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a b s t r a c t

One of the recently considered models of robot-based computing makes use of identical,
memoryless mobile units placed in nodes of an anonymous graph. The robots operate
in Look–Compute–Move cycles; in one cycle, a robot takes a snapshot of the current
configuration (Look), takes a decision whether to stay idle or to move to one of the nodes
adjacent to its current position (Compute), and in the latter case makes an instantaneous
move to this neighbor (Move). Cycles are performed asynchronously for each robot.
In such a restricted scenario, we study the influence of symmetries of the robot

configuration on the feasibility of certain computational tasks.More precisely,we dealwith
the problem of gathering all robots at one node of the graph, and propose a solution based
on a symmetry-preserving strategy. When the considered graph is an undirected ring and
the number of robots is sufficiently large (more than 18), such an approach is proved to
solve the problem for all starting situations, as long as gathering is feasible. In this way
we also close the open problem of characterizing symmetric situations on the ring which
admit a gathering [R. Klasing, E. Markou, A. Pelc: Gathering asynchronous oblivious mobile
robots in a ring, Theoret. Comput. Sci. 390 (1) (2008) 27–39].
The proposed symmetry-preserving approach, which is complementary to symmetry-

breaking techniques found in related work, appears to be new and may have further
applications in robot-based computing.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The difficulty of many computational problems involving mobile entities (robots) is aggravated when robots cannot
communicate directly, but have to take decisions about their moves only by observing the environment. One of the most
restrictive scenarios considered in literature is the asynchronous Look–Compute–Move model for memoryless units which
has been studied both for robots on the plane (the continuous model [13,20]) and for robots located on the nodes of a graph
(the discrete model [10,11,16,17]). Herein we focus on computations in the discrete model which is described in more detail
below.
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1.1. The discrete model

Consider an anonymous graph in which neither nodes nor links have any labels. Initially, some of the nodes of the graph
are occupied by robots and there is at most one robot in each node. Robots operate in Look–Compute–Move cycles. In each
cycle, a robot takes a snapshot of the current global configuration (Look), then, based on the perceived configuration, takes
a decision to stay idle or to move to one of its adjacent nodes (Compute), and in the latter case makes an instantaneous
move to this neighbor (Move). Cycles are performed asynchronously for each robot. This means that the time between Look,
Compute, and Move operations is finite but unbounded, and is decided by the adversary for each robot. The only constraint
is that moves are instantaneous, and hence any robot performing a Look operation sees all other robots at nodes of the
ring and not on edges. However, a robot r may perform a Look operation at some time t , perceiving robots at some nodes,
then Compute a target neighbor at some time t ′ > t , and Move to this neighbor at some later time t ′′ > t ′, at which
some robots are in different nodes from those previously perceived by r because in the meantime they performed their
Move operations. Hence, robots may move based on significantly outdated perceptions. It should be stressed that robots
are memoryless (oblivious), i.e., they do not have any memory of past observations. Thus, the target node (which is either
the current position of the robot or one of its neighbors) is decided by the robot during a Compute operation solely on the
basis of the location of other robots perceived in the previous Look operation. Robots are anonymous and execute the same
deterministic algorithm. They cannot leave any marks at visited nodes, nor send any messages to other robots.
We remark that the Look operation provides the robots with the entire graph configuration. Moreover, it is assumed

that the robots have the ability to perceive, during the Look operation, if there is one or more robots located at the given
node of the graph. This capability of robots is important and it has been well studied in the literature on robot gathering
under the name ofmultiplicity detection [13,20]. In fact, without this capability, many computational problems (such as the
gathering problem considered herein) are impossible to solve for all non-trivial starting configurations. It should be stressed
that, during a Look operation, a robot can only tell if at some node there are no robots, there is one robot, or there is more
than one robot: a robot does not see the difference between a node occupied by a or b robots, for distinct a, b > 1.
Problems studied so far in the discrete model include gathering on the ring [17], exploration of the ring [10], and tree

exploration [11].

1.2. Our results

In this paper, we consider one of the most fundamental problems of self-organization of mobile entities, known in the
literature as the gathering problem. Robots, initially situated at different locations, have to gather at the same location
(not determined in advance) and remain in it. Our considerations focus on gathering robots in the discrete model for the
undirected ring; such a scenario poses a number of problems due to the high number of potential symmetries of the robot
configuration. This problem was initially studied in [17], where certain configurations were shown to be gatherable by
means of symmetry-breaking techniques, but the question of the general-case solution was posed as an open problem. In
particular, for an odd number of robots it has been proved that gathering is feasible if and only if the initial configuration
is not periodic, and a gathering algorithm for any such configuration has been provided. For an even number of robots, the
feasibility of gathering has been solved except for one type of symmetric initial configurations.
Herein we provide procedures for gathering all configurations on the ring with more than 18 robots for which gathering

is feasible, and give a full characterization of all such configurations (Theorem 5.2). In fact, we provide a new technique for
dealing with symmetric configurations: our approach is based on preserving symmetry rather than breaking it.

1.3. Related work

The problem of gathering mobile robots in one location has been extensively studied in the literature. Many variations
of this task have been considered in different computational models, empowering the robots with different capabilities,
e.g. memory, markers. Robots move either in a graph, see e.g. [2,8,9,12,18], or in the plane [1,3–7,13,19–21]; they are
labeled [8,9,18], or anonymous [1,3–7,13,19–21]; gathering algorithms are probabilistic (see [2] and the literature cited
there), or deterministic [1,3–8,12,13,18–21]. Deterministic algorithms for gathering robots in a ring (which is a task closest
to our current setting) have been studied for example in [8,9,12,14,18]. In [8,9,18], the symmetry was broken by assuming
that robots have distinct labels, and in [12] it was broken by using tokens. The veryweak assumption of anonymous identical
robots was studied in [1,3–7,13,19–21], where robots could move freely in the plane. The scenario was further refined in
various ways. In [4,14], it was assumed that robots havememory, while in [1,3,5–7,13,19–21], the robots were oblivious, i.e.,
it was assumed that they do not have any memory of past observations. Oblivious robots operate in Look–Compute–Move
cycles, similar to those described in our scenario. The differences are in the amount of synchrony assumed in the execution
of the cycles. In [3,21], cycles were executed synchronously in rounds by all active robots, and the adversary could only
decide which robots are active in a given cycle. In [4–7,13,19,20], they were executed asynchronously: the adversary could
interleave operations arbitrarily, stop robots during the move, and schedule Look operations of some robots while others
weremoving. It was proved in [13] that gathering is possible in the asynchronousmodel if robots have the same orientation
of the plane, even with limited visibility. Without orientation, the gathering problemwas positively solved in [5], assuming
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that the robots have the capability of multiplicity detection. A complementary negative result concerning the asynchronous
model was proved in [20]: without multiplicity detection, gathering robots that do not have orientation is impossible.

2. Terminology and preliminaries

We consider an n-node anonymous ring without orientation. Initially, some nodes of the ring are occupied by robots and
there is at most one robot in each node.
During a Look operation, a robot perceives the relative locations on the ring of multiplicities and single robots. We

recall that a multiplicity occurs when more than one robot occupies the same location. For the purpose of the definition
only, let us call one of the directions on the ring clockwise, and the other anti-clockwise. Then, for a fixed robot r , let SC (r)
denote the ordered sequence of distances from r to all single robots when traversing the ring in the clockwise direction,
and let SA(r) be the ordered sequence of such distances when moving anti-clockwise. Sets MC (r) and MA(r) are likewise
defined for distances from r to all multiplicities. Then the view V (r) provided to robot r is defined as the set of ordered pairs
V (r) = {(SC (r),MC (r)), (SA(r),MA(r))}. If there are no multiplicities, we will drop the second sequence in each case and
write the view simply as the set of two sequences V (r) = {SC (r), SA(r)}.
The current configuration C of the system can be described in terms of the view of a robot r which is performing the Look

operation at the current moment, but disregarding the location of robot r; formally, C = {{(SC (r)⊕ i,MC (r)⊕ i), (SA(r)	
i,MA(r)	 i)} : i ∈ [1, n]}, where operations⊕ and	 denote modulo n addition and subtraction, respectively. Note that the
configuration is independent of the choice of robot r and of the choice of the clockwise direction.
A configuration C is called periodic if it is invariable under rotation, i.e. C = C ⊕ k for some integer k ∈ [1, n − 1]. A

configuration C is called symmetric if the ring has a geometrical axis of symmetry, which reflects single robots into single
robots, multiplicities into multiplicities, and empty nodes into empty nodes. Note that a symmetric configuration is not
periodic if and only if it has exactly one axis of symmetry [17]. A symmetric configuration C with an axis of symmetry s has
an edge–edge symmetry if s goes through (the middles of) two antipodal edges; it has a node-on-axis symmetry if at least one
node is on the axis of symmetry.
A pole is an intersection point of a line with the ring (this may either be a node or in between two nodes). For

configurations with a single axis of symmetry, nodes on the axis of symmetry are natural gathering points. The pole of
the axis of symmetry used by the considered algorithm for gathering is known as the North pole; the other pole is called the
South pole.
The set of nodes of the ring forming a path between two robots, excluding end-points, is called an arc. Two robots are

called neighbors if at least one of the two arcs of the ring between them does not contain any robots.When uniquely defined,
the arc of the ring between two neighboring robots u, v with no robots on it is called the gap u− v. The length of gap u− v
is denoted as |u− v|; obviously |u− v| = |v− u|. Two robots forming a multiplicity are assumed to form a gap of length 0.
A gap of minimum length in a given configuration is simply calledminimal.
The notation for gaps is extended to allow for chains, u1 − u2 − · · · − uk, i.e. sequences of robots separated by gaps. If

some robots ui − · · · − uj form a multiplicityM , then the considered chain may be written compactly as u1 − · · · − ui−1 −
M − uj+1 − · · · − uk.
We now introduce the concept of extrapolated length |u → v| of a gap u − v, useful for breaking ties in the gathering

process. Let u− v − v1 − v2 − · · · − vs be the longest possible chain such that, for all i, vi 6= u and vi does not belong to a
multiplicity. Then |u → v| = (|u − v|, |u − v1|, |u − v2|, . . . , |u − vs|). Values of extrapolated gap lengths are compared
lexicographically.
A key operation used in the gathering process is known as the contraction of a gap. Let u−v be an arbitrary gap belonging

to some chain t − u− v −w, such that |u→ t| > |v→ w|. Then the contraction of u− v is the operation of moving robot
u a single node towards robot v.
Note that if a configuration C ′ was formed from a configuration C by contraction of some gap u − v (by moving u) in a

chain t − u − v − w, then it is clear that in C ′ we have |t − u| > |v − w|. The corresponding decontraction of u − v in C ′
is uniquely defined as the operation of moving robot u a single node away from robot v unless some other symmetry has
been determined.

3. Gathering procedure for symmetric configurations

This section contains a description for a gathering procedure, starting from an important class of initially symmetric
configurations. This is then combined with approaches for other types of configurations in the next section.

Theorem 3.1. There exists a procedure for solving the gathering problem starting from all initial configurations of more than 18
robots having exactly one axis of symmetry, provided that the axis is not of the edge–edge type and its poles do not contain any
robots.

The proof of the theorem is constructive, and we will confine ourselves to providing an algorithm which describes the
Compute part of the cycle of robots’ activities. In order to simplify notation, the performed actions will often be expressed
using configurations (identical for all robots sharing the same snapshot of the system), and not locally centered views. For
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example, if we require only robots specifying certain geometrical criteria to move, then each robot will be able to recognize
whether to perform the specified action or not.
Since the configuration has exactly one axis of symmetry, it is possible to define a partial order on the robots in which

only pairs of robots, symmetric with respect to the axis of symmetry, are incomparable. Our algorithm allows at any given
time exactly two robots u and ū, symmetric with respect to the axis of symmetry, to make corresponding moves, hence
preserving symmetry. Observe that there are two possible move scenarios leading to different types of new configurations.

• Both robots, u and ū, make their moves simultaneously. In this case, in the new configuration the axis of symmetry remains
unchanged. For the correctness of the algorithm, it is essential to ensure that no new axes of symmetry are formed (since
otherwise the new configuration cannot be gathered).
• One of the robots, say u, performs its move before the other robot ū. All other robots must be able to recognize that the
current configuration is one move away from a symmetry, and robot ū is now the only one allowed to perform a move.
Observe that it is then irrelevant whether robot ū performed its Look operation before or after robot u was moved; the
outcome of its move is exactly the same.

The algorithm proposed herein detects configurations which have exactly one axis of symmetry of the node-on-axis type
with no robots on the poles (which we call A-type configurations) and those which are exactly one step away from such a
configuration (B-type configurations). The remaining types of gatherable configurations are not considered by the algorithm;
our approach is extended to include them in the next section.
Our algorithm runs in four main phases; these are informally outlined in the next subsection, and formalized in

Section 3.2.

3.1. Illustration of approach

Let us suppose that the system starts in an A-type configuration. (Note that in view of impossibility results from [17] (see
Theorem 5.1), symmetric configurations which are not A-type configurations are never gatherable.)
The four phases of our algorithm can be outlined as follows. In the first phase of the algorithm, we lead the system to

an A-type configuration with exactly two (symmetrical) multiplicities. In the second phase, all of the other robots (with the
exception of two symmetrically located robots called guards) are gathered into the multiplicities. In the third phase, the
multiplicities are moved to their final gathering point on the axis of symmetry, away from the guards (remember that there
is a node-on-axis symmetry in our case). Finally, in the fourth phase, the guards join the single remaining multiplicity in the
gathering point.
The current phase of the algorithm can be determined by only looking at the state of the system; this will be discussed

in more detail later. The single axis of symmetry is maintained throughout the process, allowing configurations that are
at most at one step from a symmetric configuration with respect to the considered axis of symmetry. In the first phase,
the locations of all minimal gaps are used for this purpose. In the second phase, the axis is determined by positions of the
multiplicities, while in the third phase the axis is determined by the positions of the guards. Finally, in the fourth phase, the
gathering point with the only multiplicity is known.
Referring to Figs. 1 and 2, we now describe in more details the basic intuitions of our algorithm. In both figures,

configurations a describe two possible initial states of the system (A-type configurations). In the first phase, the objective is
to create two symmetric multiplicities such that both arcs of the circle between them contain at least two robots, neither of
which is at a distance of one from a multiplicity. The normal move (Fig. 1(a)) consists in the contraction of two symmetrical
minimal gaps. The pair of minimal gaps is selected in such a way that the contraction does not create two multiplicities
which violate the imposed constraint on robots on the arcs between them; if there exists a minimal gap crossing the axis
of symmetry, this is not chosen either. It may happen that no minimal gap appropriate for contraction exists (Fig. 2(a)). In
that case, we select for contraction the pair of (not necessarily minimal) gaps which are central in terms of the number of
robots separating them from the poles of the axis of symmetry (gaps between robots 5–5 in Fig. 2(a)); if there are two pairs
of candidate gaps, a tie-breaking mechanism is applied.
The performed contractions result in a new symmetric configuration (configurations c in both figures), possibly preceded

by a state of violated symmetry in a B-type configuration (configurations b). The process of selecting the gap for contraction
allows the robots to recreate configuration a knowing configuration b only, and to proceed from there to configuration c.
Configuration c is in fact an A-type configuration just as configuration a, and the procedure repeats until the two sought
multiplicities are created (configurations d). At this point, the first phase of the algorithm is complete. Note that the
contraction rules applied in Fig. 2 require a sufficiently large number of robots (more than 18; see Lemma 3.2) to guarantee
correctness.
The next phases of the algorithm are shown in Fig. 1 only. In Phase 2 it is necessary to decide on one of the two poles

of the axis of symmetry as the gathering point (the North pole). The poles are chosen so that the northern arc between
multiplicities has more robots than the southern arc; in the case of a tie, the side on which the nearest robots are closer to
the multiplicities is the northern one. The robots are moved in symmetrical pairs towards their respective multiplicities,
starting from the robots on the northern arc (Fig. 1(e), (f)). Note that the definition of the North and South is consistently
preserved throughout the process. Phase 2 ends when nearly all the robots have been merged into the multiplicities, and
the remaining robots occupy not more than six nodes in an arrangement matching a specific pattern (Fig. 1(f)). Two robots,
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Fig. 1. An example of a scenario for a symmetric configuration. White nodes represent empty nodes, shaded nodes are nodes occupied by a single robot,
and black nodes are nodes occupied by at least two robots, i.e., multiplicities. The North pole is at the top of the axis of symmetry. The dashed horizontal
line can be understood as a helper line for recognizing the axis of symmetry.

separated by gaps from the multiplicities, always remain on the southern arc and act as the guards of the axis of symmetry
throughout Phase 3. The multiplicities are moved step by step towards the North pole; note that not all the robots in
a multiplicity have to move simultaneously (Fig. 1(g)). When the pattern shown in Fig. 1(h) is achieved, Phase 4 starts,
and the two remaining robots are moved step by step until they reach the North pole (Fig. 1(i)), and the algorithm is
complete.

3.2. Formalization of approach

The distinction among the four phases of the proposed algorithm is in fact possible knowing only the current
configuration C . To do this, we now introduce some further notation.
A configuration can also be represented in the form of a string of characters as follows: starting from an arbitrary node

and moving around the ring in a chosen direction, for each node we append a character representing whether the node is
empty, contains a single robot, or a multiplicity. We say that configuration C matches a chain pattern [P], C ∈ [P], if there
exists a string representation of C belonging to the language described by the tokens in [P]. For some integer values a and b,
token σa:b is understood as between a and b occurrences of single robots (possibly separated by any number of empty nodes)
followed by at least one empty node. Token µa:b is understood as between a and b occurrences of consecutive non-empty
nodes, at least one of which is amultiplicity, followed by at least one empty node. Ranges of the form a : a are simplywritten
as a. For example, in Fig. 1, the pattern [µ1:2, σ1:2, µ2] is matched by configurations f and g .
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a b

dc

Fig. 2. An example of a scenario for a symmetric configuration (contraction of equatorial gaps). Details of the construction are given in Section 3.3.

Table 1
Division into phases, assuming no robots on the axis of symmetry in the initial state:
m(C) — number of multiplicities in configuration C , p(C) — total number of different
nodes occupied by robots in C .
Phase Multiplicities Occupied nodes Additional constraints

1 m(C) < 2 p(C) > 6 None
2 m(C) = 2 p(C) ≥ 6 If p(C) = 6, then C /∈ [µ1:2, σ2, µ1:2]
3 m(C) = 2 4 ≤ p(C) ≤ 6 If p(C) = 6, then C ∈ [µ1:2, σ2, µ1:2]
4 m(C) ≥ 1 p(C) ≤ 3 None

Herein we restrict ourselves to a presentation of the algorithm for the case of an initial configuration with exactly one
axis of symmetry, having a node-on-axis-type symmetry, without any robots on the axis.
The proposed algorithm performs the gathering in four basic phases, as defined in Table 1.
When performing its Compute step, each robot can clearly determinewhich phase of the algorithm it is currently running

(cases not covered in the table cannot appear in the initial state and do not occur later due to the construction of the
algorithm). The algorithm is defined so as to guarantee that, when two robots are allowed to move simultaneously, their
views correspond to the same phase of the algorithm. Bearing this in mind, we can now consider the four phases separately
in the following subsections.

3.3. Phase 1: obtaining two non-adjacent multiplicities

The algorithm is defined by the following elements.

• A subroutine defining amove for an A-type configuration which leads to a new A-type configuration, assuming that both
the robots which are chosen to move perform their action simultaneously.
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• A subroutine for detecting the preceding A-type configuration when the current state of a system is a B-type
configuration.

The procedure for A-type configurations is presented as Algorithm 1. A gap u−v is called equatorialwith respect to a line
s if the number of robots on the arc from u to one pole of s and from v to the other pole of s differs by at most 1 (amultiplicity
is counted as two robots).

Algorithm 1 Procedure for A-type configurations (Phase 1)

(i) Choose a pair of minimal gaps u− v and ū− v̄ such that the following conditions are fulfilled:
– u− v does not intersect the axis of symmetry (u 6= v̄),
– the contraction of u− v and ū− v̄ does not create two multiplicities with no other robots in between them,
– the contraction of u − v and ū − v̄ does not create two multiplicities with exactly two robots in between, adjacent
to these multiplicities,

then perform the contractions of u− v and ū− v̄.
(ii) If no such pair exists (see Fig. 3 for a visualization), perform the contraction of chosen gaps u− v and ū− v̄ which are
equatorial with respect to the axis of symmetry. If there are two pairs of equatorial gaps of different lengths, the shorter
pair is always chosen for contraction.

For completeness of the procedure, it is necessary to provide some mechanism of choosing one of several possible
candidate gaps. Such ties are easily broken, since for a given configuration it is possible to define a partial order on the
set of robots in which only symmetrical robots are not comparable [17].
The definition of the procedure always allows a move of exactly two symmetrical robots. We first show that the above

set of rules is sufficient to gather an A-type configuration, provided that both symmetrical robots always perform their Look
operations aswell asMove operations simultaneously. A scheduler that ensures this property is called a symmetry-preserving
scheduler.

3.3.1. Case of a symmetry-preserving scheduler
Before proceeding with the proofs, we recall the obvious geometrical fact that, if for a configuration on the ring it

is in some way possible to distinguish (select) exactly two arcs, then the configuration can only have zero, one, or two
perpendicular axes of symmetry.
Lemma 3.1. Under a symmetry-preserving scheduler, the new configuration after performing rule (i) of Algorithm 1 is also an
A-type configuration.
Proof. Indeed, consider the contraction of minimal gap u− v in a chain t − u− v − w and its complement ū− v̄ in chain
t̄ − ū− v̄ − w̄. The obtained configuration has exactly two minimal gaps, u− v and ū− v̄. Thus, after the move the axis of
symmetry remains unchanged and no new axes are created. In fact, the new configuration is the same as before but with the
minimal gaps u− v and its complement ū− v̄ contracted. This move clearly maintains the axis of symmetry of the original
configuration. Moreover, u− v and ū− v̄ are the minimal gaps in the new configuration and no further gaps can have their
length. Hence, if a new axis of symmetry is created after the move, it must necessarily cut the configuration between u− v
and ū− v̄. However, this is not possible, as by the properties of a contraction |t − u| 6= |v − w|. �

For a given configuration C , wewill call a gap u−v balanced if for the chain s− t−u−v−w−xwe have |t−u| = |v−w|
or |u− v| ∈ {|s− t|, |t − u|, |v − w|, |w − x|}.
Lemma 3.2. If for a given A-type configuration rule (i) of Algorithm 1 cannot be applied, the following claims hold.
(a) All the minimal gaps have their end-points within a set of 12 robots — six robots surrounding each pole of s (the three nearest
robots on one side and the three on the other side).

(b) The set of minimal gaps consists of between 1 and 10 gaps.
(c) All the minimal gaps are balanced.
(d) If u− v is an equatorial gap, then none of the gaps in the chain s− t − u− v − w − x is minimal.
(e) There exist either one or two symmetrical chains, maximal in terms of inclusion, which do not contain any minimal gaps and
which consist of more than four robots each.

Proof. If some minimal gap u− v cannot be contracted according to rule (i) of the Algorithm, then the location of this gap
with respect to some pole of the axis must be one of those shown in Fig. 3(a)–(c). (Note that, if u − v does not intersect
the axis of symmetry, then its length is necessarily equal to 1.) Since by assumption rule (i) cannot be applied to any
minimal gap, we immediately obtain Claim (a), and also Claim (b) as a direct consequence. To show Claim (c), consider
any minimal gap u − v and the surrounding chain s − t − u − v − w − x. For the configuration from Fig. 3(a) we have
|t − u| = |v − w|, for the configuration from Fig. 3(b), |u − v| ∈ {|s − t|, |w − x|}, and finally, for the configuration from
Fig. 3(c), |u−v| ∈ {|t−u|, |v−w|}. In any of these cases, the gap is balanced. Taking into account the assumption that there
are more than 18 robots on the ring, Claim (d) results directly from Claim (a), since the equatorial gaps are then sufficiently
far from the poles (in terms of the number of separating robots). Likewise, we obtain Claim (e) by considering the maximal
chains which contain an equatorial gap and do not contain any minimal gaps. �
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a

b

c

Fig. 3. Configurations of minimal gaps for which rule (i) of Algorithm 1 cannot be applied.

Lemma 3.3. Under a symmetry-preserving scheduler, the new configuration after performing rule (ii) is also an A-type
configuration.

Proof. We need to consider two cases.

(1) If the contraction of u − v and ū − v̄ creates no new minimal gaps, then the set of minimal gaps remains unchanged.
The old axis of symmetry is still an axis of symmetry of the new configuration. Now, taking into account Lemma 3.2(e)
and the possible symmetries of themaximal chains characterized by it, there could exist at most onemore candidate for
an axis of symmetry for the new configuration, perpendicular to the original axis. Since the number of robots on both
sides of an axis of symmetry is the same, either the new axis crosses the newly contracted gaps u− v and ū− v̄ or it has
robots u and ū on its poles. In the first case, the axis cannot be an axis of symmetry, since for the chain t − u− v−w we
have |t − u| 6= |v − w|. In the second case, a contradiction arises as well, since the shorter equatorial gaps have been
contracted and hence these gaps cannot be reflected by the new axis into the unchanged (longer) equatorial gaps.

(2) If the contraction of u− v and ū− v̄ creates two newminimal gaps, then these gaps are non-balanced by Lemma 3.2(d);
moreover, these are now the only two non-balanced minimal gaps on the ring by Lemma 3.2(c). By a similar argument
as before, these two non-balanced minimal gaps have to be reflected by any axis of symmetry into each other, so the
axis of symmetry is unique. �

Finally, we make a note on the convergence of the performed process.

Lemma 3.4. Under a symmetry-preserving scheduler, Phase 1 is completed after a finite number of steps.

Proof. If rule (i) is performed then the length of the minimal gap decreases in each step. Otherwise, the length of the
shorter equatorial gap decreases, while the length of the minimal gap remains unchanged (since all minimal gaps are
then concentrated around the poles). The process obviously converges to a minimal gap length of 0; hence we obtain two
multiplicities and, by Table 1, Phase 1 is complete. �

3.3.2. Extension to the general scheduler
Depending on the rule used in the preceding A-type configuration and the outcome of the move, we obtain a B-type

configuration which belongs to one of the following subtypes.

B1:The current configuration was obtained by contracting a minimal gap in an A-type configuration using rule (i).
B2:The current configuration was obtained by contracting an equatorial gap in an A-type configuration using rule (ii), but
without creating any new minimal gaps in the process.

B3:The current configuration was obtained by contracting an equatorial gap in an A-type configuration using rule (ii), but
creating one new minimal gap in the process.

Before proceeding any further, for a configurationwedefine a compass axis as any line s fulfilling the following constraints:

• s is an axis of symmetry of the set of balanced minimal gaps,
• the number of robots on both sides of s is equal,
• all the balancedminimal gaps have their end-points within a set of 12 robots — six robots surrounding each pole of s (the
three nearest robots on one side and the three on the other side).

We are now ready to prove the following theorem.

Lemma 3.5. The sets of A-, B1-, B2-, and B3-type configurations are all pairwise disjoint.

Proof. A B1-type configuration has exactly one non-balanced minimal gap. In consequence, such a configuration obviously
cannot have an axis of symmetry.
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Table 2
Telling apart different types of configurations: q(C) — total number of
minimal gaps in C , qb(C) — total number of balanced minimal gaps in C , s(C)
— number of axes of symmetry.
Type Minimal gaps Balanced minimal gaps Axes of symmetry

A Irrelevant Irrelevant s(C) = 1
B1 q(C) = 1 qb(C) = 0 s(C) = 0
B2 1 ≤ q(C) ≤ 10 qb(C) = q(C) s(C) = 0
B3 2 ≤ q(C) ≤ 11 qb(C) = q(C)− 1 s(C) = 0

A B2-type configuration has the same set of minimal gaps as the original A-type configuration; hence we can make use
of Lemma 3.2 also for this configuration. In consequence, a B2-type configuration has between 1 and 10 minimal gaps, all of
which are balanced, and has exactly one compass axis identical to the axis of symmetry of the original A-type configuration.
Since the compass axis of a configuration is the only possible candidate for its axis of symmetry, and a B2-type configuration
is exactly one move apart from an A-type configuration having this axis as an axis of symmetry, a B2-type configuration has
no axes of symmetry.
A B3-type configuration has the same set of balancedminimal gaps as the original A-type configuration, and additionally

one more minimal gap is obtained as a result of the contraction (thus between 2 and 11 minimal gaps in total); however,
this gap is non-balanced, and as such does not affect the existence of the compass axis. Analogously to the previous case,
we obtain that a B3-type configuration has exactly one compass axis and no axes of symmetry.
Putting together the above properties (see Table 2), we directly obtain the claim. �

Lemma 3.6. Under a general scheduler, Phase 1 is completed after a finite number of steps.

Proof. Taking into account Lemmas 3.4 and 3.5, we now only need to define a procedure to determine for a B-type
configuration a unique preceding A-type configuration. The next move is then defined by imitating the behavior of a
symmetry-preserving scheduler.
Taking into account the above observations (see Table 2), we obtain that for a given configuration C we can determine

if it is an A-type configuration, or a candidate for a B1, B2, or B3-type configuration. In the latter cases, there exists exactly
one possibility of recreating the potentially preceding A-type configuration. For a B1-type configuration, it is necessary to
decontract the unique minimal gap. For a B2- or B3-type configuration, the shortest of the gaps equatorial with respect to
the compass axis should be decontracted. �

3.4. Phase 2: partial gathering with two multiplicities

The first phase ends when two symmetrical multiplicities are created. Throughout the second phase of the algorithm,
the two existing multiplicities M1 and M2 make no moves. Multiplicities M1 and M2 divide the ring into two parts, which
we will call northern (around the North pole) and southern (around the South pole). Each of these parts initially contains at
least two robots not directly adjacent to a multiplicity. Throughout the process North and South are defined in such a way
as to fulfill the following conditions:

• the number of nodes in the northern part is odd,
• if both parts have an odd number of nodes, the southern part always contains not less than one robot, and not fewer
robots than the northern part,
• if both parts have an odd number of nodes and contain the same number of robots, consider the chain rN −M1− rS with
robot rN in the northern part and robot rS in the southern part; then |M1 → rS | > |M1 → rN |.

The gathering procedure, presented as Algorithm 2, is defined so as to move all but at most four of the single robots into
the two existing multiplicities (without creating any new multiplicities).

Algorithm 2 Procedure for Phase 2

(i) If the northern part contains at least one robot, move a robot in the northern part, such that there are no robots between
itself and one of the multiplicities, towards this multiplicity (in the case of choice of robots, select the one with a longer
way left to go; if the distance is the same, both robots are allowed to move).

(ii) Otherwise, perform an analogous operation in the southern part but for the two symmetric nodes closest to the pole
(these nodes will serve as guards in the next phase).

It is important to note that the adopted definition of North and South guarantees that the same labeling of the poles is
maintained throughout the process.
In accordance with Table 1, the phase ends when all but at most four single robots have been merged with the

multiplicities. The last pair of robots in the southern part have not yet made a move and they are separated by at least
one empty field from a multiplicity; these robots will serve as guards in the last phases of the algorithm.
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Fig. 4. Examples of possible C-type configurations.

3.5. Phase 3: gathering two multiplicities using guards

The third phase of the algorithm is performed when C ∈ [µ1:2, σ2, µ1:2]. The two robots u and v corresponding to the
token σ2 define a unique axis of symmetry, orthogonal to the gap u− v. The remaining robots (and multiplicities) can move
towards the North pole of this axis; for a given configuration, only those robotswhich have the longestway to go are allowed
tomove. In thisway the configuration pattern ismaintained throughout the process, until themoving robots converge on the
pole and (optionally) the two directly adjacent nodes. The configuration pattern then changes to C ∈ [µ1:3, σ2], and can be
likewise maintained until all robots except for the guards gather at the required pole in a single multiplicity (C ∈ [µ1, σ2]).

3.6. Phase 4: withdrawing guards to the gathering point

In this phase, the unique multiplicity on the North pole determines the gathering point for the remaining guards. The
guards can be moved towards the multiplicity following the rule that, if the guards are at a different distance from the
multiplicity, the guard further away should move (in the case of a tie, both guards are allowed to move). The configuration
is maintained in the pattern C ∈ [µ1, σ2]. Only in at most two final moves do we have C ∈ [µ1:3] or C ∈ [µ1:2] (still with
exactly one multiplicity). Eventually, C ∈ [µ1] and the gathering is achieved.
This completes the proof of Theorem 3.1.

4. Extension to general configurations

In this section, we extend our gathering algorithm to work also when the initial configuration is neither an A-type nor a
B-type configuration. For the ease of readability, in order to not distinguish among subcases with a small number of robots,
we consider only gatherable configurations with more than 18 robots.
Let a C-type configuration be any configuration with more than 18 robots which is not periodic, does not have an edge–

edge symmetry, and is not an A-type configuration or a B-type configuration in the sense used in the proof of Theorem 3.1.
Taking into account the procedure for gathering A-type and B-type configurations defined in the previous section, it now
suffices to show that there exists a sequential approach for gathering C-type configurations, i.e., an approach such that,
in every C-type configuration, exactly one specific robot is selected by the algorithm (regardless of the robot running the
algorithm), and only this robot is then allowed to perform a move. Indeed, if the system starts in an A-type or B-type
configuration, then we apply the approach from the previous section, and it remains in A-type configurations possibly
alternating with B-type configurations. If the system starts in a C-type configuration, it may either perform a gathering
passing through C-type configurations only using the sequential approach, or may at some point switch from a C-type
configuration to a B-type configuration, and then remain confined to A-type and B-type configurations. As shown in Fig. 4,
observe that C-type configurations necessarily belong to one of the following distinct subtypes.

C1:The configuration is rigid, i.e., is not periodic and has no axes of symmetry.
C2:The configuration has exactly one axis of symmetry of the node-on-axis type, with a robot on exactly one of its poles;
the number of robots is odd.

C3:The configuration has exactly one axis of symmetry of the node-on-axis type,with robots on both of its poles; the number
of robots and the length of the ring are even.

A gathering algorithm in [17] called RigidGathering provides a sequential procedure for gathering initial configurations
which are rigid (progressing through rigid configurations in intermediate steps, only), as well as a sequential procedure
for gathering C2-type initial configurations (by transformation to a rigid configuration). In order to provide a gathering
algorithm that works for any initial gatherable configuration with more than 18 robots, it therefore suffices to show a
sequential procedure for gathering a C3-type initial configuration. Hence the following theorem can be stated.

Theorem 4.1. There exists a procedure for gathering any starting configuration of more than 18 robots on the ring, which is not
periodic and does not have an edge–edge symmetry.
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Table 3
Feasibility of the gathering based on the number of robots.
Configuration Number of robots

Odd Even

Periodic Not gatherable
With only two robots Not gatherable
Rigid Gatherable
Edge–edge axis Not possible Not gatherable
Node-on-axis Gatherable Gatherable with more than 18 robots

Proof. As discussed above, it suffices to show a sequential procedure for gathering a C3-type initial configuration. First of all,
note that, since the configuration has exactly one axis of symmetry, using a partial ordering of the robots, it is always possible
to tell apart the two robots occupying the poles, hence allowing us to choose one of them. To complete the proof, we will
show that, after a single movement of a robot from one of the poles (in an arbitrary direction), the resulting configuration is
rigid, provided that the robot to be moved is chosen with the constraint that, if the robots occupying poles are adjacent to
gaps of lengths differing in parity, then the robot adjacent to gaps of odd length is chosen to make the move. We will show
that the new configuration does not have an edge–edge symmetry, a node-on-axis symmetry, and it is not periodic.
First of all, observe that any configurationwhich has an edge–edge symmetry fulfills the following constraints: (1) if there

exist precisely a gaps in the configuration having length l, and a is odd, then l is also odd; (2) the set of robots which are
end-points of at least one gap of even length has even cardinality. Now, observe that, if in a node-on-axis type configuration
with robots on both poles, a robot adjacent to a gap of some odd length 2s+1makes amove, then the new configuration has
an odd number of gaps of length 2s; hence, constraint (1) is violated. Otherwise, suppose that both the robots on the poles
are initially adjacent to gaps of even length; then, after one of the robots is moved off a pole, the set of robots which are
end-points of at least one gap of even length will have odd cardinality (since it consists of some number of robots reflected
into each other w.r.t. the original axis of symmetry and the unmoved robot on the pole); hence, constraint (2) is violated.
To show that the new configuration does not have a node-on-axis symmetry, recall that C3-type configurations consist

of an even number of robots on an even ring, and notice that for a black–white 2-coloring of the ring, any configuration
of the node-on-axis symmetry must contain an even number of robots occupying white nodes. Since the initial and new
configuration differ in parity of the number of robots occupying white nodes, the new configuration cannot have node-on-
axis symmetry.
Finally, suppose that the new configuration is periodic, and can be mapped onto itself by rotating the cycle by angle

2π/p, p ≥ 2. This means that for any robot r the lengths (distances on the ring) of the chains consisting of exactly k/p
gaps, counting in the clockwise and anti-clockwise directions starting from r , must be identical. However, this is not the
case for the robot which moved off the pole, since these lengths differ by precisely 2 due to the symmetry of the original
configuration.
Hence, we obtain a rigid configuration, which completes the proof. �

5. Conclusions

Wehave studied the gathering problem in the discretemodel, solving it on a ring for any number of robots larger than 18.
The applied technique relies on preserving symmetries (in fact, our algorithmoccasionally creates symmetric configurations
from asymmetric initial configurations).
For configurations with more than 18 robots, our algorithm is complementary to the impossibility result shown in [17].

Theorem 5.1 ([17]). Gathering is not feasible for initial configurations which are periodic or have an edge–edge symmetry.
In this way, we have obtained the sought characterization of initial configurations on the ring.

Theorem 5.2. For more than 18 anonymous and oblivious robots located on different nodes of a ring, gathering is feasible if and
only if the initial configuration is not periodic and does not have an edge–edge symmetry.
Theorem 5.2 implies that, for any number of robots larger than 18, gathering is feasible if and only if, in the initial

configuration, the robots can elect a node (not necessarily occupied by a robot). Although it is conjectured in [17] that such
a claim should also hold in cases with an even number of robots between 4 and 18 (as two robots are not gatherable), this is
not always true. For instance, the only possible configuration of four robots on a five-node ring is not gatherable, although
the single empty node can be initially elected as a candidate for the gathering point. Providing an additional characterization
for the cases of between 4 and 18 robots is an interesting open problem. Some partial results in this direction have recently
been shown in [15]. To summarize, in Table 3 all the gatherable configurations are shown.
A natural next step is to consider the gathering problem for other graph classes with high symmetry (such as tori), and if

possible propose an algorithmic approach which solves the problem in the general case. The gathering problem could also
be considered for variants of the model, such as robots having limited visibility, although such restrictions often lead to a
large number of initial configurations for which gathering is impossible. It is not clear whether allowing robots to have small
(constant) memory would help address such problems with achieving a gathering. Finally, it is interesting to ask whether
the technique of preserving symmetries proposed herein can also be applied in other contexts.
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