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Abstract 

The present work aims to show thermal environment effects on shear buckling of a piezoelectric nanoplate using modified 

couple stress theory with various boundary conditions. A piezoelectric nanoplate is embedded in thermal environment and an 

external electric voltage is applied on the plate. A simplified first order shear deformation theory has been employed and 

governing differential equations have been obtained using Hamilton’s principle and nonlinear strains of von Kármán. 

Modified couple stress theory has been applied to considering nanoscale effects. An analytical approach was applying to 

obtain Results with various boundary conditions. Subsequently, results have been presented by change in some parameters, 

such as; aspect ratio, effect of various boundary conditions, effect of thermal environment, electric voltage and length scale 

parameter influences. Results showed that the impact of external electric voltage on the critical shear load is more than thermal 

environment effects. 
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1. Introduction

Due to the peculiar properties, piezoelectric materials have found extremely wide applications in the fields of 

electrical, ultrasonic, robotics, energy conversion, medicine, space, domestic industries and many others [1]. Piezoelectric 

materials, with their ability to generate electrical charges when subjected to a mechanical pressure, are the materials of 

choice for all the applications in which electro-mechanical transduction is needed, and represent one of the most valuable 

class of materials in biomedical applications [2, 3]. Piezoelectric crystals are exploited either in direct piezoelectric effect 

– a mechanical stress applied to the crystal causes charge generation in the material or in the converse piezoelectric effect -

electric field applied to the material generates a strain. Piezoelectricity basically depends on crystal lattice structure, and lack of 

a center of symmetry in the unit crystal cell is the necessary requirement for a material to show piezoelectricity in 

any form (pyroelectricity and ferroelectricity) [4]. Most important classes of piezoelectric materials are represented by 

ceramic perovskite materials [4], such as BaTiO3, lead titanate (PT), lead zirconate titanate ceramics (PZT), lead 

lanthanum zirconate titanate (PLZT), and lead magnesium niobate (PMN). 

Over the past two decades, many researches have been being examined in order to study the stability behavior of nano 

structures [5-41]. Malekzadeh et al. [8] considered the Small scale effect on the thermal buckling of orthotropic arbitrary 

straight-sided quadrilateral nanoplates embedded in an elastic medium via classical plate theory. Ke et al. investigated the 

nonlinear vibration [9] and post-buckling [10] behaviors of nonlocal Timoshenko piezoelectric nanobeams under 

combined thermo-electro-mechanical loadings. Murmu et al. [11] conducted buckling analysis of bi-layer nano graphene in 

nonlocal theory under biaxial compression via analytical solution using the classical plate theory with linear strains. It also 

demonstrated that nonlocal critical load was always less than local critical load. Malekzadeh and Alibeygi [12] analyzed the 

thermal buckling of orthotropic single layer graphene sheet using nonlinear elastic foundation. The classical theory and 

differential quadrature method were used together with the Winkler elastic foundation modeled with the nonlinear spring. 

Mohammadi et al. [13] studied the shear 
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buckling of orthotropic rectangular single layer nanoplates in thermal environment by classical plate theory. They showed that 

the difference between the shear buckling load calculated by isotropic and orthotropic plates decreases with increasing nonlocal 

parameter. Radic et al. [14] published a study on mechanical buckling of multi-layers rectangular graphene sheet based on an 

elastic foundation and found that the nonlocal effect has great influence on higher buckling modes. The analytical solution for 

vibrations and biaxial buckling of multilayers graphene sheet based on the Winkler elastic foundation were investigated by 

Murmu et al. [15]. The presented equations utilized classical plate theory and proved that the critical temperature and natural 

frequencies were further affected by reducing the Winkler coefficient in high modes. Anjomshoa et al. [16] derived mechanical 

buckling equations of multi-layers of rectangular graphene sheets placed on an elastic foundation using the classical plate theory 

and finite element numerical method. Radebe and Adali [17] studied the buckling of rectangular nanoplates with uncertain 

orthotropic material properties using a nonlocal theory. They considered nanoplate as a nonlocal plate to take the small-size 

effects into account with small-scale parameter also taken to be uncertain. They studied the effect of small scale on natural 

frequencies. Vibration and buckling analysis of a piezoelectric nanoplate considering surface effects and in-plane constraints 

have been presented by Jiang and Yan [18]. Golmakani and Rezatalab [19] conducted a study on the biaxial buckling of single 

layer graphene plate by considering the elastic foundation and nonuniform mechanical load. The results showed that by 

neglecting the elastic foundation, when the small scale effects are reduced, the critical load also has decreased. Challamel et al. 

[20] proposed the buckling and vibrations of micro structure rectangular plates considering phenomenological and lattice-based 

nonlocal continuum models. Radic and Jeremic [21] studied the thermal buckling of double-layered graphene sheets embedded in 

an elastic medium with various boundary conditions using a nonlocal new first-order shear deformation theory. Their results 

showed that in nonlinear distributions of temperature all over the thickness of plate, have a higher value of critical buckling 

temperatures for lower values of aspect ratio. Malikan et al. [22] published buckling of double-layered nanoplate under shear and 

thermal loads based on an elastic matrix using differential quadrature method. Fang and Zhu [23] presented size-dependent 

nonlinear vibration of nonhomogeneous shell embedded with a piezoelectric layer based on surface/interface theory. By applying 

nonlinear strains in Donnell shell theory and using Runge-Kutta method for solving simple boundary condition, the results 

showed that the vibration amplitude in the whole frequency region increases with increasing residual stress, elastic and 

piezoelectric constant of surface. Fang et al. [24] studied surface energy effect on nonlinear free vibration behavior of orthotropic 

piezoelectric cylindrical nano-shells. The governing equations of motion were solved by using the homotopy perturbation 

method (HPM). It was found that for a fixed thickness or dimensionless amplitude, the effect of surface elastic constant on the 

nonlinear free vibration behavior is similar to surface piezoelectric constant, but opposite to surface dielectric constant. 

This paper investigates new theoretical considering on piezoelectric nanoplates under shear buckling in thermal environment. 

Regarding FSDT, we could not find the exact value for shear correction factor to considering the shear stress distribution in 

thickness direction. Therefore, the simplified first order shear deformation theory (S-FSDT) that provides a welcome alternative 

to solve this problem has been investigated. In the following, the nonlinear strain of von Kármán has been considered. In 

addition, in order to study the nanoscale, because of the fact that there is a difficulty with Eringen nonlocal elasticity for 

considering nano materials behavior when it will be applied on the nonlocal stress resultants in deriving of governing equations, 

because of presence of variable of nonlocal parameter, so, the modified couple stress effect has been employed in the research. 

Moreover, the analytical solution is used to solve the stability equations. In the end, the effects of different parameters such as; 

changes in the length scale parameter, external electric voltage, aspect ratio, thermal environment influences and boundary 

effects of edges in various conditions under in-plane shear loads have been demonstrated. 

2. Formulation 

A rectangular piezoelectric nanoplate is considered with thickness h, the length Lx, and the width Ly as shown in Fig.1. Of the 

many shear deformable plate theories proposed over the years, the FSDT is fundamentally simpler to adopt for modelling 

the shear deformation behavior of plates. FSDT, are widely in use, even today, because of its simplicity. It is now well-known 
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that in plate analysis, shear deformation effects become important not only for thick plates but even for thin plates [25]. As 

classical plate theory (CPT) does not take into account shear effects, many theories got evolved to address the deficiency. 

According to the FSDT, the following displacement field can be expressed as [22]: 
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Fig. 1. Schematic picture of a rectangular piezoelectric nanoplate in thermal environment 

where u, v and w are the displacement components along x, y and z directions, respectively. Moreover,  and  are the rotational 

displacement about the y and x directions, respectively. In this theory, the shear stresses in the thickness direction is a constant 

value which in fact is not true. But, in the S-FSDT theory it is assumed that the transverse displacement (w) is divided into the 

bending component (wb) and the shear component (ws) which means that [26]: 

( ) ( )w w bending w shear 
                                                                                                                                               

(2) 

Also, the rotation variable in the S-FSDT is expressed in terms of the bending component only: 
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(3) 

With implementation Eqs. (2, 3) into Eq. (1) the S-FSDT displacement field can be written as follows: 
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In recent years, various size dependent continuum theories such as couple stress theory, modified couple stress theory, strain 

gradient theory and nonlocal elasticity theory have proposed. These theories are comprised of information about the inter-atomic 

forces and internal lengths. Among these theories, nonlocal elasticity theory of Eringen has been widely applied. But in this 

theory, we cannot find a unique result, since we have to use variable nonlocal parameter. The classical couple stress theory is one 

of the higher order continuum theories, which contains two additional material length scale parameters besides the classical 

constants for an elastic material, elaborated by Mindlin and Tieresten [27], Toupin [28], and Koiter [29]. In fact, couple stress 

theory is a special case of Micropolar theory proposed by Cosserat brothers [30]. Newly, a modified couple stress theory, which 

contains only one additional material length scale parameter in addition to the classical material constants, was proposed by Yang 

et al. [31]. The modified couple stress theory is more useful than classical one due to symmetric couple stress tensor. According 

to this higher-order continuum theory and using the Hamilton’s principle, the governing equations as well as the related boundary 

conditions along the edges of the rectangular piezoelectric nanoplate can be derived. The equations of the total potential energy 

(V) are expressed as:  

V S                                                                                                                                                                                            (5) 

Here S is strain energy and Ω is work done by external loads. The virtual strain energy can be calculated as: 
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where , , , ,ij ij ij ij k k  m   D , E   , are stress tensor, strain tensor, deviatoric part of the couple stress tensor, symmetric curvature 

tensor, electric displacement and electric field, respectively [32-34]. 
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where l is a material length scale parameter that is related to size effect, and θ is the rotation vector. Also, , , ijkl kij ij ij iC , e  , p  are 

elastic constant, piezoelectric constant, dielectric constant, thermal moduli and pyroelectric constant, respectively. The tensors 

associated in the displacement field in Eqs. (7-10) are: 
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To confirm the Maxwell equation, the distribution of external electric potential for the present nanoplate model is assumed as a 

combination of a cosine and linear variation [34-36].  
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where / ;h   (x,y)    is the spatial of the electric potential in the mid-plane of the nanoplate, and V0 is the external electric 

voltage. Then, the components of electric field can be written as: 
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Using the principle of minimum potential energy (δV=0) the nonlinear constitutive equations are derived as: 
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Ni, Mi and Qi (i= x, y, xy) and Yij (i= x, y, xy) are stress resultants and non-zero curvature resultants, respectively, as follows: 

 
/2

/2
( , , ) , ,

h

x y xy x y xy
h

N N N dz  


                                                                                                                                                (17a)

 

 
/2

/2
( , , ) , ,

h

x y xy x y xy
h

M M M zdz  


                                                                                                                                            (17b)

   
/2

/2
, ,

h

x y xz yz
h

Q Q dz 


                                                                                                                                                            (17c)

/2

/2

xx xx

yy yy
h

xy xy
h

xz xz

yz yz

Y m

Y m

Y m dz

Y m

Y m



   
   
   
   

   
   
   
   
   

                                                                                                                                                                      (18) 

 

 

 

1
15 11

/2
1

15 11
/2

2 2

31 31 332 2

2
sin

2
cos

2
cos sin

2
sin

s

x x
h

s
y y

h

z z
b b

p Tw h
E X

x x
D D z

p Tw h
D D z dz E X

y y
D zD

w w
E E X

x y










 



    
   

       
            

         
        

        
    
   

                                                                                          (19) 

in which Di is generated flux. The coefficients in Eq. 19 can be expressed respectively. 
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In the following, the governing equations (Eq. 16) for the rectangular piezoelectric nanoplate can be rewritten: 
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in which As is defined as follows: 
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(22) 

The axial and flexural rigidities of the piezoelectric nanoplate are given by: 
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In Eq. (23a), Aij and Dij are extensional stiffness and extension-bending coupling matrix, respectively. The stress resultants in Eq. 

(17) in displacement field by using Eq.23 and substituting in Eq.17 are defined as: 
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where
0

xyN N   is critical shear in-plane load in buckling conditions. Inserting Eqs. (18, 19) and (24, 25) in Eq. (21), and also 

with considering the pre-buckling conditions the thermo-electro-mechanical stability equations in the form of displacement 

components and based on S-FSDT also including couple stress effect are expressed as follows: 
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                                                                                                                                                                                                              (26a-c) 

3. Analytical solution 

In this section, a closed-form solution of the stability equations in order to obtain critical force of a piezoelectric nanoplate with 

simply-supported (S), clamped (C), and free (F) edges or combinations of these boundary conditions is presented, in which they 

are given as [37-39]: 

Simply-supported (S): 

wb = ws = Ф = Mx = 0; at x = 0, Lx 

wb = ws = Ф = My = 0; at y = 0, Ly 

Clamped (C): 

wb = ws = Ф=0; at x = 0, Lx and y = 0, Ly 
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Free edges (F): 

Mx = Mxy = Qxz = 0; at x = 0, Lx 

My = Mxy = Qyz = 0; at y = 0, Ly 

The following expansions have been assumed to satisfy the above mentioned boundary conditions: 

Free edges (F): 2 2sin ( ) 1 cos ( )i i i i iX x x  ; i=1,2                                                                                                                              (27a) 

Clamped (C): 2sin ( )i i iX x  ; i=1,2                                                                                                                                                     (27b) 

Simply-supported (S): sin( )i i iX x  ; i=1,2                                                                                                                                        (27c) 

 

where m and n are the half wave numbers, 1 2, ; 1 2
m n    x =x, x =y

Lx Ly
     or terms used in the x and y direction to represent 

the displacement functions. We use the displacement function in the following form: 

 ,k k i jw x y W X X  ; k=s,b; i=1,2 ; j=1,2                                                                                                                                          (28a) 

 , m i jx y X X  ; i=1,2 ; j=1,2                                                                                                                                                      (28b) 

Substituting the expression of ,kw    in Eq. (26) the explicit relation can be obtained for buckling loads with various boundary 

conditions. The stability equations and closed-form boundary conditions yield a set of following algebraic equations: 
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                                                                                                                               (29) 

pij (i,j=1,2,3) and rij (i,j=1,2,3) are coefficients of constants terms. To find a solution for the above equation, the determinant of 

the matrix of coefficients must be set to zero. By doing so, the critical load is determined. 

 

5. Numerical results 

The results validation and comparison with other research results should obviously be carried out before investigating various 

parameters of this article. Because of this fact that there are not any available papers in the field of shear buckling of piezoelectric 

nanoplates, therefore, Tables 1 and 2 which were in nanoplates field are examined in order to compare and validate this 

formulation results with those of other articles. In order for the results to be compared in Tables 1 and 2, [19] and [40] were 

employed while their results are obtained using first order shear deformation theory, differential quadrature method (DQM), as 

well as Eringen nonlocal elasticity theory. Ref. [41] is added for further confirmation due to the minor errors in the numerical 

solutions, and its results are obtained through molecular dynamics solution. Therefore, observing numerical solution alone does 

not enable us to ascertain the fact that the present results are validated due to the difference between the results in both cases. 

However, by examining Tables 1 and 2, one can strongly express that the modified first order shear deformation theory (S-

FSDT) results appropriately correspond to the molecular dynamic results. Since the solution is an exact one, this proximity of the 

results clearly confirms this premise that accurate and appropriate results are obtained by combining the simplified first order 

shear deformation theory and an analytical solution. Comparing the results shown in Table 1 with 2 confirms that the removal of 

the shear stress correction factors in plates affects the critical load results. Because, the difference generated in the contractual 

FSDT by employing this factor when compared with the accurate results, is removed in the S-FSDT. According to Tables 1 and 

2 the thinner we assume the plate, the closer the results become to the FSDT results and numerical solution, while their accuracy 

decreases; because, FSDT is not applicable to analyze thin plates and the classical plate theory (CPT) is more applicable in this 

case. 

Table 1. Comparison of results for critical biaxial buckling load for single-layered graphene sheet and all edges simply supported 

obtained from DQ method [19, 40], and molecular dynamics simulation [41]. 
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Table 2. Comparison of the present results with those of DQ method [38] and molecular dynamics (MD) simulation [41] for 

different aspect ratios of orthotropic single-layered graphene sheets under uniform biaxial compression. 

E=1Tpa, υ=0.3, Lx/Ly=1, k1=1, k2=1, ks=5/6, μ=1.81nm2, l=8.5h (Has freely been chosen), SSSS. 

Table 1. 

Critical buckling load (Pa.m)  

S-FSDT, 

Present study 
FSDT-DQM [19] FSDT-DQM [40] MD results [41] 

Lx=Ly 

(nm) 

1.0835 1.0749 1.0809 1.0837 4.99 

0.6538 0.6523 0.6519 0.6536 8.080 

0.4330 0.4356 0.4350 0.4331 10.77 

0.2615 0.2645 0.2639 0.2609 14.65 

0.1720 0.1751 0.1748 0.1714 18.51 

0.1198 0.1239 0.1237 0.1191 22.35 

0.0896 0.0917 0.0914 0.0889 26.22 

0.0696 0.0707 0.0705 0.0691 30.04 

0.0559 0.0561 0.0560 0.0554 33.85 

0.0454 0.0453 0.0451 0.0449 37.81 

 

Table 2. 

Critical buckling load (Pa.m) 

FSDT-DQM [40] MD results [41] 
S-FSDT, 

Present study 
Lx/Ly 

0.5115 0.5101 0.5105 0.5 

0.5715 0.5693 0.5698 0.75 

0.6622 0.6595 0.6599 1.25 

0.7773 0.7741 0.7747 1.5 

1.0222 1.0183 1.0180 1.75 

1.1349 1.1297 1.1301 2 

Table 3. Mechanical and Electrical properties of the piezoelectric nanoplate [34] 

A 

Piezoelectric 

Nanoplate 

C11=132Gpa, C12=71Gpa, C13=73Gpa,  

C33=115Gpa, C44=26Gpa, C66=30.5Gpa,  

e31=-4.1 C/m2, e15=10.5 C/m2, e33=14.1 C/m2, 

κ11=5.841e-9 C/Vm, κ 33=7.124e-9 C/Vm,  

λ11=4.738e5 N/m2K, λ33=4.529e5 N/m2K,  

p1=0.25e-4 C/m2K, p3=0.25e-4 C/m2K  

Fig.2 shows 𝑚 and 𝑛 variations for square and rectangular Nano-Piezoelectric-Sheets. It is clear that results are not accurate 

before m=n=30, but after m=n>40 the critical shear loads almost converge to the point that 𝑚 and 𝑛 variations have no effect on 
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critical shear load at m=n>50. Therefore, the results at m=n=50 are convenient for extracting the critical shear load of 

piezoelectric nano-sheets from. 

 
Fig. 2. The effect of aspect ratio (Lx/Ly) versus wave numbers (Ly=30h, l=h, V0=0.1 V, SSSS, ∆T=500 K) 

In order to study the effect of length scale on different boundary conditions, Fig.3a was examined. It was found that with a more 

flexible boundary condition critical load results decrease, which means that the maximum critical shear load occurs with clamped 

boundary conditions providing the minimum flexibility. The length scale parameter has more effect for SFSF and SSSS. The 

reason is gotten from more difference of critical shear load results between both of boundary conditions while length scale 

parameter is increased. 

On the other hand, the effect of nanosize has been considered by using length scale parameter which shows the effect of small 

size. By looking at Fig. 3b, it is shown that by increasing l parameter the critical load will be greater. If we select l=0, in fact a 

macro plate will be taken into account. On the whole, it can be concluded that by considering a nanosize plate (l≠0) the greater 

values of critical load will be resulted. Although the amount of l parameter must be found in laboratory by investigating many 

conditions, the values used in the figures are nondimensional. Another impressive results could be differences among critical 

loads developed from various voltage, that is, whatever the value of l will be larger, the difference will be greater. 

 
Fig. 3a. The length scale parameter versus different boundary conditions (Lx=Ly=30h, l*=l/h, V0=0.05 V, ∆T=500 K) 
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Fig. 3b. Impact of length scale parameter on critical shear load in macro and nano plates (Lx=Ly=30h, l*=l/h, SSSS, ∆T=500 K) 

Fig. 4 is plotted to examine the effect of external electric voltage applied to the piezoelectric nano-sheet versus the length to 

width ratio and it is extracted for simply supported boundary condition. Fig.4 presents that with simply supported boundary 

condition, critical shear load decreases with increasing external voltage, but the effect of external voltage on critical load is 

negligible. Furthermore, it is evident that with an increased length to width ratio the critical shear load decreases and external 

voltage becomes more effective. The difference in results of the diagrams proves the statement. 

 

Fig. 4. The effect of aspect ratio (Lx/Ly) parameter versus external electric voltage (Ly=30h, l=0.2h, SSSS, ∆T=300 K) 

Fig.5 shows the direct effect of external voltage on critical shear load. Results were extracted for CFCF and CCCC boundary 

conditions and suggest that the effect of external voltage on critical shear load is negligible. On the other hand, with the external 

voltage increased, minute differences appear in critical shear load results, showing the effect of external voltage on critical shear 

load to be negligible. In fact, the critical shear load occurring on the piezoelectric nano-sheet due to external electric current is 

insignificant. Also, it is clearly, with increasing external voltage, the critical shear load is declined in CFCF and vice versa in 

CCCC will rise. 
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Fig. 5. The effect of different boundary conditions versus external electric voltage (Ly=30h, l=2h, ∆T=300 K) 

Fig. 6 displays the effects of the temperature rise ∆T (K) on the critical shear results of the piezoelectric nanoplates. The 

temperature rise will result in a slight decrease on the critical shear loads. However, like the electric voltage, the temperature 

change has very limited influences on the critical shear behaviors of the piezoelectric nanoplate. Even the temperature rise varies 

from 300 K to 500 K, there are merely minor variations that can be found in the critical shear load. Such phenomenon is the 

result of that piezoelectric nanoplate possesses a small thermal modulus, which does not transform the temperature into stress in 

the body effectively. If we alter the piezoelectric material to another one with large thermal modulus, it is predictably that the 

temperature rise can also become a sensitive factor on the buckling behavior. 

 
Fig. 6. The effect of thermal environment versus external electric voltage (Ly=15h, l=0.1h, CFCF) 

6. Conclusions 

This study investigated the shear buckling of the piezoelectric nanoplate under external electrical voltage in thermal environment. 

For this purpose, a simplified first order shear deformation theory was employed to obtain the governing equations by taking into 

account the von Kármán nonlinear strains. The impact of nanoscale was investigated by using modified couple stress theory. 

Moreover, an analytical solution was used to extract the results by changing various parameters. In conclusion, some of the 

important results achieved from the present study are as follows:  

* The length scale impact on the results of any boundary conditions increases with an increase in l parameters. 
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* The effect of external electric voltage on the critical shear load is more than room temperature effects. 

* With increasing aspect ratio the critical shear load decreases and external electric voltage becomes more impressive. 

* By considering piezoelectric nanoplates, it is proved that the temperature rise cannot become a sensitive factor on the buckling 

behavior. 

* The length scale parameter has more effect for more flexible boundary conditions than others. 

* By considering nanosize, the consideration results in much bigger critical load versus macro plate. 
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