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Fast harmonics identification based on  
a compressive sensing approach 

 
Abstract. The paper presents the application of a fast reconstruction algorithm, based on the theory of compressive sensing that can detect 
harmonics in an input signal. The problem of signal reconstruction is solved using a convex optimization by the linear programming algorithm. 
Additionally, to accelerate the convergence, a K-rank-order filter is applied in the signal's sparse domain. The numerical simulation carried out 
confirms the effectiveness of the algorithm used. 
 
Streszczenie. W pracy przedstawiono implementację szybkiego algorytmu rekonstrukcji sygnału, opartego na teorii oszczędnego próbkowania, 
który może wykrywać harmoniczne w sygnale wejściowym. Zagadnienie rekonstrukcji sygnału jest problemem optymalizacyjnym rozwiązywanym za 
pomocą algorytmu programowania liniowego. Dodatkowo, aby przyspieszyć zbieżność rozwiązania zastosowano w rzadkiej dziedzinie sygnału filtr 
typu K-rank-order. Przeprowadzona symulacja numeryczna potwierdza skuteczność zastosowanego algorytmu. (Szybka identyfikacja 
harmonicznych na podstawie oszczędnego próbkowana). 
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Introduction 

Various new techniques for the identification and 
evaluation of harmonic sources in electricity supply systems 
are presented in the literature [1, 2, 3, 4]. 

In many practical applications, acquiring signals at ever 
higher sampling rates causes that large amounts of data 
must be stored in physical memory, which in turn leads to a 
huge memory occupancy. Thus, storing and processing or 
analysing the resulting large number of data has made it 
necessary to compress the desired information using the 
appropriate algorithms. Differently, from the typical 
approach usually implemented for signal compression, a 
new technique called compressive sensing (CS) uses a 
limited number of random linear projections to acquire 
efficient representations of compressible signals directly [5, 
6, 7].  

In general, the CS theory consists of three main issues. 
The first is determining the sparsest representation of a 
signal. Next, it is important to find an applicable 
compression transformation matrix, which approximates 
well the original N length signal for the least M coefficients. 

The last one concerns implementing proper reconstruction 
algorithm, which can recover original signal from observed 
M coefficients.  

This paper presents the application of a fast 
reconstruction algorithm based on a convex optimization 
with the use of K-rank-order filter in the signal's sparse 

domain to accelerate the solution convergence. This filter 
has low computational complexity and is easy to implement. 
In this way, the computational burden associated with digital 
signal processing, which is performed in the next step of the 
measuring path, is reduced. 

The paper is organized as follows. In the first section, 
the principles of the CS theory are given. Then, a sparse 
representation of a narrowband signal in the Fourier basis is 
proposed. The next section describes the random 
acquisition process. The algorithmic implementation of the 
reconstruction procedure is explained in the consecutive 
section. Then, numerical results are provided, which are 
followed by the conclusion in the last section.  
 
Compressive sensing principles 

Unlike traditional techniques, the innovative idea of the 
CS relies on the simultaneous execution of the acquisition 
and compression process. Time–domain sampling of 
discrete signals y can be expressed as [5]: 

 

(1)  

1

1 11 1

1

N

M M MN

N

x

y

x

y

x

 



 

 
 

     
        
     
        

 
 

 

 

where: 
My R  – a measurement vector, 

MxNR  – a 

measurement matrix, 
Nx R  - an input signal. 

 

The measurement matrix  allows to determine M (M<<N) 

of measured values from which a reliable reconstruction of 
the original signal is possible.  

To apply the CS theory efficiently, two conditions must 
be met. The first concerns a sparsity of the input signal. Let 
x denotes an N-length real signal that can be expanded in 

an orthonormal basis as [5]: 
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where: 
NxNR   – a transformation matrix, 

Na R  – a 

sparse representation of the signal of x in the matrix . 
 

The signal is sparse, which means it consists of only a 
small number of basic functions. The second condition 
states that the measurement matrix must be incoherent with 
basis in which signal has sparse representation.  

If the input signal is K-sparse on basis  as well as 

matrix   and   are incoherent, the signal x can be 

reconstructed using limited number of linear projections 
(K<M<<N). 

By inserting (2) into (1) the measurement signal y 

becomes:  
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where: 
MxNR  – a reconstruction matrix. 

 
In order to reconstruct the sparse signal x, the equation 

(3) has to be resolved, which gives infinite number of 
possible solutions. Therefore, optimization algorithms based 
on the l1-norm minimization is usually applied [5]: 

 

(5)  
1

ˆ argmina a subject to y a   
 

where: â  - the estimate of a and 
1

a  denotes l1-norm of a. 

 

Complying with (5), the input signal estimate can be found 
as [8]: 
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where: (matrix)-1 - the pseudoinverse matrix of matrix.  

 
Sparse representation of the input signal 

It is assumed, that the input signal is a narrowband 
signal that can be described as a superposition of K 

sinusoids [9]: 
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where: Xk – the DFT of signal xn. 
 

Such signal has a K-sparse representation in terms of the 

discrete Fourier transform (DFT), since:  
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The transformation matrix  , constructed on the Fourier 
basis is described by [2]: 
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The matrix   is a fixed signal feature; no degree of freedom 
is possible. 
 
Random sampling 

CS is mainly concerned with low coherence between the 

transformation matrix  and the measurement matrix . In 

the literature, some frequent examples of incoherent basis 
couples can be found [5]. Random matrices are largely 

incoherent with any fixed basis  [5].  

If the random measurement matrix   is created based 
on the Bernoulli distribution, with the ones probability p [10], 
and the exemplary element of y is given by: 
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what can be generalized as: 
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where: ,i j - the (i, j)th entry of the random binary matrix ., 

 
Signal reconstruction 

The problem of signal reconstruction is resolved based 
on a convex optimization by the linear programming 
algorithm [7]. Additionally, to accelerate the convergence, a 
K-rank-order filter is applied in the signal's sparse domain. 

The reconstruction formula is described as follows [11]: 
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where pj is the ones probability at the jth  iteration.  
 

The algorithm operates in a loop, and in each iteration, it 
verifies whether equation (12) actually converges.  

The processing loop terminates when the threshold 
condition t meets [11]: 
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where: ˆ
ix – the estimate of x at the ith iteration. 

 

The Fourier transformation T is applied to sparsify the 
solution. The estimate of xi is expressed as: 
 

(14)     1ˆ
ix T Rank T x  

 

where: Rank (*)– denotes a K-rank-order filter. 
 

Let’s consider a vector containing samples 

   1, ,k NX T x X X  . The filter extracts the K most 

significant components from the input vector and assigns 
zeros to the remaining places (see Fig. 1). This way, the 
computational burden of the inverse Fourier transform, 
performed in the next step, is reduced. 
 

 
Fig.1. The exemplary results of the K-rank-order filter operation 
with K equal to 5 

 
Numerical simulation 

The simulations were performed using a program 
designed based on an accessible application in the 
LabVIEW environment [11]. As an example, a multi-tone 
signal with fundamental harmonic 50 Hz has been 
generated, according to the parameter sets shown in Tab. 
1. The sampling frequency is equal to 10 kHz and the 
length of the time window is equal to 1000 samples. The 
time waveform and sparse representation of the tested 
signal in the Fourier domain is presented in Fig. 2. 
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Table 1. The parameters of the input signals 

 
Harmonic no 

Amplitude [-] 

set no 1 set no 2 set no 3 set no 4 

1 1 10 100 100 

3 1 6 5 10 

5 1 4 3 10 

7 1 2 1 10 

 

 
Fig.2. The segment of time waveform (a) and normalized DFT 
components (b) of input signal (set no 4) 
 

In the case of generating the tones with the same level 
of amplitude (set no 1), the algorithm identifies harmonics 
with accuracy above 97%. The most accurate signal 
reconstruction (99,32%) is obtained for 92 sampled 
measurement signals, acquired with the ones probability p 

equals 0,3 (see Fig. 3). For the input signal with slightly 
different levels of amplitude (set no 2), the reconstruction 
based on 102 measurements and the same features of the 
measurement matrix does not allow the correct detection of 
all harmonics (see Fig 4). The proper reconstruction 
requires three times more measurements, i.e. about 350. 
The scenario with the dominant fundamental harmonic (set 
no 3) shows that 500 sampled measurements are not 
sufficient to identify all components in the frequency domain 
(see Fig. 5). The application of the presented reconstruction 
algorithm to the signal in which the dominant harmonic 
occurs requires the pre-conditioning of the signal. It consists 
in the separation of the fundamental component from the 
examined waveform. The increasing of the amplitude level 
of the higher harmonics (set no 4) results in the possibility 
of harmonic identification (see Fig. 6). In this case, the 
number of random samples reaches 800. 

All FFT analyses were carried out with a 10 Hz 
resolution.  

The sensitivity of the Fourier amplitude detection 
depends on the conditions of acquisition of the input signal, 
i.e. the resolution of the AD converter. 

 
Fig.3. The segments of time waveforms of the original (white line) 
and reconstructed signal (dotted yellow line) (a) and normalized 
DFT components of the reconstructed signal (b). The set no 1 
 

 
Fig.4. The segments of time waveforms of the original (white line) 
and reconstructed signal (dotted yellow line) (a) and normalized 
DFT components of the reconstructed signal (b). The set no 2 
 

 
Fig.5. The segments of time waveforms of the original (white line) 
and reconstructed signal (dotted yellow line) (a) and normalized 
DFT components of the reconstructed signal (b). The set no 3 
 

 
Fig.6. The segments of time waveforms of the original (white line) 
and reconstructed signal (dotted yellow line) (a) and normalized 
DFT components of the reconstructed signal (b). The set no 4 

 
Conclusion 

The preliminary results of numerical simulations 
performed, using the fast reconstruction algorithm, show the 
limitations of effective reconstruction based on the CS.  

The good reconstruction accuracy occurs in the case of 
multi-tone signal consisting of components whose 
amplitude levels do not differ significantly.  
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