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SUMMARY

Mitochondria-originating reactive oxygen species
(ROS) control T cell receptor (TCR)-induced gene
expression. Here, we show that TCR-triggered acti-
vation of ADP-dependent glucokinase (ADPGK), an
alternative, glycolytic enzyme typical for Archaea,
mediates generation of the oxidative signal. We also
show that ADPGK is localized in the endoplasmic
reticulum and suggest that its active site protrudes
toward the cytosol. The ADPGK-driven increase in
glycolytic metabolism coincides with TCR-induced
glucose uptake, downregulation of mitochondrial
respiration, and deviation of glycolysis toward mito-
chondrial glycerol-3-phosphate dehydrogenase
(GPD) shuttle; i.e., a metabolic shift to aerobic glycol-
ysis similar to the Warburg effect. The activation of
respiratory-chain-associated GPD2 results in hyper-
reduction of ubiquinone and ROS release from mito-
chondria. In parallel, mitochondrial bioenergetics
and ultrastructure are altered. Downregulation of
ADPGK or GPD2 abundance inhibits oxidative signal
generation and induction of NF-kB-dependent gene
expression, whereas overexpression of ADPGK
potentiates them.
INTRODUCTION

Stimulation of the T cell receptor (TCR) drives T cells into rapid

proliferation and differentiation. After PLCg1 induction, the

TCR response splits into two pathways. Inositol 3,4,5-triphos-

phate induces a rise in cytosolic Ca2+ and activation of Ca2+-

dependent transcription factors, e.g., nuclear factor of activated

T cells (NF-AT). Diacylglycerol (DAG) activates protein kinase Cq
1300 Cell Reports 2, 1300–1315, November 29, 2012 ª2012 The Aut
(PKCq) and RAS guanyl nucleotide-releasing protein (RasGRP),

leading to triggering of NF-kB and AP-1. These three transcrip-

tion factors essentially control activation-induced gene expres-

sion. Thus, simultaneous treatment with a Ca2+ ionophore,

e.g., ionomycin (Iono), and a DAGmimetic, phorbol 12-myristate

13-acetate (PMA), yields T cell activation-driven transcriptional

response. T cell activation is paralleled by transient generation

of low, physiologically relevant levels of reactive oxygen species

(ROS), i.e., an H2O2-mediated oxidative signal, which facilitates

activation of ROS-dependent transcription factors, NF-kB and

AP-1 (Dröge, 2002; Kami�nski et al., 2010, 2012). This oxidative

signal is indispensible for T cell activation (Devadas et al.,

2002; Dröge, 2002; Kami�nski et al., 2010). Together with a

Ca2+ influx, it constitutes the minimal requirement for activa-

tion-induced gene expression (e.g., interleukin 2 [IL-2], IL-4,

CD95 ligand [L]) (Devadas et al., 2002; Gülow et al., 2005; Kami�n-

ski et al., 2007, 2010). Different enzymatic sources, such as the

respiratory chain (Kami�nski et al., 2007, 2010, 2012; Yi et al.,

2006), lipoxygenases (Los et al., 1995), and NADPH oxidases

(NOX2, DUOX2) (Jackson et al., 2004; Kwon et al., 2010), have

been described as participating in T cell activation-triggered

ROS production. Our previous work demonstrates a crucial

role for mitochondria as the source of the oxidative signal. We

showed that TCR-induced PKCq activation drives complex-

I-mediated mitochondrial ROS production. O2
�. released into

the mitochondrial matrix is converted into H2O2 by superoxide

dismutase (MnSOD, SOD2) (Kami�nski et al., 2007, 2012). H2O2

diffuses into the cytoplasm to act as an oxidative signal medi-

ator. MnSOD, upregulated during the late phase of a TCR-

induced response, is considered a critical regulator of oxidative

signal generation (Kami�nski et al., 2012).

The intracellular redox equilibrium is controlled by a network of

enzymatic and nonenzymatic factors that partially substitute for

each other, as in the case of alternative enzymatic sources of the

TCR-induced oxidative signal. In addition, TCR-triggered gene

expression is also controlled by redox-independent transcription

factors, e.g., NF-AT, SP-1, Oct-1, or CREB. Nevertheless, direct
hors
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block of ROS release from mitochondria by complex I inhibi-

tors, small interfering RNA (siRNA)-mediated downregulation of

NDUFAF1 (an assembly factor for complex I), or upregulation

of MnSOD above its threshold level efficiently inhibit T cell acti-

vation-induced gene expression (Kami�nski et al., 2007, 2012).

Thus, mitochondria-derived ROS are essential for gene expres-

sion upon TCR stimulation.

T cell activation-induced gene expression depends on glu-

cose uptake (Jacobs et al., 2008; Stentz and Kitabchi, 2005)

and is accompanied by a metabolic switch from mitochondrial

ATP production to aerobic glycolysis, i.e., the Warburg effect

(Wang et al., 1976; Warburg, 1956), a phenomenon also charac-

teristic for fast-proliferating cancer cells (Vander Heiden et al.,

2009; Warburg, 1956). Cancer cells are often endowed with

high intrinsic ROS production and constitutive NF-kB activation

(Baud and Karin, 2009; Wellen and Thompson, 2010). Upregu-

lated glucose metabolism under hyperglycemic and hypoxic

conditions was also shown to induce mitochondrial ROS release

in different cellular systems (Bell et al., 2007; Nishikawa et al.,

2000; Wellen and Thompson, 2010). Thus, it is possible that

upon T cell activation, the mitochondrial respiratory chain

switches from an ATP-producing to an oxidative signaling func-

tion while glycolysis responds to cellular energy demands.

Therefore, we studied metabolic changes accompanying gener-

ation of the oxidative signal (i.e., occurring within 1 hr of TCR or

PMA triggering) (Kami�nski et al., 2007, 2012) in partially glyco-

lytic, proliferating cells—in vitro expanded peripheral human

T cells (Bental and Deutsch, 1993) and Jurkat T cells (Miccheli

et al., 2006).

RESULTS

TCR Triggering Induces a Metabolic Shift in T Cells
Reduction of mitochondrial respiration and increase in glycolysis

are central to the Warburg effect (Vander Heiden et al., 2009;

Wang et al., 1976; Warburg, 1956). Using an oxygen electrode

we measured activation-induced changes in mitochondrial

respiration of intact expanded human T cells. Treatment with

agonistic anti-CD3 antibody or PMA resulted in inhibition of

mitochondrial oxygen consumption (Figures 1A and S1A). Simul-

taneously, cellular uptake of radioactively labeled glucose (Fig-

ure 1B) and intracellular ATP level (Figure 1C) rose, highlighting

a rapid shift toward a more aerobic glycolytic phenotype.

Upon TCR stimulation, a mitochondria-derived oxidative sig-

nal essential for activation-induced gene expression is gener-

ated (Figure S1B; Kami�nski et al., 2007, 2010, 2012). To check

a connection between the activation-induced metabolic shift

and the oxidative signal, we tested the influence of 2-deoxy-

glucose (DOG) and 3-bromopyruvate (BrPyr), blockers of glu-

cose metabolism, on the generation of TCR-induced ROS. After

brief preincubation (30 min) with DOG/pyruvate, T cells gener-

ated lower amounts of activation-induced ROS compared to

cells preincubated with equimolar concentrations of glucose

(Glc)/pyruvate (Figure 1D). Treatment with the more potent in-

hibitor BrPyr resulted in complete block of TCR-induced ROS

generation and NF-kB-dependent IL-2, IL-4, and IkBa gene

expression (Figures 1E, 1F, S1C, and S1D). Both agents also

reduced the intracellular oxidative background (Figure S1E).
Cell Re
Stimulation of the TCR Leads to Major Changes in
Mitochondrial Bioenergetics and Ultrastructure
To investigate the relationship between the activation-induced

metabolic shift and the mechanism of mitochondrial ROS

release, we assessed the bioenergetic status of respiratory chain

complexes. To this end, we applied snap-frozen and digitonin-

permeabilized expanded T cells. As shown in Figure 1G (upper),

TCR triggering resulted in a decrease of activity for complexes I

and II, while activity of complex III was increased. A similar

pattern could be observed after PMA treatment (Figure 1G,

lower), showing independence from TCR-triggered mitochon-

drial Ca2+ uptake and involvement of a DAG/PKCq-dependent

pathway. In line with this notion, pretreatment of T cells with

bis-indolyl-maleimidate I (BIM), an inhibitor of PKC and TCR-

induced ROS generation (Kami�nski et al., 2007), blocked the

observed phenomena (Figures 1H, 1I, and S1F). The changes

of enzymatic activity did not correspond to changes in the

protein content of the complexes (Figure S1G) or their migra-

tion in BN-PAGE (Figure S1H). Interestingly, ultrastructure of

mitochondria changed upon TCR or PMA triggering (Figure 2).

Disarrangement and distortion of cristae were particularly pro-

nounced in TCR-activated cells (Figure 2C), while PMA treat-

ment led to various degrees of alteration (Figure 2B). No obvious

rupture of outer and inner mitochondrial membranes could be

detected. Since these changes occur rapidly after stimulation

(1 hr) and are paralleled by the activation phenotype of cells

(e.g., rise in ATP level, upregulation of glucose transport, and

chromatin relaxation), an apoptotic origin was excluded. The

alterations closely resembled those observed in highly glycolytic

tumors and reported to occur as an adaptive response to

hypoxia (Arismendi-Morillo, 2011) or to state IV of respiration

(rate-limiting low ADP content and high ROS production) (Man-

nella, 2006). Thus, mitochondrial electron micrographs indicate

low respiratory activity.

Next, we analyzed electron flow rates from complex I/II to

complex III in either permeabilized cells or isolated mitochondria

(Figure 1J). In the first case, T cell activation led to a decreased

electron flow rate between complex I or II and complex III, in

line with previous results (Figure 1G). Mitochondrial isolation

abolished these effects and resulted in an enhanced electron

flow toward complex III upon T cell activation (Figure 1J). These

results suggest a transient character of activation-induced de-

crease of complex I/II activities (due to a labile agent) and a stable

modification of complex III. The observed changes could be

attributed to a hyperreduced state of ubiquinone, the electron

carrier between complexes I/II and complex III (Lambert and

Brand, 2009; Miwa et al., 2003). Accumulation of ubiquinol

decreases activities of complex I and II by blocking the electron

flow. This effect would be lost after isolation of mitochondria due

to the oxidation of ubiquinol. Reverse electron transfer (RET),

a major mechanism of mitochondrial ROS generation via com-

plex I, is mediated by a highly reduced pool of ubiquinone

(Lambert and Brand, 2009; Miwa et al., 2003). Ubiquinol accu-

mulation is also crucial for ROS release at complex III or hyper-

glycemia/hypoxia-induced mitochondrial ROS generation (Bell

et al., 2007; Nishikawa et al., 2000;Wellen and Thompson, 2010).

To investigate the role of the ubiquinone redox status for T cell

activation, we tested the influence of different respiratory chain
ports 2, 1300–1315, November 29, 2012 ª2012 The Authors 1301
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Figure 1. TCR-Induced Oxidative Signaling is Accompanied by a Rapid Metabolic Shift and Change in Mitochondrial Bioenergetics

(A) Respiratory rate of in vitro expanded peripheral T cells was monitored upon stimulation with soluble anti-CD3 antibody (10 mg/mg, GAM crosslinked) or PMA

(10ng/ml). Decrease inmitochondrial respiratory rate betweencontrol state (15minprior to induction) andstimulated state (indicated time intervals for n =3donors).

(B) Uptake of D-[3-3H] glucose measured in T cells 1 hr after activation (as in [A]). Results are shown as % of control ± SD (GAM – for anti-CD3; untreated – for

PMA; n = 8 donors).

1302 Cell Reports 2, 1300–1315, November 29, 2012 ª2012 The Authors
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blockers on oxidative signal generation. The inhibition by

complex-I-specific agents, rotenone and metformin (Kami�nski

et al., 2007, 2010), as well as moderate inhibition by complex II

blockers, atpenin A5 and TTFA, suggest a RET-related mecha-

nism of activation-induced mitochondrial ROS release (Fig-

ure S2A) (Batandier et al., 2006; Dröse et al., 2011; Dröse and

Brandt, 2012; Lambert and Brand, 2009). Moreover, T cell acti-

vation-induced mitochondrial ROS generation was increased

by inhibition of complexes III or IV (antimycin A or NaN3, respec-

tively). This could be due to a higher content of reduced ubiqui-

none, ROS release at complex I, and/or partial ROS release at

complex III (Chowdhury et al., 2005; Dröse and Brandt, 2012;

Tretter et al., 2007). Of note, the oxidative signal was unaffected

by oligomycin, an ATP synthase inhibitor (Figure S2A). Essen-

tially, these results recapitulated those previously reported for

Jurkat cells (Kami�nski et al., 2007). TCR triggering leads to rapid

accumulation of NADH in the mitochondrial matrix, suggesting

an abrogation of electron flow and hyperreduction of ubiquinone

(Jones et al., 2007). Moreover, the detected endogenous com-

plex IV activity in human T cells is about eight times lower than

complex III activity (Figure S2B), forming a bottleneck for the

regeneration of ubiquinone. Thus, we investigated ubiquinone

redox status upon T cell activation. HPLC-based analysis of

extracts from snap-frozen activated T cells revealed a significant

rise in the content of ubiquinol over ubiquinone, reaching 30%

and 57% upon TCR- and PMA-mediated triggering (Figure 1K),

respectively, thus demonstrating a hyperreduced status of the

ubiquinone pool after T cell activation.

Diverted Glycolytic Flow Leads to a GPD2-Mediated
Mitochondrial ROS Release
In hyperglycemic or hypoxic cells, mitochondrial ROS pro-

duction due to a hyperreduced ubiquinone pool is associated

with an increased glucose metabolism (Bell et al., 2007; Nishi-

kawa et al., 2000; Wellen and Thompson, 2010). Therefore,

we measured activities of all major glycolytic enzymes upon

TCR triggering (Figures 3A and 3B). The only enzymatic ac-

tivity significantly changed was the reverse reaction of enolase

(ENO) (Figure 3B). The reaction was blocked by NaF, an ENO

inhibitor (Qin et al., 2006) and NaVO3, an inhibitor of histidine

phosphorylation (Krivanek and Novakova, 1991) (Figure S2C,

left). Specific assay conditions (see Experimental Procedures)

revealed that the increased enzymatic activity is an ATP-

independent phosphoenolpyruvate (PEP) dephosphorylation of

Km = 19.3 mM (Figure S2C, right). The dephosporylation of

PEP shows substrate inhibition above 250 mM PEP and is mildly
(C) Increase in intracellular ATP content ± SD (cells activated as in [A] and [B]; ct

(D–F) Cells were stimulated for 1 hr with plate-bound anti-CD3 antibody (30 mg/m

DOG (30 min) (n experiments ± SD) (D) or in medium + BrPyr (20 min) (represent

(G–K) Cells were stimulated for 1 hr with anti-CD3 antibody (as in [D]) or PMA

activities of ETC (electron transport chain) complexes weremeasured. (G) Results

to 100%, dashed line) ± SD. (H and I) For cells pretreated (20 min) with BIM oxida

state enzymatic activities (I) were measured (as in [G], n = 8 or n = 4 experiments/d

(CIII) wasmeasured in pemeabilized cells or mitochondrial fractions. Data for n exp

(***); p < 0.01 (**); p < 0.05 (*). (K) Cellular extracts were analyzed by HPLC. Chan

ubiquinone ratio of control cells (set to 0) and activated cells (mean ± SD for n = 5 e

for each experiment/donor; paired Student’s t test, p < 0.01 (**).

See also Figure S1.

Cell Re
inhibited by NaF and strongly blocked by NaVO3 (data not

shown).

The dimeric, low-affinity form of pyruvate kinase M2 (PK-M2)

can dephosphorylate PEP in the absence of ADP and, moreover,

is a functional protein kinase at low and physiological PEP levels

(Gao et al., 2012). PK-M2 is highly expressed in activated T cells

(Hruz et al., 2008; Netzker et al., 1992). In our hands, PK activity

in T cells is approximately 10 times higher than the observed PEP

dephosphorylation. It was also mildly affected by NaF and

strongly reduced by NaVO3 (only at low PEP concentrations,

100 mM). This suggests that the observed PEP phosphatase

activity could be catalyzed by PK-M2.

Lower PK activity of the dimeric form PK-M2 results in a dimin-

ished metabolic flux through the GAPDH-initiated glycolytic

pathway (Vander Heiden et al., 2010). Therefore, we analyzed

metabolite flux downstream of GAPDH- and cytosolic glycerol-

3-phosphate dehydrogenase (GPD1)-initiated branches of gly-

colysis (Figure 3A). TCR triggering clearly enhanced fructose-

6-phosphate metabolism in the direction of GPD1, while the

GAPDH-mediated turnover was slightly decreased (Figure 3C).

In addition, production of lactate, the end-product of the GAPDH

pathway, was decreased despite increased glucose uptake (Fig-

ures 1B and 3D).

To investigate whether this change of glycolytic flux impairs

metabolic flow, we measured levels of glucose-6-phosphate

and dihydroxyacetone phosphate upon TCR stimulation (Fig-

ure S2D). No alterations of glucose-6-phosphate levels were

observed, indicating that the modification of the GAPDH-initi-

ated branch leads neither to a reduced glycolytic rate nor to

accumulation of initial glycolytic metabolites. Dihydroxyacetone

phosphate levels were strongly reduced, indicating an increased

glycolytic flux through the GPD shuttle.

Since glycerol-3-phosphate metabolism is crucial for T cell

activation (Collison et al., 2008), we investigated the activity of

cytosolic GPD1 and mitochondrial GPD2 upon TCR stimulation.

GPD1 activity was unchanged, whereas activity of GPD2 was

significantly upregulated (Figures 3B and 3E). PKC inhibition by

BIM clearly blocked TCR-induced GPD2 activation (Figure 3E).

PMA treatment also upregulated GPD2 activity (Figure 3E;

mean activity was 0.19 ± 0.04 mU/mg protein for unstimulated

T cells [n = 7 donors], 0.35 ± 0.14 mU/mg protein for anti-CD3-

stimulated T cells [n = 7], and 0.24 ± 0.023 mU/mg protein for

PMA-activated T cells [n = 3]). In contrast to a previous report

(Tu et al., 1995), PMA treatment did not induce GPD1 activation

(data not shown). Since Ca2+ binding lowers the Km of GPD2

for glycerol-3-phosphate, the TCR-induced Ca2+ signal could
r = 13.28 nmol/mg protein, n = 3 donors).

l). The oxidative signal after preincubation in PBS + 110 mg/ml pyruvate + Glc/

ative experiment) (E) is shown. (F) IL-2 expression in T cells treated as in (E).

(as in [A]). After snap-freezing and permeabillization, steady-state enzymatic

for n experiments/donors are shown as the percentage of untreated control (set

tive signal generation (H) (representative measurement ± SD shown) or steady-

onors ± SD). (J) Electron flux from complex I (CI)/complex II (CII) to complex III

eriments/donors ±SD are presented as in (G) and (I). Student’s t test: p < 0.001

ge in ubiquinone redox status is shown as % difference between ubiquinonol/

xperiments/donors) (left) and% ratio of ubiquinonol/ubiquinone concentration

ports 2, 1300–1315, November 29, 2012 ª2012 The Authors 1303
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Figure 2. Rapid ultrastructural changes of mitochondria upon activation

(A–C) In vitro expanded T cells were left untreated (A) or activated for 1 hr with PMA (B) or with plate-bound anti-CD3 antibody (as in Figures 1A and 1D,

respectively) (C). Cells were subjected to electron microscopy. Representative images are shown. Scale bars, 1 mM (magnification 70003) or 200 nM (magni-

fication 50,0003).
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potentiate PMA (DAG)-dependent activation of GPD2. However,

Ca2+-induced activation of GPD2 occurs already in the range of

normal cytosolic Ca2+ concentrations (100 nM in resting T cells;

GPD2 k0.5 = 80–130 nM [Feske, 2007; Idahl and Lembert, 1995;

Rutter et al., 1992]). Thus, a TCR-induced rise in Ca2+ concentra-

tion (up to 1 mM) could have rather moderate effects on GPD2.

Since GPD2 activity was indirectly detected via complex-III-

mediated cytochrome c reduction, we verified our findings using

2,6-dichlorophenolindophenol as the direct electron acceptor.

The obtained results confirmed the anti-CD3/PMA-dependent

rise of GPD2 activity (Figure S2E). Moreover, the rise in GPD2

activity observed initially (1 hr) upon TCR triggering was still
1304 Cell Reports 2, 1300–1315, November 29, 2012 ª2012 The Aut
present after 4 hr (Figure S2F). Thus, activation of GPD2 could

also represent a major change in energymetabolism of activated

T cells. To further investigate a role of glycerol-3-phosphate as

the energy source for activated T cells, we tested the ability of

1 hr CD3-activated and subsequently digitonin-permeabilized

cells to respire using glycerol-3-phosphate. Strikingly, NaCN-

sensitive mitochondrial oxygen consumption was observed

almost exclusively after T cell activation (Figure S2G).

GPD2 transfers electrons to the respiratory chain via reduction

of ubiquinone. It has been shown that GPD2-sustained respira-

tion induces mitochondrial ROS release. ROS could be released

by GPD2 itself. In addition, GPD2-driven ROS production can be
hors
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blocked by rotenone and enhanced by inhibition of complexes III

or IV. Thus, ROS originate also at complex I (due to RET), but

a contribution of complex III could not be excluded (Chowdhury

et al., 2005; Dröse and Brandt, 2012; Lambert and Brand, 2009;

Miwa et al., 2003; Tretter et al., 2007). Next, we tested whether

T cell activation-induced upregulation of GPD2 activity partici-

pates in mitochondrial ROS release.

Transient (siRNA-mediated) and stable (small hairpin RNA

[shRNA]-mediated) knockdown (k.d.) of GPD2 expression in

Jurkat T cells resulted in decreased generation of the oxidative

signal (Figures 3F, 3G, S3A, and S3B). Consequently, transient

downregulation of GPD2 inhibited PMA- or PMA/Iono-induced

activation of an NF-kB luciferase reporter and led to diminished

expression of IL-2 (Figure 3H and 3I). In addition, induction of

IL-2 and IL-8 gene expression was also inhibited in cells

stably transduced with lentiviral particles carrying anti-GPD2

shRNA (Figures S3C and S3D). Of note, shRNA-expressing cells

changed the phenotype over time (during the third week of puro-

mycin selection), lowering the extent of GPD2 k.d. and regaining

the ability to generate ROS and express IL-2, but not IL-8, upon

stimulation (data not shown). This is most likely due to the

essential functions of GPD2 and IL-2 for T cell metabolism and

proliferation.

To verify a causative link between decreased GPD2 expres-

sion, diminished oxidative signal, and activation-induced gene

expression, we applied a previously established method utilizing

glucose oxidase (GOX) as the exogenous source of a sustained,

low, and physiologically relevant H2O2 signal (Gülow et al., 2005;

Kami�nski et al., 2010). H2O2 produced in medium crosses the

plasma membrane and mimics the oxidative signal observed

upon T cell activation (Figure S3E). When supplemented by

Iono-triggered Ca2+ signal, this GOX-mediated H2O2 signal

could partially restore IL-2 expression regardless of diminished

GPD2 content (Figure S3F and S3G). In conclusion, T cell activa-

tion results in a diversion of the glycolytic flux toward GPD2,

GPD2 activation, hyperreduction of ubiquinone, and ROS

release.

TCR Triggering Activates a New ADP-Dependent
Glucokinase
Glucose-induced hyperreduction of the ubiquinone pool and

mitochondrial ROS release depend on an upregulated glyco-

lytic flux (Nishikawa et al., 2000; Wellen and Thompson, 2010).

However, enzymatic activities of the major glycolytic regulatory

steps, hexokinase (HK), phosphhofructokinase (PFK), glyceral-

dehyde 3-phosphate dehydrogenase (GAPDH), and pyruvate

kinase (PK) (Figure 3A), were unchanged after TCR triggering

(Figure 3B). Association of HK with mitochondrial VDAC abol-

ishes end-product inhibition of HK and acts as yet anothermech-

anism for glucose flux upregulation (Wilson, 2003). Western blot

(WB) analysis of mitochondria-enriched membrane fractions of

expanded T cells revealed high HK1 and low HK2 levels (Fig-

ure S4A). Nevertheless, TCR triggering did not lead to recruit-

ment of HK1/2 to mitochondria or upregulation of mitochon-

dria-associated HK activity (Figures S4A and S4B). Next, we

investigated mitochondria-associated HK activity coupled to

respiration-mediated ATP generation (Figure S4C). TCR trig-

gering induced an HK-like activity in the presence of ADP and
Cell Re
succinate in the ‘‘high g’’ mitochondrial fractions (Figure S4D).

This activity was only mildly blocked by the adenylate kinase

(AK) inhibitor diadenosine pentaphosphate (Ap5A, 5 mM, up to

20%–40% inhibition), whereas mitochondrial AK was strongly

inhibited (80%–90% inhibition). The stimulation-induced rise in

HK-like activity was unaffected by Ap5A (data not shown).

Surprisingly, this activity was independent of succinate, but

dependent on ADP. Insensitivity to the complex IV inhibitor

NaCN and the uncoupler carbonylcyanide m-chlorophenylhy-

drazone (CCCP) demonstrated independence from mitochon-

drial ATP production (Figure S4D).

The ADP-dependent glucokinase (ADPGK) phosphorylates

glucose by utilizing ADP (Richter et al., 2012; Ronimus and

Morgan, 2004). Although typical for thermophilic Archaea,

ADPGK exists in mammals and is highly expressed in human

hematopoietic cells, including T cells (Hruz et al., 2008; Wu

et al., 2009). WB analysis revealed a high ADPGK content in

T cells and Jurkat cells (Figures 4A and 6E). A lack of end-

product inhibition provides ADPGK with the ability to potentiate

the glycolytic flux (Ronimus and Morgan, 2004). Of note,

enhanced ADPGK activity occurred in high g mitochondrial frac-

tions from anti-CD3-treated T cells. Comparable upregulation of

activity could be achieved by PMA treatment of T cells or Jurkat

cells (Figure 4A), indicating independence from Ca2+-mediated

TCR signaling (Figure 4A; mean activity 0.67 ± 0.30 mU/mg

protein for unstimulated T cells [n = 14 donors], 1.07 ± 0.32

mU/mg protein for anti-CD3-stimulated T cells [n = 8], and

1.00 ± 0.11 mU/mg protein for PMA stimulated T cells [n = 4]).

Consistently, the increase of ADPGK activity was completely

abolished by BIM (Figure 4A).

ADPGK was present in high g mitochondrial (mostly mem-

brane components) but not in cytosolic fractions (Figures 4B,

S4E, and S4F). No upregulation of ADPGK content upon TCR

stimulation could be found (Figure 4B). T cell activation-induced

upregulation in ADPGK activity and ROS generation were inde-

pendent of de novo gene expression, as demonstrated by acti-

nomycin D treatment (Figures S4J–S4L).

Interestingly, the ADPGK sequence contains a putative

signal peptide for transport into the endoplasmic reticulum

(ER) (Figures 5C, S5A and S5D) (UniProt Q9BRR6). Since T cell

mitochondria are smaller than the ones of other tissues (e.g.,

liver), we utilized an 11,000 3 g centrifugation step to increase

the yield of mitochondria in high-g mitochondrial fractions.

Such fractions also contain ER, as demonstrated by electron

micrographs (data not shown) andWB (Figure 4B). To investigate

subcellular localization of ADPGK, we prepared ‘‘mitochondria-

enriched’’ and ‘‘ER-enriched’’ fractions (see Experimental Pro-

cedures) demonstrating a possible ER association of ADPGK

in T cells and Jurkat cells (Figures S4E and S4F). Next, we

purified ER particles from Jurkat cells by density-gradient ultra-

centrifugation. ADPGKprotein content and activity closely corre-

lated with the ERmarkers: calreticulin (WB), NADPH cytochrome

c reductase (enzymatic activity), and glucose-6-phosphatase

(G6Pase, enzymatic activity) (Figures 4C, 4D, and S4G–S4I).

Activation-induced increase in ADPGK activity was also ER-

confined (Figure S4H). Intracellular ADPGK localization was fur-

ther examined by confocal immunofluorescence microscopy

using HEK293T cells overexpressing ADPGK tagged with
ports 2, 1300–1315, November 29, 2012 ª2012 The Authors 1305
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Figure 3. T Cell Activation Diverts the Glycolytic Flux toward Mitochondrial GPD Shuttle

(A) The glycolytic pathway (block arrows indicate the diverted metabolic flow). Expanded T cells were stimulated for 1 hr with anti-CD3 antibody that was plate-

bound (B, C, and E), as in Figure 1D, or soluble crosslinked (D), as in Figure 1A.
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turboGFP (tGFP, C terminus). Micrographs clearly demonstrate

colocalization of the tGFP-specific signal with staining for the

ER marker, calnexin (Figures 4E and 4F). In conclusion, the pre-

dicted signal sequence, results of subcellular fractionation, and

confocal imaging indicate ER localization of ADPGK.

Lack of ADPGK in cytosolic fractions (Figure 4B, S4E, and

S4F) suggested ER-membrane association of ADPGK. Interest-

ingly, the existence of a highly hydrophobic amino acid (aa)

stretch (approximate position 80–100 aa) resembling a single

membrane-spanning region downstream of the signaling pep-

tide was predicted (Figures S5A and S5D). Moreover, the initial

part of this region demonstrates properties of an amphipathic

helix (Figures S5B and S5D), further suggesting membrane

association.

To better understand the metabolic role of ADPGK, we inves-

tigated whether its active site is positioned toward the cytosol or

the ER lumen. Activities of ADPGK and G6Pase (an ER enzyme

with the active site protruding into the ER lumen) were

measured in ER particles prepared by density gradient ultracen-

trifugation with or without 0.1% digitonin. Upon addition of digi-

tonin, G6Pase activity increased 1.6 times due to increased

substrate availability. In contrast, digitonin did not affect ADPGK

activity indicating positioning of the active site toward the

cytosol (Figure 5A). Orientation of the ADPGK active site was

further analyzed by protease protection assay. Fractions of ER

particles were either (1) left untreated, (2) treated with trypsin,

or (3) treated with trypsin and detergent. To map the active

site of ADPGK, we utilized a monoclonal antibody recognizing

an aa stretch at positions 425–497 covering the active site

(475–484 aa, C terminus) (Figure S5D). Trypsin digestion

completely abolished the WB ADPGK signal, while the signal

for calreticulin (a protein of ER lumen) was strongly reduced in

the case of detergent-treated samples (Figure 5B). Our results

suggest that cytosolic orientation of the active site enables

participation of ADPGK in the regulation of glycolytic flow

upon T cell activation. The experimental approaches used and

putative positioning of ADPGK in the ER membrane are de-

picted in Figure S5C.

Using ER-enriched fractions from TCR-triggered T cells, we

found that ADPGK activation is an early and transient event in

the course of a TCR-induced response (Figure S6A). The rise in

ADPGK activity is in close temporal correlation with oxidative

signal generation (peaks within 1–2 hr upon TCR stimulation

and declines thereafter) and the resulting induction of gene

expression (Kami�nski et al., 2012). ADPGK activity in ER-en-

riched fractions was also characterized in terms of kinetic
(B) Status of glycolytic enzymes upon T cell activation (for acronyms, see [A] and te

n = 3 experiments/donors ± SD.

(C) Fructose-6-phosphate (F6P) metabolic flux toward GPD1/GAPDH measured i

(D) Change in lactate concentration; n = 4 experiments/donors ± SD.

(E) Change of GPD2 activity in mitochondrial fractions of activated T cells ± 20 min

donors ± SD.

(F) qRT-PCR analysis of siRNA-mediated GPD2 k.d. in Jurkat cells.

(G–I) After GPD2 k.d., Jurkat cells (G and I) or Jurkat cells stably expressing NF-k

oxidative signal (G), NF-kB activation (H), or IL-2 expression (I) were assayed. Da

variation of downregulation for n experiments ± SD (induction of control cells set t

#2 in H; n.s., nonsignificant.

See also Figures S2 and S3.

Cell Re
parameters. It revealed a striking pH optimum of 6.0 and a Km

for glucose of 0.086 mM (pH 6.0, 37�C). These values resemble

the ones reported for recombinant mouse ADPGK (Ronimus and

Morgan, 2004). Interestingly, recently reported recombinant

human ADPGK demonstrated a Km for glucose of 0.29 mM

(Richter et al., 2012). In our studies, substrate affinity was similar

to so-called low-Km HKs 1–3. ADPGK was substrate-inhibited at

glucose concentrations higher than 5 mM.

Next, we generated Jurkat cells stably expressing ADPGK

protein with an N-terminal FLAG tag (F-ADPGK Jurkat cells;

Figure 5C). As for wild-type ADPGK protein (WT-ADPGK), the

FLAG-ADPGK protein (F-ADPGK) was found in the ER-enriched

fractions (Figure S4E) and was copurified with ER particles

(Figure S4G). Cells expressing F-ADPGK showed higher basal

and enhanced PMA-induced ADPGK activity compared to con-

trol cells (Figure 5C). Immunoprecipitated FLAG-ADPGK protein

demonstrated ADPGK activity, absent in precipitates from con-

trol lysates (Figure 5D, lower). The results were confirmed by

WB (Figure 5D, upper). Thus, an active endogenous human

ADPGK could be demonstrated. Of note, F-ADPGK Jurkat cells

exhibited increased glucose uptake (Figure S6B). siRNA-medi-

ated k.d. of HK1 did not affect the elevated glucose import, indi-

cating that ADPGK takes part in glucose metabolism (Figures

S6C and S6D).

In addition, we assayed the effects of DOG and BrPyr

(each 5 mM) on purified F-ADPGK. At nonsaturating glucose

concentration (1 mM), DOG increased F-ADPGK activity, indi-

cating production of DOG-6-phosphate (as described for clas-

sical HKs; DOG-6-phosphate inhibits glucose-6-phosphate

isomerase) (Wick et al., 1957). BrPyr strongly inhibited ADPGK

(Figure S6E).

The secondary structure prediction for mammalian ADPGK

revealed a high structural similarity to the known secondary

structure of thermostable archaeal ADPGK, despite a low se-

quence homology (Figure S5D) (Tsuge et al., 2002). Therefore,

we tested temperature dependence of ADPGK activity in

ER-enriched fractions from T cells. As shown in Figure S5E,

velocity of the ADPGK-catalyzed reaction exponentially in-

creased within the physiological temperature range and was

3.5 times higher at 42�C than at 37�C. In contrast, the tempera-

ture-driven rise in HK activity remained linear. Furthermore, at

42�C the velocity of the ADPGK-mediated reaction was compa-

rable to that of HK. In conclusion, TCR triggering transiently and

in a PKC(DAG)-dependent way activates ADPGK, a thermo-

stable, ER-associated glucose-phosphorylating enzyme without

end-product inhibition.
xt). Results are shown as% of untreated control (set to 100%, dashed line), for

n the cytosol of activated T cells. Activation and data presentation are as in (B).

pretreatment with BIM, shown as% of nonstimulated control; n experiments/

B-luciferase reporter (H) were activated with PMA (10 ng/ml) ± Iono (1 mM) and

ta are presented as representative triplicate experiments or interexperimental

o 100%). Student’s t test: p < 0.001 (***); p < 0.01 (**); p < 0.05 (*), p = 0.05 (*0) for

ports 2, 1300–1315, November 29, 2012 ª2012 The Authors 1307

http://mostwiedzy.pl


Figure 4. T Cell Activation Triggers ADPGK, an ER-Localized Enzyme

(A and B) Expanded T cells or Jurkat cells were stimulated for 1 hr with plate-bound anti-CD3 antibody or PMA (as in Figure 2). (A) Left: ADPGK activity in

mitochondrial high-g fraction (contains ER) of activated T cells or Jurkat cells ± 20 min pretreatment with BIM. Results for n experiments/donors shown

(% increase over untreated control ± SD). Right: levels of ADPGK in lysates of T cells or Jurkat cells. Student’s t test: p < 0.001 (***); p < 0.01 (**).

(B) WB analysis of mitochondrial (high g) and cytosolic fractions of activated T cells.

(C and D) ER particles were purified from Jurkat cells. In (C), enzymatic activities of ADPGK and NADPH cytochrome c reductase (ER marker) were measured.

(D) WB analysis for ADPGK, calreticulin (ER marker), and MnSOD (mitochondrial marker).

1308 Cell Reports 2, 1300–1315, November 29, 2012 ª2012 The Authors
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Figure 5. ADPGK has cytoplasm-oriented topology and is active upon overexpression

(A and B) Localization of ADPGK active site in ER particles purified from Jurkat cells. (A) ADPGK and glucose-6-phosphatase activities measured ± 0.1%

digitonin.

(B) WB analysis of ADPGK (epitope encompassing enzymatic active site; calreticulin, luminal control) in ER particles after trypsin treatment (30 min, 50 mg/ml) ±

0.2% NP-40.

(C) Expression of the FLAG-ADPGK construct in Jurkat cells (F-ADPGK Jurkat, EV Jurkat, empty vector control). Left: WB (arrows, F-ADPGK and ADPGK) and

qRT-PCR analyses of (F-)ADPGK content and expression. Right, upper: retroviral construct. Right, lower: ADPGK activity in ER-enriched fractions of activated

F-ADPGK and EV Jurkat cells. Representative triplicated experiment ± SD (presented as in Figure 4A; activity for untreated EV Jurkat cells set to 0).

(D) Upper: WB of immunoprecipitated F-ADPGK (arrows, F-ADPGK and ADPGK proteins; FLAG WB, rabbit anti-FLAG antibodies; ADPGK WB, mouse

antibodies, upper band on ADPGK WB in EV Jurkat ‘‘wash’’ line, H chain of mouse anti-FLAG [M2] antibody). Lower: ADPGK activity in immunoprecipitates

(‘‘eluate’’).

See also Figures S5 and S6.
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ADPGK Mediates Generation of the Oxidative Signal
Next, we assayed the influence of lowering ADPGK expression

by transient transfection with siRNA or stable transduction with
(E) Confocal imaging of HEK293 cells expressing ADPGK-tagged with turboGFP

calnexin (ER membrane marker). Colocalization indicated by yellow color in mer

(F) Colocalization control, intensity profile of a section (dashed line).

See also Figures S4 and S5.

Cell Re
shRNA-carrying retroviral or lentiviral particles on activation-in-

duced ROS generation. ADPGK k.d. (Figures 6A and S7A–S7D)

inhibited PMA-triggered production of ROS in Jurkat cells
on C terminus (ADPGK-tGFP) – cells stained with antibodies against tGFP and

ged images. Scale bar, 10 mm.
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Figure 6. Lowered ADPGK content inhibits activation-induced oxidative signal generation and gene expression

(A) ADPGK expression and content were analyzed in siRNA-transfected Jurkat cells by qRT-PCR and WB.

(B–D) After ADPGK k.d., Jurkat cells (B and D) or Jurkat cells stably expressing NF-kB-luciferase reporter (C) were activatedwith PMA ± Iono (as in Figures 3G–3I),

and oxidative signal generation (B), NF-kB activation (C), or IL-2 expression (D) were analyzed. Representative experiments (B, C [upper], and D [left]) or in-

terexperimental comparison ± SD (induction of control cells set to 100%) (B, C [lower], and D [right]) are presented.

1310 Cell Reports 2, 1300–1315, November 29, 2012 ª2012 The Authors
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Figure 7. ADPGK Participates in Activation-

Induced Oxidative Signal Generation and

NF-lB Response

(A and B) Jurkat cells were transduced with lenti-

viral particles carrying shRNA against ADPGK (or

nonsilencing control) and cultured with puromycin

(1 mg/ml) for 3 weeks (for stability of ADPGK

k.d. see Figure S7). Cells were activated for

1 hr with PMA ± Iono (as in Figures 3G–3I), and

either oxidative signal generation (A) or IL-2 ex-

pression (B) were analyzed. Upper, results of

single representative experiments (selection day

17). Lower, interexperimental variations of exper-

iments performed during selection period (induc-

tion of control cells set to 100%); Student’s t test:

p < 0.001 (***).

(C–E) Jurkat cells stably expressing FLAG-ADPGK

(F-ADPGK) proteins (C and E) or Jurkat cells (E)

and NF-kB-luciferase reporter Jurkat cells (D)

transiently overexpressing WT-ADPGK protein for

24 hr. (D) and (E) were activated with PMA ± Iono

(as in Figures 3G–3I) for 1 hr (C and E) or 6 hr

(D). Thereafter, oxidative signal (C), NF-kB acti-

vation (D), and IL-2, IL-8, or IkBa expression (E)

were analyzed. Interexperimental variations of n

experiments ± SD are presented (response of EV

control cells set to 100%). (D) shows WB analysis

of transient WT-ADPGK overexpression.

(F) Scheme of described pathway. Block arrows:

orange, changes in enzymatic activity, transport

(glucose), or ubiquinol content; gray, direction of

diverted metabolic flux.

See also Figures S6 and S7.
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(Figures 6B, 7A, and S7E). Concomitantly, it resulted in inhibition

of PMA- or PMA/Iono-triggered NF-kB activation (Figure 6C) and

NF-kB-dependent expression of IL-2, IL-8 and IkBa genes

(Figures 6D, 7B, S6F, S7C and S7F). The observed inhibitory
(E) ADPGK protein levels in resting and expanded human T cells.

(F) Change of ADPGK and GPD2 activity in high-g mitochondrial fractions of resting T cells stimulated with

Results for n experiments/donors shown as % of nonstimulated controls ± SD.

(G) Left, qRT-PCR analysis of siRNA-mediated k.d. of ADPGK expression in resting T cells. Right, after ADPG

and the oxidative signal was measured for n experiments/donors. Student’s t test: p < 0.001 (***); p < 0.01 (

See Figures S6 and S7.

Cell Reports 2, 1300–1315, No
phenotype of shRNA-transduced Jurkat

cells was stable during the entire period

of selection (2–4 weeks) for retroviral

and lentiviral transductions. The exoge-

nous oxidative signal introduced by addi-

tion of GOX (Figure S3E) partially recov-

ered activation-induced IL-2 expression

in siRNA- or shRNA-treated cells (Figures

S7G and S7H). Thus, ADPGK-dependent

ROS production is crucial for TCR-

induced gene expression.

‘‘Resting,’’ nonexpanded human T cells

also generate the oxidative signal from

mitochondria (Kami�nski et al., 2010). Like-

wise, activation of such T cells led to a rise
in GPD2 and ADPGK enzymatic activities (Figure 6F). Low-

activity induction corresponds to a lower extent of ROS genera-

tion in resting T cells (Kami�nski et al., 2010). siRNA-mediated

k.d. of ADPGK expression decreased the activation-induced
plate-bound anti-CD3 antibodies (as in Figure 1D).

K k.d., T cells were stimulated with PMA, as in (B),

**); p < 0.05 (*).
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oxidative signal (Figure 6G), but the effects on gene expression

will be subject to further study.

Furthermore, enhanced PMA-induced ADPGK activity in

F-ADPGK Jurkat cells (Figure 5C) led to increased ROS produc-

tion followed by potentiated induction of NF-kB-dependent

genes (IL-2, IL-8, and IkBa [Figures 7C and 7E]). Similar results

were obtained for Jurkat cells transiently overexpressing WT-

ADPGK (Figures 7D and 7E), where induction of NF-kB and

NF-kB-dependent gene expression were enhanced. Changes

were more pronounced for IL-8 and IkBa than for IL-2 (Fig-

ure S6G). ADPGK overexpression tends to decrease basal tran-

script levels of NF-kB-dependent genes by an as yet unknown

mechanism (Figure S6H). Thus, we demonstrate a novel role of

mammalian ADPGK for T cell activation and a new connection

between glucose metabolism, ROS generation, and cell sig-

naling (Figure 7F).

DISCUSSION

T cell activation leads to a metabolic shift from mitochondrial

respiration toward aerobic glycolysis (Wang et al., 1976). This

so-called ‘‘Warburg phenotype’’ is a characteristic feature of

fast-proliferating normal, but also malignant, cells (Vander Hei-

den et al., 2009; Warburg, 1956). Moreover, TCR triggering

induces a mitochondrial oxidative signal contributing to NF-kB

and AP-1 activation and subsequent gene expression (Jones

et al., 2007; Kami�nski et al., 2007, 2010, 2012; Yi et al., 2006). Up-

regulation of glycolysis upon hyperglycemic or hypoxic condi-

tions increases mitochondrial ROS generation (Bell et al., 2007;

Nishikawa et al., 2000; Wellen and Thompson, 2010). Thus, we

studied the interplay of mitochondria and glycolysis upon T cell

activation.

Here we show that T cell activation-induced mitochondrial

ROS production and NF-kB-driven gene expression depend

on activation of ADPGK, a protein typical for Archaea whose

function in eukaryotes was unknown. TCR triggering upregulates

glycolytic flux due to activation of ADPGK, an enzyme lacking

end-product inhibition by glucose-6-phosphate, in contrast to

classical HKs (Ronimus and Morgan, 2004). ADPGK activation

is accompanied by a rapid glucose uptake, downregulation of

mitochondrial oxygen consumption, and deviation of glycolysis

toward the GPD shuttle. In turn, activation of GPD2 leads to a

hyperreduction of ubiquinone and ROS release from mitochon-

dria (Figure 7F). This is paralleled by major changes in mitochon-

drial bioenergetics and ultrastructure. It is worth noting that all

events occur within 1 hr after TCR stimulation. Downregulation of

ADPGK or GPD2 abundance inhibits oxidative signal generation

and induction of NF-kB-dependent gene expression, whereas

overexpression of ADPGK potentiates them.

Interestingly, mitochondrial respiration was decreased upon

TCR triggering, while activity of complex IV, the major oxygen

sink, was unchanged. However, shifting mitochondria to glyc-

erol-3-phosphate respiration bypasses complex I/II and reduces

electron flow to complex IV, i.e., the driving force of mitochon-

drial oxygen consumption (Tretter et al., 2007). A similar obser-

vation was made in CHO cells overexpressing GPD1 (Doherty

et al., 1998). Alternatively, mitochondrial respiration may be in-

hibited by increased intracellular glucose concentration (Crab-
1312 Cell Reports 2, 1300–1315, November 29, 2012 ª2012 The Aut
tree effect), which was reported to occur after T cell activation

(Guppy et al., 1993).

It has been shown that glycerol-3-phosphate-supported

respiration and GPD2 activation lead to ROS release (at GPD2

and/or complex I via RET) (Lambert and Brand, 2009; Miwa

et al., 2003; Tretter et al., 2007). The TCR-induced oxidative

signal depends on intact complex I and GPD2 activation and

coincides with hyperreduction of ubiquinone. This suggests a

RET-mediated mechanism of ROS release at complex I. How-

ever, effects of antimycin A and NaN3, as well as upregulation

of complex III activity, could also indicate an additional contribu-

tion of ROS release at complex III (Figure S2A). In this study, we

applied predominantly dichlorofluorescin diacetate (DCF-DA)

staining to monitor intracellular redox changes originating from

the mitochondria (the oxidative signal acts in cytoplasm or

nucleus to activate transcription). This limits conclusions regard-

ing the enzymatic source of ROS. Of note, TCR-induced in-

crease in mitoSOX fluorescence and the inhibitory effect of

MnSOD indicate a rise in matrix superoxide concentration.

Interestingly, since GPD2 can functionally interact with com-

plex III (Cottingham and Ragan, 1980), TCR-triggered stable

activation of GPD2 may also lead to lowering of complex I/II

activity with simultaneous rise in complex III activity (as observed

in Figure 1G) via a common putative mechanism of GPD2 and

complex III activation.

In our study, TCR triggering induced a PEP phosphatase

activity that may have been catalyzed by a dimeric PK-M2. In

proliferating cells, PK-M2 uses PEP as a phosphate donor and

can act as a protein kinase of broad specificity (Gao et al.,

2012). Furthermore, in PK-M2-expressing cells (Vander Heiden

et al., 2010), an unknown protein able to use PEP for phosphor-

ylation of a histidine residue of phosphoglycerate mutase was

reported (Vander Heiden et al., 2010) (inhibition of reversed

ENO reaction or PEP ‘‘unknown’’ phosphatase by NaVO3; Fig-

ure S2C or data not shown, respectively).

Low PK activity of PK-M2 results in redirection of the glyco-

lytic flux in favor of metabolic precursor synthesis (Vander Hei-

den et al., 2010). After TCR activation, we observed a similar

redirection of glycolysis, as demonstrated by reduced lactate

production and increased glycerol-3-phosphate shuttle activity.

Redirection of glycolysis at the stage of PK-M2 omits one step of

glycolytic ATP generation. Thus, induction of ADPGK and the

use of PEP for protein phosphorylation may overcome this ener-

getic drawback.

Data regarding expression profiling of human tissues indicate

that ADPGK is preferentially expressed in cells of hematopoietic

lineage, such as macrophages, monocytes, dendritic cells

(DCs), T cells, and B cells (Hruz et al., 2008; Wu et al., 2009).

This suggests a role for ADPGK in processes of activation-

induced differentiation/division, which involve rapid demand for

ATP, e.g., for signaling phosphorylation and cytoskeletal remod-

eling. Of note, it has been recently reported that Toll-like-receptor

(TLR)-mediated DC activation is accompanied by a switch to

aerobic glycolysis (Krawczyk et al., 2010).

Immune cell activation accompanies inflammation. Enhanced

ADPGK activity in a proinflammatory temperature range

(37��42�C) (Figure S5E) may enable its functionality at the

inflammatory site as mediator of a NF-kB-dependent response.
hors
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The close similarity between the predicted secondary structure

of human ADPGK and crystal structure of ADPGK of thermo-

philic archaebacterium (Figure S5D) is indicative of thermosta-

bility of ADPGK (Tsuge et al., 2002).

Localization of ADPGK in the ER is an interesting issue. Posi-

tioning of the FLAG peptide on the N terminus (C terminus

encompasses ADPGK active site; Figure S5D) does not interfere

with ER localization and also leaves the protein fully active and

responsive to a TCR/PMA (DAG)-mediated stimulus. Lack of

detectable ADPGK protein in cytosolic/soluble fractions (Figures

4B, S4E, and S4F) suggests its membrane association. This

is supported by prediction of a highly hydrophobic amino acid

stretch (approximate position 80–100 aa) resembling a single

membrane-spanning region (Figure S5A) or allowing the forma-

tion of a membrane-associated amphipathic helix (Figure S5B).

The active site of ADPGK seems to protrude into the cytoplasm

(Figures 5A and 5B). This feature indicates a possible role for

ADPGK in cytosolic glucose metabolism.

Cancer cells often display a Warburg phenotype and are en-

dowed with high intrinsic ROS production and constitutive acti-

vation of the NF-kB pathway (Baud and Karin, 2009; Wellen and

Thompson, 2010). Thus, the described interplay of signaling and

metabolic pathways resulting in mitochondrial ROS release may

have a meaning for tumorigenesis.

In conclusion, we provide experimental evidence for an unex-

pected role for ADPGK as a novel regulator of T cell activation. In

addition, based on the identified mechanism of glycolytic-flux-

induced mitochondrial ROS release for T cells, we propose a

hypothesis connecting the increased aerobic glycolysis (e.g.,

Warburg phenotype) with increased mitochondrial ROS levels

and enhanced NF-kB signaling.

EXPERIMENTAL PROCEDURES

ADPGK Activity Assay

NADP reduction was monitored in an ETC buffer containing 1 mM ADP, 1 mM

glucose, 0.5 mM NADP, 5 mM Ap5A, and 0.05 U/ml glucose-6-phosphate

dehydrogenase at pH 6.0 and 37� or 42�C. Assay conditions based on those

previously described for recombinant mouse ADPGK (Ronimus and Morgan,

2004).

Preparation of Pure ER Fractions

Supernatants from the 6003 g centrifugation stepwere prepared as described

in the Extended Experimental Procedures. Next, the ‘‘Sigma-Endoplasmic

Reticulum Isolation Kit’’ was used according to the manufacturer’s protocol.

ATP Content Determination

ATP concentration was determined using the ‘‘CellTiter Glo’’ assay (Promega

USA) according to the manufacturer’s instructions. The results were normal-

ized to protein concentration.
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horikoshii at 2.0-Å resolution: a large conformational change in ADP-depen-

dent glucokinase. Protein Sci. 11, 2456–2463.

Tu, K.Y., Ju, H.S., Pettit, F., Shive, W., Topek, N.H., Matthews, R., and

Matthews, K. (1995). Glycerol-3-phosphate dehydrogenase activity in human

lymphocytes: effects of insulin, obesity and weight loss. Biochem. Biophys.

Res. Commun. 207, 183–190.

Vander Heiden, M.G., Cantley, L.C., and Thompson, C.B. (2009). Under-

standing the Warburg effect: the metabolic requirements of cell proliferation.

Science 324, 1029–1033.

Vander Heiden, M.G., Locasale, J.W., Swanson, K.D., Sharfi, H., Heffron, G.J.,

Amador-Noguez, D., Christofk, H.R., Wagner, G., Rabinowitz, J.D., Asara,

J.M., and Cantley, L.C. (2010). Evidence for an alternative glycolytic pathway

in rapidly proliferating cells. Science 329, 1492–1499.

Wang, T., Marquardt, C., and Foker, J. (1976). Aerobic glycolysis during

lymphocyte proliferation. Nature 261, 702–705.

Warburg, O. (1956). On respiratory impairment in cancer cells. Science 124,

269–270.
hors

http://mostwiedzy.pl


D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

Wellen, K.E., and Thompson, C.B. (2010). Cellular metabolic stress: consid-

ering how cells respond to nutrient excess. Mol. Cell 40, 323–332.

Wick, A.N., Drury, D.R., Nakada, H.I., and Wolfe, J.B. (1957). Localization of

the primary metabolic block produced by 2-deoxyglucose. J. Biol. Chem.

224, 963–969.

Wilson, J.E. (2003). Isozymes of mammalian hexokinase: structure, subcellular

localization and metabolic function. J. Exp. Biol. 206, 2049–2057.
Cell Re
Wu, C., Orozco, C., Boyer, J., Leglise, M., Goodale, J., Batalov, S., Hodge,

C.L., Haase, J., Janes, J., Huss, J.W., 3rd, and Su, A.I. (2009). BioGPS: an

extensible and customizable portal for querying and organizing gene annota-

tion resources. Genome Biol. 10, R130.

Yi, J.S., Holbrook, B.C., Michalek, R.D., Laniewski, N.G., and Grayson, J.M.

(2006). Electron transport complex I is required for CD8+ T cell function.

J. Immunol. 177, 852–862.
ports 2, 1300–1315, November 29, 2012 ª2012 The Authors 1315

http://mostwiedzy.pl

	T cell Activation Is Driven by an ADP-Dependent Glucokinase Linking Enhanced Glycolysis with Mitochondrial Reactive Oxygen  ...
	Introduction
	Results
	TCR Triggering Induces a Metabolic Shift in T Cells
	Stimulation of the TCR Leads to Major Changes in Mitochondrial Bioenergetics and Ultrastructure
	Diverted Glycolytic Flow Leads to a GPD2-Mediated Mitochondrial ROS Release
	TCR Triggering Activates a New ADP-Dependent Glucokinase
	ADPGK Mediates Generation of the Oxidative Signal

	Discussion
	Experimental Procedures
	ADPGK Activity Assay
	Preparation of Pure ER Fractions
	ATP Content Determination

	Supplemental Information
	Licensing Information
	Acknowledgments
	References


