

where s(k) =
√

((w(k))2 + 1)|�h(k)
1

+ y||�h(k)
2

+ y|.

(35)w(k) = −
�
(k)

2
− �h

(k)

2
− x

�h
(k)

2
+ y

.

(36)�[1](t) = U(t)

�
�(0) + 2i�

n�
l,k=1

ckl(t)
���(k)(0)⟩⟨�(l)(0)�,H��

U(t)†.

(37)�[1] =

⎛⎜⎜⎜⎝

�[1](11) �[1](12) �[1](13) ⋯

�[1](21) �[1](22) �[1](23) ⋯

�[1](31) �[1](32) �[1](33) ⋯

⋮ ⋮ ⋮ ⋱

⎞⎟⎟⎟⎠
,

(38)

�[1](kl) = 2i�ckl

�
�
(k)

1
(0)�

(l)

1
(0)(h

(l)

1
− h

(k)

1
)e�

(kl)

11 �
(k)

1
(0)�

(l)

2
(0)(h

(l)

2
− h

(k)

1
)e�

(kl)

12

�
(k)

2
(0)�

(l)

1
(0)(h

(l)

1
− h

(k)

2
)e�

(kl)

21 �
(k)

2
(0)�

(l)

2
(0)(h

(l)

2
− h

(k)

2
)e�

(kl)

22

�

=
2isgn(�)ckl�

(h
(k)

1
− h

(k)

2
)(h

(l)

1
− h

(l)

2
)

⎛
⎜⎜⎝
r
(kl)

11
ei(�

(k)−� (l)) r
(kl)

12

−(w(l)+i)ei�
(k)

√
(w(l))2+1

r
(kl)

21

(i−w(k))e−i�
(l)

√
(w(k))2+1

r
(kl)

22

−(i−w(k))(w(l)+i)√
(w(l))2+1

√
(w(k))2+1

⎞
⎟⎟⎠
,

(39)r
(kl)

ij
=

√
|�h(k)

�(i)
+ y||�h(l)

�(j)
+ y|(h(l)

j
− h

(k)

i
)e

−i�
(kl)

ij ,

(40)�
(kl)

ij
= ∫

t

0

(�
(k)

1
h
(k)

i
− �

(l)

1
h
(l)

j
)d�,

(41)�[1](kk) =

(
�h

(k)

1
+ x + w(k)s(k) s(k)(1 +

2i

w(k)−i
ckk)e

i� (k)e−i�
(kk)

12

s(k)(1 −
2i

w(k)+i
ckk)e

−i� (k)e−i�
(kk)

21 �
(k)

2

)
,
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1 3

All these blocks can consist of nonzero elements, leading to the coupling between all 
the pairs of species in a given population. Note that the construction does not depend on 
the number of species.

3.2 � Example: 3 × 3 �[1](t) Constructed from a Single 2 × 2 Seed Block

We are in position to build a wide variety of solutions to a large class of problems. Of 
course, the formulas describing a general case are quite complicated. So, let us sim-
plify the discussion by setting � = i� , �z� = iy (thus � = x = 0 ). Now 𝛽h(k)

1
+ y > 0 , 

𝛽h
(k)

2
+ y < 0 and we obtain a simple 2 × 2 block

which is Hermitian but not positive. We can use this block for constructing the transforma-
tion in an even-dimensional case. Let us skip the index k. We can make the seed solution 
odd-dimensional by adding the 1-dimensional block �(2) = 0 , implying y = −�h3 because 
(28) becomes a number relation between � and z� for � = x = 0 . We assume 𝛽 > 0 , there-
fore h1 > h3 > h2 . Under all these assumptions our seed solution becomes

To make our example yet more explicit we use f (�) = F(t)�2 for which our � is a constant 
solution because of [H, �2] = 0 . The dressing transformation produces

where �(t) = −�(h1 − h3)(h3 − h2) ∫ t

0
F(s)ds and �(t) = |a1|2e2�(t) + |a2|2.

Now, we use this simple traceless and non-positive 3 × 3 matrix to construct a density 
matrix (i.e. a positive solution with Tr � = 1 ). Let us first see what happens if we just 
add to � a normalized multiple of I: � = � +

1

3
I , Tr � = 0 , Tr � = 1 . The equation is

where we have used again the Cayley–Hamilton theorem, describing f and g as a polyno-
mial of a matrix. So, if we want to find a solution of i𝜎̇ = [H, g(𝜎)] for a density matrix, we 
should find a traceless solution of i𝜌̇ = [H, 𝜃2𝜌

2 + (𝜃1 +
2

3
𝜃2)𝜌].

�(k) =

⎛⎜⎜⎝
0

�
−(�h

(k)

1
+ y)(�h

(k)

2
+ y)ei�

(k)

�
−(�h

(k)

1
+ y)(�h

(k)

2
+ y)e−i�

(k)

0

⎞⎟⎟⎠
.

� =

⎛⎜⎜⎝

0
√
�2(h1 − h3)(h3 − h2)e

i�1 0√
�2(h1 − h3)(h3 − h2)e

−i�1 0 0

0 0 0

⎞⎟⎟⎠
.

�[1] = �
√
(h1 − h3)(h3 − h2)

×

⎛⎜⎜⎜⎜⎜⎜⎝

0 − ei�1

�
1 −

2�a2�2
�(t)

�
−2ie�(t)a1a2e

i�1
√
h1−h3

�(t)
√
h1−h2

−e−i�1

�
1 −

2�a2�2
�(t)

�
0

−2e�(t)a1a2
√
h3−h2

�(t)
√
h1−h2

2ie�(t)a2a1e
−i�1

√
h1−h3

�(t)
√
h1−h2

−2e�(t)a2a1
√
h3−h2

�(t)
√
h1−h2

0

⎞⎟⎟⎟⎟⎟⎟⎠

,

i𝜌̇ = i𝜎̇ = [H, g(𝜎)] = [H, 𝜃2𝜎
2 + 𝜃1𝜎 + 𝜃0I] = [H, 𝜃2𝜎

2 + 𝜃1𝜎]

= [H, 𝜃2(𝜌 +
1

3
I)2 + 𝜃1(𝜌 +

1

3
I)] = [H, 𝜃2𝜌

2 + (𝜃1 +
2

3
𝜃2)𝜌] = [H, f (𝜌)]
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We know how to find a traceless solution of the problem with f (�) = F(t)�2 , but it is 
easy to verify that �(t) = exp(−i ∫ t

0
(�1 +

2

3
�2)d�H)�(t) exp(i ∫ t

0
(�1 +

2

3
�2)d�H) is a solu-

tion of i𝜌̇ = [H, 𝜃2𝜌
2 + (𝜃1 +

2

3
𝜃2)𝜌] if � is a solution of i𝜚̇ = [H, 𝜃2𝜚

2].
For our concrete example g and H are fixed, and we know that the eigenvalues of � 

are: �1 =
1

3
+
√
�2(h1 − h3)(h3 − h2) ≡ 1

3
+ T  , �2 =

1

3
−
√
�2(h1 − h3)(h3 − h2) ≡ 1

3
− T  , 

�3 =
1

3
 . Because we are interested in positive matrices we select parameters so that 

T <
1

3
 . The coefficients �1 and �2 can be computed from

and then

As a result, we obtain the density matrix which solves i𝜌̇ = [H, g(𝜌)] for arbitrary H and g:

where

with � = − ∫ t

0
(�1 +

2

3
�2)d� , �(t) = −�(h1 − h3)(h3 − h2) ∫ t

0
�2(s)ds . The general form of 

solution we have given in the previous section is much more complex and flexible from the 
point of view of modeling, but our simplified example is easier for further analysis.

�1 =
(�2 + �1)(g(�2) − g(�1))

(�2 − �1)(�2 − �3)
−

(�3 + �1)(g(�3) − g(�1))

(�3 − �1)(�2 − �3)

=
g(�2) − g(�1)

3T2
−

(
2

3
+ T)(g(�3) − g(�1))

T2
,

�2 =
g(�2) − g(�1)

(�2 − �1)(�2 − �3)
−

g(�3) − g(�1)

(�3 − �1)(�2 − �3)
=

g(�2) + g(�1) − 2g(�3)

2T2
,

(42)�1 +
2

3
�2 =

(
g(�2) − g(�1)

) 2

3T2
+
(
g(�1) − g(�3)

) 4

3
+ T

T2
.

𝜌 =

⎛⎜⎜⎜⎝

1

3
A B

Ā
1

3
C

B̄ C̄
1

3

⎞⎟⎟⎟⎠

(43)A = − ei�1�
√
(h1 − h3)(h3 − h2)

�
1 −

2�a2�2
�(t)

�
ei�(h1−h2),

(44)B =
−2ie�(t)ei�(h1−h3)�a1a2e

i�1 (h1 − h3)
√
h3 − h2

�(t)
√
h1 − h2

,

(45)C =
−2e�(t)ei�(h2−h3)�a1a2(h3 − h2)

√
h1 − h3

�(t)
√
h1 − h2

,
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Let us finally write the associated set of rate equations:

Since C = i
√

h3−h2

h1−h3
Bei[�(h2−h1)−�1] one can replace this system of six equations for catalytic 

processes by four equations for p12 , p13 , p′12 , p
′
13

 , involving auto-catalytic terms and new 
time dependent coefficients. The form of the rate equations explains why the eigenvalues of 
H effectively encode the kinetic constants of the dynamics, here kij = hi − hj.

3.2.1 � g(�) = � sin�

Take g(�) = g1(�) = � sin �,

The function itself is time independent, so after explicit integrations one finds

p12 , p13 , p′12 , p
′
13

 are plotted in Fig. 2, where �1(t) and �1(t) are defined after (45). 

3.2.2 � g(�) = !̇(t)� sin(!(t)�)

The second example involves an explicitly time dependent function g(�) = g2(�) =

𝜔̇(t)𝜌 sin(𝜔(t)𝜌) . Then

ṗ12 =
[(

𝜃1 +
2

3
𝜃2

)(
p�
12
−

1

3

)
+ 𝜃2

((
p�
13
−

1

3

)(
p23 −

1

3

)
−
(
p13 −

1

3

)(
p�
23
−

1

3

))]
(h1 − h2)

ṗ�12 =
[
𝜃2

((
p13 −

1

3

)
(p23 − p) +

(
p�
13
−

1

3

)
(p�

33
− p)

)
−
(
𝜃1 +

2

3
𝜃2

)(
p12 −

1

3

)]
(h1 − h2)

ṗ13 =
[(

𝜃1 +
2

3
𝜃2

)(
p�
13
−

1

3

)
+ 𝜃2

((
p12 −

1

3

)(
p�
23
−

1

3

)
−
(
p�
12
−

1

3

)(
p23 −

1

3

))]
(h1 − h3)

ṗ�13 =
[
𝜃2

((
p12 −

1

3

)(
p23 −

1

3

)
−
(
p�
12
−

1

3

)(
p�
23
−

1

3

))
−
(
𝜃1 +

2

3
𝜃2

)(
p13 −

1

3

)]
(h1 − h3)

ṗ23 =
[(

𝜃1 +
2

3
𝜃2

)(
p�
23
−

1

3

)
+ 𝜃2

((
p12 −

1

3

)(
p�
13
−

1

3

)
−
(
p�
12
−

1

3

)(
p13 −

1

3

))]
(h2 − h3)

ṗ�23 =
[
𝜃2

((
p12 −

1

3

)(
p13 −

1

3

)
−
(
p�
12
−

1

3

)(
p�
13
−

1

3

))
−
(
𝜃1 +

2

3
𝜃2

)(
p23 −

1

3

)]
(h2 − h3)

(46)i𝜌̇ =[H, 𝜌 sin 𝜌].

�1(t) = −
t

2�

((
1

3
+ T

)
sin

(
1

3
+ T

)
+
(
1

3
− T

)
sin

(
1

3
− T

)
−

2

3
sin

1

3

)

�1(t) = −
2t

3T2

((
1

3
− T

)
sin

(
1

3
− T

)
−
(
1

3
+ T

)
sin

(
1

3
+ T

))

−
(4∕3 + T)t

T2

((
1

3
+ T

)
sin

(
1

3
+ T

)
−

1

3
sin

1

3

)
.

(47)i𝜌̇ =[H, 𝜔̇(t)𝜌 sin(𝜔(t)𝜌)].
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Fig. 2   Dynamics of the four populations p12 (green), p13 (blue), p′
12

 (red), p′
13

 (yellow), for time-independ-
ent g1(�) = � sin(�) . The top plot: h1 = 2 , h2 = 1 , h3 = 4 , a1 = 1 + 2i , a2 = 2 + 3i , � = 0.01 , �1 = 1 . In the 
lower plots we change a single parameter with respect to the top one: � = 0.001 (middle), a2 = 0.1 (lowest). 
The pairs red–green and blue–yellow exhibit a typical predator–prey, or species-resources Volterra-type 
shift of oscillation. The system can be interpreted as consisting of two species functioning in two niches, 
which are nevertheless not completely isolated from one another. The reduction from six to four variables, 
for the price of making some coefficients time dependent, turns the remaining two populations p23 , p′23 into 
an effective environment for p12 , p13 , p′12 , p

′
13

 . (Color figure online)
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Fig. 3   g2(𝜌) = ̇𝜔(t)𝜌 sin(𝜔(t)𝜌) for �(t) = �t , � = 1 . The remaining parameters the same as in Fig. 2
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After integration,

Let us see what kind of a dynamics one gets for the simplest, linear time dependence 
�(t) = �t . The four kinetic variables are shown at Fig. 3.

3.3 � Dynamics of 30 Interacting Species: Seed � with Three 2 × 2 Blocks

In order to obtain a more complicated solution, but still of a reasonably compact form, we put 
w(k) = 0 in the general formula (35). The two-dimensional blocks are as follows

with the eigenvalues

Recall that � , � , x, y are k-independent. Now, take positive x, � , and h(k)
i

 . Then 
Tr(𝜌(k)) = 2x + 𝛼(h

(k)

1
+ h

(k)

2
) > 0 . Because in this case y𝛽 < 0,

so �(k) becomes positive if x𝛼 > |y𝛽|.
The solution we produce from this seed solution is a little less complicated than the general 

one. For k ≠ l,

�2(t) =
1

2�

(
cos

[(
1

3
+ T

)
�(t)

]
+ cos

[(
1

3
− T

)
�(t)

]
− 2 cos

�(t)

3

)

�2(t) =
2

3T2

(
cos

[(
1

3
− T

)
�(t)

]
− cos

[(
1

3
+ T

)
�(t)

])

+
4∕3 + T

T2

(
cos

[(
1

3
+ T

)
�(t)

]
− cos

�(t)

3

)
.

�(k) =

⎛⎜⎜⎝
x + �h

(k)

1

�
��h(k)

1
+ y���h(k)

2
+ y�ei�(k)

�
��h(k)

1
+ y���h(k)

2
+ y�e−i�(k)

x + �h
(k)

2
.

⎞⎟⎟⎠
,

�
(k)

1
= x +

�(h
(k)

1
+ h

(k)

2
) +

√
�2(h

(k)

1
− h

(k)

2
)2 + 4|�h(k)

1
+ y||�h(k)

2
+ y|

2
,

�
(k)

2
= x +

�(h
(k)

1
+ h

(k)

2
) −

√
�2(h

(k)

1
− h

(k)

2
)2 + 4|�h(k)

1
+ y||�h(k)

2
+ y|

2
.

det(�(k)) = (x + �h
(k)

1
)(x + �h

(k)

2
) − |�h(k)

1
+ y||�h(k)

2
+ y|

= x2 + y2 + h
(k)

1
h
(k)

2
(�2 + �2) + (x� + y�)(h

(k)

1
+ h

(k)

2
),

�[1](kl) =
2isgn(�)ckl√

(h
(k)

1
− h

(k)

2
)(h

(l)

1
− h

(l)

2
)

(
r
(kl)

11
ei(�

(k)−� (l)) − ir
(kl)

12
ei�

(k)

ir
(kl)

21
e−i�

(l)

r
(kl)

22

)
,
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where

(again, �(i) is an odd permutation of i ∈ {1, 2} ). For k = l,

where s(k) =
√

|�h(k)
1

+ y||�h(k)
2

+ y| , ckl = �(k)�(l)e[u
(k) (t)+u(l) (t)]+i[v(k) (t)−v(l) (t)]

∑
i ��(i)�2e2u(i) (t)

 . Explicit forms of u(k)(t) 

and v(k)(t) are given by

Now take a seed � consisting of three two-dimensional blocks. �[1] is 6 × 6 , and consists of 
nine, nonzero 2 × 2 blocks �[1](kl) , k, l = 1, 2, 3 . A practical advice in combining the blocks 
is to keep in mind that the denominators in ckl are the same for all k, l, and involve the sum 
over k from k = 1 to k = 3 . For example,

Note the presence of |�(3)|2e2u(3)(t) even though the block itself is indexed by 1,2. Secondly, 
the contribution from ckl enters all the matrix elements of �[1] , with the exception of the 
main diagonal. This is why all the species described by �[1] interact with one another.

In order to obtain a density matrix we select � in such a way that 𝛼
∑3

k=1
(h

(k)

1
+ h

(k)

2
) < 1 , 

then we put x = 1−�
∑3

k=1
(h

(k)

1
+h

(k)

2
)

2
.

3.3.1 � f (�) = F(t)�2

Let us again assume that the coupling with environment is given by some explicit time-
dependent function, say f (�) = F(t)�2 . Then �(k)

1
= F(t)(�

(k)

1
+ �

(k)

2
) , �(k)

0
= −F(t)�

(k)

1
�
(k)

2
,

r
(kl)

ij
=

√
|�h(k)

�(i)
+ y||�h(l)

�(j)
+ y|(h(l)

j
− h

(k)

i
)e

−i�
(kl)

ij ,

�
(kl)

ij
= ∫

t

0

(�
(k)

1
h
(k)

i
− �

(l)

1
h
(l)

j
)d�,

�[1](kk) =

(
�h

(k)

1
+ x s(k)(1 − 2ckk)e

i� (k)e−i�
(kk)

12

s(k)(1 − 2ckk)e
−i� (k)e−i�

(kk)

21 �h
(k)

1
+ x

)
,

u(k)(t) + iv(k)(t) =
�[f (�

(k)

2
)(�

(k)

1
− x) + (x − �

(k)

2
)f (�

(k)

1
)] + �y[f (�

(k)

1
) − f (�

(k)

2
)]

(�2 + �2)(�
(k)

1
− �

(k)

2
)

+ i
y�[f (�

(k)

1
) − f (�

(k)

2
)] − �[f (�

(k)

2
)(�

(k)

1
− x) + (x − �

(k)

2
)f (�

(k)

1
)]

(�2 + �2)(�
(k)

1
− �

(k)

2
)

c12 =
�(1)�(2)e[u

(1)(t)+u(2)(t)]+i[v(1)(t)−v(2)(t)]

|�(1)|2e2u(1)(t) + |�(2)|2e2u(2)(t) + |�(3)|2e2u(3)(t) .

u(k)(t) + iv(k)(t) = − i∫
t

0

[z��
(k)

1
+

�
(k)

0

�
]d�

= ∫
t

0

F(�)d�

[
�(y2 − x2) + 2�yx

�2 + �2
+ �h

(k)

1
h
(k)

2
+ y(h

(k)

1
+ h

(k)

2
)

]

+ i∫
t

0

F(�)d�

[
�(x2 − y2) + 2�yx

�2 + �2
− �h

(k)

1
h
(k)

2

]
,
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Fig. 4   30 populations for f (�) = sin(�t)�2 , h1 = 0.8 , h2 = 0.4 , h3 = 0.7 , h4 = 0.3 , h5 = 0.6 , h6 = 0.2 , 
�(1) = 1 + i , �(2) = 2 + i , �(3) = 3 + i , � = 0.2 , � = 1 , � = 0.2 , �1 = 20 , �2 = 30 , �3 = 40 . The solution � is 
normalized by Tr � = 1 . Note that the sum of all the 30 probabilities exceeds 1. This shows that the prob-
abilities correspond to several maximal sets, involving simultaneously different contexts for different collec-
tions of populations
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Fig. 5   30 populations for f (�) = sinh(�t)�2 , the remaining parameters as in Fig. 4. Note the change of time 
scale. For short times the evolutions are similar for both sin�t and sinh�t
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The associated set of rate equations involves of 36 populations, but clarity of presenta-
tion will not increase by writing down all the 30 time-dependent functions (the ‘diagonal’ 
populations p1,… , p6 are constant if one works in the basis of eigenvectors of H). Yet, in 
order to get some flavor of the solution let us show at least some of them:

The dynamics of all the 30 populations is illustrated in Fig.  4 for a simple ‘seasonal’ 
change of coupling of the species with their environment, F(t) = sin�t . Fig. 5 shows what 
happens if one takes a non-periodic F(t) = sinh�t . Of course, the solution is valid for any 
F(t).

3.4 � Building Seed Solutions with 3 × 3 Blocks

In one of our previous examples the seed solution for a 3 × 3 � was constructed by means of a 
2 × 2 block, trivially extended to 3 × 3 by adding a column and row consisting of zeros. Here 
we explicitly construct a less trivial 3 × 3 block. Of crucial importance is again the degeneracy 
condition, which means that the seed �(k) have to correspond to the same � and z� for all k. 
Otherwise one would not be able to combine �(k) from different blocks, acting in different 
invariant subspaces of H.

Let us start with a Hermitian 3 × 3 matrix

ckl =
�(k)�(l)e∫ t

0
F(�)d�[�(h

(k)

1
h
(k)

2
+h

(l)

1
h
(l)

2
)+y(h

(k)

1
+h

(k)

2
+h

(l)

1
+h

(l)

2
)−i�(h

(k)

1
h
(k)

2
−h

(l)

1
h
(l)

2
)]

∑
i ��(i)�2e∫

t

0
F(�)d�[2�h

(i)

1
h
(i)

2
+2y(h

(i)

1
+h

(i)

2
)]

�
(kl)

ij
= �

t

0

F(�)d�
�
2x(h

(k)

i
− h

(l)

j
) + �

�
(h

(k)

1
+ h

(k)

2
)h

(k)

i
− (h

(l)

1
+ h

(l)

2
)h

(l)

j

��

p12 = x +
�

2
(h

(1)

1
+ h

(1)

2
) +

�
��h(1)

1
+ y���h(1)

2
+ y�

�
1 −

2��(1)�2e2u(1)(t)∑
i ��(i)�2e2u(i)(t)

�
cos(�

(11)

12
− � (1))

p�
12

= x +
�

2
(h

(1)

1
+ h

(1)

2
) −

�
��h(1)

1
+ y���h(1)

2
+ y�

�
1 −

2��(1)�2e2u(1)(t)∑
i ��(i)�2e2u(i)(t)

�
sin(�

(11)

12
− � (1))

p13 = x +
�

2
(h

(1)

1
+ h

(2)

1
) +

2sgn(�)�(1)�(2)e[u
(1)(t)+u(2)(t)]

�
(h

(1)

1
− h

(1)

2
)(h

(2)

1
− h

(2)

2
)
∑

i ��(i)�2e2u(i)(t)

×

�
��h(1)

2
+ y���h(2)

2
+ y�(h(2)

1
− h

(1)

1
) sin(�

(12)

11
− [v(1)(t) − v(2)(t)] − (� (1) − � (2)))

p�
13

= x +
�

2
(h

(1)

1
+ h

(2)

1
) +

2sgn(�)�(1)�(2)e[u
(1)(t)+u(2)(t)]

�
(h

(1)

1
− h

(1)

2
)(h

(2)

1
− h

(2)

2
)
∑

i ��(i)�2e2u(i)(t)

×

�
��h(1)

2
+ y���h(2)

2
+ y�(h(2)

1
− h

(1)

1
) cos(�

(12)

11
− [v(1)(t) − v(2)(t)] − (� (1) − � (2)))
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The equation

is equivalent to

a dynamical system formally similar to Euler’s equations from classical mechanics of a 
rigid body (the ‘Euler-Arnold top’ (Arnold 1989) see also (Czachor et al. 2000)). Let us 
now find the dynamics of modules and phases of the matrix elements:

and real and imaginary parts of them,

We can find integrals of motion of (48), other than the diagonal elements of � , using the 
fact that four of the equations have right-hand sides proportional to the same time-depend-
ent function:

𝜌 =

⎛
⎜⎜⎝

𝜌1 a b

ā 𝜌2 c

b̄ c̄ 𝜌3

⎞
⎟⎟⎠
.

(48)i𝜌̇ = [H, 𝜃2𝜌
2 + 𝜃1𝜌]

𝜌̇1 = 𝜌̇2 = 𝜌̇3 = 0,

iȧ = (h1 − h2)[(𝜌1 + 𝜌2)𝜃2 + 𝜃1]a + 𝜃2(h1 − h2)bc̄,

iḃ = (h1 − h3)[(𝜌1 + 𝜌2)𝜃2 + 𝜃1]b + 𝜃2(h1 − h3)ac,

iċ = (h2 − h3)[(𝜌1 + 𝜌2)𝜃2 + 𝜃1]c + 𝜃2(h2 − h3)āb,

|a|2 d
dt
arg(a) = − (h1 − h2)[(𝜌1 + 𝜌2)𝜃2 + 𝜃1]|a|2 − t23Re(ab̄c),

|b|2 d
dt
arg(b) = − (h1 − h3)[(𝜌1 + 𝜌3)𝜃2 + 𝜃1]|b|2 − t13Re(ab̄c),

|c|2 d
dt
arg(c) = − (h2 − h3)[(𝜌2 + 𝜌3)𝜃2 + 𝜃1]|c|2 − 𝜃2(h2 − h3)Re(ab̄c),

d

dt
|a|2 = − 2(h1 − h2)𝜃2Im(ab̄c),

d

dt
|b|2 = 2(h1 − h3)𝜃2Im(ab̄c),

d

dt
|c|2 = − 2(h2 − h3)𝜃2Im(ab̄c),

d

dt
Re(ab̄c) = [𝜌1(h3 − h2) + 𝜌2(h1 − h3) + 𝜌3(h2 − h1)]𝜃2Im(ab̄c)

d

dt
Im(ab̄c) = − [𝜌1(h3 − h2) + 𝜌2(h1 − h3) + 𝜌3(h2 − h1)]𝜃2Re(ab̄c)

− 𝜃2(h1 − h2)|b|2|c|2 + 𝜃2(h1 − h3)|a|2|c|2 − 𝜃2(h2 − h3)|a|2|b|2
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They are not linearly independent, since

The next integrals of motion can be found from the characteristic polynomial,

From the time invariance of the spectrum of solutions of (48) we find the constant of 
motion

Now we are in position to verify which solution can be used in the dressing transformation. 
The first equation (18) of the Lax pair is an eigenvalue problem for the operator 1

�
� + H . We 

expect that the operator has at least one eigenvalue which is constant in time. Again, we should 
examine the characteristic polynomial,

Ẋ =
d

dt

[
(h1 − h3)|a|2 + (h1 − h2)|b|2

]
= 0

Ẏ =
d

dt

[
(h2 − h3)|a|2 − (h1 − h2)|c|2

]
= 0

Ż =
d

dt

[
(h1 − h3)|c|2 + (h2 − h3)|b|2

]
= 0

Q̇ =
d

dt

[|a|2 + |b|2 + |c|2] = 0

U̇ =
d

dt

(
[𝜌1(h3 − h2) + 𝜌2(h1 − h3) + 𝜌3(h2 − h1)]|a|2 + 2(h1 − h2)Re(ab̄c)

)
= 0

V̇ =
d

dt

(
[𝜌1(h3 − h2) + 𝜌2(h1 − h3) + 𝜌3(h2 − h1)]|b|2 − 2(h1 − h3)Re(ab̄c))

)
= 0

Ẇ =
d

dt

(
[𝜌1(h3 − h2) + 𝜌2(h1 − h3) + 𝜌3(h2 − h1)]|c|2 + 2(h2 − h3)Re(ab̄c))

)
= 0

X − Y = (h1 − h2)Q,

X + Z = (h1 − h3)Q,

Y + Z = (h2 − h3)Q,

U + V +W = [�1(h3 − h2) + �2(h1 − h3) + �3(h2 − h1)]Q.

det(𝜌 − 𝜆I) = − 𝜆3 + 𝜆2(𝜌1 + 𝜌2 + 𝜌3)

− 𝜆(𝜌1𝜌2 + 𝜌1𝜌3 + 𝜌2𝜌3 − |a|2 − |b|2 − |c|2)
+ 𝜌1𝜌2𝜌3 + 2Re(ab̄c) − |a|2𝜌3 − |b|2𝜌2 − |c|2𝜌1.

R = |a|2𝜌3 + |b|2𝜌2 + |c|2𝜌1 − 2Re(ab̄c) =
1

h1 − h2
(𝜌2X + 𝜌1Y − U)

=
1

h1 − h3
(𝜌3X + 𝜌1Z + V) =

1

h2 − h3
(𝜌3Y + 𝜌2Z −W).
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The coefficients of the polynomial are constant as one can easily verify. The last one can be 
described in terms of invariants,

where S = |a|2h3 − |b|2h2 − |c|2h1 = h1Q − X = h2Q − Y = h3Q + Z . Therefore, any 
solution of (48) in dimension three has all the eigenvalues constant. This means that the 
evolution of eigenvectors is given by some V−1(t) , and thus 
1

�
�(t) + H = V(t)[

1

�
�(0) + H]V−1(t).

To construct an explicit dressing transformation we need to find a relatively simple 
solution for the seed � . Assume that �2 is affine in � , with the constant term commuting 
with H,

Then

so the equation for � , with f (�) = �2�
2 + �1� + �0I , becomes linear

Its solution reads

with

det

(
1

𝜇
𝜌 + H − 𝜆I

)

= −𝜆3 + 𝜆2

(
1

𝜇
(𝜌1 + 𝜌2 + 𝜌3) + h1 + h2 + h3

)

− 𝜆

((
𝜌1

𝜇
− h1

)(
𝜌2

𝜇
− h2

)
+

(
𝜌1

𝜇
− h1

)(
𝜌3

𝜇
− h3

)

+

(
𝜌2

𝜇
− h2

)(
𝜌3

𝜇
− h3

)
−

1

𝜇2

(|a|2 + |b|2 + |c|2)
)

+

(
𝜌1

𝜇
− h1

)(
𝜌2

𝜇
− h2

)(
𝜌3

𝜇
− h3

)
𝜌1

+
2

𝜇3
Re(ab̄c) −

|a|2
𝜇2

(
𝜌3

𝜇
− h3

)
−

|b|2
𝜇2

(
𝜌2

𝜇
− h2

)
−

|c|2
𝜇2

(
𝜌1

𝜇
− h1

)

(
𝜌1

𝜇
− h1

)(
𝜌2

𝜇
− h2

)(
𝜌3

𝜇
− h3

)
𝜌1

+
2

𝜇3
Re(ab̄c) −

|a|2
𝜇2

(
𝜌3

𝜇
− h3

)
−

|b|2
𝜇2

(
𝜌2

𝜇
− h2

)
−

|c|2
𝜇2

(
𝜌1

𝜇
− h1

)

=

(
𝜌1

𝜇
− h1

)(
𝜌2

𝜇
− h2

)(
𝜌3

𝜇
− h3

)
𝜌1 −

1

𝜇3
R − S,

(49)�2 = A1� + A2(�H + H�) + A3H + A4H
2 + A5I.

[H, �2�
2 + �1� + �0I] = [(�1 + �2A1)H + �2A2H

2, �],

i𝜌̇ = [H, f (𝜌)] = [(𝜃1 + 𝜃2A1)H + 𝜃2A2H
2, 𝜌].

�(t) =U(t)�(0)U†(t)
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(49) is equivalent to the system of six equations

Let a = |a|ei�a , b = |b|ei�b and c = |c|ei�c , then from (50)– (52) follow bc̄ = Sa , ac = Sb and 
āb = Sc for some S. It is possible only for |a| = |b| = |c| and �b = �a + �c . Eliminating a 
from (50) we find that �j = phj + z , for some parameters p and z, so

and

Accordingly,

We now use the fact that G commutes with H, to make the ZS spectral problem static 
(exactly like in the two dimensional case). We define ��⟩ = U†��⟩ = ei ∫ t

0
Gd� ��⟩ , so that

U(t) = exp

(
−i

[
∫

t

0

(�1 + �2A1)d�H + ∫
t

0

�2A2d�H
2

])
= exp

(
−i∫

t

0

Gd�

)
.

(50)

𝜌2
1
+ |a|2 + |b|2 =A1𝜌1 + 2A2𝜌1h1 + A3h1 + A4h

2
1
+ A5,

𝜌2
2
+ |a|2 + |c|2 =A1𝜌2 + 2A2𝜌2h2 + A3h2 + A4h

2
2
+ A5,

𝜌2
3
+ |c|2 + |b|2 =A1𝜌3 + 2A2𝜌3h3 + A3h3 + A4h

2
3
+ A5,

(𝜌1 + 𝜌2)a + bc̄ =A1a + A2a(h1 + h2),

(51)(�1 + �3)b + ac =A1b + A2b(h1 + h3),

(52)(𝜌2 + 𝜌3)c + āb =A1c + A2c(h2 + h3).

(53)� =

⎛⎜⎜⎝

z + ph1 �a�ei�a �a�ei(�a+�c)
�a�e−i�a z + ph2 �a�ei�c

�a�e−i(�a+�c) �a�e−i�c z + ph3

⎞⎟⎟⎠
,

A1 = 2z + |a|,
A2 = p,

A3 = − p(|a| + 2z),

A4 = − p2,

A5 = 2|a|2 − |a|z − z2.

�2 = (2z + |a|)� + p(�H + H�) − p(|a| + 2z)H − p2H2 + (2|a|2 − |a|z − z2)I,

G = (�1 + �2(2z + |a|))H + �2pH
2.

z𝜇�𝜑⟩ =
�
1

𝜇
𝜌 − H

�
�𝜑⟩,

i�𝜑̇⟩ = 1

𝜇
f (𝜌)�𝜑⟩,
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implies (for � at t = 0),

Following the strategy from the two dimensional case we check that the generator of the 
dynamics of ��⟩ commutes with the operator of the first ZS problem:

The latter means that both operators are some functions of one another. Since any function 
of a 3 × 3 matrix is equivalent to a second-order polynomial, then

We can compare coefficients on both sides, arriving at

Finally,

A very simple evolution of ��⟩ is the next consequence of this relation,

z𝜇�𝜙⟩ =
�
1

𝜇
𝜌(0) − H

�
�𝜙⟩,

i�𝜙̇⟩ =
�
1

𝜇
f (𝜌(0)) − G

�
�𝜙⟩.

(54)
[
�

�
− H,

f (�)

�
− G

]
= 0.

f (�)

�
− G = B1

(
�

�
− H

)2

+ B2

(
�

�
− H

)
+ B3I.

B1 =
�2p�

p − �
,

B2 = �1 + �2(2z + |a|) �

� − p
,

B3 = �2(2|a|2 − |a|z − z2)
1

� − p
+

�0

�
.

f (�)

�
− G =

�2p�

p − �

(
�

�
− H

)2

+

(
�1 + �2(2z + |a|)

(
1 +

p

� − p

))(
�

�
− H

)

+

(
�2(2|a|2 − |a|z − z2)

1

�

(
1 +

p

� − p

)
+

�0

�

)
I
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Exactly like in the two-dimensional case this vector changes only by a time-depended fac-
tor. To calculate it we first have to find an eigenvalue of �

�
− H:

where �� = � − z − (p − �)h1 and gi = hi+1 − h1 . There are three eigenvalues, but let us 
choose the parameters in a way guaranteeing that one of the eigenvalues equals |a|. This 
implies that p = � , �a� = ���√−g1g2

2
 . In this case �z� =

���√−g1g2

2
+ z − i�h1 , and

The corresponding eigenvector reads

The index k reminds us that, from the point of view of applications, we consider a solution 
associated with a kth block; the only parameter that is block-independent is here � (the 

i�𝜙̇⟩ =
�
1

𝜇
f (𝜌(0)) − G

�
�𝜙⟩

=

�
𝜃2p𝜇

p − 𝜇

�
𝜌

𝜇
− H

�2

+

�
𝜃1 + 𝜃2(2z + �a�)

�
1 +

p

𝜇 − p

���
𝜌

𝜇
− H

�

+

�
𝜃2(2�a�2 − �a�z − z2)

1

𝜇

�
1 +

p

𝜇 − p

�
+

𝜃0

𝜇

�
I

�
�𝜙⟩

=

�
𝜃2p𝜇

p − 𝜇
z2
𝜇
+
�
𝜃1 + 𝜃2(2z + �a�)�

�
1 +

p

𝜇 − p

�
z𝜇

+

�
𝜃2(2�a�2 − �a�z − z2)

1

𝜇

�
1 +

p

𝜇 − p

�
+

𝜃0

𝜇

��
�𝜙⟩

det(� − �H − �I) =

||||||

z + (p − �)h1 − � |a|ei�a |a|ei(�a+�c)
|a|e−i�a z + (p − �)h2 − � |a|ei�c

|a|e−i(�a+�c) |a|e−i�c z + (p − �)h3 − �

||||||

=

||||||

−�� |a|ei�a |a|ei(�a+�c)
|a|e−i�a sg1 − �� |a|ei�c

|a|e−i(�a+�c) |a|e−i�c sg2 − ��

||||||
= − ��3 + ��2s(g1 + g2) + ��(3|a|2 − s2g1g2) + 2|a|3 − |a|2s(g1 + g2),

i�𝜙̇⟩ =
�
𝜃2

�
𝜇z2

𝜇
+ h1�a� − i𝛽h2

1
−

2i�a�2
𝛽

�
+

𝜃1

𝜇

��a� + z − i𝛽h1
�
+

𝜃0

𝜇

�
�𝜙⟩.

��(0)⟩ = 1√
2�h3 − h2�

⎛
⎜⎜⎜⎜⎜⎝

(isgn(�)
√�h3 − h1� +

√�h2 − h1�)ei(�a+�c)

isgn(�)
√�h3 − h1�ei�c

√�h2 − h1�

⎞⎟⎟⎟⎟⎟⎠

≡
⎛⎜⎜⎝

�
(k)

1
(0)

�
(k)

2
(0)

�
(k)

3
(0)

⎞⎟⎟⎠
= ��(0)(k)⟩

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


123Systems, Environments, and Soliton Rate Equations: Toward…
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imaginary part of � ). In order to get the explicit evolution of ��⟩ we first calculate the time-
dependent factor,

and thus

Finally, we use the form of the operator G =
�
�1 + �2(2z +

���√−g1g2

2
)
�
H + �2�H

2 to get 

the explicit solution of the ZS Lax pair,

To sum up this stage, we have found both a seed � , which satisfies the von Neumann equa-
tion, and the vector ��(t)⟩ which solves the Lax pair. To make sure that �[1] will be a den-
sity matrix we have to impose additional restrictions on parameters of the seed solution. By 
Sylvester’s positivity criterion,

For z + 𝛼hi > �a� = �𝛽�√−g1g2

2
 the three inequalities are satisfied.

Now consider the case

u(t) + iv(t) =�
t

0

�2(�)d�

�
2�xy + �(y2 − x2)

�2 + �2
− �h2

1
−

2�a�2
�

�

+ i�
t

0

�2(�)d�

�
�(y2 − x2) − 2�xy

�2 + �2
− h1�a�

�

+ �

∫ t

0
�1(�)d�[

� ���√−g1g2

2
+ z

�
− �h1] + ∫ t

0
�0(�)d�

�2 + �2

− i

∫ t

0
�1(�)d�[�

� ���√−g1g2

2
+ z

�
+ �2h1] + ∫ t

0
�0(�)d��

�2 + �2

��(t)⟩ = eu(t)+iv(t)√
2�2g2(g2 − g1)

⎛⎜⎜⎝

(i�g2 + ���√−g1g2)e
i(�a+�c)

i�g2e
i�c

���√−g1g2

⎞⎟⎟⎠
= ��(t)(k)⟩.

��(t)⟩ = e−i ∫ t

0
G(�)d�eu(t)+iv(t)��(0)⟩

= e
−i
��∫ t

0
�1(�)d�+∫ t

0
�2(�)d�(2z+

���√−g1g2

2
)
�
H+� ∫ t

0
�2(�)d�H

2
�
��(t)⟩

= ��(t)(k)⟩.

z + 𝛼h1 > 0,

(z + 𝛼h1)(z + 𝛼h2) > |a|2,
(z + 𝛼h1)(z + 𝛼h2)(z + 𝛼h3) + 2|a|3 − |a|2(3z + 𝛼(h1 + h2 + h3)) > 0.

(55)H = diag(h1,… , h7) = diag
(
h
(1)

1
, h

(1)

2
, h

(1)

3
, h

(2)

1
, h

(2)

2
, h

(3)

1
, h

(3)

2

)
,

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


124	 M. Kuna 
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and

(56)z =
1

7

�
�

�
1 −

7�
i=1

hi

�
− 2�

√
(h1 − h2)(h3 − h1)

�
.

Fig. 6   42 populations for f (�) = sinh(�t)�2 , h1 = 0.0051 , h2 = 0.005 , h3 = 0.0052 , h4 = 0.0053 , 
h5 = 0.0049 , h6 = 0.0054 , h7 = 0.0048 , �(1) = 1 + i , �(2) = 2 + i , �(3) = 3 + i , � = 10 , � = 10 , � = 10 , 
�1 = 2 , �2 = 3 , �3 = 4 , �4 = 5
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The dressed solution has the block form

where at the right-hand-side the dimensions of the blocks have been indicated. The 
2-dimensional blocks are constructed by means of (38)–(41), with w(2) = w(3) = 0 , and

Note the sum from 1 to 3 in the denominator of ckl . The 3-dimensional block on the diago-
nal reads

The following functions have been introduced in (58):

and

�[1] =

⎛
⎜⎜⎝

�[1](11) �[1](12) �[1](13)

�[1](21) �[1](22) �[1](23)

�[1](31) �[1](32) �[1](33)

⎞
⎟⎟⎠
=

⎛
⎜⎜⎝

3 × 3 3 × 2 3 × 2

2 × 3 2 × 2 2 × 2

2 × 3 2 × 2 2 × 2

⎞
⎟⎟⎠
,

(57)ckl(t) =
�(k)�(l)e[u

(k)(t)+u(l)(t)]+i[v(k)(t)−v(l)(t)]

∑3

i=1
��(i)�2e2u(i)(t) .

(58)�[1](11) =

⎛⎜⎜⎜⎝

�h
(1)

1
+ z s

(1)

12
ei�

(1)
a e−i�

(11)

12 s
(1)

13
ei(�

(1)
a +�

(1)
c )e−i�

(11)

13

s
(1)

21
e−i�

(1)
a e−i�

(11)

21 �h
(1)

2
+ z s

(1)

23
ei�

(1)
c e−i�

(11)

23

s
(1)

31
e−i(�

(1)
a +�

(1)
c )e−i�

(11)

31 s
(1)

32
e−i�

(1)
c e−i�

(11)

32 �h
(1)

3
+ z

⎞⎟⎟⎟⎠
.

s
(1)

12
= |�|

√
|h(1)

2
− h

(1)

1
||h(1)

3
− h

(1)

1
|
(
1

2
+

c11(h
(1)

2
− h

(1)

1
)

|h(1)
3

− h
(1)

2
|

)

+ i�c11(h
(1)

2
− h

(1)

1
)
|h(1)

3
− h

(1)

1
|

|h(1)
3

− h
(1)

2
| = s

(1)

21

s
(1)

13
= |�|

√
|h(1)

2
− h

(1)

1
||h(1)

3
− h

(1)

1
|
(
1

2
−

c11(h
(1)

3
− h

(1)

1
)

|h(1)
3

− h
(1)

2
|

)

+ i�c11(h
(1)

3
− h

(1)

1
)
|h(1)

2
− h

(1)

1
|

|h(1)
3

− h
(1)

2
| = s

(1)

31

s
(1)

23
= |�|

√
|h(1)

2
− h

(1)

1
||h(1)

3
− h

(1)

1
|
(
1

2
−

c11(h
(1)

3
− h

(1)

2
)

|h(1)
3

− h
(1)

2
|

)
= s

(1)

32

�
(11)

ij
=

(
∫

t

0

�1(�)d� + ∫
t

0

�2(�)d�(2z +
|�|
2

√
|h(1)

2
− h

(1)

1
||h(1)

3
− h

(1)

1
|)
)
(h

(1)

i
− h

(1)

j
)

+ p∫
t

0

�2(�)d�[(h
(1)

i
)2 − (h

(1)

j
)2].
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The two 3 × 2 blocks read

where

(�(i) is an odd permutation of i ∈ {1, 2} ), and

The remaining two 2 × 3 blocks are the Hermitian conjugates of the 3 × 2 ones, so that �[1] 
is Hermitian.

Figure 6 shows the dynamics of all the 42 time-dependent populations associated with 
a 7 × 7 solution �[1] . The diagonal elements are time-independent, so we do not plot them.

4 � Further Perspectives

We have developed a method of generating appropriate seed solutions for the soliton system 
i𝜌̇(t) = [H, ft(𝜌(t))] . H is Hermitian and its spectrum possesses a discrete part, an assumption 
valid for a large class of H. Differences of eigenvalues of H, kjk = hj − hk , enter the rate equa-
tions as kinetic constants. So, given kjk , one can design the dynamics by adjusting H. The 
nonlinearity ft is essentially arbitrary as well, although in practical computations one replaces 
ft by a polynomial with time dependent coefficients. From the point of view of realistic mod-
eling the formalism is much more flexible than anything discussed in the literature so far.

Still, is it flexible enough? Probably not. Our equation is just a tip of the iceberg. Almost 
unexplored is the general family of soliton von Neumann equations i𝜌̇(t) = [Ht(𝜌(t)), 𝜌(t)] dis-
cussed in (Cieśliński et al. 2003). Here H(�) is a ‘non-Abelian’ function, a kind of polynomial 
whose coefficients are not numbers but operators. The relevant dressing transformations have 
been constructed (Cieśliński et al. 2003), but virtually nothing is known about the structure of 
seed solutions.

For time independent f the system described by the von Neumann equation is conserva-
tive. A time dependent ft makes the system open: dissipative or driven. Dissipation can be 

�[1])(kl) =
2i�ckl�

2����h(k)
3

− h
(k)

2
��h(l)

1
− h

(l)

2
�

⎛
⎜⎜⎜⎝

r
(kl)

11
ei(�

(k)
a +�

(k)
c −� (l)) r

(kl)

12
ei(�

(k)
a +�

(k)
c )

r
(kl)

21
ei(�

(k)
c −� (l)) r

(kl)

22
ei�

(k)
c

r
(kl)

31
e−i�

(l)

r
(kl)

32

⎞
⎟⎟⎟⎠
,

r
(kl)

ij
= 𝜙̂

(k)

i

�
�𝛽h(l)

𝜎(j)
+ y�(h(l)

j
− h

(k)

i
)e

−i𝜔
(kl)

ij ,

𝜙̂
(k)

1
=
�
isgn(𝛽)

√�h3 − h1� +
√�h2 − h1�

�
ei(𝜍a+𝜍c),

𝜙̂
(k)

2
= isgn(𝛽)

√�h3 − h1�ei𝜍c ,
𝜙̂
(k)

3
=
√�h2 − h1�,

�
(kl)

ij
=

(
∫

t

0

�
(k)

1
(�)d� + ∫

t

0

�
(k)

2
(�)d�

(
2z +

|�|
2

√
|h(k)

2
− h

(k)

1
||h(k)

3
− h

(k)

1
|
))

h
(k)

i

+ � ∫
t

0

�
(k)

2
(�)d�(h

(k)

i
)2 − ∫

t

0

�
(l)

1
(�)h

(l)

j
d�.
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introduced also through a time-independent part, such as the simple example discussed in 
(Aerts et al. 2013),

where � ∈ ℝ is a birth or mortality rate. More generally, one can consider

where �(�) = �(�)† is a Hermitian, �-dependent operator, but little is known about soliton 
integrability of equations involving a less trivial �(�).

Yet another possibility of introducing dissipation without explicitly time-dependent param-
eters is to consider solutions analytically continued either in t (a ‘complex time’), or in other 
parameters of the system. A complex time is known to turn the Schroedinger equation into a 
diffusion equation, so a similar trick can be performed in the von Neumann case (Aerts and 
Czachor 2007). But since Hermiticity of � will be in general lost, a new model of probability 
has to be employed.
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Appendix

Replacing f(�) by a Polynomial

Consider some Hermitian matrix � , or a Hermitian operator � which has a finite number n 
of different nonzero eigenvalues �1,… , �n . By spectral theorem � =

∑n

j=1
�jPj , where Pj are 

spectral projectors, and f (�) =
∑n

j=1
f (�j)Pj . Now consider an arbitrary polynomial,

In order to find a polynomial satisfying f (�) = g(�) by the Cayley–Hamilton theorem we 
have to solve for gk the system of linear equations

with K = n − 1.

Remark About Dressing Transformation from a Zakharov–Shabat Problem

We shall consider a Zakharov–Shabat (ZS) problem (Matveev and Salle 1991) with linear 
operators A� and B acting on some Hilbert space :

(59)𝜌̇(t) = −i
[
H, f (𝜌(t))

]
+ 𝜉𝜌,

(60)𝜌̇(t) = −i[H(𝜌(t)), 𝜌(t)] + 𝛯(𝜌),

(61)g(�) =

K∑
k=0

gk�
k =

n∑
j=1

g(�j)Pj =

n∑
j=1

K∑
k=0

gk�
k
j
Pj.

(62)f (�j) =

K∑
k=0

gk�
k
j
, j = 1,… , n,
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� is a complex parameter and ���⟩ a vector in Dirac notation (a Dirac ‘ket’; in practical cal-
culations typically represented by a 1-column matrix). Additionally, in order to introduce 
a dressing transformation, we need a conjugate equation with an independent parameter �:

⟨��� is a dual vector (a Dirac ‘bra’; typically represented by a 1-row matrix). The main tool 
of dressing transformations is the operator

From (63), (64) we prove that P satisfies the nonlinear equation

Now we take a third ZS problem

with yet another parameter � . We assume that our dressing transformation can be con-
structed by linear operators S and T of the form

Since P2 = P one finds S−1 = I + âP for â =
−a

1+a
 and analogously b̂ =

−b

1+b
 . We demand

and check how it restricts the form of S and T:

and

leading to the following three conditions:

(63)i�𝜙̇𝜇⟩ = (A𝜇 + B)�𝜙𝜇⟩.

(64)−i⟨𝜓̇𝜈� = ⟨𝜓𝜈�(A𝜈 + B).

(65)P =
���⟩⟨���
⟨�����⟩ .

(66)iṖ = (A𝜇 + B)P − P(A𝜈 + B) − P(A𝜇 + B)P + P(A𝜈 + B)P

(67)= (1 − P)A�P − PA�(1 − P) + BP − PB.

(68)−i⟨𝜑̇𝜆� = ⟨𝜑𝜆�(A𝜆 + B),

(69)⟨��[1]� = ⟨���S = ⟨���(1 + aP)

(70)A𝜆[1] = TA𝜆T
−1 = (1 + bP)A𝜆(1 + b̂P)

(71)−i⟨𝜑̇𝜆[1]� =⟨𝜑𝜆[1]�(A𝜆[1] + B),

(72)− i⟨𝜑̇𝜆[1]� = ⟨𝜑𝜆�(A𝜆 + B)(1 + aP)

(73)− ⟨���a
�
(1 − P)A�P − PA�(1 − P) + BP − PB

�

(74)
= ⟨𝜑𝜆[1]�

�
A𝜆 + B + P(âA𝜆 − âA𝜈) + (aA𝜆 − aA𝜇)P

+P(âaA𝜆 + aA𝜇 + âA𝜈)P
�

(75)⟨𝜑𝜆[1]�(A𝜆[1] + B) =⟨𝜑𝜆[1]�
�
(1 + bP)A𝜆(1 + b̂P) + B

�

(76)=⟨𝜑𝜆[1]�
�
A𝜆 + B + PbA𝜆 + b̂A𝜆P + Pb̂bA𝜆P

�

(77)1) A𝜆 =
â

â − b
A𝜈 ,
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It is easy to see that first two conditions imply the third. They also give a relation between 
A� and A�:

A change of a parameter just multiplies the operator by a number, implying A� = X(�)A , 
A� = Y(�)A and A� = Z(�)A , for some operator A and three functions of the parameters. 
So,

From the second condition we find

Following (Ustinov et  al. 2001) we set X(�) = 1

�
 , Y(�) = 1

�
 and Z(�) = 1

�
 , which finally 

gives

The dressing transformation has been found:

One should be aware that various generalizations of the above procedure are known, 
including greater numbers of parameters, operator solutions of ZS-type problems, 

(78)2) A𝜆 =
a

a − b̂
A𝜇,

(79)3) âaA𝜆 + aA𝜇 + âA𝜈 = b̂bA𝜆.

(80)
1

1 + b
A� =A�

(81)
1

1 + b
Y(�) =X(�),

(82)b =
Y(�)

X(�)
− 1.

(83)A𝜆 =
a

a − b̂
A𝜇,

(84)Z(𝜆) =
a

a − b̂
X(𝜇),

(85)a = −
(Y(�) − X(�))Z(�)

Y(�)(Z(�) − X(�))
.

(86)b =
Y(�)

X(�)
− 1 =

�

�
− 1 =

� − �

�
,

(87)a =
� − �

� − �
.

(88)S = I + aP = I +
� − �

� − �
P,

(89)T = I + bP = I +
� − �

�
P.
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time-dependent parameters etc. (Matveev and Salle 1991; Cieśliński 1995, 2002; Doktorov 
and Leble 2007). Of particular interest is the generalization proposed in (Cieśliński 2002) 
since it seems to be applicable to soliton von Neumann systems with dissipation, a problem 
which only briefly mentioned in (Aerts et al. 2013), and which is also beyond the scope of 
the present paper.

Remark About Theorem 1

To prove the theorem we employ (67) for both ZS problems, and find

Inserting (90)–(91) into (20)– (21) we obtain

which ends the proof.
One similarly proves

Theorem 2  Assume that � and A satisfy

and there exists R which, for some nonzero numbers �, � and �, satisfies

Then

fulfill

(90)[H,P] =
� − �

��
P�P +

1

�
�P −

1

�
P�,

(91)iṖ =
𝜇 − 𝜈

𝜇𝜈
PAP +

1

𝜇
AP −

1

𝜈
PA.

i𝜌̇[1] = [H,A[1]],

[𝜌[1],A[1]] = 0.

i𝜌̇ = [H,A],

[A, 𝜌] = 0

(92)iṘ = 𝛼RAR + 𝛽AR + 𝛾RA,

(93)[H,R] = �R�R + ��R + �R�.

�[1] =

(
1 +

�

�
R

)
�

(
1 +

�

�
R

)
,

A[1] =

(
1 +

�

�
R

)
A

(
1 +

�

�
R

)

i𝜌̇[1] = [H,A[1]],

[A[1], 𝜌[1]] = 0.
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