

Katedra Fizyki Teoretycznej i Informatyki Kwantowej

ROZPRAWA DOKTORSKA

Teoretyczne badanie struktury oscylacyjno-elektronowej cząsteczki NaRb z uwzględnieniem efektów relatywistycznych

mgr inż. Marcin Wiatr

promotor prof. dr hab. Józef E. Sienkiewicz promotor pomocniczy dr inż. Patryk Jasik

Gdańsk 2017

Podziękowania

Wyrażam swoją wdzięczność moim rodzicom za nieustające wsparcie w czasie trwania studiów doktoranckich i pisania rozprawy doktorskiej.

Pragnę szczególnie podziękować

profesorowi Józefowi E. Sienkiewiczowi i doktorowi Patrykowi Jasikowi za opiekę naukową, ofiarowany mi czas i cenne rady.

Chciałbym również podziękować

profesorowi Hermannowi Stollowi i profesorowi Andreasowi Köhnowi z Instytutu Chemii Teoretycznej na Uniwersytecie w Stuttgarcie za współpracę i opiekę naukową w czasie stażu.

Dziękuję także doktorowi Yuriemu Aoto za dyskusję nad praktycznymi aspektami obliczeń w trakcie stażu.

Spis treści

Sp	Spis rysunków vii						
Sp	Spis tablic ix						
1.	Wstęp 1						
2.	Opis teoretyczny 1						
	2.1.	Symetria cząsteczki	12				
	2.2.	Odseparowanie ruchu jąder od ruchu elektronów	13				
	2.3.	Momenty przejść dipolowych i czynniki Francka-Condona	16				
	2.4.	Reguły wyboru	18				
	2.5.	Szereg Dunhama, parametry spektroskopowe	19				
	2.6.	Efekty relatywistyczne	19				
	2.7.	Model hamiltonianu walencyjnego	21				
	2.8.	Baza obliczeniowa	24				
	2.9.	Metody obliczeniowe	27				
3.	Wyr	niki i dyskusja	30				
	3.1.	Potencjały nierelatywistyczne cząsteczki	30				
		3.1.1. Asymptoty	30				
		3.1.2. Krzywe adiabatyczne energii potencjalnej	31				
		3.1.3. Analiza i porównania	36				
	3.2.	Potencjały relatywistyczne cząsteczki	48				
		3.2.1. Asymptoty	49				
		3.2.2. Krzywe adiabatyczne energii potencjalnej	50				
		3.2.3. Analiza i porównania	56				
	3.3.	Momenty przejść dipolowych	61				
	3.4.	Czynniki Francka-Condona	62				
4.	. Perspektywy rozwoju badań 65						
5.	Pod	sumowanie	78				
Lit	Literatura 84						
Za	Załączniki 8						

Α.	Potencjały nierelatywistyczne cząsteczki NaRb	86
B.	Potencjały relatywistyczne cząsteczki NaRb	101

Spis rysunków

2.1.	Elementy symetrii przykładowej, heterojądrowej cząsteczki dwuato-	
	mowej	13
2.2.	Cząsteczka AB we współrzędnych kartezjańskich.	15
2.3.	Zestaw możliwych wyznaczników Slatera przeznaczonych do obliczeń $% \mathcal{L}^{(n)}$	
	MCSCF budowany w ramach spinorbitali nieaktywnych i przestrzeni	
	aktywnej	28
3.1.	Dziewięć policzonych krzywych energii potencjalnej stanów singleto-	22
	wych w symetru Σ^+	32
3.2.	Dziewięć policzonych krzywych energii potencjalnej stanów trypleto- wych w symetrii Σ^+ .	33
3.3.	Pięć policzonych krzywych energii potencjalnej stanów singletowych	
	w symetrii Π .	34
3.4.	Pięć policzonych krzywych energii potencjalnej stanów trypletowych	
	w symetrii Π .	34
3.5.	Dwie policzone krzywe energii potencjalnej stanów singletowych w symetri i Δ	35
36	Dwie policzone krzywe energij potencjalnej stanów trypletowych w	00
0.0.	symetrii Δ .	35
3.7.	Porównanie krzywych energii potencialnej stanu podstawowego cza-	
	steczki NaRb.	39
3.8.	Porównanie krzywych energii potencjalnej stanu 3 1 Σ^+ cząsteczki NaRb.	40
3.9.	Porównanie krzywych energii potencjalnej stanu $6^1\Sigma^+$ cząsteczki NaRb.	41
3.10.	Porównanie krzywych energii potencjalnej stanu $1^3\Sigma^+$ cząsteczki NaRb.	43
3.11.	Porównanie krzywych energii potencjalnej stanu 1 ¹ Π cząsteczki NaRb.	45
3.12.	Porównanie krzywych energii potencjalnej stanu 2 ¹ Π cząsteczki NaRb.	46
3.13.	Porównanie krzywych energii potencjalnej stanu 4 ¹ Π cząsteczki NaRb.	46
3.14.	Porównanie krzywych energii potencjalnej stanu $2^1\Sigma^+$ i $1^3\Pi$ czą-	
	steczki NaRb	48
3.15.	Krzywe energii potencjalnej dla stanów (1-14)0 ⁺	53
3.16.	Krzywe energii potencjalnej dla stanów (1-14)0 ⁻	54
3.17.	Krzywe energii potencjalnej dla stanów (1-21) 1	54
3.18.	Krzywe energii potencjalnej dla stanów (1-9) 2	55
3.19.	Krzywe energii potencjalnej dla stanów (1-2) 3	55
3.20.	Poziomy oscylacyjne stanów relatywistycznych $(2)0^+$ i $(3)0^+$ oraz ko-	
	respondujących z nimi nierelatywistycznych $2^{1}\Sigma^{+}$ i $1^{3}\Pi$	58

3.21. Porównanie regularnych przerw oscylacyjnych $\Delta_Q = \nu(v^{"}, J^{"} = 0) - \nu(v^{"} + 1, J^{"} = 0)$ dla stanów $2^{1}\Sigma^{+}$ i $1^{3}\Pi$ pomiędzy teoretycznymi i
wynikam wynkającym z analy deprturbacyjnej
3.23. Momenty przejść dipolowych pomiędzy wyszczególnionymi stanami: $1^{1}\Sigma^{+} - 2^{1}\Sigma^{+}, 1^{1}\Sigma^{+} - 3^{1}\Sigma^{+}, 1^{1}\Sigma^{+} - 1^{1}\Pi \text{ i } 1^{1}\Sigma^{+} - 2^{1}\Pi. \dots \dots$
3.24. Momenty przejść dipolowych pomiędzy stanami $(1)0^+ - (2)0^+$ i $(1)0^+ - (3)0^+$ wraz z momentem przejścia pomiędzy korespondującymi stanami nierelatywistycznymi $1^1\Sigma^+ - 2^1\Sigma^+$.
3.25 Czynniki Francka-Condona pomiędzy stanami (1)0 ⁺ - (2)0 ⁺
3 26 Czynniki Francka-Condona pomiędzy stanami $(1)0^+ - (3)0^+$
3.27. Czynniki Francka-Condona pomiędzy stanami $1^{1}\Sigma^{+} - 2^{1}\Sigma^{+}$
4.1. Geometria czasteczki Rb_3
4.2. Najniższe ${}^{4}\Sigma$ i ${}^{4}\Pi$ molekuły Rb ₃ (geometria liniowa)
4.3. Wykres powierzchniowy ${}^{4}A'$ dla molekuły Rb ₃ o kącie wiązania 60° w podejściu Soldana (podejście 1) 71
4.4. Wykres konturowy ${}^{4}A'$ dla molekuły Rb ₃ o kącie wiązania 60° w po- dejściu Soldana (podejście 1)
4.5. Wykres powierzchniowy ${}^{4}A'$ dla molekuły Rb ₃ o kącie wiązania 60° w obecnym podejściu z bazą A (podejście 2)
4.6. Wykres konturowy ${}^{4}A'$ dla molekuły Rb ₃ o kącie wiązania 60° w obec- nym podejściu z bazą A (podejście 2)
4.7. Wykres powierzchniowy ${}^{4}A'$ dla molekuły Rb ₃ o kącie wiązania 60° w obecnym podejściu z bazą B (podejście 3)
4.8. Wykres konturowy ${}^{4}A'$ dla liniowej molekuły Rb ₃ w obecnym podejściu z bazą B (podejście 3)
4.9. Wykres powierzchniowy ${}^{4}A'$ dla liniowej molekuły Rb ₃ w podejściu Soldana (podejście 1)
4.10. Wykres konturowy ${}^{4}A'$ dla liniowej molekuły Rb ₃ w podejściu Soldana (podejście 1)
4.11. Wykres powierzchniowy ${}^{4}A'$ dla liniowej molekuły Rb ₃ w obecnym podejściu z bazą A (podejście 2)
4.12. Wykres konturowy ${}^{4}A'$ dla liniowej molekuły Rb ₃ w obecnym podejściu z bazą A (podejście 2)

4.13.	Wykres powierzchniowy ${}^{4}A'$ dla liniowej molekuły Rb ₃ w obecnym	
	podejściu z bazą B (podejście 3)	76
4.14.	Wykres konturowy ${}^{4}A'$ dla liniowej molekuły Rb ₃ w obecnym podej-	
	ściu z bazą B (podejście 3).	76

Spis tablic

2.1.	Parametry uśrednionego, bezspinowego pseudopotencjału rdzenia atomu sodu: B_{lk}^A , β_{lk}^A	23
2.2.	Parametry uśrednionego, bezspinowego pseudopotencjału rdzenia atomu rubidu: B_{lk}^B, β_{lk}^B	23
2.3.	Parametry pseudopotencjału atomu sodu reprezentującego oddziały- wanie spin-orbita: C_{lk}^A , γ_{lk}^A	24
2.4.	Parametry pseudopotencjału atomu rubidu reprezentującego oddzia- ływanie spin-orbita: C_{lk}^B , γ_{lk}^B	24
2.5.	Wykładniki bazowych funkcji gaussowskich orbitali s, p, d i f atomu sodu	26
2.6.	Wykładniki bazowych funkcji gaussowskich orbitali s, p, d i f atomu rubidu	26
3.1.	Porównanie nierelatywistycznych energii asymptotycznych z wyni- kami eksperymentalnymi i teoretycznymi innych autorów	31
3.2.	Parametry spektroskopowe stanów (1-9) ² Σ^+ cząsteczki NaRb $.$	36
3.3.	Parametry spektroskopowe stanów (1-9) ² Σ^+ cząsteczki NaRb $.$	42
3.4.	Parametry spektroskopowe stanów (1-5) ² Π cząsteczki NaRb $~$	43
3.5.	Parametry spektroskopowe stanów (1-5) ³ Π cząsteczki NaRb $~$	47
3.6.	Parametry spektroskopowe stanów (1-2) ² Δ cząsteczki NaRb $~$	47
3.7.	Parametry spektroskopowe stanów (1-2) ³ Δ cząsteczki NaRb $~$	47
3.8.	Porównanie energii asymptotycznych z rozszczepieniem spin-orbita z	
	innymi wynikami eksperymentalnymi i teoretycznymi	49
3.9.	Parametry spektroskopowe wybranych stanów 0^+ czą steczki NaRb $. \ .$	56
3.10	. Parametry spektroskopowe wybranych stanów 0^- czą steczki NaRb $_{\cdot}$.	57
3.11	. Parametry spektroskopowe wybranych stanów 1 cząsteczki NaR b $~$	57
3.12	. Parametry spektroskopowe wybranych stanów 2 cząsteczki NaR b $~$	58
4.1.	Wykładniki bazowych funkcji gaussowskich orbitali s, p, d i f atomu rubidu w podejściu Soldana.	67
4.2.	Wykładniki bazowych funkcji gaussowskich orbitali s, p, d i f atomu rubidu w teraźniejszym podejściu z bazą A	68
4.3.	Wykładniki bazowych funkcji gaussowskich orbitali s, p, d i f atomu rubidu w teraźniejszym podejściu z bazą B	68
4.4.	Porównanie wartości energetycznych poziomu $5s5p^2P^0$ rubidu dla trzech	
	podejść z wynikami eksperymentalnymi Sansonettiego	69

4.5.	Porównanie parametrów spektroskopowych dla $^4A^\prime$ otrzymanego za	
	pomocą trzech podejść dla molekuły Rb 3 o kacie wiązania 60° 7'	7
4.6.	Porównanie parametrów spektroskopowych dla $^4A^\prime$ otrzymanego za	
	pomocą trzech podejść dla liniowej molekuły Rb3 7'	7
A.1.	Adiabatyczne potencjały energetyczne cząsteczki NaR b $(1\text{-}9)^1\Sigma^+.$ 80	6
A.2.	Adiabatyczne potencjały energetyczne cząsteczki NaR b $(1\text{-}9)^3\Sigma^+.$ 89	9
A.3.	Adiabatyczne potencjały energetyczne cząsteczki NaR b $(1\text{-}5)^1\Pi.$ 92	2
A.4.	Adiabatyczne potencjały energetyczne cząsteczki NaR b $(1\text{-}5)^3\Pi.$ 98	5
A.5.	Adiabatyczne potencjały energetyczne cząsteczki NaR b $(1\text{-}2)^1\Delta$ i (1-	
	$2)^{3}\Delta$	8
B.1.	Adiabatyczne potencjały energetyczne cząsteczki NaR b (1-9) $0^+.$ 10	1
B.2.	Adiabatyczne potencjały energetyczne cząsteczki Na Rb (10-14) $0^+.~.~104$	4
B.3.	Adiabatyczne potencjały energetyczne cząsteczki NaR b (1-9) $0^$. $.$ 107	7
B.4.	Adiabatyczne potencjały energetyczne cząsteczki NaR b (10-14) $0^$. 110	0
B.5.	Adiabatyczne potencjały energetyczne cząsteczki NaRb (1-9) 1 113	3
B.6.	Adiabatyczne potencjały energetyczne cząsteczki NaR b $(10\mathchar`-18)$ 1 110	6
B.7.	Adiabatyczne potencjały energetyczne cząsteczki NaR b $(19\mathchar`-21)$ 1 119	9
B.8.	Adiabatyczne potencjały energetyczne cząsteczki NaRb (1-9) 2 122	2
B.9.	Adiabatyczne potencjały energetyczne cząsteczki NaRb (1-2) 3 12	5

1. Wstęp

Alkaliczne molekuły dwuatomowe są od wielu lat obiektem intensywnych badań doświadczalnych i obliczeń teoretycznych. Głównym celem niniejszej rozprawy jest przedstawienie teoretycznych metod obliczeniowych oraz ich rezultatów dla struktury oscylacyjno-elektronowej cząsteczki NaRb z uwzględnieniem efektów relatywistycznych. Źródłem wyników teoretycznych są wykorzystane kwantowo-chemiczne metody oparte na pseudopotencjałach, opisujące oddziaływania pomiędzy rdzeniami atomowymi (jądra oraz całkowicie zapełnione powłoki elektronowe) oraz rdzeni z elektronami walencyjnymi. Otrzymane w tej pracy rezultaty są krzywymi adiabatycznymi energii potencjalnej w ujęciu nierelatywistycznym, jak i z uwzględnieniem efektów relatywistycznych. Na podstawie tych krzywych można teoretycznie wyznaczyć parametry spektroskopowe. Znając strukturę oscylacyjno-elektronową można również obliczyć momenty przejść dipolowych oraz czynniki Francka-Condona.

Dodatkowym celem niniejszej rozprawy jest przedstawienie perspektywy rozwoju badań. Jako przykład, pokazana jest możliwość rozszerzenia nierelatywistycznego przejścia z molekuły dwuatomowej do molekuły trójatomowej. W tym wypadku przedstawiłem wyniki wybranych stanów kwartetowych dla dwóch geometrii molekuły Rb₃.

Cząsteczka NaRb jest molekułą heterojądrową. Można ją uznać za atrakcyjny obiekt badań, ponieważ znajduje zastosowanie w wielu eksperymentach obejmujących dynamikę kolizji, spektroskopię fotoasocjacyjną i chłodzenie laserowe [1–4]. NaRb jest specjalnym kandydatem na dwuskładnikowy kondensat Bosego-Einsteina [5].

Badania doświadczalne nad cząsteczką NaRb sięgają roku 1928. W tym czasie Walter i Barrat zaobserwowali pasmo w zielonym regionie widma [6]. W 1936 roku Kusch, na podstawie przejść ${}^{1}\Sigma^{+}{}^{-1}\Pi$, wykorzystując spektroskopię magnetycznorotacyjną, znalazł czerwony układ pasm [7]. W 1987 roku przedstawiono laserowo indukowaną fotodysocjację cząsteczki NaRb. Pierwsze ilościowe doświadczenie polegało na napromieniowaniu liniami lasera argonowego mieszaniny w komorze gazowej par sodu i rubidu dla różnych długości fali [1]. W latach 1981-1996 proces fotodysocjacji molekuły NaRb był badany przez bezdopplerowskie techniki laserowe [8–12]. Eksperymenty badające ultrazimne kolizje w pułapkach optycznych na próbkach zawierających dwa rodzaje atomów (sodu i rubidu) były przeprowadzone przez Younga i wsp. [13]. W 2002 roku kompleks $2^{1}\Sigma^{+}{}{}{}{}^{3}\Pi$ cząsteczki NaRb był prawdziwym wyzwaniem dla międzynarodowej grupy badawczej [14] wykorzystującej: wysokiej rozdzielczości urządzenia spektroskopowe oparte o pomiary natężenia fluorescencji indukowanej laserowo, obliczenia *ab initio* struktury subtelnej oraz analizę deperturbacyjną. Dwa lata później, przeprowadzono dokładne badania stanu podstawowego $1^{1}\Sigma^{+}$ cząsteczki NaRb. Wybrano spektroskopię fourierowską, która była w stanie zapewnić obfite i dokładne dane spektroskopowe potrzebne do budowy dokładnego potencjału energetycznego [15]. W tym samym roku Jastrzębski i inni [16] przeprowadzili pierwszy szczegółowy eksperymentalny opis stanu $3^{1}\Sigma^{+}$ cząsteczki NaRb. Wykorzystali oni dwie różne metody spektroskopowe wysokiej rozdzielczości: fourierowską opartą na fluorescencji indukowanej laserowo i optyczno-optyczną metodę typu V opartą na podwójnym rezonansie polaryzacji znakowania. Trzy niskowzbudzone stany cząsteczki NaRb były studiowane przez Docenkę i wsp. [17, 18] przy pomocy spektroskopii fourierowskiej. W 2005 roku krzywa $6^{1}\Sigma^{+}$ została utworzona za pomocą odwrotnego podejścia perturbacyjnego przez Kortykę i in. [19]. Rok później przeprowadzono badania nad stanem $1^{1}\Pi$ przy pomocy spektroskopii wzbudzeniowej na przejściu $1^{1}\Pi \leftarrow 1^{1}\Sigma^{+}$ [20].

Wykorzystując pakiet programów CIPSI z Tuluzy (np. art. [21]) przeprowadzono większość badań teoretycznych. Badania te opierały się na metodzie oddziaływania konfiguracji poprzez wykorzystanie wielokonfiguracyjnej funkcji falowej. Dwa podejścia do obliczeń struktury elektronowej przeprowadzili Korek i wsp. [22, 23]: bez uwzględnienia i z uwzględnieniem efektów relatywistycznych. W pierwszym artykule użyli metody ab initio opartej na nieempirycznych pseudopotencjałach parametryzowanych l-zależnymi potencjałami polaryzacyjnymi i oddziaływaniem konfiguracji uwzględniającym tylko elektrony walencyjne. Energie potencjalne zostały policzone dla 28 niskoleżących molekularnych stanów. W drugim artykule efekty spinowo-orbitalne zostały wzięte pod uwagę poprzez półempiryczny pseudopotencjał dodany do elektrostatycznego Hamiltonianu. Użyta została baza gaussowska dla dwóch atomów. W 2001 roku Zaitsevskii i wsp. [24] zastosowali rachunek zaburzeń do obliczenia energii potencjalnej jedenastu najniższych stanów elektronowych. Wykorzystując pakiet programów CIPSI badania teoretyczne nad struktura elektronową zostały przeprowadzone przez Dardouriego i wsp. [25] w 2012 roku. Przy pomocy podobnego podejścia ab initio, dwa lata później, Chaieb i inni [21] wykorzystali efektywny potencjał rdzenia i potencjał polaryzacyjny rdzenia z l-zależnymi funkcjami obcięcia.

Początek każdego rozdziału poprzedzony jest krótkim opisem jego zawartości. Omówione zostaną kolejne rozdziały pracy doktorskiej. Drugi rozdział stanowi opis teoretyczny cząsteczki. W trzecim rozdziale zawarte są wyniki i dyskusja dla potencjałów nierelatywistycznych i relatywistycznych. W czwartym zawarte są perspektywy rozwoju badań. Rozdział piąty stanowi podsumowanie rozprawy doktorskiej.

2. Opis teoretyczny

W tym rozdziale przedstawiony jest teoretyczny opis cząsteczki. Wprowadzenie do niego stanowi jej symetria. Opiera się ona na modelu bryły sztywnej oraz na elementach teorii grup. Po wprowadzeniu opisywane jest rozdzielenie ruchu jąder od ruchu elektronów, a jego konsekwencjami są dwa przybliżenia: adiabatyczne i Borna-Oppenheimera. Kolejny etap stanowi wyprowadzenie czynników Francka-Condona, wychodząc od definicji momentów przejść dipolowych. Potem omówione są reguły wyboru dla przypadków Hunda (a) i (c). Piąty podrozdział opisuje szereg Dunhama odnoszący się do rozwarstwienia struktur energetycznych: energii stanów elektronowych, energii poziomów oscylacyjnych i energii poziomów rotacyjnych. Omówiłem parametry spektroskopowe nie wchodzące w jego skład. W podrozdziale szóstym zajmuję się efektami relatywistycznymi w ramach rachunku zaburzeń uwzględniając dodatkowe człony uwzględniane w hamiltonianie elektronowym. Są to poprawka do energii kinetycznej, rozmycie ładunku elektronów ze względu na ich ruch relatywistyczny i oddziaływanie spin-orbita. Następny podrozdział odnosi się do wykorzystanych przy pomocy pakietu obliczeniowego MOLPRO [26, 27] dwóch podejść do obliczeń struktury elektronowej (bez i z uwzględnieniem oddziaływania spin-orbita). Podrozdział ósmy i dziewiąty opisują użytą bazę obliczeniową oraz metody obliczeniowe zaimplementowane w tym pakiecie.

2.1. Symetria cząsteczki

Grupy punktowe charakteryzują się tym, że posiadają co najmniej jeden wspólny punkt przecięcia wszystkich osi i płaszczyzn symetrii cząsteczki. Grupy punktowe można podzielić na grupy o skończonej i nieskończonej liczbie elementów. Te drugie nazywamy ciągłymi grupami punktowymi [28].

Operacją symetrii nazywamy takie przemieszczenie ciała, w którego wyniku pozycja i orientacja ciała są nierozróżnialne od położenia początkowego [29]. Operacją symetrii realizującą obrót wokół prostej nazywamy obrotem właściwym. Oznaczamy go jako C_n , gdzie kąt obrotu wynosi $\phi = 2\pi/n$. Gdy $n \to \infty$, to mamy do czynienia z granicznym przypadkiem grupy C_n . Oznaczamy go jako C_∞ . Jeżeli oś symetrii przechodząca przez wszystkie atomy umożliwia ich obrót o dowolny kąt ϕ , to taką cząsteczkę nazywamy cząsteczką liniową. Symbolem σ_v oznaczamy odbicie względem płaszczyzny zawierającej oś najwyższej symetrii.

Cząsteczka AB jest liniowa i składa się z dwóch różnych atomów, więc jest niesymetryczna względem swego środka. Ciągłą grupą punktową opisującą tę cząsteczkę jest $C_{\infty v}$. Zawiera ona odbicia σ_v w dowolnej płaszczyźnie zawierającej oś C_{∞} [28, 30]. Na rysunku 2.1 przedstawiono model bryły sztywnej dla takiej cząsteczki, oznaczając poszczególne operacje symetrii.

Rys. 2.1. Elementy symetrii przykładowej, heterojądrowej cząsteczki dwuatomowej.

Warto nadmienić, że w praktyce obliczeniowej wykorzystywane są tylko abelowe punktowe grupy symetrii, więc dokonuje się zmiany rozdzielczości grupy punktowej na tą o niższej symetrii. Odpowiednikiem grupy $C_{\infty v}$ jest C_{2v} [31, 32].

2.2. Odseparowanie ruchu jąder od ruchu elektronów

Większość studiów teoretycznych w fizyce molekularnej i chemii kwantowej związana jest z przybliżonym rozwiązaniem niezależnego od czasu równania Schrödingera. Oddzielenie ruchu jąder i elektronów ma tutaj znaczenie zasadnicze. Podstawowy strukturalny model molekuły (przestrzenne rozmieszczenie atomów) jest możliwy dzięki temu, że jądra atomowe mają wiele tysięcy razy większą masę niż elektrony. Na rysunku 2.2 przedstawiono rozważany model dwuatomowej cząsteczki AB we współrzędnych kartezjańskich. W poniższych rozważaniach poprawki relatywistyczne są pominięte, a więc użyte jest podejście nierelatywistyczne [33, 34]. Odniesienie do efektów relatywistycznych jest zawarte w podrozdziale 2.6.

Niezależne od czasu równanie Schrödingera dla dwuatomowej molekuły heterojądrowej wygląda następująco

$$\hat{H}(\mathbf{r}, \mathbf{R})\Psi(\mathbf{r}, \mathbf{R}) = E\Psi(\mathbf{r}, \mathbf{R}),$$
(2.1)

gdzie $\{\mathbf{r}\}$ i $\{\mathbf{R}\}$ są odpowiednio zbiorami współrzędnych elektronów i jąder atomowych. Całkowity molekularny hamiltonian można przedstawić w postaci

$$\hat{H}(\mathbf{r}, \mathbf{R}) = \hat{T}_{nuc}(\mathbf{R}) + \hat{H}_{el}(\mathbf{r}, \mathbf{R}), \qquad (2.2)$$

gdzie $\hat{T}_{nuc}(\mathbf{R})$ oznacza operator energii kinetycznej jąder

$$\hat{T}_{nuc}(\mathbf{R}) = -\frac{\hbar^2}{2} \sum_{N=A,B} \frac{\nabla_N^2}{M_N} = -\frac{\hbar^2}{2M_A} \nabla_A^2 - \frac{\hbar^2}{2M_B} \nabla_B^2.$$
(2.3)

Tutaj M_A i M_B są masami odpowiednich jąder atomowych. Operator $\hat{H}_{el}(\mathbf{r}, \mathbf{R})$ w równaniu (2.2) oznacza hamiltonian elektronowy. Jest on sumą dwóch członów: operatora energii kinetycznej elektronów $\hat{T}_{el}(\mathbf{r})$ i operatora energii potencjalnej $\hat{V}(\mathbf{r}, \mathbf{R})$

$$\hat{H}_{el}(\mathbf{r}, \mathbf{R}) = \hat{T}_{el}(\mathbf{r}) + \hat{V}(\mathbf{r}, \mathbf{R}).$$
(2.4)

Operator energii kinetycznej elektronów $\hat{T}_{el}(\mathbf{r})$ można przedstawić w postaci

$$\hat{T}_{el}(\mathbf{r}) = -\frac{\hbar^2}{2m_e} \sum_{i=1}^n \nabla_i^2, \qquad (2.5)$$

gdzie m_e oznacza masę elektronu, a n liczbę elektronów. Natomiast poszczególne człony operatora energii potencjalnej $\hat{V}(\mathbf{r}, \mathbf{R})$ w równaniu (2.4) w układzie jednostek CGS są następujące:

$$\hat{V}(\mathbf{r}, \mathbf{R}) = -\sum_{i=1}^{n} \frac{Z_A e^2}{|\mathbf{r}_{iA}|} - \sum_{i=1}^{n} \frac{Z_B e^2}{|\mathbf{r}_{iB}|} + \frac{Z_A Z_B e^2}{|\mathbf{R}_{AB}|} + \sum_{\substack{i=1\\i< j}}^{n} \frac{e^2}{|\mathbf{r}_{ij}|},$$
(2.6)

gdzie Z_A i Z_B są liczbami atomowymi. Wektory wodzące oraz reprezentacje położeń poszczególnych jąder atomowych i elektronów przedstawione są na rysunku 2.2. Całkowitą funkcję falową $\Psi(\mathbf{r}, \mathbf{R})$ można rozwinąć w szereg

$$\Psi(\mathbf{r}, \mathbf{R}) = \sum_{k=1}^{\infty} \chi_k(\mathbf{R}) \Psi_k^{el}(\mathbf{r}; \mathbf{R})$$
(2.7)

gdzie sumowanie odbywa się po wszystkich k stanach elektronowych, $\chi_k(\mathbf{R})$ jest jądrową funkcją falową oraz $\Psi_k^{el}(\mathbf{r}; \mathbf{R})$ jest elektronową funkcją falową z parametryczną zależnością od \mathbf{R} .

Wykorzystując ortonormalność zbioru funkcji falowych $\{\Psi_l^{el}({\bf r};{\bf R})\}$ i równanie elektronowe Schrödingera

$$\hat{H}_{el}(\mathbf{r}, \mathbf{R})\Psi_l^{el}(\mathbf{r}; \mathbf{R}) = E_l^{el}(\mathbf{R})\Psi_l^{el}(\mathbf{r}; \mathbf{R}), \qquad (2.8)$$

można przekształcić równanie (2.1) do postaci

$$(\hat{T}_{nuc}(\mathbf{R}) + E_l^{el}(\mathbf{R}))\chi_l(\mathbf{R}) + \sum_{k=1}^{\infty} \chi_k(\mathbf{R}) \int \Psi_l^{el}(\mathbf{r};\mathbf{R})^* \hat{T}_{nuc}(\mathbf{R})\Psi_k^{el}(\mathbf{r};\mathbf{R})d\mathbf{r}$$
$$-\hbar^2 \sum_{N=A,B} \frac{1}{M_N} \sum_{k=1}^{\infty} \nabla_N \chi_k \int \Psi_l^{el}(\mathbf{r};\mathbf{R})^* \nabla_N \Psi_k^{el}(\mathbf{r};\mathbf{R})d\mathbf{r} = E\chi_l(\mathbf{R}).$$
(2.9)

Separując człony o takim samym indeksie l, a następnie wykorzystując działanie operatora ∇_N na obie strony warunku normalizacyjnego $\int \Psi_l^{el}(\mathbf{r}; \mathbf{R})^2 dr = 1$, ostatecznie równanie przybiera postać

$$(\hat{T}_{nuc}(\mathbf{R}) + E_l^{el}(\mathbf{R}))\chi_l(\mathbf{R}) + \chi_l(\mathbf{R})\int \Psi_l^{el}(\mathbf{r};\mathbf{R})^* \hat{T}_{nuc}(\mathbf{R})\Psi_l^{el}(\mathbf{r};\mathbf{R})d\mathbf{r}$$

$$+\sum_{\substack{k=1\\k\neq l}}^{\infty} \chi_k(\mathbf{R}) \int \Psi_l^{el}(\mathbf{r};\mathbf{R})^* \hat{T}_{nuc}(\mathbf{R}) \Psi_k^{el}(\mathbf{r};\mathbf{R}) d\mathbf{r}$$
$$-\hbar^2 \sum_{\substack{N=A,B}} \frac{1}{M_N} \sum_{\substack{k=1\\k\neq l}}^{\infty} \nabla_N \chi_k \int \Psi_l^{el}(\mathbf{r};\mathbf{R})^* \nabla_N \Psi_k^{el}(\mathbf{r};\mathbf{R}) d\mathbf{r} = E \chi_l(\mathbf{R}).$$
(2.10)

Rys. 2.2. Cząsteczka AB we współrzędnych kartezjańskich: symbolami i, j oznaczono elektrony, a symbolami A, B oznaczono jądra atomowe. Rysunek opracowano na podstawie [35].

Przybliżenie adiabatyczne

Przejście ze stanu elektronowego k do stanu l staje się niemożliwe ze względu na natychmiastowe dostosowywanie się ruchu elektronów do niewielkiej zmiany położenia jąder. W związku z tym wprowadza się przybliżenie adiabatyczne, w konsekwencji którego zostają usunięte dwa ostatnie człony równania (2.10). Powstaje więc równanie

$$(\hat{T}_{nuc}(\mathbf{R}) + E_l^{el}(\mathbf{R}))\chi_l(\mathbf{R}) + \chi_l(\mathbf{R})\int \Psi_l^{el}(\mathbf{r};\mathbf{R})^* \hat{T}_{nuc}(\mathbf{R})\Psi_l^{el}(\mathbf{r};\mathbf{R})d\mathbf{r} = E\chi_l(\mathbf{R}).$$
(2.11)

Warto zauważyć, że analogiczne równanie można otrzymać ograniczając szereg (2.7) do jednego wyrazu, np. k = 1. Fizycznie jest to związane z nieprzecinaniem się stanów o tej samej symetrii - nie ma przeskoku do innego stanu elektronowego [30, 33].

Przybliżenie Borna-Oppenheimera

Drugi człon równania (2.11) jest relatywnie mały, ponieważ zawiera pochodną elektronowej funkcji falowej po współrzędnych jądrowych. Elektronowa funkcja falowa jest wolnozmienną funkcją \mathbf{R} .

Dodatkowe pominięcie drugiego członu równania (2.11) nosi nazwę przybliżenia Borna-Oppenheimera. Ostatecznie równanie wygląda następująco

$$(\hat{T}_{nuc}(\mathbf{R}) + E_l^{el}(\mathbf{R}))\chi_l(\mathbf{R}) = E\chi_l(\mathbf{R}).$$
(2.12)

Wraz z separacją ruchu elektronów od ruchu jąder oraz dokonaniem odpowiednich przybliżeń otrzymano równanie opisujące ruch jader w obecności energii potencjalnej $E_l^{el}(\mathbf{R})$ [30, 33].

2.3. Momenty przejść dipolowych i czynniki Francka-Condona

Klasyczna definicja momentu dipolowego dla zbioru ładunków q_k z ich wektorami położenia \mathbf{r}_k jest następująca

$$\boldsymbol{\mu} = \sum_{k} q_k \mathbf{r}_k. \tag{2.13}$$

Analogiczne równania można przedstawić odpowiednio dla elektronów i jąder atomowych w cząsteczce AB:

$$\boldsymbol{\mu}^{el}(\mathbf{r}) = e \sum_{i=1}^{n} \mathbf{r}_i \tag{2.14}$$

oraz

$$\boldsymbol{\mu}^{nuc}(\mathbf{R}) = Q_A \mathbf{R}_A + Q_B \mathbf{R}_B, \qquad (2.15)$$

gdzie ładunek elektronu oznaczono przez e, a ładunki jąder atomowych oznaczone są przez Q_A i Q_B . Współrzędnymi elektronów oraz jąder atomowych są odpowiednio \mathbf{r}_i oraz \mathbf{R}_A i \mathbf{R}_B [35].

Całkowity moment dipolowy dla cząsteczki może być zapisany jako suma powyższych momentów dipolowych

$$\boldsymbol{\mu}^{mol}(\mathbf{r}, \mathbf{R}) = \boldsymbol{\mu}^{el}(\mathbf{r}) + \boldsymbol{\mu}^{nuc}(\mathbf{R}).$$
(2.16)

W przybliżeniu oddziaływanie pola elektromagnetycznego z cząsteczką polega na oddziaływaniu z elektrycznym momentem dipolowym cząsteczki

$$E_{\mu} = \mathbf{E} \cdot \boldsymbol{\mu}^{mol}(\mathbf{r}, \mathbf{R}), \qquad (2.17)$$

gdzie przez **E** oznaczono pole elektryczne. Jeśli uznamy moment dipolowy jako operator, to prawdopodobieństwo przejścia pomiędzy dwoma molekularnymi stanami (początkowym *i* a końcowym *f*) P_{fi} jest proporcjonalne do kwadratu następującego elementu macierzowego zbudowanego z całkowitych molekularnych funkcji falowych

$$\boldsymbol{\mu}_{fi}^{mol}(\mathbf{r}, \mathbf{R}) = \int \int \Psi_f(\mathbf{r}, \mathbf{R})^* \boldsymbol{\mu}^{mol}(\mathbf{r}, \mathbf{R}) \Psi_i(\mathbf{r}, \mathbf{R}) d\mathbf{r} d\mathbf{R}.$$
 (2.18)

Dla wybranego stanu początkowego i lub końcowego f, molekularną funkcję falową możemy zapisać jako jeden człon rozwinięcia

$$\Psi(\mathbf{r}, \mathbf{R}) = \chi(\mathbf{R})\Psi^{el}(\mathbf{r}; \mathbf{R}).$$
(2.19)

Stosując do elementu macierzowego (2.18) równanie (2.19), rozdzielając całkowity moment dipolowy na sumę (2.16) i dokonując uporządkowania, równanie (2.18) wygląda następująco

$$\boldsymbol{\mu}_{fi}^{mol}(\mathbf{r}, \mathbf{R}) = \int \chi_f(\mathbf{R})^* \left[\int \Psi_f^{el}(\mathbf{r}; \mathbf{R})^* \boldsymbol{\mu}^{el}(\mathbf{r}) \Psi_i^{el}(\mathbf{r}; \mathbf{R}) d\mathbf{r} \right] \chi_i(\mathbf{R}) d\mathbf{R} + \int \left[\int \Psi_f^{el}(\mathbf{r}; \mathbf{R})^* \Psi_i^{el}(\mathbf{r}; \mathbf{R}) d\mathbf{r} \right] \chi_f(\mathbf{R})^* \boldsymbol{\mu}^{nuc}(\mathbf{R}) \chi_i(\mathbf{R}) d\mathbf{R}.$$
(2.20)

Drugi człon równania (2.20) znika ze względu na ortogonalność elektronowych funkcji falowych $\int \Psi_f^{el}(\mathbf{r}; \mathbf{R})^* \Psi_i^{el}(\mathbf{r}; \mathbf{R}) d\mathbf{r} = \delta_{fi}$. Stąd element macierzowy opisujący elektronowy moment przejścia dipolowego jest następujący

$$\boldsymbol{\mu}_{fi}^{el}(\mathbf{R}) = \int \Psi_f^{el}(\mathbf{r}; \mathbf{R})^* \boldsymbol{\mu}^{el}(\mathbf{r}) \Psi_i^{el}(\mathbf{r}; \mathbf{R}) d\mathbf{r}.$$
 (2.21)

Dokonując podstawienia (2.21) do równania (2.20), molekularny dipolowy moment przejścia można przedstawić w postaci

$$\boldsymbol{\mu}_{fi}^{mol}(\mathbf{r}, \mathbf{R}) = \int \chi_f(\mathbf{R})^* \boldsymbol{\mu}_{fi}^{el}(\mathbf{R}) \chi_i(\mathbf{R}) d\mathbf{R}.$$
 (2.22)

W następstwie przybliżenia Borna-Oppenheimera (jądra można uznać za nieruchome w stosunku do znacznie szybciej poruszających się elektronów) można otrzymać następujące wyrażenie

$$\boldsymbol{\mu}_{fi}^{mol}(\mathbf{r}, \mathbf{R}) = \overline{\boldsymbol{\mu}_{fi}^{el}} \int \chi_f(\mathbf{R})^* \chi_i(\mathbf{R}) d\mathbf{R}, \qquad (2.23)$$

gdzie $\overline{\mu_{fi}^{el}}$ jest uśrednioną wartością elektronowego dipolowego momentu przejścia. Powyższe wyrażenie (2.23) daję podstawę dla zasady Francka-Condona - w czasie przejścia elektronowego geometria molekuły i prędkość ruchu jąder nie ulega zmianie. Podsumowując, relację pomiędzy prawdopodobieństwem przejścia między dwoma molekularnymi stanami a uśrednionym zdelokalizowanym momentem dipolowym można zapisać w następujący sposób

$$P_{fi} \propto \left(\overline{\boldsymbol{\mu}_{fi}^{el}}\right)^2 \left[\int \chi_f(\mathbf{R})^* \chi_i(\mathbf{R}) d\mathbf{R}\right]^2, \qquad (2.24)$$

gdzie kwadrat całki nakładania jądrowych funkcji falowych stanowi czynnik Francka-Condona [28, 30].

2.4. Reguły wyboru

Sprzężenia pomiędzy ruchem elektronów a ruchem rotacyjnym cząsteczki zostały sklasyfikowane przez Hunda. Zmiany liczb kwantowych przy przechodzeniu z jednego stanu kwantowego do drugiego zachodzą według określonych reguł wyboru. W niniejszym rozdziale omówione zostaną reguły wyboru dla przypadków Hunda (a) i (c) w odniesieniu do cząsteczki dwuatomowej heterojądrowej. Różnica pomiędzy przypadkiem Hunda (a) i (c) polega na tym, że w przypadku Hunda (c) oddziaływanie orbitalnego momentem pędu z całkowitym spinem staje się silniejsze niż oddziaływanie z osią międzyjądrową. Reguły wyboru są następstwem oszacowania elementów macierzowych elektrycznego momentu dipolowego [31, 36, 37].

Jedna z podstawowych reguł wyboru dla każdego układu atomowego dotyczy liczby kwantowej całkowitego momentu pędu J - jej wartość przy przejściu ze stanu początkowego do końcowego spełnia warunek

$$\Delta J = 0, \pm 1 \quad (J = 0 \not\rightarrow J = 0). \tag{2.25}$$

Przypadek Hunda (a)

Kwantowa liczba Λ (rzut orbitalnego momentu pędu elektronu na prostą wyznaczoną przez oś cząsteczki) definiuje stany dla danej konfiguracji elektronowej. Przyjmuje ona wartości $\Lambda = 0, 1, 2, ...$ o specjalnych oznaczeniach Σ , Π , Δ , ... Przejście między stanami spełnia następujący warunek

$$\Delta \Lambda = 0, \pm 1. \tag{2.26}$$

Biorąc pod uwagę symetrię funkcji molekularnej ze względu na odbicie w płaszczyźnie cząsteczki - nie ma przejść pomiędzy stanami Σ^+ i Σ^- , co można zapisać następująco

$$\Sigma^+ \leftrightarrow \Sigma^+, \Sigma^- \leftrightarrow \Sigma^-, \Sigma^+ \not\leftrightarrow \Sigma^-.$$
 (2.27)

Podsumowując, dozwolone są przejścia

$$\Sigma^{+} \leftrightarrow \Sigma^{+}, \Sigma^{-} \leftrightarrow \Sigma^{-}, \Pi \leftrightarrow \Sigma^{+}, \Pi \leftrightarrow \Sigma^{-}, \Pi \leftrightarrow \Pi, \Pi \leftrightarrow \Delta, \Delta \leftrightarrow \Delta, \dots$$
(2.28)

Reguła wyboru związana z multipletowością stanów stanowi, że tylko dla tych o takiej samej wartości spinu, może dojść do zmiany stanu kwantowego

$$\Delta S = 0. \tag{2.29}$$

Przypadek Hunda (c)

Kwantowa liczba Ω definiuje rzut całkowitego elektronowego momentu pędu na oś międzyjądrową. Reguła wyboru dla tej liczby kwantowej jest następująca

$$\Delta \Omega = 0, \pm 1. \tag{2.30}$$

Analogicznie do (2.27), odbicie w płaszczyźnie zawierającej międzyjądrową oś zachodzi tylko dla $\Omega=0$

$$0^+ \leftrightarrow 0^+, 0^- \leftrightarrow 0^-, 0^+ \not\leftrightarrow 0^-. \tag{2.31}$$

Podsumowując, przejścia dozwolone dla liczby kwantowej Ω są analogiczne jak w przypadku liczby kwantowej Λ (2.28).

2.5. Szereg Dunhama, parametry spektroskopowe

Obraz struktury energetycznej cząsteczki dwuatomowej może zostać przedstawiony za pomocą szeregu Dunhama opisującego wartości energii rotującego oscylatora [38]. Jest to jedno z dobrze znanych podejść do analizy widm oscylacyjnorotacyjnych cząsteczek dwuatomowych. Ten szereg obrazuje rozkład poziomów energetycznych zależnych od liczb kwantowych: oscylacyjnej v i rotacyjnej J. Odpowiadają one danemu stanowi elektronowemu E. Postać szeregu jest następująca

$$E_{vJ} = \sum_{k,l=0}^{\infty} Y_{kl} \left(v + \frac{1}{2} \right)^k \left[J(J+1) - \Lambda^2 \right]^l.$$
 (2.32)

Energie wszystkich poziomów oscylacyjno-rotacyjnych mogą być opisane przez zbiór stałych molekularnych Y_{kl} . Niektóre z tych stałych posiadają specjalne oznaczenia

$$Y_{01} = B_e, Y_{10} = \omega_e, Y_{00} = E^{el}(R_e), \qquad (2.33)$$

gdzie B_e jest stałą rotacyjną a ω_e - stałą oscylacyjną. Współczynnik Y_{00} równy jest wartości krzywej energii potencjalnej dla parametru R_e (równowagowa długość wiązania), inaczej tę wartość nazywamy energią termu elektronowego T_e [30]. Niewchodzącą w skład szeregu Dunhama energię wertykalnego przejścia T_{ev} , wyznacza się na podstawie przejścia z położenia R_e stanu podstawowego do danego stanu wzbudzonego.

Do pozostałych parametrów spektroskopowych, niewchodzących w skład szeregu Dunhama, należą głębokość studni potencjału D_e oraz energia dysocjacji D_0 . Różnica pomiędzy nimi jest energią zerowego poziomu cząsteczki:

$$D_e - D_0 = \frac{1}{2}\hbar\omega, \qquad (2.34)$$

gdzie ω oznacza częstość oscylacji wiązania [39].

2.6. Efekty relatywistyczne

W tym podrozdziale poszczególne poprawki relatywistyczne zostaną omówione w kontekście molekuły dwuatomowej AB. Biorąc pod uwagę efekty relatywistyczne, kilka dodatkowych członów powinno zostać dodanych do nierelatywistycznego elektronowego hamiltonianu (2.4). Hamiltonian zawierający dodatkowe człony nazywamy perturbacyjnym hamiltonianem Breita-Pauliego. Oznaczamy go symbolem \hat{H}_{BP} . Dla dwuatomowej cząsteczki wieloelektronowej może on zostać zapisany w następujący sposób

$$\hat{H}_{BP} = \hat{H}_0 + \hat{H}_{MV} + \hat{H}_D + \hat{H}_{SO}, \qquad (2.35)$$

gdzie zastosowano oznaczenia: \hat{H}_0 - nierelatywistyczny elektronowy hamiltonian, \hat{H}_{MV} - człon tzw. masa-prędkość, \hat{H}_D - człon Darwina i \hat{H}_{SO} - człon spinowoorbitalny. Wszystkie człony są przedstawione w układzie jednostek CGS. Człony \hat{H}_{MV} i \hat{H}_D dają bezspinowy wkład do relatywistycznych obliczeń i odpowiedzialne są za tzw. efekt skalarny. Człon masa-prędkość związany jest z relatywistycznym przyrostem masy elektronu. Przyjmuje on następującą postać

$$\hat{H}_{MV} = -\frac{\hbar^4}{8m_e^3 c^2} \sum_{i=1}^n \nabla_i^4, \qquad (2.36)$$

gdzie n oznacza liczbę elektronów. Kolejny człon, H_D , jest poprawką Darwina do energii kulombowskiej. Wynika on z rozmycia się ładunku elektronów ze względu na ich ruch relatywistyczny. Można go zapisać w postaci

$$\hat{H}_D = \frac{\hbar^2 \pi}{2m_e^2 c^2} \left\{ \sum_{i=1}^n \left[Z_A e^2 \delta^3(\mathbf{r}_{iA}) + Z_B e^2 \delta^3(\mathbf{r}_{iB}) \right] - 2 \sum_{\substack{i=1\\i< j}}^n e^2 \delta^3(\mathbf{r}_{ij}) \right\}.$$
 (2.37)

Relatywistyczny człon związany z oddziaływaniem pomiędzy spinem a orbitalnym momentem pędu elektronu, tzw. operator spin-orbita, wygląda następująco

$$\hat{H}_{SO} = \frac{g_s \mu_B}{c} \sum_{i=1}^n \left\{ \frac{Z_A}{r_{iA}^3} \left(\mathbf{r}_{iA} \times \frac{\mathbf{v}_i}{2} \right) \cdot \mathbf{s}_i + \frac{Z_A}{r_{iA}^3} \left(\mathbf{r}_{iB} \times \frac{\mathbf{v}_i}{2} \right) \cdot \mathbf{s}_i \right\} - \frac{g_s \mu_B}{c} \sum_{\substack{i=1\\i \neq j}}^n \frac{e}{r_{ij}^3} \left[\mathbf{r}_{ij} \times \left(\frac{1}{2} \mathbf{v}_i - \mathbf{v}_j \right) \right] \cdot \mathbf{s}_i,$$
(2.38)

gdzie \mathbf{v}_i oznacza prędkość *i*-tego elektronu przy ustalonych współrzędnych jądrowych, g_s to czynnik elektronowy Landego ($g_s \approx 2$) a μ_B to magneton Bohra ($\mu_B = \frac{e\hbar}{2mc}$). Pierwszy człon odpowiada za bezpośrednie oddziaływanie spin-orbita, a drugi za oddziaływanie spin-inna orbita (oddziaływanie pomiędzy spinem a orbitalnym momentem pędu, które pochodzą od różnych atomów).

Podstawiając
 $\mathbf{v}_i=\frac{\mathbf{p_i}}{m},$ gdzie $\mathbf{p_i}$ jest pędem elektronu i wprowadzając następujące operatory momentu pędu

$$\mathbf{l}_{ij} = \frac{1}{\hbar} \left(\mathbf{r}_{ij} \times \mathbf{p}_i \right),$$
$$\mathbf{l}_{iA} = \frac{1}{\hbar} \left(\mathbf{r}_{iA} \times \mathbf{p}_i \right),$$

$$\mathbf{l}_{iB} = \frac{1}{\hbar} \left(\mathbf{r}_{iB} \times \mathbf{p}_i \right) \tag{2.39}$$

oraz dokonując odpowiednie przekształcenia operatora H_{SO} (2.38) można otrzymać jego prostszą postać

$$\hat{H}_{SO} = 2\mu_B^2 \sum_{i=1}^n \left\{ \frac{Z_A}{r_{iA}^3} \mathbf{l}_{iA} \cdot \mathbf{s}_i + \frac{Z_B}{r_{iB}^3} \mathbf{l}_{iB} \cdot \mathbf{s}_i \right\} - 2\mu_B^2 \sum_{\substack{i=1\\i\neq j}}^n \frac{1}{r_{ij}^3} \mathbf{l}_{ij} \cdot (\mathbf{s}_i + 2\mathbf{s}_j) \,. \tag{2.40}$$

Tutaj jest nawet lepiej widoczne, że pierwsza część operatora spinowo-orbitalnego \hat{H}_{SO} przedstawia sprzężenie spin-orbita każdego elektronu w polu dwóch jąder o ładunkach Z_A i Z_B . Jest to operator jednoelektronowy uwzględniony w moich obliczeniach. Druga część przedstawia międzyelektronowe oddziaływanie (spin-inna orbita). Jest to operator dwuelektronowy [40–44].

2.7. Model hamiltonianu walencyjnego

W tym podrozdziale zastosowane są dwa podejścia do obliczeń struktury elektronowej cząsteczki dwuatomowej: bez i z uwzględnieniem oddziaływania spin-orbita. Poszukiwane jest rozwiązanie równania Schrödingera w przybliżeniu Borna-Oppenheimera. W rozważanej cząsteczce NaRb dwa elektrony walencyjne (n = 2) są brane bezpośrednio pod uwagę, natomiast rdzenie Na⁺ i Rb⁺ są zastępowane przez *l*-zależne pseudopotencjały. W poniższych wzorach indeksy *A* i *B* identyfikują, odpowiednio atomy sodu i rubidu. Model hamiltonianu walencyjnego opracowano na podstawie [45–47]. Wzory są przedstawione w jednostkach atomowych $(m_e = e = \hbar = 1)$.

Całkowity hamiltonian walencyjny może zostać przedstawiony w postaci

$$\hat{H}_{val} = \hat{H}_{nrel} + \hat{H}_{so}, \qquad (2.41)$$

gdzie \hat{H}_{nrel} oznacza podejście do obliczeń struktury elektronowej bez oddziaływania spin-orbita, a \hat{H}_{so} opisuje człon spinowo-orbitalny. Oba operatory można przedstawić w następujący sposób

$$\hat{H}_{nrel} = \hat{T}_{val} + \hat{V}_{val} + \hat{V}_{cc} + \sum_{\lambda = A,B} \left(\hat{V}_{av}^{\lambda} + \hat{V}_{pol}^{\lambda} \right)$$
(2.42)

i

$$\hat{H}_{so} = \sum_{\lambda=A,B} \hat{V}_{so}^{\lambda},\tag{2.43}$$

gdzie poszczególne człony oznaczają: \hat{T}_{val} - operator energii kinetycznej elektronów walencyjnych w postaci

$$\hat{T}_{val} = -\frac{1}{2} \sum_{i=1}^{n} \nabla_i^2, \qquad (2.44)$$

 \hat{V}_{val} - operator energii potencjalnej elektronów walencyjnych w postaci

$$\hat{V}_{val} = \sum_{\substack{i=1\\i< j}}^{n} \frac{1}{r_{ij}},$$
(2.45)

 \hat{V}_{cc} - operator energii potencjalnej oddziaływania pomiędzy rdzeniami atomowymi w postaci

$$\hat{V}_{cc} = \frac{Q_A Q_B}{R}.$$
(2.46)

W powyższym członie symbolami Q_A i Q_B oznaczono ładunki rdzeni poszczególnych atomów a przez R odległość między nimi. Człony wyszczególnione sumą po λ przedstawione są w dalszych podrozdziałach. Są nimi \hat{V}_{av}^{λ} - efektywny potencjał rdzenia z uwzględnieniem skalarnego efektu relatywistycznego, \hat{V}_{pol}^{λ} - efektywny potencjał polaryzacyjny rdzenia oraz \hat{V}_{so}^{λ} - pseudopotencjał reprezentujący oddziaływanie spin-orbita.

Efektywny potencjał rdzenia z uwzględnieniem skalarnego efektu relatywistycznego

Bezspinowy pseudopotencjał uśredniony po orbitalnej liczbie kwantowej l, może zostać przedstawiony w następujący sposób:

$$\hat{V}_{av}^{\lambda} = \sum_{i=1}^{n} \left[-\frac{Q_{\lambda}}{r_{\lambda i}} + \sum_{lk} B_{lk}^{\lambda} \exp\left(-\beta_{lk}^{\lambda} r_{\lambda i}^{2}\right) \hat{P}_{l}^{\lambda} \right], \qquad (2.47)$$

gdzie n oznacza liczbę elektronów walencyjnych (w tym przypadku n = 2), Q_{λ} - ładunek rdzenia danego atomu, $r_{\lambda i}$ - odległość pomiędzy rdzeniem atomu λ a elektronem walencyjnym i. Indeks l oznacza orbitalną liczbę kwantową, natomiast indeks k numeruje poszczególne współczynniki B_{lk}^{λ} i β_{lk}^{λ} dla danej liczby l. Współczynniki przedstawione są w tabelach 2.1 i 2.2. Operator \hat{P}_{l}^{λ} jest projektorem na podprzestrzeń Hilberta o kątowej symetrii l w odniesieniu do rdzenia λ . Można go przedstawić w notacji Dirac'a jako

$$\hat{P}_{l}^{\lambda} = \sum_{m=-l}^{l} \left| \lambda lm \right\rangle \left\langle \lambda lm \right|.$$
(2.48)

l	k	B^A_{lk}	β^A_{lk}
0	1	10,839	1,3780
1	1	2,303	0,6639
2	1	-1,777	0,9249

Tab. 2.1. Parametry uśrednionego, bezspinowego pseudopotencjału rdzenia atomu sodu: B_{lk}^A, β_{lk}^A [48].

Tab. 2.2. Parametry uśrednionego, bezspinowego pseudopotencjału rdzenia atomu rubidu: B_{lk}^B , β_{lk}^B [49].

l	k	B^B_{lk}	β^B_{lk}
0	1	$65,\!136000$	$1,\!10670$
1	1	2,987200	0,31777
1	2	2,880100	0,30313
2	1	-1,957400	0,37996
2	2	-1,897200	$0,\!37277$
3	1	-0,026739	0,08895

Efektywny potencjał polaryzacyjny rdzenia

Efektywny potencjał polaryzacyjny rdzenia opisujący korelację pomiędzy rdzeniem atomowym a elektronami walencyjnymi może być zapisany w następujący sposób

$$\hat{V}_{pol}^{\lambda} = -\frac{1}{2} \alpha_{\lambda} \mathbf{F}_{\lambda}^{2}, \qquad (2.49)$$

gdzie α_{λ} oznacza dipolową polaryzowalność danego rdzenia atomowego ($\alpha_A = 0,9947$ a_0^3 [50], $\alpha_B = 8,67$ a_0^3 [51, 52]). \mathbf{F}_{λ} jest polem elektrycznym działającym na rdzeń λ pochodzącym od drugiego rdzenia i elektronów walencyjnych. Pole elektryczne działające na poszczególne rdzenie A i B może być przedstawione za pomocą następujących wzorów

$$\mathbf{F}_{A} = \sum_{i=1}^{n} \frac{\mathbf{r}_{Ai}}{r_{Ai}^{3}} \left[1 - \exp\left(-\delta_{A} r_{Ai}^{2}\right) \right] - \frac{Q_{B} \mathbf{R}}{R^{3}} \left[1 - \exp\left(-\delta_{A} R^{2}\right) \right]$$
(2.50)

i

$$\mathbf{F}_{B} = \sum_{i=1}^{n} \frac{\mathbf{r}_{Bi}}{r_{Bi}^{3}} \left[1 - \exp\left(-\delta_{B} r_{Bi}^{2}\right) \right] - \frac{Q_{A} \mathbf{R}}{R^{3}} \left[1 - \exp\left(-\delta_{B} R^{2}\right) \right], \qquad (2.51)$$

gdzie δ_A i δ_B są parametrami obcięcia odpowiednich rdzeni atomowych $(\delta_A = 0, 62 a_0^{-2} [50], \delta_B = 0, 23 a_0^{-2} [51, 52]).$

Pseudopotencjał reprezentujący oddziaływanie spin-orbita

Człon pseudopotencjału zależny od spinu może zostać przedstawiony w następujący sposób

$$\hat{V}_{so}^{\lambda} = \sum_{i=1}^{n_{\lambda}} \sum_{l} \frac{2\Delta V_{i,l}^{\lambda}}{2l+1} \hat{P}_{l}^{\lambda} \mathbf{l}_{\lambda i} \cdot \mathbf{s}_{i} \hat{P}_{l}^{\lambda}, \qquad (2.52)$$

gdzie $\mathbf{l}_{\lambda i} = \mathbf{r}_{\lambda i} \times \mathbf{p}_i$ oznacza orbitalny moment pędu w odniesieniu do rdzenia λ , gdzie przez \mathbf{p}_i oznaczono pęd elektronu. We wzorze (2.52) \mathbf{s}_i oznacza spin elektronu. W tym członie - operatorze jednoelektronowym - nie uwzględniono oddziaływania spin-inna orbita. $\Delta V_{i,l}^{\lambda}$ jest różnicą pomiędzy korespondującymi relatywistycznymi pseudopotencjałami i można ją zapisać w postaci podobnej do radialnej części uśrednionego bezspinowego pseudopotencjału \hat{V}_{av}^{λ} (2.47)

$$\Delta V_{i,l}^{\lambda} = V_{i,l+1/2}^{\lambda} - V_{i,l-1/2}^{\lambda} = \sum_{k} C_{lk}^{\lambda} \exp\left(-\gamma_{lk}^{\lambda} r_{\lambda i}^{2}\right).$$
(2.53)

Poszczególne parametry pseudopotencjału reprezentującego operator spin-orbita przedstawiono w tabelach 2.3 i 2.4.

Tab. 2.3. Parametry pseudopotencjału atomu sodu reprezentującego oddziaływanie spinorbita: C_{lk}^A , γ_{lk}^A [48].

l	k	C^A_{lk}	γ^A_{lk}
1	1	$0,\!015867$	0,6639
2	1	-0,001224	0,9249

Tab. 2.4. Parametry pseudopotencjału atomu rubidu reprezentującego oddziaływanie spin-orbita: C_{lk}^B , γ_{lk}^B [49]. Na czerwono oznaczono zmodyfikowane przeze mnie parametry pseudopotencjału umożliwiające odpowiednie dopasowanie rozszczepienia spin-orbita.

l	k	C^B_{lk}	γ^B_{lk}
1	1	-2,9502	$0,\!31777$
1	2	2,8551	0,30313
2	1	1,9574	0,37996
2	2	-1,8972	$0,\!37277$

2.8. Baza obliczeniowa

Spinorbitale będące funkcjami jednoelektronowymi a zarazem budulcem wyznacznika Slatera można zdefiniować następująco

$$\phi_i^{el}(\mathbf{r}_j, \sigma_j) = \varphi_i(\mathbf{r}_j)\alpha(\sigma_j) \tag{2.54}$$

$$\overline{\phi_i^{el}}(\mathbf{r}_j, \sigma_j) = \varphi_i(\mathbf{r}_j)\beta(\sigma_j), \qquad (2.55)$$

gdzie $\varphi_i(\mathbf{r}_j)$ jest *i*-tym orbitalem molekularnym (\mathbf{r}_j reprezentuje położenie *j*-tego elektronu) a $\alpha(\sigma_j)$ i $\beta(\sigma_j)$ są dwiema możliwymi funkcjami spinowymi (σ_j oznacza zmienną spinową *j*-tego elektronu). W obliczeniach teoretycznych orbital molekularny $\varphi_i(\mathbf{r}_j)$ może zostać rozpisany jako liniowa kombinacja orbitali atomowych, a te z kolei są tworzone jako liniowa kombinacja *m* bazowych funkcji gaussowskich η_k

$$\varphi_i(\mathbf{r}_j) = \sum_{k=1}^m C_{ik} \eta_k(\mathbf{r}_j).$$
(2.56)

Biorąc pod uwagę współrzędne kartezjańskie cząsteczki (patrz rysunek 2.2) funkcje gaussowskie są dobierane jako iloczyn dwóch czynników, z których pierwszy jest kartezjańskim a drugi wykładniczym

$$\eta_k(\mathbf{r}_j) = N(l_k, m_k, n_k; \alpha_k) x_j^{l_k} y_j^{m_k} z_j^{n_k} \exp\left(\alpha_k r_j^2\right), \qquad (2.57)$$

gdzie $r_j = |\mathbf{r}_j|$ natomiast l_k , m_k , n_k są liczbami całkowitymi charakteryzującymi typ funkcji Gaussa a $N(l_k, m_k, n_k; \alpha_k)$ stanowi czynnik normalizacyjny. W ostatnim wzorze pominięto, w celu zachowania ogólności, indeks λ odnoszący się do rozpatrywanych w pracy atomów.

Funkcje gaussowskie można klasyfikować ze względu na parametr t, który definiuje się za pomocą sumy

$$t = l_k + m_k + n_k \tag{2.58}$$

i stosuje się następujące oznaczenia w zależności od wartości t:

- a) t = 0 funkcja gaussowska typu s,
- b) t = 1 funkcja gaussowska typu p,
- c) t = 2 funkcja gaussowska typu d,
- d) t = 3 funkcja gaussowska typu f.

W przypadkach (a) i (b) istnieje bezpośrednia zależność pomiędzy funkcjami gaussowskimi i rzeczywistymi orbitalami atomowymi. Dla przypadków (c) i (d) oraz funkcji gaussowskich wyższego rzędu istnieje więcej czynników kartezjańskich danego typu niż rzeczywistych orbitali atomowych związanych z liczby kwantowej całkowitego momentu pędu l [53].

Wykładniki bazowych funkcji gaussowskich α_k zastosowane w obliczeniach przedstawiono w tabelach 2.5 i 2.6. W przypadku atomu sodu dla orbitali *s* i *p* zastosowałem bazę ECP10SDF [54] a dla orbitali *d* i *f* bazę CC-PVQZ [55]. W przypadku atomu rubidu dla orbitali *s* i *p* zastosowałem bazę ECP36SDF [56, 57] a dla orbitali *d* i *f* bazę ECP28MDF [58]. Baza została rozszerzona o dodatkowe współczynniki, które zostały starannie dobrane. Jest to procedura żmudna i czasochłonna. Opiera się ona na odpowiednim dopasowywaniu otrzymywanych potencjałów do danych eksperymentalnych, głównie asymptot atomowych.

typ orbitalu / nazwa bazy				
s	p	d	f	
ECP10SDF	ECP10SDF	CC-PVQZ	CC-PVQZ	
2,603336	0,499206	0,211600	0,200600	
0,517217	0,079219	0,103900	0,100900	
0,058196	0,029946	$0,\!051000$		
0,023141	0,012605			
dod	atkowe rozszer	zenie danej b	azy	
331,972817	124,919753	1,787376	0,398814	
144,377908	19,823516	0,877639	0,050752	
65,954600	$3,\!145794$	$0,\!430939$		
13,103510	0,005306	0,025034		
4,596767	0,002233	0,012288		
1,612565	0,000940	0,006032		
0,146354		0,002961		
0,102758				
0,009202				
0,006548				
0,003659				
0,001455				
0,000417				

Tab. 2.5. Wykładniki bazowych funkcji gausowskich orbitali $s,\,p,\,d$ ifatomu sodu.

Tab. 2.6. Wykładniki bazowych funkcji gaussowskich orbitali $s,\,p,\,d$ ifatomu rubidu.

typ orbitalu / nazwa bazy						
8	p	d	f			
ECP36SDF	ECP36SDF	ECP28MDF	ECP28MDF			
0,718288	0,161967	0,859432	2,431531			
0,273978	$0,\!050771$	$0,\!608150$	0,721517			
0,032306	0,022133	0,211260	0,211260			
0,015232	0,009934	0,071000				
		0,025490				
do	datkowe rozsz	erzenie danej b	azy			
78,729874	5,258465	2,425571	8,194323			
12,943370	$1,\!648345$	1,716379	0,061857			
4,937015	0,516699	1,214541				
2,866915	0,004459	0,023862				
2,323530	0,002001	0,009151				
1,883135	0,000898	0,007758				
$0,\!104504$	0,000403	0,003285				
0,068519		0,001180				
0,007182		0,000423				
0,003809						
0,003386						
0,001597						
0,000139						

2.9. Metody obliczeniowe

Metody wariacyjne opierają się na funkcjonale energii ϵ dla funkcji próbnych i na zasadzie wariacyjnej. Wielkość ϵ jest oszacowaniem energii własnej układu

$$\epsilon[\varphi] = \frac{\int \varphi^* \hat{H} \varphi d\tau}{\int \varphi^* \varphi d\tau}$$
(2.59)

dla funkcji próbnej φ . Zasada wariacyjna mówi o tym, że dokładna energia stanu podstawowego E_0 jest dolną granicą energii dla wynikającego z funkcji próbnych φ funkcjonału energii ϵ (2.59) (tzn. $\epsilon \geq E_0$). Procedura wyznaczania przybliżonych funkcji i wartości własnych rozpatrywanego układu opiera się na minimalizowaniu funkcjonału energii (2.59) dla funkcji próbnych. Odmianą metody wariacyjnej jest metoda Ritza, w której funkcję próbną przedstawia się w postaci liniowej kombinacji funkcji bazowych { χ_i } wynikających z przesłanek dotyczących własności danego układu

$$\varphi(\mathbf{r}) = \sum_{i=1}^{N} c_i \chi_i(\mathbf{r}).$$
(2.60)

Minimalizowanie zagadnienia opartego o funkcje bazowe prowadzi do układu równań liniowych jednorodnych, z których metodą diagonalizacji wyznacza się przybliżenia energii i funkcji falowej stanów podstawowego i wzbudzonych [33, 59, 60].

Do zastosowanych metod obliczeniowych opartych na metodach wariacyjnych należą: ograniczona metoda Hartree-Focka (ang. Restricted Hartree Fock, w skrócie RHF), wielokonfiguracyjna metoda pola samouzgodnionego z zupełną przestrzenią aktywną (ang. Multiconfigurational Self Consistent Field/Complete Active Space Self Consistent Field, w skrócie MCSCF/CASSCF) i wieloreferencyjna metoda oddziaływania konfiguracji (ang. Multireference Configuration Interaction, w skrócie MRCI) [33, 60].

Metoda Hartree-Focka (HF) ma funkcję próbną przedstawioną w postaci pojedynczego wyznacznika Slatera Φ_{HF} zbudowanego ze spinorbitali atomowych. W przypadku zagadnienia dwuelektronowego wyznacznik ma wymiar 2 na 2. W ograniczonej metodzie Hartree-Focka (RHF) wyznacznik Slatera jest zbudowany ze spinorbitali zdefiniowanych we wzorach (2.54) i (2.55). Można go zapisać następująco

$$\Phi_{RHF}(\mathbf{r}_{1}, \mathbf{r}_{2}, \sigma_{1}, \sigma_{2}) = \frac{1}{\sqrt{2!}} \begin{vmatrix} \phi_{1}^{el}(\mathbf{r}_{1}, \sigma_{1}) & \overline{\phi_{1}^{el}}(\mathbf{r}_{2}, \sigma_{2}) \\ \phi_{2}^{el}(\mathbf{r}_{1}, \sigma_{1}) & \overline{\phi_{2}^{el}}(\mathbf{r}_{2}, \sigma_{2}) \end{vmatrix},$$
(2.61)

gdzie \mathbf{r}_1 i \mathbf{r}_2 oznaczają wektory wodzące elektronów we współrzędnych kartezjańskich a σ_1 i σ_2 oznaczają zmienne spinowe danego elektronu. Minimalizację energii przeprowadza się wykorzystując wariację orbitali i jako rezultat otrzymuje się układ równań Focka, którego rozwiązanie daje poszukiwane orbitale optymalne [33, 59]. W metodzie oddziaływania konfiguracji (CI) wariacyjna funkcja falowa (będąca zarazem funkcją próbną) jest liniową kombinacją wyznaczników Slatera

$$\Psi = \sum_{I=0}^{n} C_I \Phi_I, \qquad (2.62)$$

gdzie $\Phi_0 = \Phi_{HF}$ lub Φ_{RHF} a kolejne wyznaczniki Φ_I dla I = 1...n są tworzone przez wzbudzenia elektronów na wyższe orbitale. Następnie wykorzystując podane rozwinięcie (2.62) stosuje się metodę Ritza, która prowadzi do diagonalizacji równania wiekowego [33].

W wielokonfiguracyjnej metodzie pola samouzgodnionego (MCSCF) kombinacja liniowa brana pod uwagę stanowi obcięte rozwinięcie CI [35] (2.62) a orbitale przedstawione są w postaci rozwinięcia LCAO-MO, gdzie każdy orbital molekularny jest przedstawiony jako liniowa kombinacja orbitali atomowych. Współczynniki C_I przy wyznacznikach optymalizowane są metodą Ritza. Poza tym optymalizuje się również orbitale molekularne. Zastosowanym sposobem tworzenia wyznaczników w rozwinięciu MCSCF jest metoda zupełnej przestrzeni aktywnej CASSCF. W skład wyznaczników wchodzą orbitale nieaktywne i przestrzeń aktywna. Przedstawione to zostało na rysunku 2.3.

Rys. 2.3. Zestaw możliwych wyznaczników Slatera przeznaczonych do obliczeń MCSCF budowany w ramach spinorbitali nieaktywnych i przestrzeni aktywnej. Nieaktywnymi nazywa się orbitale powłok wewnętrznych, które są podwójnie obsadzone, natomiast w przestrzeni aktywnej znajdują się wyższe orbitale dla których stosuje się wszystkie możliwe obsadzenia. Powyżej określonej granicy energetycznej orbitale nie są brane pod uwagę.

W przypadku metody jednoreferencyjnej CI przestrzenią modelową jest jeden wyznacznik Slatera - wyznacznik Hartree-Focka. W wieloreferencyjnej metodzie CI (MRCI) przestrzenią modelową jest zestaw pewnej liczby wyznaczników. Rozwinięcie CI (2.62) otrzymujemy przez zastępowanie spinorbitali występujących w przestrzeni modelowej z zajętych orbitali aktywnych metody CASSCF innymi spinorbitalami wirtualnymi (wzbudzenia do orbitali zewnętrznych - powyżej określonej granicy energetycznej) [33, 60].

W praktyce obliczeniowej, tylko w pierwszej iteracji dla największej odległości stosuje się metodę RHF. Początkowe orbitale są w niej wygenerowane dla jonu NaRb⁺. Następnie, startując z tych orbitali w metodzie wielokonfiguracyjnej pola samouzgodnionego z zupełną przestrzenią aktywną dokonuje się dodatkowej reorganizacji orbitali i osiąga się poprawny układ poziomów energetycznych na poziomie wieloreferencyjnej metody oddziaływania konfiguracji. W kolejnych iteracjach konfiguracja orbitali wynika z poprzedniego kroku. Jest to jedna z metod osiągania zbieżności.

W przypadku obliczeń nierelatywistycznych w metodach obliczeniowych jest użyty hamiltonian \hat{H}_{nrel} (2.42). W przypadku potencjałów zawierających oddziaływanie spin-orbita stany własne hamiltonianu \hat{H}_{val} są uzyskane przez jego diagonalizację w oparciu o funkcje własne \hat{H}_{nrel} (2.41). Rozszczepienie spin-orbita jest obliczane poprzez utworzenie i diagonalizację macierzy spinowo-orbitalnej pomiędzy stanami skalarno-relatywistycznymi - obliczone elementy macierzowe dają wkład do macierzy na poziomie MRCI [32].

3. Wyniki i dyskusja

W tym rozdziale przedstawiony jest zestaw rezultatów teoretycznych obliczeń dla molekuły NaRb. W pierwszej kolejności przedstawione są adiabatyczne krzywe energii potencjalnej bez uwzględnienia efektów relatywistycznych, parametry spektroskopowe dla tych krzywych, porównanie potencjałów z wynikami innych autorów. Potem następuje podobne zestawienie dla krzywych z uwzględnieniem oddziaływania spin-orbita. Następny etap to przedstawienie wybranych momentów przejść dipolowych i czynników Francka-Condona w ujęciu nierelatywistycznym i relatywistycznym. Wszystkie krzywe zostały policzone przy pomocy pakietu programów MOLPRO [26, 27]. Natomiast parametry spektroskopowe zostały wyznaczone w programie LEVEL 8.0 [61]. Te parametry to wyszczególnione w sekcji teoretycznej: R_e - równowagowa długość wiązania, D_e - energia wiązania, D_0 - energia dysocjacji, T_{ev} - energia wertykalnego przejścia, T_e - energia termu elektronowego dla R_e stanu podstawowego, ω_e - stała oscylacyjna oraz B_e - stała rotacyjna.

3.1. Potencjały nierelatywistyczne cząsteczki

Policzyłem potencjały nierelatywistyczne (bez oddziaływania spin-orbita). Odpowiadają one przypadkowi Hunda (a). Modelowym hamiltonianem na poziomie metod obliczeniowych jest wtedy \hat{H}_{nrel} (2.41).

3.1.1. Asymptoty

Obliczone potencjały cząsteczki NaRb zbiegają do następujących asymptot atomowych: Na(3s)+Rb(5s), Na(3s)+Rb(5p), Na(3p)+Rb(5s), Na(3s)+Rb(4d), Na(3s)+Rb(6s), Na(3s)+Rb(6p) i Na(3s)+Rb(5d). W tabeli 3.1 przedstawiam wyniki asymptotyczne dla stanów wzbudzonych i porównuję z wynikami innych autorów.

Większość innych badań teoretycznych została przeprowadzona za pomocą pakietu programów CIPSI (np. [21]). W odróżnieniu do pozostałych autorów moje wyniki obliczeniowe zostały wykonane przy pomocy pakietu programów MOLPRO [26, 27]. Zgodność otrzymanych wyników w tej pracy z danymi eksperymentalnymi jest bardzo dobra. Różnice wartości danych asymptot atomowych - pomiędzy tymi, które zostały wyznaczone eksperymentalnie a obliczonymi przez mnie obecnie - nie przekraczają 4 cm⁻¹. W przypadku pozostałych autorów można zauważyć znaczące rozbieżności dla asymptoty Na(3s)+Rb(6s), które przekraczają 30 cm⁻¹. Dokładność wyników uzyskanych w MOLPRO wynika z odpowiedniej metody osiągania zbieżności dla asymptot atomowych oraz odpowiedniego rozszerzenia bazy obliczeniowej. Tab. 3.1. Porównanie nierelatywistycznych energii asymptotycznych z wynikami eksperymentalnymi i teoretycznymi innych autorów. Energie przedstawiono w cm⁻¹. Wyniki doświadczalne zostały podane przez Sansonettiego [62–64], a pozostałe to wyniki obliczeń teoretycznych.

Asymptoty	Bieżące wyniki	Sansonetti [62, 63]	Chaieb i in. [21]	Dardouri i in. [25]	Korek i in. [22]
Na(3s)+Rb(5p)	12739,47 [65]	12737,35	12757,16	12737,87	12737,20
Na(3p)+Rb(5s)	16967,03 $[65]$	16967,63	16967,61	16967,61	16969,10
Na(3s)+Rb(4d)	$19357,\!64$ [65]	19355,38	19355,17	19355,65	19355,10
Na(3s)+Rb(6s)	20128,52 [65]	20132,51	20097,68	20097,00	20101,30
Na(3s)+Rb(6p)	$23764,\!67$	23766,75	23783,27	23776,00	23799,00
Na(3s)+Rb(5d)	25700,42	25702,31	25702,61	-	25709,10
Na(4s) + Rb(5s)	25737,59	25740,00	25733,90	25741,44	-
Na(3s)+Rb(7s)	26307,57	26311,44	26292,93	-	-

3.1.2. Krzywe adiabatyczne energii potencjalnej

Policzyłem dziewięć krzywych energii potencjalnej dla stanów singletowych jak i trypletowych w symetrii Σ^+ , po pięć krzywych energii potencjalnej stanów singletowych i trypletowych w symetrii Π oraz po dwie krzywe energii potencjalnej stanów singletowych i trypletowych w symetrii Δ . Wszystkie krzywe adiabatyczne zostały wyznaczone w zakresie od 4,6 a₀ do 86,0 a₀. Charakterystyczne fragmenty krzywych dla danej multipletowości oraz przy określonej symetrii są przedstawione kolejno na rysunkach 3.1-3.6. Każde zestawienie połączone jest z ogólnym opisem kształtu krzywych.

Bardzo ważnym elementem ogólnej analizy kształtu krzywych jest pojęcie avoidedcrossing (AC). Jest to miejsce, w którym przestaje działać przybliżenie Borna-Oppenheimera. W cząsteczce dwuatomowej niemożliwe jest przecinanie krzywych potencjalnych tej samej symetrii. W odróżnieniu od cząsteczki dwuatomowej dla cząsteczki wieloatomowej termy są funkcjami kilku parametrów (niezależnych odległości międzyjądrowych) - np. w przypadku molekuły trójatomowej mamy 3 stopnie swobody, przy czym dla układu N jąder mamy ich 3N-6. Dla molekuł wieloatomowych przecięcia są nieuniknione. Przy avoided crossing fizyczny charakter adiabatycznego stanu elektronowego zmienia się, np. z jonowego na kowalencyjny [66]. Dodatkowe charakterystyczne nieregularności występują w krzywych o tzw. charakterze egzotycznym, których nie da się opisać potencjałem Morse'a [28, 33].

Rysunek 3.1 przedstawia stany policzone przeze mnie w symetrii ${}^{1}\Sigma^{+}$. Są one zawsze numerowane wraz ze wzrostem asymptotycznej energii. Stan podstawowy ${}^{1}\Sigma^{+}$ i pierwszy stan wzbudzony ${}^{2}\Sigma^{+}$ mają kształt regularny. Natomiast wyżej wzbudzone stany ${}^{3}-{}^{9}\Sigma^{+}$ wykazują charakter egzotyczny. Krzywe ${}^{3}\Sigma^{+}$ i ${}^{4}\Sigma^{+}$ mają charakterystyczne AC dla dwóch odległości około 18,4 a₀ i 13,8 a₀. Dla pierwszej odległości przerwa energetyczna wynosi poniżej 30 cm⁻¹ a dla drugiej wynosi ona w przybliżeniu 413 cm⁻¹. Kolejne charakterystyczne nieregularności dla stanu ${}^{4}\Sigma^{+}$ występują w wyniku interakcji z wyższym stanem wzbudzonym $5^{1}\Sigma^{+}$. Są one w odległości około 24,5 a₀ i 7,8 a₀. Przerwa energetyczna dla pierwszej odległości wynosi blisko 590 cm⁻¹ a dla drugiej nie przekracza 140 cm⁻¹ [65]. Następne AC znajduje się

Rys. 3.1. Dziewięć policzonych krzywych energii potencjalnej stanów singletowych w symetrii Σ^+ .

pomiędzy stanami $5^{1}\Sigma^{+}$ i $6^{1}\Sigma^{+}$ w odległości 25 a₀, a wartość przerwy energetycznej wynosi około 762 cm⁻¹. Pomiędzy stanami $6^{1}\Sigma^{+}$ i $7^{1}\Sigma^{+}$ są również nieregularności. Charakterystyczne AC można zauważyć w oddziaływaniu między tymi stanami w okolicach 40 a₀ i wynosi blisko 148 cm⁻¹. Kolejne AC występuje w okolicach 12,2 a₀, gdzie przerwa energetyczna wynosi w przybliżeniu 323 cm⁻¹. Następne widoczne dwa avoided crossing znajdują się między stanami $7^{1}\Sigma^{+}$ i $8^{1}\Sigma^{+}$, gdzie dla odległości 18,4 a₀ przerwa energetyczna wynosi około 55 cm⁻¹, a dla 11,2 a₀ wynosi około 645 cm⁻¹. Pomiędzy stanami $8^{1}\Sigma^{+}$ a $9^{1}\Sigma^{+}$ występują dwa avoided crossing w odległościach 35 a₀ i 7,6 a₀. Przerwy energetyczne dla nich przyjmują wartość odpowiednio około 1 cm⁻¹ i 43 cm⁻¹.

Powiększony fragment rysunku 3.1 przedstawia dwa AC dotyczące miejsca gdzie w okolicach 62 a₀ bardzo blisko między sobą znajdują się trzy stany $7^{1}\Sigma^{+}$, $8^{1}\Sigma^{+}$ i $9^{1}\Sigma^{+}$. Przerwa energetyczna pomiędzy stanami $7^{1}\Sigma^{+}$ i $8^{1}\Sigma^{+}$ wynosi około 15 cm⁻¹ a w przypadku stanów $8^{1}\Sigma^{+}$ i $9^{1}\Sigma^{+}$ ma wartość około 22 cm⁻¹.

Na rysunku 3.2 przedstawiono stany policzone w symetrii ${}^{3}\Sigma^{+}$. Trzy najniższe stany mają kształt regularny. Natomiast wyżej wzbudzone stany wykazują charak-

ter egzotyczny. Można zauważyć charakterystyczne AC pomiędzy $4^{3}\Sigma^{+}$ i $5^{3}\Sigma^{+}$ w okolicach 10,4 a₀ i wartość przerwy energetycznej wynosi około 306 cm⁻¹. Rozdziela ono dwie studnie potencjału stanu $4^{3}\Sigma^{+}$. Kolejne charakterystyczne AC występuje

Rys. 3.2. Dziewięć policzonych krzywych energii potencjalnej stanów trypletowych w symetrii Σ^+ .

przy oddziaływaniu stanu $5^{3}\Sigma^{+}$ z $6^{3}\Sigma^{+}$, gdzie przerwa energetyczna dla odległości 9 a₀ przyjmuje wartość około 716 cm⁻¹. Dwa AC występują pomiędzy stanami $6^{3}\Sigma^{+}$ i $7^{3}\Sigma^{+}$, gdzie przerwy energetyczne wynoszą 76 cm⁻¹ i 584 cm⁻¹ dla odległości międzyatomowych przyjmujących wartość 14,8 a₀ oraz 8,4 a₀. Pojedyncze avoided crossing występuje pomiędzy $7^{3}\Sigma^{+}$ i $8^{3}\Sigma^{+}$ w odległości 8 a₀, gdzie przerwa energetyczna wynosi blisko 240 cm⁻¹. Rozpatrując stan $8^{3}\Sigma^{+}$ i $9^{3}\Sigma^{+}$, dwa AC można zauważyć w odległościach 14,2 a₀ i 7,8 a₀ o wartościach przerw energetycznych wynoszących odpowiednio około 110 cm⁻¹ i 19 cm⁻¹.

Biorąc pod uwagę symetrię ¹ Π , wszystkie pięć stanów (1-5¹ Π) ma kształt regularny (rysunek 3.3), natomiast w przypadku ³ Π na rysunku 3.4 można zauważyć trzy charakterystyczne AC. Pierwsze pomiędzy 3³ Π i 4³ Π w odległości 8,4 a₀ o przerwie energetycznej wynoszącej 634 cm⁻¹. Poza tym, kolejne dwa można zauważyć w odległościach 18,8 a₀ i 10,4 a₀ dla stanów 4³ Π i 5³ Π , gdzie przerwy energetyczne odpowiednio wynoszą około 1100 cm⁻¹ oraz 856 cm⁻¹. Natomiast w symetrii ^{1,3} Δ wszystkie krzywe są regularne (rysunki 3.5 i 3.6).

Rys. 3.3. Pięć policzonych krzywych energii potencjalnej stanów singletowych w symetrii $\Pi.$

Rys. 3.4. Pięć policzonych krzywych energii potencjalnej stanów trypletowych w symetrii $\Pi.$

Rys. 3.5. Dwie policzone krzywe energii potencjalnej stanów singletowych w symetrii Δ .

Rys. 3.6. Dwie policzone krzywe energii potencjalnej stanów trypletowych w symetrii Δ .

3.1.3. Analiza i porównania

W tym podrozdziale zostaną omówione parametry spektroskopowe dla wybranych stanów, a następnie kształty krzywych energii potencjalnej w porównaniu do innych autorów dla tych stanów - kolejno dla danej konfiguracji elektronowej i multipletowości. Z tym że kształty stanów $2^{1}\Sigma^{+}$ i $1^{3}\Pi$ są omawiane na jednym rysunku 3.14 ze względu na swoje znaczenie w deperturbacji oraz w związku z dalszym odniesieniem do stanów ze sprzężeniem spin-orbita. Wszystkie tabele krzywych nierelatywistycznych znajdują się w załączniku A.

Tab. 3.2. Parametry spektroskopowe R_e [a₀], D_e , T_{ev} , T_e , ω_e , B_e i D_0 [cm⁻¹] stanów (1-9)¹ Σ^+ cząsteczki NaRb. Litera T oznacza rezultaty teoretyczne a przez literę E oznaczono wyniki eksperymentalne.

Stan	Asymptota	R_e	D_e	T_{ev}	T_e	ω_e	B_e	D_0	Źródło
$1^{1}\Sigma^{+}$	Na(3s) + Rb(5s)	6,83	5141			106, 93	0,0713	5087	[65] Wiatr i in. (2015) T
		6,89	5031			106,85	0,0702	4977	[15] Docenko i in. (2004) E
		6,89				106, 84	0,0701		[67] Docenko i in. (2002) E
			5031						[68] Zemke i Stwalley (2001) E
		6,89				106,86	0,0702		[12] Kasahara i in. (1996) E
		6,89	5030			106,86	0,0702		[9] Wang i in. (1991) E
		6,72	5320			106,97	0,0736	5263	[8] Takahashi i Kato (1981) E
		6,84	4844			$106,\!67$	0,0710	4792	[21] Chaieb i in. (2014) T
		6,80	4848						[25] Dardouri i in. (2012) T
		6,84							[69] Aymar i Dulieu (2005) T
		6,84				107, 30			[24] Zaitsevskii i in.(2001) T
		7,01	4490			103,90	0,0676		[22] Korek i in. (2000) T
		6,86	4920			106,00			[70] Igel-Mann i in. (1986) T
$2^{1}\Sigma^{+}$	Na(3s) + Rb(5p)	8,25	6144	12724	11736	67,54	0,0488	6110	[65] Wiatr i in. (2015) T
		8,32	6080		11689				[18] Docenko i in. E (2007)
		8,29	6042	12499	11559	66,79	0,0483	6008	[21] Chaieb i in. (2014) T
		8,27	6025		11454				[25] Dardouri i in. (2012) T
		8,45			11396	66,40	0,0466		[22] Korek i in. (2000) T
$3^{1}\Sigma^{+}$	Na(3p) + Rb(5s)	8,46	4467	18786	17641	63, 49	0,0464	4436	[65] Wiatr i in. (2015) T
		8,52	4419		17568	63,60	0,0458	4387	[16] Jastrzebski i in. (2005) E
		8,51	4256	18634	17554	65,10	0,0459	4225	[21] Chaieb i in. (2014) T
		8,40	4255		17460				[25] Dardouri i in. (2012) T
		8,61			17315	63,80	0,0449		[22] Korek i in. (2000) T
$4^{1}\Sigma^{+}$	Na(3s) + Rb(4d)	12,93	3541	22447	20958	35,74	0,0202	3523	[65] Wiatr i in. (2015) T
		12,91	3511	22365	20688	26,08	0,0199	3493	[21] Chaieb i in. (2014) T
		9,68	3247		20967				[25] Dardouri i in. (2012) T
$5^{1}\Sigma^{+}$	Na(3s) + Rb(6s)	7,97	3093	23703	22177	155,25	0,0520	3015	[65] Wiatr i in. (2015) T
		7,89	2840	23406	22101	102,73	0,0534	2775	[21] Chaieb i in. (2014) T
		8,13	1928		23012	,	,		[25] Dardouri i in. (2012) T
drugie minimum		20.64	562		24707	8.61	0.0079	558	[65] Wiatr i in. (2015) T
		20,64	534			- / -	- /		[21] Chaieb i in. (2014) T
$6^1\Sigma^+$	Na(3s) + Rb(6p)	8.18	4009	25864	24897	71.10	0.0496	3973	bieżace wyniki T
		- / -			24858	70.34	0.0490		[19] Kortyka i in. (2005) E
		8.21	3899	25638	24728	70,54	0.0493	3864	[21] Chaieb i in. (2014) T
		8.65	3599		24893	, .	- /		[25] Dardouri i in. (2012) T
drugie minimum		22.66	3268		25638	12.94	0.0065	3261	bieżace wyniki T
		22.51	3304			,	0,0000		[21] Chaieb i in. (2014) T
		22,51	3287						[25] Dardouri i in. (2012) T
$7^1\Sigma^+$	Na(3s) + Bb(5d)	8.41	4461	27373	26380	59.16	0.0469	4432	bieżace wyniki T
		8.46	4331	27170	26215	59.04	0,0464	4302	[21] Chaieb i in. (2014) T
		8.47	4324		26228	,	- ,		[25] Dardouri i in. (2012) T
drugie minimum		12.36	3508		27333	63 95	0.0219	3476	bieżace wyniki T
		12.37	3439			,	0,02-0		[21] Chajeb i in. (2014) T
trzecie minimum		37.40	1912		28929	4.69	0.0024	1910	bieżace wyniki T
		37 21	1894			-,	0,00		[21] Chajeb i in (2014) T
$8^{1}\Sigma^{+}$	Na(4s) + Bb(5s)	8.20	3485	28049	27394	71.11	0.0493	3449	bieżace wyniki T
- <i>-</i>		8 22	3345	27962	27233	75 46	0.0492	3310	[21] Chaieb i in (2014) T
		8 24	3329	2.002	27258	. 5, 40	0,0102	0010	[25] Dardouri i in (2012) T
drugie minimum		11 16	2822		28057	45.35	0.0281	2799	bieżące wyniki T
arugio minimului		11 25	2728		20001	40,00	0,0201	2100	[21] Chaieb i in (2014) T
$0^1\Sigma^+$	$Na(3s) \pm Bb(7s)$	7.80	3665	28265	27513	111 30	0.0542	3610	bieżące wyniki T
3 4	$100(38) \pm 100(18)$	7.87	3535	28067	27602	82 42	0.0536	3497	[21] Chaieb i in (2014) T
		8 10	3521	20007	27613	02,40	0,0000	0431	[25] Dardouri i in (2012) T
		0,10	0021		21013				[20] Dardouri i iii. (2012) 1
Dokonując przeglądu danych zestawionych w tabeli 3.2 można zauważyć, że stan podstawowy $1^{1}\Sigma^{+}$ jest potencjałem, który ma najwięcej opracowań ze wszystkich ${}^{1}\Sigma^{+}$ - zarówno teoretycznych (T) jak i eksperymentalnych (E). Przechodząc do jego opisu można zauważyć, że wyznaczona przeze mnie energia dysocjacji D_e [65] przyjmuje wartość 5141 cm⁻¹. Porównując te wartość z otrzymaną przez Docenko i in. [15] (najnowsze wyniki otrzymane przy użyciu spektroskopii fourierowskiej) można zauważyć, że jest o 110 cm $^{-1}$ głębsza. Do najstarszych wyników eksperymentalnych (otrzymanych przy pomocy fluorescencji indukowanej laserowo) należą wyniki zaprezentowane przez Takahashiego i Kato [8]. W tym wypadku obliczona przeze mnie energia dysocjacji jest o 179 cm⁻¹ mniejsza. Przeprowadzając zestawienie najnowszych wyników teoretycznych otrzymanych przez Chaieba i in. [21] oraz Dardouriego i in. [25] można zauważyć, iż w porównaniu z Docenko i in. [15] energie dysocjacji przyjmują mniejsze wartości. W pierwszym przypadku różnica wynosi 187 cm $^{-1}$ a w drugim wynosi 183 cm⁻¹. Natomiast w przypadku podejścia jakie zaprezentował Korek i in. [22] energia dysocjacji w porównaniu z eksperymentem [15] jest o ponad 500 cm^{-1} mniejsza.

Biorąc pod uwagę obliczoną przeze mnie [65] równowagową długość wiązania $R_e = 6,83 a_0$ można zauważyć różnicę o 0,06 a_0 z wynikami Docenko i in. [15]. Co więcej, ta różnica z wynikami eksperymentalnymi [15] jest porównywalna dla wyników Chaieba i in. [21], Aymara i Dulieu [69] oraz Zaitsevskiiego i in. [24]. Wśród wszystkich wyników teoretycznych można zauważyć, że moja stała oscylacyjna $\omega_e = 106,93 \text{ cm}^{-1}$ ma najlepszą zgodność z wynikami eksperymentalnymi [15]. W tym wypadku różnica wynosi 0,08 cm⁻¹. Różnice z eksperymentem dla wyników, które otrzymali Chaieb i in. [21], Korek i in. [22] oraz Zaitsevskii i in. [24], wynoszą odpowiednio 0,18; 2,95 i 0,45 cm⁻¹. Docenko i in. [15] przedstawili stałą rotacyjną B_e o wartości 0,0702 cm⁻¹ i ma ona bardzo dobrą zgodność z wynikami zaprezentowanymi przeze mnie (0,0713 cm⁻¹) jak i z najnowszymi wynikami teoretycznymi otrzymanymi przez Chaieba i in. [21] (0,0710 cm⁻¹).

W przypadku stanu $2^{1}\Sigma^{+}$, głębokość studni potencjału D_e wyznaczona przeze mnie wynosi 6144 cm⁻¹ i jest o 64 cm⁻¹ głębsza od wyznaczonej przez Docenko i in. [18] (6080 cm⁻¹) (kształt tego stanu dodatkowo będzie omówiony na zbiorczym rysunku 3.14). W wypadku energii otrzymanej przez Chaieba i in. [21] oraz Dardouriego i in. [25], rozbieżności od wartości eksperymentalnej [18] są mniejsze odpowiednio o 38 i 55 cm⁻¹. Biorąc pod uwagę energię termu elektronowego T_e, otrzymałem najlepszą zgodność z najnowszym eksperymentalnym wynikiem [18] i różnica ta wynosi tylko 47 cm⁻¹. Jeśli wziąć pod uwagę inne teoretyczne rezultaty, rozbieżności są większe i wynoszą odpowiednio 130 cm⁻¹ dla Chaieba i in. [21], 235 cm⁻¹ dla Dardouriego in. [25] oraz 293 cm⁻¹ dla Korka i in. [22].

Kolejnym rozpatrywanym stanem jest $3^{1}\Sigma^{+}$. Energia dysocjacji D_e otrzymana eksperymentalnie przez Jastrzębskiego i in. [16] ma wartość 4419 cm⁻¹. W porów-

naniu z otrzymaną przeze mnie wartością jest ona o 48 cm⁻¹ płytsza. Porównując ten sam wynik eksperymentalny z innymi wynikami teoretycznymi można zauważyć rozbieżności przekraczające 100 cm⁻¹ (Chaieb i in. [21] oraz Dardouri i in. [25]). Przechodząc do energii termu elektronowego T_e wynik najbliższy eksperymentalnemu został otrzymany przez Chaieba i in. [21] - rozbieżność wynosi 14 cm⁻¹. W przypadku mojej krzywej rozbieżność wynosi 73 cm⁻¹. Dla innych wyników teoretycznych [22, 25] różnice przekraczają 100 cm⁻¹. Występuje bardzo dobra zgodność wyznaczonej przeze mnie stałej oscylacyjnej ω_e (63,49 cm⁻¹) z wynikami otrzymanymi przez Jastrzębskiego i in. [16] (63,60 cm⁻¹) gdzie różnica przyjmuje wartość 0,11 cm⁻¹ [65].

Następnym rozpatrywanym stanem jest $6^{1}\Sigma^{+}$. Posiada on dwie studnie potencjału. Zestawiając otrzymane przeze mnie dane z dostępnymi danymi eksperymentalnymi otrzymanymi przez Kortykę i in. [19] można porównać parametry spektroskopowe pierwszej studni. Stan ten był badany polaryzacyjną spektroskopią znakowania. Wyznaczona eksperymentalnie [19] energia termu elektronowego T_e wynosi 24857 cm⁻¹. Porównując ją z danymi przedstawionymi przeze mnie (24897 cm⁻¹) jest o 40 cm⁻¹ mniejsza, natomiast w wypadku danych przedstawionych przez Chaieba i in. [21] (24728 cm⁻¹) jest mniejsza o 129 cm⁻¹. W przypadku Dardouriego i in. [25] wynosi 36 cm⁻¹ więcej. Przechodząc do eksperymentalnej stałej oscylacyjnej $\omega_e = 70, 34 \text{ cm}^{-1}$, rozbieżność w moim wypadku wynosi 0,76 cm⁻¹ a w wypadku Chaieba i in. [21] 0,20 cm⁻¹. Natomiast rozbieżności wobec eksperymentalnej stałej rotacyjnej B_e=0,0490 cm⁻¹ [19] są bardzo małe, dla moich obliczeń wynoszą 0,0006 cm⁻¹ a dla Chaieba i in. [21] odpowiednio 0,0003 cm⁻¹.

Kolejny etap stanowi zestawienie wybranych policzonych przeze mnie krzywych energii potencjalnej z krzywymi eksperymentalnymi i teoretycznymi innych autorów. Na rysunkach porównawczych wszystkie teoretyczne potencjały (dla każdej symetrii) zostały przesunięte o energię dysocjacji $D_e=5030,85$ cm⁻¹ otrzymaną w najnowszym eksperymencie przeprowadzonym przez Docenko i in. [15].

Na rysunku 3.7 przedstawiono porównanie stanu $1^{1}\Sigma^{+}$ z innymi wynikami teoretycznymi [22, 24, 71] oraz eksperymentalnymi [9, 12, 15]. Na rysunku można zauważyć dobrą zgodność krzywej adiabatycznej otrzymanej przez Zaitsevskiiego i in. [24] z krzywymi eksperymentalnymi w pobliżu minimum potencjału, natomiast w dalekozasięgowym obszarze można zauważyć dużą rozbieżność. W przypadku wyników Korka i in. [22] w regionie Francka-Condona można zauważyć spore rozbieżności, a dla dalszych odległości międzyjądrowych ich zanik. Zarówno krzywa otrzymana przeze mnie [65] jak i Aymara i Dulieu [71] ma dobrą zgodność z krzywą eksperymentalną.

Kształt krzywej $3^{1}\Sigma^{+}$ jest egzotyczny (rys. 3.8). W tym wypadku krzywa otrzymana przeze mnie [65] oraz Aymara i Dulieu [71] ma dobrą zgodność z wynikami eksperymentalnymi Jastrzębskiego i in. [16]. Teoretyczny potencjał Korka i in. [22] jest płytszy w pobliżu minimum krzywej eksperymentalnej [16].

Rys. 3.7. Porównanie krzywych energii potencjalnej stanu podstawowego cząsteczki NaRb [65] z eksperymentalnymi danymi: Docenko i in. [15], Kasahary i in. [12] oraz Wanga i in. [9] jak również z wynikami teoretycznymi: Aymara i Dulieu [71], Zaitsevskiiego i in. [24] oraz Korka i in. [22].

Rys. 3.8. Porównanie krzywych energii potencjalnej stanu $3^{1}\Sigma^{+}$ cząsteczki NaRb [65] z eksperymentalnymi danymi: Jastrzębskiego i in. [16] jak również z wynikami teoretycznymi: Aymara i Dulieu [71] oraz Korka i in. [22].

W przypadku krzywej $6^{1}\Sigma^{+}$, pierwsza studnia potencjału otrzymana przez Korka i in. [22] jest płytsza od tej, którą otrzymali eksperymentalnie Kortyka i in. [19]. Porównanie moich wyników teoretycznych z wynikami Aymara i Dulieu [71] daje dobrą zgodność w przypadku pierwszego minimum. Głębokość drugiej studni potencjału eksperymentalnego [19] jest większa od bieżących wyników oraz pozostałych krzywych teoretycznych [22, 71]. Bariera doświadczalna jest przesunięta względem otrzymanych teoretycznie w prawo.

Rys. 3.9. Porównanie bieżącej krzywej energii potencjalnej stanu $6^{1}\Sigma^{+}$ cząsteczki NaRb z eksperymentalnymi danymi Kortyki i in. [19] jak również z wynikami teoretycznymi Aymara i Dulieu [71] oraz Korka i in. [22].

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Stany	Asymptota	R_e	D_e	T_{ev}	T_e	ω_e	B_e	D_0	Źródło
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$1^{3}\Sigma^{+}$	Na(3s) + Rb(5s)	10,50	210	6815	4931	20,22	0,0298	200	[65] Wiatr i in. (2015) T
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				183						[68] Zemke i Stwalley (2001) E
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			10,87	182		4848	18,86	0,0282		[9] Wang i in. (1991) E
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				568			48, 48		544	[8] Takahashi i Kato (1981) E
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			10,68	195	6621	4648	19,30	0,0291	186	[21] Chaieb i in. (2014) T
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			10,70	194		4653				[25] Dardouri i in. (2012) T
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			10,32			5110	21,70			[24] Zaitsevskii i in.(2001) T
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			11,22			4363	15,30	0,0264		[22] Korek i in. (2000) T
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$2^{3}\Sigma^{+}$	Na(3s) + Rb(5p)	8,47	2330	16850	15550	61,78	0,0462	2299	[65] Wiatr i in. (2015) T
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			8,55	2172	16811	15429	60,43	0,0454	2142	[21] Chaieb i in. (2014) T
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			8,67	2155		15324				[25] Dardouri i in. (2012) T
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			8,67			15202	$58,\!60$	0,0443		[22] Korek i in. (2000) T
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$3^{3}\Sigma^{+}$	Na(3p) + Rb(5s)	$7,\!65$	2010	20455	20097	79,37	0,0567	1971	[65] Wiatr i in. (2015) T
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			$7,\!67$	1842	20372	19968	80,45	0,0565	1803	[21] Chaieb i in. (2014) T
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			7,79	1848		19967				[25] Dardouri i in. (2012) T
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			7,85			19837	76,80	0,0540		[22] Korek i in. (2000) T
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$4^3\Sigma^+$	Na(3s) + Rb(4d)	8,22	1286	24135	23212	65,37	0,0491	1253	[65] Wiatr i in. (2015) T
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			8,27	1193	23992	23006	64,02	0,0486	1161	[21] Chaieb i in. (2014) T
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			8,12	2098		22116				[25] Dardouri i in. (2012) T
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	drugie minimum		11,68	855		23644	40,09	0,0243	835	[65] Wiatr i in. (2015) T
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			11,70	777						[21] Chaieb i in. (2014) T
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$5^3\Sigma^+$	Na(3s) + Rb(6s)	10,40	1111	26025	24158	103,82	0,0306	1059	[65] Wiatr i in. (2015) T
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			10,45	1035	25933	23906	81,69	0,0304	987	[21] Chaieb i in. (2014) T
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			10,53	1028						[25] Dardouri i in. (2012) T
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$6^3\Sigma^+$	Na(3s) + Rb(6p)	9,10	3059	27299	25846	110,85	0,0399	3004	bieżące wyniki T
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			9,12	2958	27200	25669	105, 12	0,0399	2905	[21] Chaieb i in. (2014) T
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			9,17	2928		25689				[25] Dardouri i in. (2012) T
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	drugie minimum		21,01	204		28702	8,87	0,0075	199	bieżące wyniki T
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			$21,\!13$	198						[21] Chaieb i in. (2014) T
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$7^3\Sigma^+$	Na(3s) + Rb(5d)	8,66	4072	27963	26769	120,29	0,0439	4012	bieżące wyniki T
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			8,64	3963	27871	26583	121,73	0,0445	3905	[21] Chaieb i in. (2014) T
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			8,68	3960		26592				[25] Dardouri i in. (2012) T
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$8^3\Sigma^+$	Na(4s) + Rb(5s)	8,19	3445	28509	27433	157, 37	0,4953	3367	bieżące wyniki T
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			8,15	3303	29122	27275	138, 81	0,0500	3228	[21] Chaieb i in. (2014) T
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			8,33	3348		27239				[25] Dardouri i in. (2012) T
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	drugie minimum		16,87	269						bieżące wyniki T
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			16,95	265						[21] Chaieb i in. (2014) T
8,05 2890 29847 28246 87,21 0,06354 2850 [21] Chaieb i in. (2014) T 7,94 2881 28253 [25] Dardouri i in. (2012) T drugie minimum 14,25 589 30860 49,01 0,01631 564 bieżące wyniki T 14,26 568 [21] Chaieb i in. (2014) T [21] Chaieb i in. (2014) T	$9^3\Sigma^+$	Na(3s) + Rb(7s)	7,88	3523	29131	27925	183,34	0,05207	3431	bieżące wyniki T
7,94 2881 28253 [25] Dardouri i in. (2012) T drugie minimum 14,25 589 30860 49,01 0,01631 564 bieżące wyniki T 14,26 568 [21] Chaieb i in. (2014) T			8,05	2890	29847	28246	87,21	0,06354	2850	[21] Chaieb i in. (2014) T
drugie minimum 14,25 589 30860 49,01 0,01631 564 bieżące wyniki T 14,26 568 [21] Chaieb i in. (2014) T			7,94	2881		28253				[25] Dardouri i in. (2012) T
14,26 568 [21] Chaieb i in. (2014) T	drugie minimum		14,25	589		30860	49,01	0,01631	564	bieżące wyniki T
			14,26	568						[21] Chaieb i in. (2014) T

Tab. 3.3. Parametry spektroskopowe stanów $(1-9)^3\Sigma^+$ cząsteczki NaRb. Litera T oznacza rezultaty teoretyczne a przez literę E oznaczono wyniki eksperymentalne.

W tabeli 3.3 przedstawiono parametry spektroskopowe stanów $(1-9)^{3}\Sigma^{+}$. Dokonując porównania wyników dla stanu $1^{3}\Sigma^{+}$ dla równowagowej długości wiązania R_{e} i energii dysocjacji D_{e} , można zauważyć, że dla krzywej obliczonej przeze mnie wynoszą one odpowiednio 10,50 a₀ oraz 210 cm⁻¹. Wartości eksperymentalne otrzymane przez Wanga i in. [9] odpowiednio wynoszą 10,87 a₀ oraz 182 cm⁻¹. Wartości różnic wynoszą odpowiednio 0,37 a₀ i 28 cm⁻¹. W przypadku teoretycznych rezultatów otrzymanych przez Chaieba i in. [21] oraz Dardouriego i in. [25] występuje lepsza zgodność ze stałymi R_{e} i D_{e} otrzymanymi eksperymentalnie. Różnice z danymi Chaieba i in. [21] wynoszą odpowiednio 0,19 a₀ i 13 cm⁻¹ a z danymi Dardouriego i in. [25] wynoszą odpowiednio 0,17 a₀ i 12 cm⁻¹ [65].

Patrząc na rysunek 3.10 można zauważyć, że dwie teoretyczne krzywe energii potencjalnej zgadzają się bardzo dobrze z wynikami eksperymentalnymi otrzymanymi przez Wanga i in. [9]. Należą do nich krzywa otrzymana przeze mnie [65] oraz Aymara i Dulieu [71]. Zgodność ta jest widoczna w szczególności dla większych odległości międzyjądrowych. Krzywa Korka i in. [22] ma dużą zgodność przy zbliżaniu się do asymptoty, natomiast krzywa Zaitsevskiiego i in. [24] w części odpychającej.

Rys. 3.10. Porównanie krzywych energii potencjalnej stanu $1^{3}\Sigma^{+}$ cząsteczki NaRb [65] z eksperymentalnymi danymi Wanga i in. [9] jak również z wynikami teoretycznymi Aymara i Dulieu [71], Zaitsevskiiego i in. [24] oraz Korka i in. [22].

Tab. 3.4. Parametry spektroskopowe stanów $(1-5)^1\Pi$ cząsteczki NaRb. Litera T oznacza rezultaty teoretyczne a przez literę E oznaczono wyniki eksperymentalne.

Stan	Asymptota	R_e	D_e	T_{ev}	T_e	ω_e	B_e	D_0	Źródło
$1^1\Pi$	Na(3s) + Rb(5p)	7,81	1297	16966	16583	61,91	0,0542	1267	[65] Wiatr i in. (2015) T
		7,91	1319			60,38	0,0528		[20] Pashov i in. (2006) E
		7,89	1319		16528	61, 17	0,0534		[9] Wang i in. (1991) E
		7,73					0,0557	1492	[8] Takahashi i Kato (1981) E
		7,96	1112	16987	16489	54,58	0,0524	1084	[21] Chaieb i in. (2014) T
		7,71			16420	58,80			[24] Zaitsevskii i in.(2001) T
		8,37			16321	$51,\!60$	0,0495		[22] Korek i in. (2000) T
$2^{1}\Pi$	Na(3p) + Rb(5s)	7,95	2336	20401	19772	73,39	0,0525	2299	[65] Wiatr i in. (2015) T
		7,99	2311		19693	73,10	0,0521	2275	[17] Docenko i in. (2005) E
		7,97			19692	73,26	0,0524		[24] Zaitsevskii i in.(2001) E
		7,82				73,50	0,0544	2541	[8] Takahashi i Kato (1981) E
		7,99	2104	20391	19706	74,52	0,0520	2068	[21] Chaieb i in. (2014) T
		7,86			19475	70,30			[24] Zaitsevskii i in. (2001) T
		8,14			19529	71,90	0,0503		[22] Korek i in. (2000) T
$3^1\Pi$	Na(3s) + Rb(4d)	9,38	814	25113	23685	37,41	0,0376	795	[65] Wiatr i in. (2015) T
		9,62	647	25208	23551	$36,\!65$	0,0359	630	[21] Chaieb i in. (2014) T
		9,76			23284	35,90	0,0349		[22] Korek i in. (2000) T
$4^1\Pi$	Na(3s) + Rb(6p)	7,96	3219	26402	25686	74,08	0,0523	3182	bieżące wyniki
		8,01	3183		25640	73,72	0,0518		[72] Bang i in. (2009) E
		7,99	3075	26394	25552	69, 66	0,0520	3039	[21] Chaieb i in. (2014) T
		8,16			25422	69,20	0,0499		[22] Korek i in. (2000) T
$5^1\Pi$	Na(3s) + Rb(5d)	7,96	4001	27485	26840	71,94	0,0524	3965	bieżące wyniki
		8,01	3831	26924	26715	68, 18	0,0518	3797	[21] Chaieb i in. (2014) T
		8,17			26576	68,50	0,0498		[22] Korek i in. (2000) T

W tabeli 3.4 przedstawiono parametry spektroskopowe stanów $(1-5)^1\Pi$. Biorąc pod uwagę stan 1¹ Π wyznaczona przeze mnie energia dysocjacji D_e (1297 cm⁻¹) zga-

dza się bardzo dobrze z dwoma eksperymentalnymi wynikami (1319 cm⁻¹) [9, 20]. W moim wypadku różnica wynosi 22 cm⁻¹, natomiast dla najnowszych wyników teoretycznych [21] jest dużo większa i wynosi 207 cm⁻¹. Przechodząc do energii termu elektronowego T_e, porównanie wyników z eksperymentalnymi [9] i najnowszymi teoretycznymi [21] jest dosyć rozsądne. Różnice pomiędzy wynikami otrzymanymi przeze mnie oraz tymi otrzymanymi przez Chaieba i in. [21] do danych eksperymentalnych nie przekraczają 60 cm⁻¹ w moim wypadku a 40 cm⁻¹ w przypadku Chaieba. Dla starszej teoretycznej publikacji [22] różnice przekraczają 100 cm⁻¹. W przypadku policzonej przeze mnie stałej wibracyjnej ω_e osiągnięta została bardzo dobra zgodność z wynikami eksperymentalnymi. Różnice wynoszą 1,53 cm⁻¹ dla wyników Pashova i in. [20] oraz tylko 0,74 cm⁻¹ dla Wanga i in. [9]. Różnica dla najnowszych teoretycznych wyników [21] i najnowszej wartości eksperymentalnej [20] przekracza 5 cm⁻¹.

Kolejnym rozpatrywanym stanem jest 2¹ II. Dla wyznaczonej energii dysocjacji D_e [65] można zauważyć bliską zgodność z najnowszym eksperymentalnym wynikiem dostarczonym przez Docenko i in. [17]. Rozbieżność z wynikiem eksperymentalnym wynosi tylko 25 cm⁻¹, podczas gdy w przypadku Chaieba i in. [21] wynosi 207 cm⁻¹. Otrzymany rezultat $R_e = 7,95$ a₀ jest w dobrej zgodności z dwoma eksperymentalnymi wynikami: 7,99 a₀ [17] i 7,97 a₀ [24]. Jakkolwiek Chaieb i in. [21] zaprezentowali taką samą wartość jak Docenko. Wyznaczona stała oscylacyjna $\omega_e=73,39$ cm⁻¹ jest w bardzo dobrej zgodności ze wszystkimi danymi otrzymanymi z eksperymentu, zaprezentowanymi w tabeli 3.4. Różnice nie przekraczają 0,3 cm⁻¹. W wypadku innych prac teoretycznych [21, 22] są większe rozbieżności z danymi eksperymentalnymi [8, 17, 24].

Biorąc pod uwagę stan 4¹ II można zauważyć, że równowagowa długość wiązania $R_e=7,96 a_0$ jest o 0,05 a_0 mniejsza od wyniku eksperymentalnego Banga i in. [72]. W przypadku wyników teoretycznych Chaieba i in. [21] różnica z wynikami eksperymentalnymi wynosi 0,02 a_0 , a w wypadku Korka i in. [22] 0,15 a_0 . Przechodząc do D_e , w relacji do eksperymentalnej energii dysocjacji [72] dla tego stanu, można zauważyć, że dla moich wyników jest ona o 36 cm⁻¹ głębsza a w przypadku Chaieba i in. [21] jest o 108 cm⁻¹ płytsza. Wynik Banga i in. [72] dla energii termu elektronowego T_e wynosi 25640 cm⁻¹. W moim przypadku wynik jest o 46 cm⁻¹ większy, a w przypadku Chaieba i in. [21] jest o 88 cm⁻¹ mniejszy a dla Korka i in. [22] różnica przekracza 200 cm⁻¹. W przypadku stałej oscylacyjnej ω_e otrzymany przeze mnie wynik teoretyczny stanowi najlepsze dopasowanie - rozbieżność wynosi tylko 0,36 cm⁻¹. W przypadku dwóch pozostałych prac teoretycznych [21, 22] przekracza 4 cm⁻¹. Zestawiając stałą rotacyjną B_e z moimi wynikami różnica wynosi 0,0005 cm⁻¹, w przypadku Chaieba i in. [21] 0,0002 cm⁻¹ a dla Korka i in. [22] 0,0019 cm⁻¹.

Porównując policzone adiabatyczne krzywe energii $1^{1}\Pi$ potencjalnej [24, 65, 71]

z potencjałami Pashova i in. [20] oraz Wanga i in. [9] można zauważyć bardzo dobrą zbieżność (rysunek 3.11). Jedyne widoczne odchylenie dotyczy adiabatycznego potencjału Korka i in. [22].

Porównując policzoną przeze mnie krzywą teoretyczną $2^{1}\Pi$ [65] z innymi teoretycznymi [22, 24, 71] i dostępnym eksperymentalnym potencjałem [17] można zauważyć, że kształt krzywej policzonej przeze mnie [65] jak i Aymara i Dulieu [71] ma prawie całkowitą zgodność z eksperymentem za wyjątkiem części odpychającej (rysunek 3.12). Krzywa policzona przez Zaitsevskiiego i in. [24] znajduje się poniżej policzonej przeze mnie [65] a krzywa Korka [22] osiąga zgodność wraz ze zbliżaniem się do asymptoty atomowej.

Porównując $4^{1}\Pi$ na rysunku 3.13 z krzywą Banga i in. [72], można zauważyć dobrą zbieżność z moimi wynikami [65]. Rezultat Korka i in. [22] znajduje się powyżej krzywej eksperymentalnej [72].

Rys. 3.11. Porównanie krzywych energii potencjalnej stanu podstawowego cząsteczki NaRb [65] z eksperymentalnymi danymi Pashova i in. [20] oraz Wanga i in. [9] jak również z wynikami teoretycznymi Aymara i Dulieu [71], Zaitsevskiiego i in. [24] oraz Korka i in. [22].

Rys. 3.12. Porównanie krzywych energii potencjalnej stanu 2¹Π [65] cząsteczki NaRb z eksperymentalnymi danymi Docenko i in. [17] jak również z wynikami teoretycznymi Aymara i Dulieu [71], Zaitsevskiiego i in. [24] oraz Korka i in. [22].

Rys. 3.13. Porównanie bieżącej krzywej energii potencjalnej stanu 4¹Π cząsteczki NaRb z eksperymentalnymi danymi Banga i in. [72] i wynikami teoretycznymi Korka i in. [22].

Stan	Asymptota	R_e	D_e	T_{ev}	T_e	ω_e	B_e	D_0	Źródło
$1^{3}\Pi$	Na(3s) + Rb(5p)	6,82	6559	11267	11321	104,43	0,0715	6507	[65] Wiatr i in. (2015) T
		6,87	6378		11361				[18] Docenko i in. (2007) E
		6,84	6307	11294	11294	102,88	0,0710	6256	[21] Chaieb i in. (2014) T
		7,00			11303	103,50	0,0679		[22] Korek i in. (2000) T
$2^3\Pi$	Na(3p) + Rb(5s)	8,08	2834	19909	19273	61,89	0,0507	2803	[65] Wiatr i in. (2015) T
		8,13	2705	19796	19104	58, 58	0,0503	2675	[21] Chaieb i in. (2014) T
		8,33			18946	58,50	0,0479		[22] Korek i in. (2000) T
$3^{3}\Pi$	Na(3s) + Rb(4d)	11,95	935	24947	23564	30,11	0,0233	920	[65] Wiatr i in. (2015) T
		12,00	907	24924	23292	33,17	0,0231	891	[21] Chaieb i in. (2014) T
$4^3\Pi$	Na(3s) + Rb(6p)	8,48	3785	26856	25120	110,88	0,0462	3730	bieżące wyniki
		8,45	3688	26743	24939	101,30	0,0465	2631	[21] Chaieb i in. (2014) T
$5^{3}\Pi$	Na(3s) + Rb(5d)	8,35	4494	27432	26347	64,71	0,0475	4462	bieżące wyniki
		8,40	4355	27331	26191	66,71	0,0471	4324	[21] Chaieb i in. (2014) T

Tab. 3.5. Parametry spektroskopowe stanów $(1-5)^3 \Pi$ cząsteczki NaRb. Litera T oznaczarezultaty teoretyczne a przez literę E oznaczono wyniki eksperymentalne.

W tabeli 3.5 przedstawiono parametry spektroskopowe stanów $(1-5)^{3}\Pi$. W wypadku stanu 1³II możemy zauważyć pewne rozbieżności. Policzona przeze mnie energia dysocjacji wynosi 6559 cm⁻¹ i jest większa o 181 cm⁻¹ od wyniku Docenko i in. [18] (6378 cm⁻¹), podczas gdy w przypadku Chaieba i in. [18] otrzymana energia w zestawieniu z eksperymentem jest mniejsza o 71 cm⁻¹. Gdy weźmie się pod uwagę policzoną przeze mnie energię termu elektronowego T_e z innymi teoretycznymi rezultatami [21, 22], po raz kolejny zauważamy najlepszą zgodność z wynikami eksperymentalnymi [72]. Różnica w moim przypadku wynosi 40 cm⁻¹, podczas gdy dla innych rezultatów przekracza 55 cm⁻¹.

W tabelach 3.6, 3.7 przedstawiono parametry spektroskopowe stanów $(1-2)^1 \Delta$ i $(1-2)^3 \Delta$ w zestawieniu z innymi wynikami teoretycznymi [21, 22].

Tab. 3.6. Parametry spektroskopowe stanów $(1-2)^1\Delta$ cząsteczki NaRb. Litera T oznacza rezultaty teoretyczne a przez literę E oznaczono wyniki eksperymentalne.

Stan	Asymptota	R_e	D_e	T_{ev}	T_e	ω_e	B_e	D_0	Źródło
$1^{1}\Delta$	Na(3s) + Rb(4d)	7,40	2812	21827	21687	80,63	0,0605	2771	[65] Wiatr i in. (2015) T
		7,48	2605	21775	21594	80,15	0,0594	2566	[21] Chaieb i in. (2014) T
		7,66			21575	$76,\!60$	0,0568		[22] Korek i in. (2000) T
$2^{1}\Delta$	Na(3s) + Rb(5d)	8,00	3715	27760	27126	71,59	0,0519	3680	bieżące wyniki
		8,06	3593	27587	26953	69,76	0,0511	3558	[21] Chaieb i in. (2014) T
		8,17			26962	66,70	0,0499		[22] Korek i in. (2000) T

Tab. 3.7. Parametry spektroskopowe stanów $(1-2)^3\Delta$ cząsteczki NaRb. Litera T oznaczarezultaty teoretyczne a przez literę E oznaczono wyniki eksperymentalne.

Stan	Asymptota	R_e	D_e	T_{ev}	T_e	ω_e	B_e	D_0	Źródło
$1^{3}\Delta$	Na(3s) + Rb(4d)	7,59	2274	22492	22224	76,29	0,0577	2236	[65] Wiatr i in. (2015) T
		7,67	2084	22478	22115	76, 17	0,0565	2048	[21] Chaieb i in. (2014) T
		7,86			22077	70,80	0,0539		[22] Korek i in. (2000) T
$2^{3}\Delta$	Na(3s) + Rb(5d)	7,97	3727	27804	27115	74,53	0,0523	3689	bieżące wyniki
		8,02	3599	27701	26947	74,48	0,0517	3563	[21] Chaieb i in. (2014) T
		8,17			26942	$71,\!10$	0,0499		[22] Korek i in. (2000) T

Kolejny etap stanowi przedstawienie dwóch stanów zbiegających do asymptoty Na(3s) + Rb(3p) czyli $2^{1}\Sigma^{+}$ i $1^{3}\Pi$.

Rys. 3.14. Porównanie krzywych energii potencjalnej stanu $2^{1}\Sigma^{+}$ i $1^{3}\Pi$ cząsteczki NaRb [65] z eksperymentalnymi danymi Docenko i in. [18] jak również z wynikami teoretycznymi Aymara i Dulieu [71] oraz Korka i in. [22].

Na rysunku 3.14 można zauważyć porównanie policzonych przeze mnie stanów energetycznych $2^{1}\Sigma^{+}$ i $1^{3}\Pi$ [65] z otrzymanymi eksperymentalnie Docenko i in. [18] jak również innych teoretycznych rezultatów otrzymanych przez Aymara i Dulieu [71] oraz Korka i in. [22]. Jest bardzo wyraźne, że kształt potencjałów otrzymanych przeze mnie [65] oraz Aymara i Dulieu [71] zgadza się dobrze z krzywymi otrzymanymi eksperymentalnie [18], podczas gdy teoretyczne krzywe energii potencjalnej otrzymane przez Korka i in. [22] są płytsze. Tylko małe różnice są widoczne dla większych międzyjądrowych odległości odpowiednio o pomiędzy 13 a 18 a₀ dla $1^{3}\Pi$ i $2^{1}\Sigma^{+}$. Przypuszczam, że te małe różnice są spowodowane problemami z dopasowaniem części eksperymentalnej i analitycznej opisanej przez Docenko i in. [18].

3.2. Potencjały relatywistyczne cząsteczki

Policzyłem relatywistyczne krzywe energii potencjalnej (z uwzględnieniem oddziaływania spin-orbita). Odpowiadają one przypadkowi Hunda (c). Modelowym hamiltonianem na poziomie metod obliczeniowych jest \hat{H}_{val} (2.41).

3.2.1. Asymptoty

Obliczone potencjały z rozszczepieniem spin-orbita zbiegają do następujących asymptot atomowych: $Na(3s^2S_{1/2}) + Rb(5s^2S_{1/2}), \quad Na(3s^2S_{1/2}) + Rb(5p^2P_{1/2}),$ $Na(3s^2S_{1/2}) + Rb(5p^2P_{3/2}), \quad Na(3p^2P_{1/2}) + Rb(5s^2S_{1/2}), \quad Na(3p^2P_{3/2}) + Rb(5s^2S_{1/2}),$ $Na(3s^2S_{1/2}) + Rb(4d^2D_{5/2}), Na(3s^2S_{1/2}) + Rb(4d^2D_{3/2}), Na(3s^2S_{1/2}) + Rb(6s^2S_{1/2}),$ $Na(3s^{2}S_{1/2}) + Rb(6p^{2}P_{1/2}), \quad Na(3s^{2}S_{1/2}) + Rb(6p^{2}P_{3/2}), \quad Na(3s^{2}S_{1/2}) + Rb(5d^{2}D_{3/2}),$ $Na(3s^2S_{1/2}) + Rb(5d^2D_{5/2}), Na(4s^2S_{1/2}) + Rb(5s^2S_{1/2})$ i $Na(3s^2S_{1/2}) + Rb(7s^2S_{1/2}).$ W tabeli 3.8 przedstawiam wyniki asymptotyczne dla stanów wzbudzonych i porównuje z wynikami innych autorów. Rezultaty teoretyczne, które wyznaczyli Korek i Fawwaz [23] są otrzymane przy pomocy pakietu programów CIPSI. Ze względu na to, że w podejściu relatywistycznym została wykorzystane taka sama baza i metody obliczeniowe jak przed uwzględnieniem rozszczepienia, zgodność wyników otrzymanych przeze mnie w tej pracy z danymi eksperymentalnymi jest nadal bardzo dobra. Wartość bezwzględna różnicy pomiędzy wynikami doświadczalnymi przedstawionymi przez Sansonettiego [62–64] a tymi wyznaczonymi przeze mnie nie przekracza 4 cm⁻¹. Jak można zauważyć w przypadku danych teoretycznych, które otrzymali Korek i Fawwaz [23] dla siedmiu asymptot są znaczące rozbieżności przekraczające 10 cm^{-1} (patrz tabela 3.8).

Tab. 3.8. Porównanie energii asymptotycznych z rozszczepieniem spin-orbita z innymi wynikami eksperymentalnymi i teoretycznymi. Energie przedstawiono w cm⁻¹. Wyniki doświadczalne zostały przedstawione przez Sansonettiego [62–64], a teoretyczne rezultaty dostarczyli Korek i Fawwaz [23]. Ostanie dwie kolumny oznaczają różnice pomiędzy danymi eksperymentalnymi a wynikami teoretycznymi, którymi w pierwszym wypadku są bieżące wyniki, a w drugim te obliczone przez Korka i Fawwaza [23].

Asymptoty	Bieżące wyniki	Sansonetti [62, 63]	Korek i Fawwaz [23]	Δ_{S-B}	Δ_{S-K}
$Na(3s^2S_{1/2}) + Rb(5p^2P_{1/2})$	12579,55	12578,95	12578,32	-0,60	0,63
$Na(3s^2S_{1/2})+Rb(5p^2P_{3/2})$	12818,89	12816,55	12815,99	-2,34	0,56
$Na(3p^2P_{1/2})+Rb(5s^2S_{1/2})$	16953,82	16956, 17	16967,48	2,35	-11,31
$Na(3p^2P_{3/2})+Rb(5s^2S_{1/2})$	16973,63	$16973,\!37$	17004,41	-0,26	-31,04
$Na(3s^2S_{1/2})+Rb(4d^2D_{5/2})$	19357,39	19355, 20	19354,87	-2,19	0,33
$Na(3s^2S_{1/2})+Rb(4d^2D_{3/2})$	19358,05	$19355,\!65$	19354,87	-2,40	0,78
$Na(3s^2S_{1/2})+Rb(6s^2S_{1/2})$	20128,54	20132,51	20101,35	3,97	31,16
$Na(3s^2S_{1/2})+Rb(6p^2P_{1/2})$	23713,37	23715,08	23748,14	1,71	-33,06
$Na(3s^2S_{1/2})+Rb(6p^2P_{3/2})$	23790,91	23792,59	23825,73	1,68	-33,14
$Na(3s^2S_{1/2})+Rb(5d^2D_{3/2})$	25698,73	25700,54	25707,75	1,81	-7,21
$Na(3s^2S_{1/2})+Rb(5d^2D_{5/2})$	25701,57	$25703,\!50$	25710,72	1,93	-7,22
$Na(4s^2S_{1/2}) + Rb(5s^2S_{1/2})$	25737,57	25740,00	25760,09	2,43	-20,09
$Na(3s^2S_{1/2})+Rb(7s^2S_{1/2})$	26307,64	26311,44	26300,98	3,80	10,46

3.2.2. Krzywe adiabatyczne energii potencjalnej

Policzyłem czternaście krzywych energii potencjalnej stanów $\Omega = 0^+$ oraz 0^- , dwadzieścia jeden krzywych energii potencjalnej dla $\Omega = 1$, dziewięć krzywych energii potencjalnej dla $\Omega = 2$ i dwie dla $\Omega = 3$. Charakterystyczne fragmenty krzywych są przedstawione na końcu wywodu kolejno na rysunkach 3.15-3.19. Tutaj także można przeprowadzić podobną analizę dotyczącą charakterystycznych avoided crossings.

Rysunek 3.15 przedstawia krzywe z uwzględnieniem oddziaływania spin-orbita w symetrii 0^+ . Krzywa stanu podstawowego $(1)0^+$ ma kształt regularny. Wraz ze wzrastająca energia najniższe charakterystyczne avoided crossing można zauważyć pomiędzy stanami (2)0⁺ i (3)0⁺ zbiegającymi odpowiednio do asymptot $Na(3s^2S_{1/2})$ + $Rb(5p^2P_{1/2})$ i $Na(3s^2S_{1/2})+Rb(5p^2P_{3/2})$. Wartość przerwy energetycznej dla odległości $R = 7,8 a_0$ wynosi 143 cm⁻¹. Przyjrzyjmy się charakterystycznym AC dla stanów $(4)0^+$, $(5)0^+$ i $(6)0^+$ zbiegających kolejno do asymptot $Na(3p^2P_{1/2})+Rb(5s^2S_{1/2})$, $Na(3p^2P_{3/2})+Rb(5s^2S_{1/2})$ i $Na(3s^2S_{1/2})+Rb(4d^2D_{5/2})$. W odległości 18,4 a₀ różnica energii pomiędzy stanami $(5)0^+$ i $(4)0^+$ wynosi około 29 cm⁻¹, a w przypadku stanów $(6)0^+$ i $(5)0^+$ przyjmuje wartość około 47 cm⁻¹. Drugie avoided crossing pomiędzy stanami (4)0⁺ i (5)0⁺ występuje w odległości 13,8 a_0 i wartość przerwy wynosi w przybliżeniu 413 cm⁻¹. Niedaleko od niego znajduje się avoided crossing w odległości R = 12, 2 a₀ pomiędzy stanami (5)0⁺ i (6)0⁺. Wartość różnicy energetycznej w tym punkcie wynosi około 74 cm⁻¹. Wraz ze wzrostem energii możemy zauważyć AC pomiędzy stanami $(6)0^+$ i $(7)0^+$, gdzie dla odległości 7,8 a₀ przerwa energetyczna wynosi 137 cm⁻¹. Stan (7)0⁺ zbiega do asymptoty $Na(3s^2S_{1/2}) + Rb(4d^2D_{3/2})$ a $(8)0^+$ do $Na(3s^2S_{1/2})+Rb(6s^2S_{1/2})$. Pomiędzy tymi stanami występuje AC w odległości 10,4 a_0 a wartość przerwy energetycznej wynosi około 44 cm⁻¹. Stany $(8)0^+$ i $(9)0^+$ mają charakterystyczne avoided crossing dla dwóch odległości R = 25 a_0 i R = 8, 2 a_0 . W tym przypadku przerwy energetyczne wynoszą odpowiednio 762 cm⁻¹ i 412 cm⁻¹. Stany $(9)0^+$ i $(10)0^+$ zbiegają odpowiednio do asymptot $Na(3s^2S_{1/2}) + Rb(6p^2P_{1/2})$ i $Na(3s^2S_{1/2}) + Rb(6p^2P_{3/2})$. W odległości 40 a₀ pomiędzy wymienionymi stanami występuje AC o przerwie energetycznej wynoszącej w przybliżeniu 72 cm⁻¹. Kolejne dwa AC występują w odległościach 12,8 a₀ i 11,8 a₀ z odstępami energetycznymi o wartościach 50 cm⁻¹ i 22 cm⁻¹. Dla odległości 38 a_0 znajduje się AC pomiędzy stanami $(10)0^+$ i $(11)0^+$. Wartość przerwy energetycznej wynosi w tym miejscu 88 cm $^{-1}$. Kolejne AC pomiędzy tymi stanami znajduje się w odległości 12,4 a₀ a odstęp energetyczny wynosi 318 cm⁻¹. Stany (11)0⁺ i (12)0⁺ zbiegają do asymptot atomowych $Na(3s^2S_{1/2})+Rb(5d^2D_{3/2})$ i $Na(3s^2S_{1/2})+Rb(5d^2D_{5/2})$. Charakterystyczne AC występuje pomiędzy nimi w odległości 18,4 a₀, gdzie wartość przerwy energetycznej wynosi około 50 cm⁻¹. Blisko niego w okolicach 18,8 a₀ znajduje się AC pomiędzy stanami $(12)0^+$ i $(13)0^+$ gdzie odstęp energetyczny wynosi 15 cm⁻¹.

Stany (13)0⁺ i (14)0⁺ zbiegają do asymptot atomowych $Na(4s^2S_{1/2})+Rb(5s^2S_{1/2})$ i $Na(3s^2S_{1/2})+Rb(7s^2S_{1/2})$. AC pomiędzy tymi stanami występuje w odległości 9,2 a₀ a odstęp energetyczny wynosi 25 cm⁻¹.

Rysunek 3.16 przedstawia krzywe z uwzględnieniem oddziaływania spin-orbita w symetrii 0^- . Krzywe $(1)0^-$, $(4)0^-$ i $(5)0^-$ mają kształt regularny i zbiegają do asymptot $Na(3s^2S_{1/2}) + Rb(5s^2S_{1/2}), Na(3p^2P_{1/2}) + Rb(5s^2S_{1/2})$ i $Na(3p^2P_{3/2}) + Rb(5s^2S_{1/2})$ $Rb(5s^2S_{1/2})$. Stany (2)0⁻ i (3)0⁻ zbiegają do asymptot atomowych $Na(3s^2S_{1/2})$ + $Rb(5p^2P_{1/2})$ i $Na(3s^2S_{1/2})+Rb(5p^2P_{3/2})$. Charakterystyczne AC pomiędzy tymi stanami występuje w odległości 11,8
a $_0$ a wartość przerwy energetycznej wynosi 179 cm⁻¹. Stany (6)0⁻ i (7)0⁻ zbiegają do asymptot atomowych $Na(3s^2S_{1/2})+Rb(4d^2D_{5/2})$ i $Na(3s^2S_{1/2})+Rb(4d^2D_{3/2})$. Pomiędzy tymi stanami znajdują się charakterystyczne AC w odległościach 15,4 a₀ oraz 10,2 a₀ a wartości odstępów energetycznych wynoszą odpowiednio około 6 cm⁻¹ i w przybliżeniu 59 cm⁻¹. Stan $(8)0^{-}$ zbiega do asymptoty atomowej $Na(3s^2S_{1/2})+Rb(6s^2S_{1/2})$. Stan (7)0⁻ oddziałuje z nim w dwóch odległościach 10,4 \mathbf{a}_0 i 8,4 \mathbf{a}_0 a odstępy energetyczne wynoszą około 306 cm^{-1} i 635 cm^{-1} . Stany $(8)0^{-1}$ i $(9)0^{-1}$ mają trzy charakterystyczne AC w odległościach 8,8 a₀, 8,2 a₀ i 5,4 a₀, a przerwy energetyczne wynoszą dla nich odpowiednio 36 cm^{-1} , 47 cm^{-1} , 107 cm^{-1} . Stany (9)0⁻ i (10)0⁻ zbiegają do asymptot atomowych $Na(3s^2S_{1/2})+Rb(6p^2P_{1/2})$ i $Na(3s^2S_{1/2})+Rb(6p^2P_{3/2})$. Pomiędzy tymi stanami AC występuje w odległości 10,4 a₀ a odstęp energetyczny w tym miejscu wynosi około 190 cm^{-1} . Charakterystyczne dwa AC, w których uczestniczą stany $(10)0^{-}$, $(11)0^{-}$ i $(12)0^{-}$, występują w okolicach 15 a₀. W przypadku stanów $(10)0^{-}$ i $(11)0^{-}$ przerwa energetyczna wynosi 67 cm⁻¹, a pomiędzy stanami (11)0⁻ i (12)0⁻ wynosi 27 cm⁻¹. Stany (11)0⁻ i (12)0⁻ zbiegają odpowiednio do asymptot $Na(3s^2S_{1/2}) + Rb(5d^2D_{3/2})$ i $Na(3s^2S_{1/2})+Rb(5d^2D_{5/2})$. Pomiędzy stanami (12)0⁻ a (13)0⁻ występuje charakterystyczne AC w odległości 8,2 a₀, a wartość przerwy energetycznej wynosi w przybliżeniu 70 cm⁻¹. Stany $(13)0^{-1}$ i $(14)0^{-1}$ zbiegają do asymptot atomowych $Na(4s^2S_{1/2}) + Rb(5s^2S_{1/2})$ i $Na(3s^2S_{1/2}) + Rb(7s^2S_{1/2})$. Charakterystyczne dwa avoided crossing pomiędzy tymi stanami występują w odległościach 14,4 a_0 i 11,6 a_0 z wartościami przerw energetycznych wynoszącymi odpowiednio 33 cm^{-1} i 147 cm⁻¹. Dla stanu $(14)0^{-}$ występuje również nieregularność w okolicach 8 a₀.

Rysunek 3.17 przedstawia krzywe z uwzględnieniem oddziaływania spin-orbita w symetrii 1. Stan (1)1 jest regularny i zbiega do asymptoty $Na(3s^2S_{1/2})+Rb(5s^2S_{1/2})$. Stan (2)1 zbiega do asymptoty $Na(3s^2S_{1/2})+Rb(5p^2P_{1/2})$ a stany (3-4)1 do asymptoty $Na(3s^2S_{1/2})+Rb(5p^2P_{3/2})$. Charakterystyczne AC pomiędzy stanami (2)1 i (3)1 występuje w odległości 11,6 a₀ a wartość przerwy energetycznej wynosi około 134 cm⁻¹. Następne charakterystyczne avoided crossing znajduje się pomiędzy stanami (3)1 i (4)1 w odległości 6,8 a₀ a wartość przerwy energetycznej wynosi około 145 cm⁻¹. Pomiędzy stanami (4)1 a (5)1 występuje AC w odległości 4,8 a₀ a wartość przerwy energetycznej wynosi 134 cm⁻¹. Stan (5)1 zbiega do asymptoty $Na(3p^2P_{1/2})+$

 $Rb(5s^2S_{1/2})$ a stany (6-7)1 do asymptoty $Na(3p^2P_{3/2})+Rb(5s^2S_{1/2})$. Charakterystyczne AC występuje pomiędzy stanami (5)1 i (6)1 w odległości 16,4 a₀ a wartość przerwy energetycznej wynosi 12 cm⁻¹. Pomiędzy stanami (6)1 a (7)1 dla bardzo małych odległości wynoszących odpowiednio 6,6 a₀ i 5,6 a₀ występują AC a wartości przerw energetycznych wynoszą odpowiednio 12 cm^{-1} i 37 cm⁻¹. Stany (8-9)1 zbiegają do asymptoty $Na(3s^2S_{1/2})+Rb(4d^2D_{5/2})$, a stany (10-11)1 zbiegają do asymptoty $Na(3s^2S_{1/2})+Rb(4d^2D_{3/2})$. Stan (12)1 zmierza ku asymptocie $Na(3s^2S_{1/2})+Rb(6s^2S_{1/2})$. Dla stanów (8)1 i (9)1 występują dwa AC w odległościach 15,4 \mathbf{a}_0 i 10,8 \mathbf{a}_0 o wartościach przerw energetycznych wynoszących odpowiednio 7 $\rm cm^{-1}$ i 44 cm⁻¹. Pomiędzy stanami (10)1 a (11)1 dla odległości występują AC wynoszących odpowiednio 11,6 a₀, 7,2 a₀ i 5,4 a₀. Przerwy energetyczne dla danego zbioru odległości wynoszą kolejno 3 cm⁻¹, 24 cm⁻¹ i 36 cm⁻¹. Dla stanów (11)1 i (12)1 mamy dwa charakterystyczne avoided crossings dla odległości 10,4 a_0 i 8,4 a_0 , wartości odstępów energetycznych wynoszą tam odpowiednio 306 cm⁻¹ i 634 cm⁻¹. Stan (13)1 zmierza do asymptoty $Na(3s^2S_{1/2})+Rb(6p^2P_{1/2})$ a stany (14-15)1 zmierzają do asymptoty $Na(3s^2S_{1/2}) + Rb(6p^2P_{3/2})$. Pomiędzy (12)1 a (13)1 znajdują się trzy avioded crossings w odległościach 8,8 a_0 , 8,2 a_0 i 5,6 a_0 . Wartości energii przerw pomiędzy stanami wynoszą dla nich odpowiednio 22 cm^{-1} , 29 cm^{-1} i 31 cm⁻¹. Pomiędzy stanami (13)1 a (14)1 występują trzy avoided crossings występujące w odległościach 10,4 a₀, 7,6 a₀ i 5,4 a₀. Wartości przerw energetycznych dla danych odległości wynoszą kolejno 178 cm⁻¹, 8 cm⁻¹ i 51 cm⁻¹. Natomiast pomiędzy stanami (14)1 a (15)1 są cztery AC. Występują one dla odległości 18 a₀, 13,2 a₀, 8,8 a_0 i 5,0 a_0 . Wartości odstępów energetycznych wynoszą kolejno 53 cm⁻¹, 14 cm⁻¹, 56 cm $^{-1}$ i 78 cm $^{-1}$. Stany (16-17)
1 i (18-19) 1 zbiegają odpowiednio do następujących asymptot atomowych $Na(3s^2S_{1/2}) + Rb(5d^2D_{3/2})$ i $Na(3s^2S_{1/2}) + Rb(5d^2D_{5/2})$. Pomiędzy stanami (15)1 i (16)1 znajdują się trzy charakterystyczne AC w odległościach 14,8 a_0 , 7,8 a_0 i 5,2 a_0 . Ich wartości wynoszą odpowiednio 71 cm⁻¹, 25 cm⁻¹ i 29 cm^{-1} . Przedstawione na rysunku stany (16)1 i (17)1 mają dwa avoided crossings w odległościach 15 a₀ i 6 a₀ o wartościach przerw energetycznych wynoszących odpowiednio 15 cm⁻¹ i 20 cm⁻¹. Pomiędzy stanami (17)1 i (18)1 dla odległości 8,4 a_0 i 5,2 a_0 są dwa ACs o wartościach przerw wynoszących odpowiednio 36 cm⁻¹ i 152 cm^{-1} . Dla stanów (18)1 i (19)1 dla odległości 18 a₀ i 7,2 a₀ są dwa avoided crossings o wartościach odstępów energetycznych wynoszących odpowiednio 2 cm^{-1} i 4 cm^{-1} . Stany (20)1 i (21)1 zbiegają odpowiednio do asymptot $Na(4s^2S_{1/2})+Rb(5s^2S_{1/2})$ i $Na(3s^2S_{1/2})+Rb(7s^2S_{1/2})$. Pomiędzy stanami (19)1 i (20)1 są aż cztery avoided crossings dla odległości wynoszących odpowiednio 16 a₀, 12,6 a₀, 8,2 a₀ i 5,4 a₀. Wartości AC dla tych odległości wynoszą odpowiednio około 4 cm⁻¹, 16 cm⁻¹, 45 cm⁻¹ i 86 cm⁻¹. Stany (20)1 i (21)1 mają trzy avoided crossing w odległościach wynoszących około 14,4 a₀, 11,8 a₀ i 8 a₀ o wartościach przerw energetycznych wynoszących około 28 cm^{-1} , $161 \text{ cm}^{-1} \text{ i } 240 \text{ cm}^{-1}$.

Rysunek 3.18 przedstawia krzywe z uwzględnieniem oddziaływania spin-orbita w symetrii 2. Stany (1)2 i (2)2 mają kształt regularny. Natomiast pomiędzy stanami (3)2 i (4)2 zbiegającymi do asymptoty $Na(3s^2S_{1/2})+Rb(4d^2D_{5/2})$ dla odległości równej 11 a₀ występuje AC o wartości przerwy energetycznej wynoszącej około 36 cm⁻¹. Przy oddziaływaniu stanu (4)2 z wyższym stanem (5)2 zbiegającym do asymptoty $Na(3s^2S_{1/2})+Rb(4d^2D_{3/2})$ w okolicach 10,8 a₀ występuje AC o wartości odstępu energetycznego wynoszącego około 36 cm⁻¹. Stany (6)2 i (7)2 mają bardzo pofalowany kształt. Pomiędzy stanami 5(2) i 6(2) występuje AC w odległości 8,4 a₀ o wartości przerwy energetycznej wynoszącej około 634 cm⁻¹. Pomiędzy stanami (6)2 i (7)2 są trzy AC w odległościach 18,8 a₀, 10,4 a₀ i 6,2 a₀ a wartości przerw energetycznych wynoszą odpowiednio około 1089 cm⁻¹, 860 cm⁻¹ i 545 cm⁻¹. Stan (7)2 zbiega do asymptoty $Na(3s^2S_{1/2})+Rb(5d^2D_{3/2})$ a stany (8)2 i (9)2 zbiegają do asymptoty $Na(3s^2S_{1/2})+Rb(5d^2D_{5/2})$. Poza tym stany (8)2 i (9)2 znajdują się bardzo blisko siebie.

Rysunek 3.19 przedstawia krzywe z uwzględnieniem oddziaływania spin-orbita w symetrii 3. Obie krzywe mają kształt regularny.

Rys. 3.15. Krzywe energii potencjalnej dla stanów $(1-14)0^+$.

Rys. 3.16. Krzywe energii potencjalnej dla stanów $(1-14)0^-$.

Rys. 3.17. Krzywe energii potencjalnej dla stanów (1-21)1.

Rys. 3.18. Krzywe energii potencjalnej dla stanów (1-9) 2.

Rys. 3.19. Krzywe energii potencjalnej dla stanów (1-2) 3.

3.2.3. Analiza i porównania

W tej sekcji w tabelach 3.9, 3.10, 3.11 i 3.12 przedstawiłem parametry spektroskopowe w porównaniu z wynikami teoretycznymi Korka i Fawwaza [23]. Są to parametry w reprezentacji relatywistycznej. Obecnie nie ma dostępnych danych eksperymentalnych w tej reprezentacji, więc tabele porównawcze zostaną ukazane w formie zestawienia ze względu na brak odniesienia do wyników referencyjnych. Wszystkie tabele krzywych relatywistycznych znajdują się w załączniku B.

Jednakże rozszerzenie obliczeń na podejście relatywistyczne może mieć znaczenie w odwrotnym podejściu perturbacyjnym związanym z dopasowaniem tzw. spacingów, czyli odstępami pomiędzy poziomami oscylacyjno-rotacyjnymi, które odpowiednio charakteryzują dane doświadczalne. Odpowiednie poziomy oscylacyjnorotacyjne zostaną przedstawione na rysunku 3.20.

Stan	Asymptota	R_e	D_e	T_{ev}	T_e	ω_e	B_e	D_0	Źródło
(1)0 ⁺	$Na(3s^2S_{1/2}) + Rb(5s^2S_{1/2})$	6,83	5141		0	106, 29	0,07094		bieżące wyniki
	, , ,	6,78	5263		0	107,90	0,07228		[23] Korek i Fawwaz
(2)0 ⁺	$Na(3s^2S_{1/2}) + Rb(5p^2P_{1/2})$	6,82	6451	11217	11269	103,92	0,07117	6399	bieżące wyniki
	, , ,	6,77	6578		11259	105,70	0,07259		[23] Korek i Fawwaz
bariera		7,83			11784				bieżące wyniki
		7,80			11794				[23] Korek i Fawwaz
drugie minimum		8,22	5989		11731	62,39	0,04898	5958	bieżące wyniki
		8,20			11765				[23] Korek i Fawwaz
(4)0+	$Na(3p^2P_{1/2})+Rb(5s^2S_{1/2})$	8,46	4455	18785	17640	63,33	0,04621	4423	bieżące wyniki
		8,34	4525		17705	64,90	0,04774		[23] Korek i Fawwaz
(5)0+	$Na(3p^2P_{3/2})+Rb(5s^2S_{1/2})$	8,09	2868	19886	19246	$61,\!65$	0,05040	2838	bieżące wyniki
		7,94	2968		19261	78,60	0,05266		[23] Korek i Fawwaz
(9)0+	$Na(3s^2S_{1/2}) + Rb(6p^2P_{1/2})$	8,18	3957	25865	24897	70,78	0,04934	3922	bieżące wyniki
	, , ,	8,13	4067		24941	72,00	0,05031		[23] Korek i Fawwaz
(10)0+	$Na(3s^2S_{1/2}) + Rb(6p^2P_{3/2})$	8,47	3826	26841	25106	110,45	0,04603	3771	bieżące wyniki
	, , ,	8,40	3962		25126	118,50	0,04709		[23] Korek i Fawwaz
(11)0+	$Na(3s^2S_{1/2})+Rb(5d^2D_{3/2})$	8,36	4513	27367	26327	63,39	0,04724	4481	bieżące wyniki
	, , ,	8,30			26439	62,90	0,04822		[23] Korek i Fawwaz
bariera		11,51			27431				bieżące wyniki
		11,50			27576				[23] Korek i Fawwaz
drugie minimum		12,36	3506		27333	63,58	0,02177	3474	bieżące wyniki
		12,30	3112		27498				[23] Korek i Fawwaz
(12)0+	$Na(3s^2S_{1/2})+Rb(5d^2D_{5/2})$	8,41	4457	27407	26385	60,01	0,04678	4427	bieżące wyniki
	, , ,	8,30	4495		26475	61,60	0,04829		[23] Korek i Fawwaz
(13)0+	$Na(4s^2S_{1/2}) + Rb(5s^2S_{1/2})$	7,90	3739	27760	27139	80,34	0,05276	3699	bieżące wyniki
	. , ,	7,87	3752		27222	79,50	0,05368		[23] Korek i Fawwaz
(14)0+	$Na(3s^2S_{1/2}) + Rb(7s^2S_{1/2})$	8,20	4055	28049	27394	71,03	0,04909	4019	bieżące wyniki
	, -, -	8,14	3558		27463	72,80	0,05022		[23] Korek i Fawwaz

Tab. 3.9. Parametry spektroskopowe wybranych stanów 0^+ cząsteczki NaRb.

Stan	Asymptota	R_e	D_e	T_{ev}	T_e	ω_e	B_e	D_0	Źródło
(1)0-	$Na(3s^2S_{1/2}) + Rb(5s^2S_{1/2})$	10,50	210	6815	5351	20,17	0,02966	200	bieżące wyniki
	, , ,	10,22	284		4979	22,40	0,03183		[23] Korek i Fawwaz
(2)0-	$Na(3s^2S_{1/2})+Rb(5p^2P_{1/2})$	6,81	6449	11218	11272	104,19	0,07121	6397	bieżące wyniki
	, , ,	6,77	6577		11263	105,90	0,07261		[23] Korek i Fawwaz
(3)0-	$Na(3s^2S_{1/2}) + Rb(5p^2P_{3/2})$	8,47	2409	16850	15550	61,72	0,04598	2379	bieżące wyniki
	, -,	8,41	2444		15635	$62,\!60$	0,04696		[23] Korek i Fawwaz
(4)0-	$Na(3p^2P_{1/2})+Rb(5s^2S_{1/2})$	8,09	2849	19885	19245	61,68	0,05041	2818	bieżące wyniki
	, , ,	8,13	2956		19288	46,40	0,04976		[23] Korek i Fawwaz
(5)0-	$Na(3p^2P_{3/2})+Rb(5s^2S_{1/2})$	7,65	2017	20456	20098	79,17	0,05642	1977	bieżące wyniki
	, , ,	7,59	2130		20104	79,40	0,05763		[23] Korek i Fawwaz
(6)0-	$Na(3s^2S_{1/2})+Rb(4d^2D_{5/2})$	8,22	1286	24135	23212	65,21	0,04882	1253	bieżące wyniki
	, , , ,	8,16	2384		23227	66,40	0,04988		[23] Korek i Fawwaz
bariera		10,10			23786				bieżące wyniki
		10,20			23860				[23] Korek i Fawwaz
druga studnia		11,94	939		23559	29,92	0,02327	924	bieżące wyniki
		11,59			23654	65,30	0,02476		[23] Korek i Fawwaz
$(10)0^{-}$	$Na(3s^2S_{1/2}) + Rb(6p^2P_{3/2})$	9,10	3086	27298	25846	110,45	0,03973	3030	bieżące wyniki
		9,06	3137		25945	114,40	0,04046		[23] Korek i Fawwaz
(11)0-	$Na(3s^2S_{1/2}) + Rb(5d^2D_{3/2})$	8,44	4495	27402	26344	76,09	0,04624	4457	bieżące wyniki
		8,30	4511		26460	63,20	0,04821		[23] Korek i Fawwaz
(14)0-	$Na(3s^2S_{1/2}) + Rb(7s^2S_{1/2})$	8,23	4019	28049	27429	151,60	0,04942	3943	bieżące wyniki
	. ,	8,18	4045		27500	177,50	0,04960		[23] Korek i Fawwaz

Tab. 3.10. Parametry spektroskopowe wybranych stanów 0^- cząsteczki NaRb.

Tab. 3.11. Parametry spektroskopowe wybranych stanów 1 cząsteczki NaRb.

Stan	Asymptota	R_e	D_e	T_{ev}	T_e	ω_e	B_e	D_0	Źródło
(1)1	$Na(3s^2S_{1/2})+Rb(5s^2S_{1/2})$	10,50	210	6816	4931	20,17	0,02966	200	bieżące wyniki
	, , ,	10,22	284		4979	22,60	0,03186		[23] Korek i Fawwaz
(2)1	$Na(3s^2S_{1/2}) + Rb(5p^2P_{1/2})$	6,82	6400	11267	11320	104, 16	0,07111	6348	bieżące wyniki
	, , , ,	6,76	6530		11310	106,00	0,07269		[23] Korek i Fawwaz
(3)1	$Na(3s^2S_{1/2}) + Rb(5p^2P_{3/2})$	8,47	2413	16829	15547	61,63	0,04598	2382	bieżące wyniki
	, , , , ,	8,41	2444		15634	62,50	0,04696		[23] Korek i Fawwaz
(4)1		7,82	1373	16987	16586	61,90	0,05383	1342	bieżące wyniki
		7,77	1445		16634	62,40	0,05510		[23] Korek i Fawwaz
(5)1	$Na(3p^2P_{1/2})+Rb(5s^2S_{1/2})$	8,08	2821	19909	19274	61,77	0,05048	2790	bieżące wyniki
	, , ,	8,00	2928		19303	63,40	0,05200		[23] Korek i Fawwaz
(6)1	$Na(3p^2P_{3/2})+Rb(5s^2S_{1/2})$	7,95	2342	20401	19773	73, 19	0,05223	2305	bieżące wyniki
	, , ,	7,86	2381		19849	74,60	0,05381		[23] Korek i Fawwaz
(7)1		7,65	2017	20457	20098	79,18	0,05642	1977	bieżące wyniki
		7,59	2126		20105	81,70	0,05765		[23] Korek i Fawwaz
(8)1	$Na(3s^2S_{1/2})+Rb(4d^2D_{5/2})$	7,58	2274	22492	22224	76,11	0,05737	2236	bieżące wyniki
	, , ,	7,56	2281		22336	75,80	0,05820		[23] Korek i Fawwaz
bariera		10,79			23657				bieżące wyniki
		10,70			23761				[23] Korek i Fawwaz
drugie minimum		11,95	934		23564	30,03	0,02321	919	bieżące wyniki
		11,88			23668	$_{30,40}$	0,02355		[23] Korek i Fawwaz
(9)1	$Na(3s^2S_{1/2}) + Rb(4d^2D_{5/2})$	8,22	1286	24135	23212	65,21	0,04882	1253	bieżące wyniki
		8,16	1391		23227	66,10	0,04987		[23] Korek i Fawwaz
(16)1	$Na(3s^2S_{1/2})+Rb(5d^2D_{3/2})$	8,43	4486	27430	26354	73,14	0,04662	4449	bieżące wyniki
	, , ,	8,28	4494		26743	63,70	0,04848		[23] Korek i Fawwaz
(19)1	$Na(3s^2S_{1/2}) + Rb(5d^2D_{5/2})$	7,85	3693	27818	27150	43,54	0,05146	3671	bieżące wyniki
	, -,	8,05	3726		27266	75,70	0,05107		[23] Korek i Fawwaz
(20)1	$Na(4s^2S_{1/2})+Rb(5s^2S_{1/2})$	8,23	3700	27963	27179	168, 15	0,04865	3616	bieżące wyniki
		8,16	3727		27316	94,90	0,04995		[23] Korek i Fawwaz
(21)1	$Na(3s^2S_{1/2}) + Rb(7s^2S_{1/2})$	8,19	4015	28509	27433	157,03	0,04854	3937	bieżące wyniki
	, _,	8,19	4045		27498	180,90	0,04947		[23] Korek i Fawwaz

Stan	Asymptota	R_e	D_e	T_{ev}	T_e	ω_e	B_e	D_0	Źródło
(1)2	$Na(3s^2S_{1/2})+Rb(5p^2P_{3/2})$	6,82	6591	11316	11369	104, 15	0,07101	6539	bieżące wyniki
	, -,	6,76	6720		11358	106,20	0,07277		[23] Korek i Fawwaz
(2)2	$Na(3p^2P_{3/2})+Rb(5s^2S_{1/2})$	8,08	2812	19934	19302	61,80	0,05052	2781	bieżące wyniki
		8,00	2900		19331	63,20	0,05190		[23] Korek i Fawwaz
(3)2	$Na(3s^2S_{1/2})+Rb(4d^2D_{5/2})$	7,40	2811	21828	21687	80,43	0,06024	2771	bieżące wyniki
	, , ,	7,36	2836		21782	80,30	0,06131		[23] Korek i Fawwaz
bariera		11,02			23634				bieżące wyniki
		11,00			23735				[23] Korek i Fawwaz
drugie minimum		11,97	930		23568				bieżące wyniki
		11,90			23676				[23] Korek i Fawwaz
(4)2	$Na(3s^2S_{1/2}) + Rb(4d^2D_{5/2})$	7,59	2274	22492	22224	76,10	0,05737	2236	bieżące wyniki
	, , ,	7,56	2279		22339	75,70	0,05819		[23] Korek i Fawwaz
(6)2	$Na(3s^2S_{1/2})+Rb(6p^2P_{3/2})$	8,48	3796	26870	25136	110,76	0,04594	3741	bieżące wyniki
	, , , , ,	8,42	3912		25178	$115,\!60$	0,04691		[23] Korek i Fawwaz
(7)2	$Na(3s^2S_{1/2}) + Rb(5d^2D_{3/2})$	8,36	4477	27463	26363	64,82	0,04724	4444	bieżące wyniki
		8,27	4483		26488	64,60	0,04857		[23] Korek i Fawwaz
(8)2	$Na(3s^2S_{1/2})+Rb(5d^2D_{5/2})$	7,97	3728	27804	27115	74,01	0,05201	3691	bieżące wyniki
	, , ,	7,87	3746		27226	79,10	0,05371		[23] Korek i Fawwaz
(9)2	$Na(3s^2S_{1/2})+Rb(5d^2D_{5/2})$	8,00	3716	27824	27126	71,11	0,05177	3681	bieżące wyniki
	, -,	7,92	3692		27283	72,60	0,05289		[23] Korek i Fawwaz

Tab. 3.12. Parametry spektroskopowe wybranych stanów 2 cząsteczki NaRb.

Rys. 3.20. Poziomy oscylacyjne stanów relatywistycznych $(2)0^+$ i $(3)0^+$ oraz korespondujących nierelatywistycznych $2^1\Sigma^+$ i $1^3\Pi$.

Na rysunku 3.20 przedstawiono poziomy oscylacyjne stanów (2)0⁺ i (3)0⁺ w reprezentacji relatywistycznej oraz korespondujących stanów nierelatywistycznych $2^{1}\Sigma^{+}$ i 1³ Π . Każdy stan ma własne poziomy oscylacyjne w przypisanym kolorze. Można zauważyć, że w okolicach drugiego minimum stanu (2)0⁺ zmienia się odstęp energetyczny poziomów oscylacyjnych. Stan 1³ Π ma płytsze minimum niż (2)0⁺. Minimum stanu (3)0⁺ znajduje się powyżej przecięcia stanów $2^{1}\Sigma^{+}$ i $1^{3}\Pi$. Charakterystyczne AC pomiędzy (2)0⁺ i (3)0⁺ występuje w odległości około 7,8 a₀ a wartość przerwy energetycznej wynosi 143 cm⁻¹.

Rezultaty relatywistyczne mogą być pomocne w oznaczaniu widma i znajdowaniu efektywnych schematów dla formowania ultrazimnej molekuły w głęboko związanym stanie podstawowym. Jednym ze skomplikowanych przypadków jest opis widma fluorescencji indukowanej laserowo dla przejścia $2^{1}\Pi$ do kompleksu $2^{1}\Sigma^{+}/1^{3}\Pi$ przedstawionego przez Docenko i in. [18]. Sprzężenie spin-orbita pomiędzy singletowymi i trypletowymi stanami tego kompleksu jest odpowiedzialne za silne nieregularności w odstępach energetycznych dla poziomów oscylacyjnych i rotacyjnych. Na rysunku 3.21 porównuję oscylacyjne odstępy energetyczne policzone dla moich krzywych energii potencjalnej [65] z tymi otrzymanymi eksperymentalnie [18]. Można zauważyć bardzo dobrą zgodność pomiędzy odstępami pochodzącymi ze stanu $2^{1}\Sigma^{+}$ i tymi pochodzącymi z eksperymentu po przeprowadzeniu depertubacji. To samo można powiedzieć na podstawie porównania stanu $1^{3}\Pi$. Wyjątek stanowią wyższe kwantowe liczby oscylacyjne dla tego stanu.

Rys. 3.21. Porównanie regularnych przerw oscylacyjnych $\Delta_Q = \nu(v^*, J^* = 0) - \nu(v^* + 1, J^* = 0)$ dla stanów $2^1\Sigma^+$ i $1^3\Pi$ pomiędzy teoretycznymi [65] i wynikami wynikającymi z analizy deprturbacyjnej [18].

Całkiem inna sytuacja występuje, kiedy dochodzi do porównania odstępów pomiędzy poziomami oscylacyjnymi dla wyników eksperymentalnych i obecnych teoretycznych uwzględniających efekty relatywistyczne (rys. 3.22). Jako przykład zostały wzięte różnice pomiędzy poziomami oscylacyjno-rotacyjnymi pochodzącymi od stanów $2^{1}\Sigma^{+}$ i $1^{3}\Pi$ dla J'' = 25 i porównanie ich z najbardziej odpowiednimi różnicami pochodzącymi ze stanów (2)0⁺, (3)0⁺ i (2)1.

Porównanie wskazuje na znaczące podobieństwo w położeniu poszczególnych pików. Na rysunku 3.22 konsekwentnie jest pominięta nieopisana część eksperymentalnego widma. Wiedza na temat liczby poziomów oscylacyjno-rotacyjnych stanów $(2)0^+$, $(3)0^+$ i (2)1 leżących poniżej $2^1\Sigma^+(v^*=2, J^*=25)$ daje możliwość znalezienia punktu dopasowania obu obszarów danych. Na tym poziomie jest raczej trudno dokładnie dopasować odstępy pomiędzy poziomami, ponieważ już małe przesunięcia w przypisaniu poziomów po stronie eksperymentalnej i małe niedokładności po stronie teoretycznej dają narastające rozbieżności. Niemniej jednak, można zauważyć, że relatywistyczne potencjały są wygodniejsze w wykorzystaniu, jeśli są przyjmowane jako dane początkowe. Ponadto, w tym przypadku nie będzie potrzeby przeprowadzenia spinowo-orbitalnej deperturbacji. Widma cięższych cząsteczek alkalicznych mogą być więc interpretowane bezpośrednio przy wykorzystaniu potencjałów relatywistycznych [73].

Rys. 3.22. Różnice pomiędzy poziomami oscylacyjno-rotacyjnymi $\Delta_Q = \nu(v^*, J^* = 25) - \nu(v^* + 1, J^* = 25)$ dla obecnie policzonych stanów (2)0⁺, (3)0⁺ i (2)1 w porównaniu z eksperymentalnymi różnicami gałęzi Q dla progresji $2^1\Pi \rightarrow 2^1\Sigma^+/1^3\Pi$ [18].

3.3. Momenty przejść dipolowych

Poniżej na rysunku 3.23 przedstawiono wartości kwadratów momentów przejść dipolowych pomiędzy wybranymi stanami nierelatywistycznymi dla różnych odległości międzyjądrowych R. Do wybranych stanów w reprezentacji nierelatywistycznej należą przejścia: $1^{1}\Sigma^{+} - 2^{1}\Sigma^{+}$, $1^{1}\Sigma^{+} - 3^{1}\Sigma^{+}$, $1^{1}\Sigma^{+} - 1^{1}\Pi$, $1^{1}\Sigma^{+} - 2^{1}\Pi$. Kształty krzywych są szybkozmienne. Rysunek 3.24 przedstawia wartości kwadratów momentów przejść dipolowych pomiędzy stanami (1)0⁺ - (2)0⁺ i (1)0⁺ - (3)0⁺ oraz $1^{1}\Sigma^{+} - 2^{1}\Sigma^{+}$. Jak można zauważyć suma kwadratów momentów dipolowych przejść pomiędzy stanami (1)0⁺ - (3)0⁺ i (1)0⁺ - 2¹\Sigma⁺.

Rys. 3.23. Momenty przejść dipolowych pomiędzy wyszczególnionymi stanami: $1^{1}\Sigma^{+} - 2^{1}\Sigma^{+}, 1^{1}\Sigma^{+} - 3^{1}\Sigma^{+}, 1^{1}\Sigma^{+} - 1^{1}\Pi$ i $1^{1}\Sigma^{+} - 2^{1}\Pi$.

Rys. 3.24. Momenty przejść dipolowych pomiędzy stanami $(1)0^+ - (2)0^+$ i $(1)0^+ - (3)0^+$ wraz z momentem przejścia pomiędzy korespondującymi stanami nierelatywistycznymi $1^1\Sigma^+ - 2^1\Sigma^+$.

3.4. Czynniki Francka-Condona

Poniższe rysunki 3.25, 3.26, 3.27 przedstawiają czynniki Francka-Condona. Poszczególne barwy w ramce po prawej obrazują prawdopodobieństwo przejścia z wybranych danych stanów oscylacyjnych: ν " oznacza poziomy oscylacyjne niższego stanu a ν ' poziomy oscylacyjne stanu znajdującego się wyżej energetycznie. Czynniki Francka-Condona mówią o względnych intensywnościach linii odpowiadających przejściom oscylacyjnym. Wszystkie przejścia elektronowe są pionowe, tzn. że zachodzą bez zmiany położenia jąder.

Wyszczególnione zostaną zakresy liczb oscylacyjnych dla których prawdopodobieństwo zbliża się do jedności. Na przejściu ze stanu (1)0⁺ do (2)0⁺ (rys. 3.25) największe prawdopodobieństwo występuje w zakresie najniższych poziomów oscylacyjnych nie przekraczających 10 poziomu dla stanu początkowego i końcowego. Na przejściu ze stanu (1)0⁺ do (3)0⁺ (rys. 3.26) zakresy są następujące: w okolicach 25-35 oscylacyjnej liczby kwantowej dla początkowego stanu i 15-25 dla stanu końcowego oraz dla kolejnego przejścia w okolicach ν " = 85 i ν ' = 105. Na przejściu ze stanu 1¹ Σ ⁺ do 2¹ Σ ⁺ zakresy dotyczą najwyższych liczb oscylacyjnych ν " wynoszącej około 80-85
i ν 'w zakresie około 135-140 (rys. 3.27).

Rys. 3.25. Czynniki Francka-Condona pomiędzy stanami $(1)0^+$ - $(2)0^+$.

Rys. 3.26. Czynniki Francka-Condona pomiędzy stanami $(1)0^+$ - $(3)0^+$.

Rys. 3.27. Czynniki Francka-Condona pomiędzy stanami $1^{1}\Sigma^{+}$ - $2^{1}\Sigma^{+}$.

4. Perspektywy rozwoju badań

W tym rozdziale przedstawione są możliwości rozszerzenia obliczeń z molekuły dwuatomowej do cząsteczek trójatomowych. Omówiona zostanie cząsteczka Rb₃ jako rozszerzenie podejścia obliczeniowego dla omawianej w tej dysertacji molekuły. Początek rozpoczyna się krótkim wprowadzeniem teoretycznym a następny etap stanowi prezentacja i omówienie wyników. Przedstawione zostaną wyniki w podejściu nierelatywistycznym. W związku z rozwojem eksperymentalnych technik związanych z procesem fotoasocjacji potrzebna jest wiedza na temat kolizji atomu z dimerem i właściwości powstałych w ten sposób trymerów. Powierzchnie energetyczne trymerów pełnią ważną rolę w opisie kwantowej dynamiki dla bardzo niskich energii. Informacje na temat najniższego stanu kwartetowego są ważne w pułapkowaniu magnetycznym [75].

Rys. 4.1. Geometria cząsteczki Rb₃. (A) - nieliniowa geometria cząsteczki, (B) - liniowa geometria cząsteczki.

W przypadku ogólnej, nieliniowej geometrii cząsteczkę można opisać punktową grupą symetrii C_s (zawiera element tożsamościowy i płaszczyznę symetrii) [32, 39,

76]. Ciągłe grupy punktowe opisujące molekuły liniowe to $C_{\infty v}$ i $D_{\infty h}$. Dla molekuły homojądrowej takiej jak Rb₃ możemy rozpatrywać dwa przypadki. Pierwszy z nich to przypadek równych odległości międzyjądrowych ($D_{\infty h}$ - symetryczna liniowa molekuła) $R_{12} = R_{13}$, a drugi występuje gdy $R_{12} \neq R_{13}$ ($C_{\infty v}$ - niesymetryczna liniowa molekuła). Na rysunku 4.1 przedstawiono geometrię cząsteczki Rb₃ za pomocą modelu bryły sztywnej. Przykładem nieliniowej geometrii jest cząsteczka, której kąt wiązania $\theta \neq 180^{\circ}$. W niniejszym podrozdziale będziemy rozważać kąt wiązania $\theta = 60^{\circ}$. Odnosząc się do rysunku 4.1, warto zauważyć, że w praktyce obliczeniowej wykorzystywane są tylko abelowe punktowe grupy symetrii, czyli C_{2v} jako odpowiednik grupy $C_{\infty v}$ i D_{2h} jako odpowiednik $D_{\infty h}$. Warto nadmienić, że symetria cząsteczki ma również w tym wypadku swoje konsekwencje w oznaczaniu stanów [76].

Separacja ruchu jąder i elektronów jest przeprowadzona w analogiczny jak w rozdziale 2.2 (dla N = 3 mamy powierzchnie energii potencjalnej). Model hamitonianu walencyjnego jest rozszerzony na przypadek trójatomowy (więcej informacji można znaleźć w nocie bibliograficznej [45]).

Omówione zostaną trzy podejścia obliczeniowe polegające na doborze różnych pseudopotencjałów, baz funkcyjnych i metod obliczeniowych dzięki, którym wyznaczyłem najniższy stan $^{4}A'$ dla dwóch kątów wiązania $\theta = 60^{\circ}$ oraz $\theta = 180^{\circ}$. We wszystkich obliczeniach oddziaływanie spin-orbita nie było brane pod uwagę.

W pierwszym podejściu obliczeniowym wzorowałem się na artykułach Soldana [75, 77]. W cząsteczce Rb_3 zastosowany został pseudopotencjał o małym rdzeniu (zawierający 28 elektronów) ECP28MWB [58] dla każdego atomu rubidu i 27 pozostałych elektronów zostało branych bezpośrednio pod uwagę w obliczeniach. Poza tym, nie został wykorzystany efektywny potencjał polaryzacyjny rdzenia. Wykorzystana została baza obliczeniowa przedstawiona w tabeli 4.1. Do zastosowanych metod obliczeniowych należały ograniczona metoda Hartree-Focka (RHF) oraz jednoreferencyjny ograniczony otwartopowłokowy wariant metody sprzężonych klasterów z pojedynczymi, podwójnymi i nieiteracyjnymi potrójnymi wzbudzeniami (RCCSD(T)) [75].

typ e	typ orbitalu / nazwa bazy										
s	p	d	f								
25,0	15,0	$1,\!35$	0,07								
10,0	$2,\!838138$	$0,\!45$									
4,0	$1,\!371168$	$0,\!15$									
1,6	0,6624	$0,\!05$									
0,64	0,32	0,016667									
0,256	$0,\!154589$										
0,1024	0,0746809										
0,04096	0,0360777										
0,016384	0,006										
0,0065536											
0,00262144											

Tab. 4.1. Wykładniki bazowych funkcji gaussowskich orbitali s, p, d i f atomu rubidu w podejściu Soldana [77].

Przechodząc do podejścia 2, jest ono analogiczne jak dla molekuły NaRb. W rozważanej cząsteczce Rb₃ trzy elektrony walencyjne są brane bezpośrednio pod uwagę, natomiast rdzenie Rb⁺ są zastępowane przez pseudopotencjały zależne od liczby kwantowej *l*. Zastosowany został wcześniej omówiony i przedstawiony (w tabeli 2.2) efektywny potencjał rdzenia z uwzględnieniem skalarnego efektu relatywistycznego oraz efektywny potencjał polaryzacyjny rdzenia. Metody obliczeniowe są takie same jak w podrozdziale 2.9, z tym że nie było konieczności używania specjalnych metod osiągania zbieżności dla pierwszej iteracji. Zastosowana baza obliczeniowa jest modyfikacją bazy zawartej w tabeli 2.6. Jest ona przedstawiona w postaci tabeli 4.2. Niech nazywa się bazą A.

	typ orbitalu	/ nazwa bazy	
s	p	d	f
ECP36SDF	ECP36SDF	ECP28MDF	ECP28MDF
0,718288	0,161967	0,859432	2,431531
$0,\!273978$	0,050771	$0,\!608150$	0,721517
0,032306	0,022133	0,211260	0,211260
0,015232	0,009934	0,071000	
		0,025490	
	dodatkowe	rozszerzenie	
78,729874	5,258465	$2,\!425571$	
$12,\!943370$	$1,\!648345$	1,716379	
4,937015	0,516699	$1,\!214541$	
2,866915	0,004459	0,023862	
2,323530	0,000403	0,009151	
1,883135		0,007758	
$0,\!104504$		0,003285	
0,068519		0,001180	
0,007182		0,000423	
0,003386			
0,001597			
0,000139			

Tab. 4.2. Wykładniki bazowych funkcji gaussowskich orbitali s, p, d i f atomu rubidu w teraźniejszym podejściu z bazą A.

Podejście 3 stanowi analogiczne podejście jak w metodzie 2 z doborem innej bazy obliczeniowej (baza B) - tabela 4.3.

Tab.	4.3.	Wykładniki bazowych funkcji gaussowskich orbitali s,p,d i f atomu rubidu w
		teraźniejszym podejściu z bazą B.

typ orbitalu / nazwa bazy								
s	p	d	f					
def2-TZVPP	def2-TZVPP	def2-TZVPP	def2-TZVPP					
7,474462	5,672064	0,259079	0,852450					
6,729618	$3,\!332018$	0,042507						
2,781664	0,801501	0,011909						
$0,\!534522$	0,363022							
$0,\!223688$	$0,\!157339$							
0,032410	0,040000							
0,014171	0,016000							

Kolejny etap stanowią analiza i porównania. Wykorzystując ww. trzy podejścia, obliczyłem wartość wzbudzenia atomu rubidu, kiedy elektron walencyjny przechodzi z orbitalu 5s na orbital 5p. W poniższej tabeli 4.4 przedstawiam porównanie wyników dla tego wzbudzenia.

Tab. 4.4. Porównanie wartości energetycznych poziomu $5s5p^2P^o$ rubidu dla trzech podejść z wynikami eksperymentalnymi Sansonettiego [62, 63].

Sansonetti [62, 63]	podejście 1	podejście 2	podejście 3
12737,35	12902,91	12739,20	12428,89

W przypadku podejścia 1 rozbieżność z wynikami eksperymentalnymi [62, 63] wynosi około 166 cm⁻¹, w przypadku podejścia 2 wynosi poniżej 2 cm⁻¹, a dla podejścia 3 przekracza 305 cm⁻¹.

Rys. 4.2. Najniższe ${}^{4}\Sigma$ i ${}^{4}\Pi$ molekuły Rb₃ (geometria liniowa).

Na rysunku 4.2 przedstawiłem dwa najniższe kwartety (${}^{4}\Sigma, {}^{4}\Pi$) otrzymane za pomocą trzech podejść. W tym przypadku odległość międzyjądrowa R spełnia następujące założenie $R = R_{13} = R_{12}$. Stany ${}^{4}\Pi$ dla trzech podejść korelują do wzbudzenia, kiedy elektron przechodzi z orbitalu 5*s* do 5*p*. Aby zapewnić odpowiednie dopasowanie podejścia 1 do wyników Soldana [75] w wybranym wariancie metody sprzężonych klasterów uwzględniono korelację elektronową. Stany ${}^{4}\Sigma$ obliczone za pomocą podejść 2 i 3 mają przesuniętą część odpychającą w kierunku mniejszych odległości względem wyników otrzymanych podejściem 1. Minimum potencjału ${}^{4}\Pi$ otrzymane podejściem 2 znajduje się powyżej minimum otrzymanego podejściem 3 a poniżej minimum otrzymanego podejściem 1. Na powiększonym fragmencie pokazano momenty przecięcia stanów ${}^{4}\Sigma$ i ${}^{4}\Pi$. Dla podejść 2 i 3 miejsca przecięć praktycznie się pokrywają, natomiast dla podejścia 1 przecięcie znajduje się na skali wyższych energii.

Przedstawiłem również wykresy powierzchniowy i konturowy (linie izoenergetyczne) dla najniższego stanu ${}^{4}A'$ cząsteczki Rb₃ dla geometrii z kątami wiązania $\theta = 60^{\circ}$ i $\theta = 180^{\circ}$ otrzymanych za pomocą trzech podejść. Geometrii z kątem wiązania $\theta = 60^{\circ}$ odpowiadają następujące wykresy: podejście 1 - rysunki 4.9 i 4.10, podejście 2 - rysunki 4.11 i 4.12, podejście 3 - rysunki 4.13 i 4.14. Geometrii liniowej odpowiadają następujące wykresy: podejście 1 - rysunki 4.9 i 4.10, podejście 2 rysunki 4.11 i 4.12, podejście 3 - rysunki 4.13 i 4.14. Wykresy zostały przedstawione dla odległości R_{12} i R_{13} w zakresach od 5 do 20 a₀ z krokiem 0,6 a₀. Wykresy konturowe otrzymano przy pomocy B-spline'ów rzędu trzeciego z generacją 1000 punktów dla konturu.

Rys. 4.3. Wykres powierzchniowy ${}^{4}A'$ dla molekuły Rb₃ o kącie wiązania 60° w podejściu Soldana (podejście 1).

Rys. 4.4. Wykres konturowy ${}^{4}A'$ dla molekuły Rb₃ o kącie wiązania 60° w podejściu Soldana (podejście 1).

Rys. 4.5. Wykres powierzchniowy ${}^{4}A'$ dla molekuły Rb₃ o kącie wiązania 60° w obecnym podejściu z bazą A (podejście 2).

Rys. 4.6. Wykres konturowy ${}^{4}A'$ dla molekuły Rb₃ o kącie wiązania 60^o w obecnym podejściu z bazą A (podejście 2).

Rys. 4.7. Wykres powierzchniowy ${}^{4}A'$ dla molekuły Rb₃ o kącie wiązania 60° w obecnym podejściu z bazą B (podejście 3).

Rys. 4.8. Wykres konturowy ${}^{4}A'$ dla liniowej molekuły Rb₃ w obecnym podejściu z bazą B (podejście 3).

Rys. 4.9. Wykres powierzchniowy ${}^{4}A'$ dla liniowej molekuły Rb₃ w podejściu Soldana (podejście 1).

Rys. 4.10. Wykres konturowy ${}^{4}A'$ dla liniowej molekuły Rb₃ w podejściu Soldana (podejście 1).

Rys. 4.11. Wykres powierzchniowy ${}^{4}A'$ dla liniowej molekuły Rb₃ w obecnym podejściu z bazą A (podejście 2).

Rys. 4.12. Wykres konturowy ${}^{4}A'$ dla liniowej molekuły Rb₃ w obecnym podejściu z bazą A (podejście 2).

Rys. 4.13. Wykres powierzchniowy ${}^{4}A'$ dla liniowej molekuły Rb₃ w obecnym podejściu z bazą B (podejście 3).

Rys. 4.14. Wykres konturowy ${}^{4}A'$ dla liniowej molekuły Rb₃ w obecnym podejściu z bazą B (podejście 3).

Poniżej przedstawiono tabele parametrów spektroskopowych (diagonala wykresów $R_{13} = R_{12}$) dla kąta wiązania 60° oraz dla liniowej geometrii molekuły Rb₃ (tab. 4.5 i 4.6).

minimum	$R_e[a_0]$	$D_e[cm^{-1}]$
podejście 1	10,44	$1116,\!9023$
podejście 2	10,04	$1161,\!2274$
podejście 3	10,06	$1295,\!9797$

Tab. 4.5. Porównanie parametrów spektroskopowych dla ${}^{4}A'$ otrzymanego za pomocątrzech podejść dla molekuły Rb3 o kacie wiązania 60° .

Tab. 4.6. Porównanie parametrów spektroskopowych dla ${}^{4}A'$ otrzymanego za pomocątrzech podejść dla liniowej molekuły Rb3.

minimum	$R_e[a_0]$	$D_e[cm^{-1}]$
podejście 1	$11,\!39$	539,0084
podejście 2	11,22	523,8443
podejście 3	11,19	$619,\!0275$

W przypadku kąta wiązania 60° krzywa otrzymana za pomocą podejścia 2 ma o 0,4 a₀ przesunięte minimum w kierunku mniejszych odległości względem podejścia 1, natomiast ta otrzymana za pomocą podejścia 3 o 0,38 a₀. Krzywa otrzymana za pomocą podejścia 1 ma najpłytsze minimum. Minimum otrzymane za pomocą podejścia 2 jest o 44 cm⁻¹ głębsze a w podejściu 3 o około 180 cm⁻¹.

W przypadku kąta wiązania 180° krzywa otrzymana za pomocą podejścia 2 ma o 0,17 a₀ przesunięte minimum w kierunku mniejszych odległości względem podejścia 1, natomiast ta otrzymana za pomoca podejścia 3 o 0,2 a₀. Minimum otrzymane za pomocą podejścia 1 znajduje się pomiędzy minimum podejścia 2, a minimum podejścia 3. Minimum w podejściu 2 jest o około 15 cm⁻¹ płytsze a minimum w podejściu 3 o około 80 cm⁻¹ głębsze.

Podsumowując, wyniki otrzymane za pomocą podejść 2 i 3 mają minimum położone blisko siebie - świadczy to o ich podobieństwie a różnicę w głębokości studni można tłumaczyć różnicą w rozszerzeniu bazy obliczeniowej (ilość i doborem bazowych funkcji gaussowskich). Wyniki otrzymane w podejściu 1 są zgodne tymi otrzymanymi za pomocą podejść 2 i 3.

5. Podsumowanie

W pracy przedstawiono wyznaczone krzywe nierelatywistyczne i relatywistyczne cząsteczki NaRb oraz parametry spektroskopowe, momenty przejść dipolowych i czynniki Francka-Condona dla tych krzywych. Kolejny etap stanowiło przedstawienie perspektywy rozwoju badań w oparciu o cząsteczkę Rb₃.

Treść opisu teoretycznego w głównej części rozprawy dotyczy heterojądrowej molekuły dwuatomowej. W przypadku otrzymanych rezultatów dla molekuły NaRb osiągnięto bardzo dobrą zgodność z asymptotycznymi wynikami eksperymentalnymi dostarczonymi przez Sansonettiego [62–64] zarówno w podejściu nierelatywistycznym jak i z uwzględnieniem oddziaływania spin-orbita. Różnice dla asymptot atomowych nie przekraczały 4 cm $^{-1}$. Dla obu podejść przeprowadzono skrupulatną analizę miejsc, w których występują charakterystyczne ACs. Dla krzywych nierelatywistycznych Przeprowadzona została analiza wybranych potencjałów z wynikami eksperymentalnymi i innymi teoretycznymi pod względem parametrów spektroskopowych i kształtu. W przypadku krzywych relatywistycznych dokonano zestawienia otrzymanych parametrów spektroskopowych z wynikami Korka i Fawwaza [23]. Ukazano relację pomiędzy obrazami nierelatywistycznym i relatywistycznym w kontekście poziomów oscylacyjnych. Stwierdzono możliwość wykorzystania ujęcia relatywistycznego w badaniach eksperymentalnych [73]. Przedstawiono momenty przejść dipolowych oraz czynniki Francka-Condona dla wybranych stanów oraz ukazano ich relację w ujęciu nierelatywistycznym i relatywistycznym. Pokazano miejsca dla czynników Francka-Condona, gdzie prawdopodobieństwo przejścia na wykresach pomiędzy wybranymi stanami jest duże.

W przypadku molekuły Rb₃ przedstawiono wybrane geometrie cząsteczki i konsekwencje ich zastosowania. Dokonano opisu trzech podejść obliczeniowych. Przechodząc do rezultatów, osiągnięto bardzo dobrą zgodność z wynikami eksperymentalnymi w przypadku obecnego podejścia ze zmodyfikowaną bazą (metoda 2) (patrz tabela 4.4). Konsekwencją bogato rozszerzonej bazy (baza A - ilość bazowych funkcji gaussowskich) jest duża czasochłonność obliczeń. W przypadku obecnego podejścia z bazą B (metoda 3) obliczenia są krótsze, aczkolwiek zgodność asymptotyczna z eksperymentem jest mniejsza. Dokonano porównania najniższych ⁴ Σ i ⁴ Π dla liniowej molekuły o równych długościach wiązania oraz najniższego ⁴A' dla dwóch kątów wiązania otrzymanych trzema metodami. Przeprowadzono porównanie parametrów spektroskopowych. Obliczenia mogą zostać rozszerzone na uwzględnienie efektów relatywistycznymi uwzględniającymi efekt skalarny. Efekty relatywistyczne w tym przypadku zostały pominięte jako wprowadzenie do porównania z bazową metodą porównawczą. Podsumowując, otrzymałem bardzo dobre wyniki dla cząsteczki NaRb - wykazała to dogłębna analiza otrzymanych krzywych nierelatywistycznych. W przypadku krzywych relatywistycznych otrzymałem też bardzo dobrą zgodność z eksperymentem na poziomie asymptot atomowych oraz przedstawiłem możliwości ich wykorzystania w badaniach eksperymentalnych. Dokonując rozszerzenia metod na homojądrową molekułę trójatomową Rb₃ otrzymałem zgodne wyniki z bazową metodą porównawczą (wyniki otrzymane w oparciu o artykuły Soldana [75, 77]).

Literatura

- [1] A. Sharma, G.L. Bhale, M.A.N. Razvi i M.N. Dixit. Opt. Commun., 61:1, 1987.
- [2] H. Wang i W.C. Stwalley. J. Chem. Phys., 108:5767, 1998.
- [3] W.C. Stwalley i H. Wang. J. Mol. Spectrosc., 195:194, 1999.
- [4] J.T. Bahns, P.L. Gould i W.C. Stwalley. Adv. Atom. Mol. Opt. Phys., 42:171, 2000.
- [5] S.B. Weiss, M. Bhattacharya i N.P. Bigelow. *Phys. Rev. A*, 68:042708, 2003.
- [6] J.M. Walter i S. Barrat. Proc. R. Soc. Lond. Ser. A, 199:257, 1928.
- [7] P. Kusch. Phys. Rev., 49:218, 1936.
- [8] N. Takahashi i H. Kato. J. Chem. Phys., 75:4350, 1981.
- [9] Y. Wang, M. Kajitani, S. Kasahara, M. Baba, K. Ishikawa i H. Kato. J. Chem. Phys., 95:6229, 1991.
- [10] Y. Wang, K. Matsubara i H. Kato. J. Chem. Phys., 97:811, 1992.
- [11] K. Matsubara, Y. Wang, K. Ishikawa, M. Baba, A.J. McCaffery i H. Kato. J. Chem. Phys., 99:5036, 1993.
- [12] S. Kasahara, T. Ebi, M. Tanimura, H. Ikoma, K. Matsubara, M. Baba i H. Kato. J. Chem. Phys., 105:1341, 1996.
- [13] Y.E. Young, R. Ejnisman, J.P. Shaffer i N.P. Bigelow. Phys. Rev. A, 62:055403, 2000.
- [14] M. Tamanis, R. Ferber, A. Zaitsevskii, E.A. Pazyuk, A.V. Stolyarov, and H. Chen, J. Qi, H. Wang i W.C. Stwalley. J. Chem. Phys., 117:17, 2002.
- [15] O. Docenko, M. Tamanis, R. Ferber, A. Pashov, H. Knockel i E. Tiemann. *Phys. Rev. A*, 69:042503, 2004.
- [16] W. Jastrzębski, P. Kortyka, P. Kowalczyk, O. Docenko, M. Tamanis, R. Ferber,
 A. Pashov, H. Knockel i E. Tiemann. *Eur. Phys. J. D*, 36:57, 2005.
- [17] O. Docenko, M. Tamanis, R. Ferber, A. Pashov, H. Knockel i E. Tiemann. Eur. Phys. J. D, 36:49, 2005.
- [18] O. Docenko, M. Tamanis, R. Ferber, E.A. Pazyuk, A. Zaitsevskii, A.V. Stolyarov, A. Pashov, H. Knockel i E. Tiemann. *Phys. Rev. A*, 75:042503, 2007.

- [19] P. Kortyka, W. Jastrzębski i P. Kowalczyk. Chem. Phys. Lett., 404:323, 2005.
- [20] A. Pashov, W. Jastrzębski, P. Kortyka i P. Kowalczyk. J. Chem. Phys., 124: 204308, 2006.
- [21] M. Chaieb, H. Habli, L. Mejrissi, B. Oujia i F.X. Gadea. Int. J. Quantum Chem., 114:731, 2014.
- [22] M. Korek, A.R. Allouche, M. Kobeissi, A. Chaalan, M. Dagher, K. Fakherddin i M. Aubert-Frecon. *Chem. Phys.*, 256:1, 2000.
- [23] M. Korek i O. Fawwaz. Int. J. Quantum Chem., 109:938, 2009.
- [24] A. Zaitsevskii, S.O. Adamson, E.A. Pazyuk, A.V. Stolyarov, O. Nikolayeva, O. Docenko, I. Klincare, M. Auzinsh, M. Tamanis, R. Ferber i R. Cimiraglia. *Phys. Rev. A*, 63:052504, 2001.
- [25] R. Dardouri, K. Issa, B. Ouija i F.X. Gadea. Int. J. Quantum Chem., 112:2724, 2012.
- [26] H.-J. Werner, P.J. Knowles, R. Lindh, F.R. Manby, M. Schütz, P. Celani, T. Korona, G. Rauhut, R.D. Amos, A. Bernhardsson, A. Berning, D.L. Cooper, M.J.O. Deegan, A.J. Dobbyn, F. Eckert, C. Hampel, G. Hetzer, A.W. Lloyd, S.J. McNicholas, W. Meyer, M.E. Mura, A. Nicklaß, P. Palmieri, R. Pitzer, U. Schumann, H. Stoll, A.J. Stone, R. Tarroni i T. Thorsteinsson. *MOLPRO is a package of ab initio programs.* Cardiff, UK, 2006.
- [27] H.-J. Werner, P.J. Knowles, G. Knizia, F. R. Manby, M. Schütz, P. Celani, T. Korona, R. Lindh, A. Mitrushenkov, G. Rauhut, K. R. Shamasundar, T.B. Adler, R.D. Amo, A. Bernhardsson, A. Berning, D.L. Cooper, M.J.O. Deegan, A.J. Dobbyn, F. Eckert, E. Goll, C. Hampel, A. Hesselmann, G. Hetzer, T. Hrenar, G. Jansen, C. Köppl, Y. Liu, A.W. Lloyd, R.A. Mata, A.J. May, S.J. McNicholas, W. Meyer, M.E. Mura, A. Nicklass, D.P. O'Neill, P. Palmieri, D. Peng, K. Pflüger, R. Pitzer, M. Reiher, T. Shiozaki, H. Stoll, A.J. Stone, R. Tarroni, T. Thorsteinsson i M. Wang. *MOLPRO is a package of ab initio programs.* Cardiff, UK, 2012.1.
- [28] L.D. Landau i J.M. Lifszyc. Mechanika kwantowa. Teoria nierelatywistyczna. Wydawnictwo Naukowe PWN, 2011.
- [29] F.A. Cotton. Chemical Applications of Group Theory. John Willey and Sons, Texas, 1990.
- [30] P. Kowalczyk. *Fizyka cząsteczek. Energie i widma*. Wydawnictwo Naukowe PWN, Warszawa, 2000.

- [31] G. Herzberg. Molecular Spectra and Molecular Structure. I. Spectra of Diatomic Molecules. Krieger Publishing Company, Malabar, Florida 1989.
- [32] H.-J. Werner i P.J. Knowles. MOLPRO Users Manual Version 2012.1. University College Cardiff, 2012.
- [33] L. Piela. *Idee chemii kwantowej*. Wydawnictwo Naukowe PWN, Warszawa 2006.
- [34] I. Mayer. Simple theorems, proofs, and derivations in quantum chemistry. Kluwer Academic/Plenum Publishers, New York 2003.
- [35] A. Shabo i N.S. Ostlund. Modern Quantum Chemistry. Introduction to Advanced Electronic Structure Theory. Dover Publications, Inc, Mineola, New York 1996.
- [36] H. Haken i H. Ch. Wolf. Fizyka molekularna z elementami chemii kwantowej. Wydawnictwo Naukowe PWN, Warszawa 1998.
- [37] J.M. Hollas. *Modern spectroskopy*. John Willey and Sons, 1998.
- [38] J.L. Dunham. Phys. Rev., 41:721, 1932.
- [39] P. Atkins. Chemia Fizyczna. Wydawnictwo Naukowe PWN, Warszawa, 2012.
- [40] A.J. Thakkar. J. Chem. Phys., 85:4509, 1986.
- [41] J.M. Brown i A. Carrington. Rotational Spectroscopy of Diatomic Molecules. Cambridge University Press, 2003.
- [42] S. Wilson. Handbook of Molecular Physics and Quantum Chemistry, Volume 3: Molecules in the Physicochemical Environment: Spectroscopy, Dynamics and Bulk Properties. John Wiley and Sons, 2002.
- [43] H. Lefebvre-Brion i R.W. Field. The Spectra and Dynamics of Diatomic Molecules. Elsevier Academic Press, 2004.
- [44] K. Balasubramanian. Relativistic Effects in Chemistry. Part A: Theory and Techniques. John Wiley and Sons, 1997.
- [45] M. Dolg i X. Cao. Chem. Rev., 112:403, 2012.
- [46] E. Czuchaj, M. Krośnicki i H. Stoll. Chem. Phys., 263:7, 2001.
- [47] P. Łobacz, P. Jasik i J.E. Sienkiewicz. Cent. Eur. J. Phys., 11(9):1107, 2013.
- [48] S. Soorkia, F. Le Quere, C. Leonard i D. Figgen. Mol. Phys., 105:1095, 2007.

- [49] H. Silberbach, P. Schwerdtfeger, H. Stoll i H. Preuss. J. Phys. B: Mol. Phys., 19:501, 1986.
- [50] P. Fuentealba, H. Preuss, H. Stoll i L.V. Szentpaly. Chem. Phys. Lett., 89:418, 1982..
- [51] L.V. Szentpaly, P. Fuentealba, H. Preuss i H. Stoll. Chem. Phys. Lett., 93:555, 1982..
- [52] P. Fuentealba, H. Stoll, L.V. Szentpaly, P. Schwerdtfeger i H. Preuss. J. Phys. B, 16:L323, 1983..
- [53] D.B. Cook. Handbook of Computational Quantum Chemistry. Dover Publications, Inc., Mineola, New York, 2005.
- [54] P. Fuentealba, H. Preuss, H. Stoll i L.V. Szentpaly. J. Phys. B, 89:418, 1982...
- [55] B. Prascher, D.E. Woon, K.A. Peterson, T.H.Jr. Dunning i A.K. Wilson. Theor. Chem. Acc., 128:69, 2011.
- [56] L.V. Szentpaly, P. Fuentealba, H. Preuss i H. Stoll. Chem. Phys. Lett., 93:555, 1982..
- [57] P. Fuentealba, H. Stoll, L.V. Szentpaly, P. Schwerdtfeger i H. Preuss. J. Phys. B, 16:L323, 1983..
- [58] I.S. Lim, P. Schwerdtfeger, B. Metz, H. Stoll. J. Chem. Phys., 122:104103, 2005.
- [59] W. Kołos. *Chemia kwantowa*. Państwowe Wydawnictwo Naukowe, 1978.
- [60] R.F. Nalewajski. *Podstawy i metody chemii kwantowej. Wykłady*. Wydawnictwo Naukowe PWN, Warszawa, 2001.
- [61] R. J. Le Roy. LEVEL 8.0. A Computer Program for Solving the Radial Schrödinger Equation for Bound and Quasibound Levels. University of Waterloo, Waterloo, Ontario N2L 3G1, Canada, 2012.
- [62] J.E. Sansonetti. J. Phys. Chem. Ref. Data, 37:1659, 2008.
- [63] J.E. Sansonetti. J. Phys. Chem. Ref. Data, 35:301, 2006.
- [64] J.E. Sansonetti. J. Phys. Chem. Ref. Data Erratum, 37:1183, 2008.
- [65] M. Wiatr, P. Jasik i J.E. Sienkiewicz. Phys. Scr., 90:054012, 2015.
- [66] David J. Tannor. Introduction to Quantum Mechanics. A Time-Dependent Perspective. University Science Books. Sausalito, California, 2007.

- [67] O. Docenko, O. Nikolayeva, M. Tamanis, R. Ferber, E.A. Pazyuk i A.V. Stolyarov. Phys. Rev. A, 66:052508, 2002.
- [68] W.T. Zemke i W.C. Stwalley. J. Chem. Phys., 114:10811, 2001.
- [69] M. Aymar i O. Dulieu. J. Chem. Phys., 122:204302, 2005.
- [70] G. Igel-Mann, U. Wedig, P. Fuentealba i H. Stoll. J. Chem. Phys., 84:5007, 1986.
- [71] M. Aymar i O. Dulieu. Mol. Phys., 105:1733, 2007.
- [72] Nguyen Huy Bang, A. Grochola, W. Jastrzębski i P. Kowalczyk. Opt. Mat., 31: 527, 2009.
- [73] M. Wiatr, P. Jasik, T. Kilich, J.E. Sienkiewicz i H. Stoll. wysłane do Physical Review Letters, arXiv:1703.394, 2017.
- [74] Z. Kęcki. Podstawy spektroskopii molekularnej. Państwowe Wydawnictwo Naukowe, Warszawa, 1975.
- [75] P. Soldan. J. Chem. Phys., 132:234308, 2010.
- [76] G. Herzberg. Molecular Spectra and Molecular Structure. III. Electronic Spectra and Electronic Structure of Polyatomic Molecules. Krieger Publishing Company, Malabar, Florida 1991.
- [77] P. Soldan, M.T. Cvitas i J.M. Hutson. Phys. Rev. A, 67:054702, 2003.

Załączniki

A. Potencjały nierelatywistyczne cząsteczki NaRb

Tab. A.1. Adiabatyczne potencjały energetyczne cząsteczki NaRb $(1-9)^1\Sigma^+$. Jednostką odległości międzyatomowej R jest a_0 , a jednostką energii jest cm⁻¹. Kontynuacja tabeli na dwóch kolejnych stronach.

D	$1^{1}\Sigma^{+}$	$2^{1}\Sigma^{+}$	$2^{1}\Sigma^{+}$	$4^{1}\Sigma^{+}$	$5^1\Sigma^+$	$e^1\Sigma^+$	$7^1\Sigma^+$	$^{\circ1}\Sigma^{+}$	$0^{1}\Sigma^{+}$
86.0	0.00	12739.48	16967.03	19357 64	20128 52	23764 64	25700.41	25737 54	26307 59
84.0	0.00	12739.47	16967.03	19357.64	20128.52	23764.63	25700.40	25737.54	26307.57
82.0	0.00	12739.47	16967.03	19357 64	20128,52	23764 63	25700.40	25737.53	26307.56
80.0	0.00	12739.47	16967.03	19357.64	20128,52	23764.61	25700,40	25737.52	26307.55
78.0	0,00	12739,47	16067.03	19357.63	20120,01	23764.60	25700,33	25737 52	26307,55
76.0	0,00	12730.46	16067.03	10357.63	20120,01	23764.58	25700,30	25737.51	26307,55
70,0	0,00	12739,40	16067.03	19357,03	20128,50	23764.57	25700,37	25737,51	20307,31
72.0	0,00	12739,40	16067.03	19357,03	20128,00	23764.55	25700,30	25737,00	26232,30
72,0	0,00	12739,45	16067.02	10257.60	20120,49	23704,55	25700,34	25757,43	20210,11
68.0	0,00	12739,43	16067.04	19557,02	20126,46	23704,32	25700,52	20101,41	20122,40
08,0	0,00	12739,44	10907,04	19557,01	20126,47	23704,30	25700,50	20707,40	20029,00
66,0	-0,01	12739,43	10907,04	19357,01	20128,40	23704,40	25700,20	20737,43	20931,12
64,0	-0,01	12739,42	16967,04	19357,60	20128,44	23764,41	25700,22	25737,41	25826,37
62,0	-0,01	12739,41	16967,04	19357,59	20128,42	23764,36	25699,83	25715,08	25737,37
60,0	-0,01	12739,39	16967,04	19357,58	20128,39	23764,28	25583,88	25700,20	25737,33
58,0	-0,02	12739,37	16967,05	19357,57	20128,36	23764,18	25467,93	25700,10	25737,28
56,0	-0,02	12739,34	16967,05	19357,55	20128,32	23764,05	25331,09	25700,01	25737,21
54,0	-0,03	12739,31	16967,05	19357,53	20128,26	23763,87	25183,86	25699,91	25737,12
52,5	-0,03	12739,27	16967,06	19357,50	20128,21	23763,69	25065,90	25699,84	25737,04
48,0	-0,05	12739,12	16967,07	19357,40	20127,97	23762,73	24666,64	25699,84	25736,66
46,0	-0,07	12739,01	16967,08	19357,32	20127,80	23761,76	24463,68	25700,16	25736,39
44,0	-0,09	12738,87	16967,09	19357,22	20127,56	23759,51	24242,78	25700,99	25736,02
42,0	-0,12	12738,66	16967,10	19357,08	20127,22	23751,12	24006,06	25702,75	25735,50
40,0	-0,16	12738,38	16967,11	19356,87	20126,72	23669,63	23817,39	25706,17	25734,77
39,0	-0,19	12738,19	16967,11	19356,73	20126,39	23546,55	23794,92	25708,85	25734,28
38,0	-0,22	12737,96	16967,11	19356,55	20125,97	23399,02	23789,34	25712,43	25733,70
37,0	-0,26	12737,69	16967,11	19356,33	20125,44	23238,43	23788,82	25717,11	25732,99
36,0	-0,31	12737,36	16967,11	19356,04	20124,76	23066,81	23790,87	25723,17	25732,12
35,0	-0,36	12736,95	16967,11	$19355,\!66$	20123,86	22884,35	23794,93	25730,52	25731,42
34,0	-0,43	12736,45	16967,09	19355, 16	20122,65	22690,69	23800,99	25729,62	25740,66
33,0	-0,52	12735,83	16967,06	$19354,\!47$	20120,94	22485,37	23809,31	25727,89	25752,65
32,0	-0,63	12735,04	16967,02	$19353,\!48$	20118,45	22267,95	23820,26	$25725,\!65$	25767,22
31,0	-0,76	12734,05	16966,94	$19352,\!04$	20114,67	22038,22	23834,29	25722,70	$25784,\!60$
30,5	-0,84	12733,46	16966,89	$19351,\!05$	20112,02	21918,80	$23842,\!63$	25720, 87	$25794,\!39$
30,0	-0,93	12732,79	16966,82	$19349,\!80$	$20108,\!63$	$21796{,}51$	$23851,\!94$	25718,73	25804,93
29,5	-1,04	12732,03	16966,74	$19348,\!22$	20104,23	21671,56	23862,28	25716,22	25816,21
29,0	-1,15	12731,16	16966,64	$19346,\!18$	20098,45	21544,34	23873,73	25713,26	25828,22
28,5	-1,28	12730,16	16966,51	$19343,\!50$	20090,74	21415,45	23886, 34	25709,74	25840,93
28,0	-1,43	12729,02	16966,35	19339,94	20080,31	21285,82	23900, 16	25705,52	25854,29
27,5	-1,60	12727,70	16966,14	19335,11	20065,99	21156,89	23915, 25	25700,42	25868,25
27,0	-1,80	12726,17	16965,88	$19328,\!45$	20046,15	21030,82	23931,64	25694,21	25882,73
26,5	-2,02	12724,39	16965,56	19319,03	20018,51	20910,68	23949,35	25686,59	25897,64
26,0	-2,28	12722,30	16965,16	19305,39	19980,41	20800,59	23968,39	25677,14	25912,84
25,5	-2,57	12719,85	16964,64	19285,10	19929,63	20705,17	23988,72	25665,33	25928,21
25,0	-2,91	12716,94	16963,99	19254,17	19866,35	20628,22	24010,31	25650,43	25943,58
24,5	-3,31	12713,46	16963,16	19206,46	19795,38	20571,13	24033,06	25631,49	25958,79
24,0	-3,77	12709,28	16962,10	19134,14	19726,07	20532,44	24056,89	25607,18	25973,65
23,5	-4,31	12704,22	16960,73	19030,80	19668,05	20509,10	24081,62	25575,79	25987,98
23,0	-4,95	12698,03	16958,97	18895,39	19625,74	20497,93	24107,08	25535,04	26001,58
22,5	-5,70	12690,40	16956,67	18732,08	19597,83	20496,39	24133,03	25482,06	26014,27

R	$1^{1}\Sigma^{+}$	$2^{1}\Sigma^{+}$	$3^{1}\Sigma^{+}$	$4^{1}\Sigma^{+}$	$5^1\Sigma^+$	$6^{1}\Sigma^{+}$	$7^1\Sigma^+$	$8^{1}\Sigma^{+}$	$9^{1}\Sigma^{+}$
22,0	-6,60	12680,92	16953,67	18546,63	19580,74	20502,73	24159,21	25413,45	26025,85
21,5	-7,67	12669,02	16949,73	18344,02	19571,20	20515,83	24185,28	25325,56	26036,12
21,0	-8,96	12653,96	16944,53	18128,02	19566,88	20535,05	24210,87	25215,15	26044,89
20,5	-10,52	12634,76	16937,63	17901,60	19566,20	20560,10	24235,55	25080,20	26051,90
20,0	-12,44	12610,08	16928,46	17667,34	19568,10	20590,91	24258,84	24920,59	26056,89
19,8	-13,32	12598,29	16923,99	17572,02	19569,41	20604,88	24267,62	24850,20	26058,24
19,6	-14,28	12585,22	16918,96	17476,03	19570,97	20619,79	24276,05	24776,34	26059,18
19,4	-15,33	12570,69	16913,32	17379,57	19572,73	20635,67	24284,06	24699,26	26059,69
19,2	-16,48	12554,55	16906,97	17282,83	19574,68	20652,53	24291,58	24619,24	26059,72
19,0	-17,73	12536,61	16899,84	17186,04	19576,77	20670,41	24298,50	24536,62	26059,24
18,8	-19,10	12516,64	16891,79	17089,46	19578,97	20689,32	24304,52	24451,92	26058,20
18,6	-20,61	12494,43	16882,65	16993,41	19581,26	20709,29	24307,79	24367,26	26056,56
18,4	-22,27	12469,71	16871,24	16899,22	19583,60	20730,34	24268,33	24322,87	26054,24
18,2	-24,09	12442,21	16802,11	16862,51	19585,97	20752,49	24180,78	24324,36	26051,19
18,0	-26,10	12411,62	16709,31	16849,39	19588,32	20775,79	24089,46	24327,66	26047,32
17,8	-28,33	12377,62	16617,84	16835,06	19590,64	20800,25	23996,88	24330,53	26042,54
17,6	-30,79	12339,86	16528,29	16819,06	19592,88	20825,91	23903,66	24332,60	26036,73
17,4	-33,52	12297,99	16441,10	16801,17	19595,01	20852,80	23810,21	24333,71	26029,77
17,2	-36,55	12251,63	16356,66	16781,16	19597,00	20880,93	23716,94	24333,73	26021,50
17,0	-39,93	12200,40	16275,36	16758,79	19598,81	20910,35	23624,21	24332,50	26011,77
16,8	-43,69	12143,91	16197,59	16733,81	19600,38	20941,08	23532,43	24329,89	26000,05
16,6	-47,89	12081,80	16123,72	16705,97	19601,69	20973,13	23441,97	24325,72	25981,51
16,4	-52,59	12013,71	16054,09	16674,99	19602,67	21006,54	23353,24	24319,80	25944,84
16,2	-57,86	11939,32	15989,02	16640,59	19603,28	21041,32	23266,64	24311,92	25904,63
16,0	-63,76	11858,35	15928,76	16602,49	19603,45	21077,49	23182,53	24302,49	25866,39
15,8	-70,40	11770,56	15873,49	16560,43	19603,11	21115,07	23101,31	24289,18	25816,64
15,6	-77,87	11675,78	15823,32	16514,14	19602,19	21154,06	23023,31	24273,71	25768,87
15,4	-86,30	11573,89	15778,25	16463,42	19600,61	21194,48	22948,83	24255,36	25719,00
15,2	-95,80	11464,86	15738,15	16408,13	19598,27	21236,33	22878,12	24232,56	25665,10
15,0	-106,53	11348,71	15702,71	16348,24	19595,06	21279,62	22811,35	24206,00	25609,32
14,8	-118,67	11225,54	15671,43	16283,90	19590,86	21324,35	22748,57	24174,77	25550,91
14,6	-132,41	11095,51	15643,44	16215,57	19585,53	21370,53	22689,72	24138,35	25489,87
14,4	-147,98	10958,84	15617,41	16144,16	19578,91	21418,17	22634,57	24096,21	25426,16
14,2	-165,63	10815,82	15591,17	16071,43	19570,82	21467,25	22582,71	24047,86	25359,67
14,0	-185,66	10666,79	15561,28	16000,39	19561,05	21517,75	22533,56	23992,93	25290,29
13,8	-208,40	10512,12	15522,69	15935,73	19549,36	21569,60	22486,32	23931,17	25218,01
13,6	-234,20	10352,27	15469,40	15883,08	19535,47	21622,63	22440,08	23862,52	25143,13
13,4	-263,50	10187,69	15397,13	15846,42	19519,09	21676,46	22393,87	23787,14	25066,41
13,2	-296,76	10018,92	15305,75	15825,62	19499,84	21730,32	22346,95	23705,41	24989,01
13,0	-334,50	9846,50	15198,23	15817,54	19477,34	21782,55	22299,27	23618,36	24916,22
12,8	-377,29	9671,04	15078,05	15818,60	19451,13	21829,52	$22252,\!65$	23525,63	24837,48
12,6	-425,78	9493,16	14948,04	15825,94	19420,72	21863,37	22213,12	23429,56	24765,46
12,4	-480,65	9313,56	14810,30	15837,51	19385,53	21869,91	22192,85	23331,23	24696,56
12,2	-542,64	9132,93	14666,47	15851,86	19344,96	21837,31	22201,36	23232,77	24630,48
12,0	-612,54	8952,01	14517,91	15867,91	19298,36	21770,10	22230,95	23137,43	24566,36
11,8	-691,19	8771,59	14365,88	15884,86	19245,04	21679,76	22265,20	23050,34	24502,76
11,6	-779,45	8592,45	14211,55	15902,12	19184,30	21574,11	22288,71	22979,21	24437,82
11,4	-878,17	8415,42	14056,12	15919,29	19115,44	21457,63	22287,66	22933,07	24369,22
11,2	-988,20	8241,31	13900,80	15936,16	19037,82	21333,24	22253,86	22916,08	24294,44
11,0	-1110,33	8070,93	13746,83	15952,74	18950,87	21203,20	22189,85	22921,31	24211,22
10,8	-1245,27	7905,11	13595,49	15969,26	18854,21	21069,42	22105,06	22934,30	24118,40
10,6	-1393,62	7744,64	13448,10	15986,17	18747,62	20933,61	22008,76	22940,82	24016,09
10,4	-1555,78	7590,32	13306,01	16004,21	18631,19	20797,36	21907,49	22930,93	23905,20
10,2	-1731,97	7442,92	13170,60	16024,37	18505,33	20662,18	21805,64	22900,01	23786,94
10,0	-1922,13	7303,26	13043,29	16047,93	18370,83	20529,51	21706,25	22848,36	23662,66
9,8	-2125,90	7172,19	12925,49	16076,41	18228,91	20400,85	21611,66	22779,59	23533,85
9,6	-2342,56	7050,66	12818,68	16111,59	18081,22	20277,73	21523,81	22698,87	23402,26

R	$1^{1}\Sigma^{+}$	$2^{1}\Sigma^{+}$	$3^{1}\Sigma^{+}$	$4^{1}\Sigma^{+}$	$5^1\Sigma^+$	$6^{1}\Sigma^{+}$	$7^1\Sigma^+$	$8^{1}\Sigma^{+}$	$9^{1}\Sigma^{+}$
9,4	-2571,02	6939,76	12724,35	16155,44	17929,83	20161,90	21444,46	22611,75	23269,99
9,2	-2809,73	6840,83	12644,08	16210,10	17777,28	20055,30	21375,33	22523,68	23109,13
9,0	-3056,70	6755, 45	12579,58	16277,83	17626,49	19960,23	21318,21	22439,93	22953,92
8,8	-3309,41	6685,62	12532,72	16360,99	17480,85	19879,38	21275,00	$22365,\!65$	22808,96
8,6	-3564,80	6633,75	12505,62	16461,94	17344,17	19815,89	21247,83	22306,07	22677,52
8,4	-3819,23	6602,79	12500,75	16583,04	17220,77	19773,43	21239,13	22266,57	22563,37
8,2	-4068,41	6596,27	12521,04	16726,44	17115,71	19756,21	21251,71	22252,73	22470,88
8,0	-4307,35	6618,39	12569,93	16891,88	17037,21	19769,04	21288,95	22270,34	22405,17
7,8	-4530,30	6674,05	12651,52	16968,42	17104,98	19817,34	21354,93	22325,16	22372,25
7,6	-4730,65	6768,91	12770,61	16954,47	17330,58	19907,14	21454,63	22379,31	22422,45
7,4	-4900,88	6909,44	12932,78	16979,11	17596,34	20045,10	21594,12	22435,02	22564,82
7,2	-5032,46	7102,95	13144,41	17053,69	17904,12	20238,46	$21780,\!64$	22549,71	22743,61
7,0	-5115,80	7357,58	13412,70	17187,47	18259,94	20495,07	22022,55	$22734,\!65$	22951,35
6,8	-5140,25	7682,27	13745,55	17390,34	18671,48	20823,33	$22329,\!27$	23000,40	23216,08
6,6	-5094,03	8086,72	14151,53	17673,01	19147,89	21232,15	$22711,\!05$	23355,79	23559,50
6,4	-4964,42	8581,14	14639,58	18047,05	19699,63	21730,87	23178,73	23809,04	23995,76
6,2	-4737,92	9176,00	15218,75	$18524,\!69$	20338,13	22329,06	$23743,\!41$	24368, 91	24537,69
6,0	-4400,59	9881,58	15897,69	$19118,\!63$	$21075,\!32$	23036, 19	$24416,\!14$	$25044,\!66$	25197,79
5,8	-3938,62	10707,30	16684,09	$19841,\!63$	21922,99	23861,11	$25207,\!38$	25845, 29	25987,95
5,6	-3339,11	11660,88	17583,94	20705,79	22892,02	24811,28	26126, 49	26778, 39	26918,67
5,4	-2591,11	12747,16	18600,85	21721,64	23991,51	25891,79	27180,98	27848,85	27998,01
5,2	-1686,92	13966,94	19735,46	22896,64	25227,96	27104,41	$28375,\!60$	$29057,\!40$	29230,36
5,0	-623,52	15315,73	20985,14	24233,39	26604,62	28446,72	29711,37	30399,32	30615,15
4,8	596,11	16783,10	22344,02	25727,58	28121,26	29912,09	31184,70	31863,82	32145,80
4,6	1962,21	18352,92	23803,25	27366,51	29774,57	31490,54	32786,68	33434,88	33809,14

R	$1^{3}\Sigma^{+}$	$2^{3}\Sigma^{+}$	$3^3\Sigma^+$	$4^{3}\Sigma^{+}$	$5^3\Sigma^+$	$6^3\Sigma^+$	$7^3\Sigma^+$	$8^3\Sigma^+$	$9^3\Sigma^+$
86,0	0,00	12739,48	16967,03	19357,64	20128,52	23764,64	25700,41	25737,54	26307,59
84,0	0,00	12739,47	16967,03	19357,64	20128,52	23764,63	25700,40	25737,54	26307,57
82,0	0,00	12739,47	16967,03	19357,64	20128,52	23764,63	25700,40	25737,53	26307,56
80,0	0,00	12739,47	16967,03	19357,64	20128,51	23764,61	25700,39	25737,52	26307,55
78,0	0,00	12739,47	16967,03	19357,63	20128,51	23764,60	25700,38	25737,52	26307,53
76,0	0,00	12739,46	16967,03	19357,63	20128,50	23764,58	25700,37	25737,51	26307,51
74,0	0,00	12739,46	16967,03	19357,63	20128,50	23764,57	25700,36	25737,50	26307,48
72,0	0,00	12739,45	16967,03	19357,63	20128,49	23764,55	25700,34	25737,49	26307,45
70,0	0,00	12739,45	16967,03	19357,62	20128,48	23764,52	25700,32	25737,47	26307,42
68,0	0,00	12739,44	16967,04	$19357,\!61$	$20128,\!47$	23764,50	$25700,\!30$	25737,46	26307,37
66,0	-0,01	$12739,\!43$	16967,04	$19357,\!61$	20128,46	23764,46	25700, 26	$25737,\!43$	26307,31
64,0	-0,01	$12739,\!42$	16967,04	$19357,\!60$	$20128,\!44$	23764,41	25700, 22	$25737,\!41$	26307,23
62,0	-0,01	$12739,\!41$	$16967,\!04$	$19357,\!59$	$20128,\!42$	23764, 36	25700, 16	$25737,\!37$	$26307,\!14$
60,0	-0,01	$12739,\!39$	16967,04	$19357,\!58$	20128,39	23764, 28	25700,09	$25737,\!33$	26307,02
58,0	-0,02	$12739,\!37$	16967,05	$19357,\!57$	20128, 36	23764,18	$25699,\!98$	$25737,\!28$	26306, 85
56,0	-0,02	$12739,\!34$	16967,05	$19357,\!55$	20128,32	23764,05	25699, 83	$25737,\!21$	26306,64
54,0	-0,03	12739,31	16967,05	19357,53	20128,26	23763,87	$25699,\!61$	$25737,\!12$	26306,34
52,5	-0,03	$12739,\!27$	16967,06	$19357,\!50$	20128,21	23763,70	25699, 39	$25737,\!04$	26306,04
48,0	-0,05	12739, 12	16967,07	$19357,\!40$	$20127,\!97$	23762,88	$25698,\!15$	$25736,\!66$	26304,53
46,0	-0,07	12739,01	16967,08	19357,32	20127,80	23762,25	$25697,\!08$	25736, 39	26303,36
44,0	-0,09	12738,87	16967,09	19357,22	20127,56	23761,34	25695,39	25736,02	26301,67
42,0	-0,12	12738,66	16967,10	19357,08	20127,22	23759,95	25692,68	25735,50	26299,26
40,0	-0,16	12738,38	16967,11	$19356,\!87$	20126,74	23757,81	25688,33	25734,77	26295,92
39,0	-0,19	12738, 19	16967,11	19356,73	20126,41	23756, 33	$25685,\!27$	$25734,\!29$	26293,84
38,0	-0,22	12737,96	16967,11	19356, 56	20126,02	23754,47	$25681,\!43$	25733,71	26291,48
37,0	-0,26	$12737,\!69$	16967,12	19356, 35	$20125,\!54$	23752,13	$25676,\!66$	25733,00	26288,86
36,0	-0,31	12737,36	16967,11	19356,08	20124,95	23749,19	25670,75	25732,14	26286,01
35,0	-0,36	12736,95	16967,11	19355,74	20124,21	23745,48	25663, 51	25731,08	26283,02
34,0	-0,43	12736, 45	16967,09	19355,31	20123,28	23740,84	25654,75	25729,76	26280,01
33,0	-0,52	12735,83	16967,06	19354,75	20122,11	23735,03	25644,28	25728,13	26277,16
32,0	-0,63	12735,05	16967,02	19354,03	20120,64	23727,79	25631,98	25726,07	26274,69
31,0	-0,76	12734,07	16966,94	19353,08	20118,75	23718,84	25617,77	25723,46	26272,84
30,5	-0,84	12733,48	16966,89	19352,50	20117,62	23713,63	25609,95	25721,91	26272,23
30,0	-0,93	12732,82	16966,83	19351,82	20116,34	23707,89	25601,68	25720, 15	26271,86
29,5	-1,04	12732,07	16966,75	19351,04	20114,88	23701,57	25592,98	25718,15	26271,78
29,0	-1,15	12731,21	16966,65	19350,13	20113,23	23694,66	25583,88	25715,88	26272,00
28,5	-1,28	12730,24	16966,53	19349,07	20111,36	23687,14	25574,41	25713,31	26272,54
28,0	-1,43	12729,14	16966,38	19347,82	20109,24	23679,00	25564,61	25710,39	26273,42
27,5	-1,60	12727,87	16966,20	19346,37	20106,85	23670,26	25554,52	25707,05	26274,65
27,0	-1,80	12726,42	16965,97	19344,67	20104,14	23660,94	25544,17	25703,26	26276,23
26,5	-2,02	12724,75	16965,68	19342,67	20101,08	23651,11	25533,59	25698,93	26278,18
26,0	-2,28	12722,83	16965,33	19340,32	20097,64	23640,85	25522,77	25694,00	26280,46
25,5	-2,57	12720,61	16964,90	19337,56	20093,78	23630,28	25511,68	25688,38	26283,07
25,0	-2,91	12718,03	16964,38	19334,31	20089,48	23619,56	25500,25	25681,96	26285,97
24,5	-3,30	12715,05	16963,73	19330,48	20084,69	23608,88	25488,36	25674,66	26289,10
24,0	-3,76	12711,57	16962,94	19325,96	20079,39	23598,49	25475,78	25666,34	26292,37
23,5	-4,29	12707,51	16961,97	19320,63	20073,58	23588,67	25462,19	25656,90	26295,62
23,0	-4,92	12702,76	16960,78	19314,34	20067,23	23579,73	25447,11	25646,22	26298,58
22,5	-5,65	12697,20	16959,32	19306,92	20060,36	23572,06	25429,86	25634,18	26300,70
22,0	-6,52	12690,66	16957,53	19298,17	20053,01	23566,05	25409,50	25620,71	26300,81
21,5	-7,54	12682,97	16955,36	19287,88	20045,23	23562,14	25384,70	25605,77	26296,09
21,0	-8,76	12673,92	16952,70	19275,81	20037,08	23560,78	25353,76	25589,46	26279,99
20,5	-10,21	12663, 23	16949,48	19261,70	20028,68	23562,42	25314,50	25571,96	26244,10

Tab. A.2. Adiabatyczne potencjały energetyczne cząsteczki NaRb $(1-9)^3\Sigma^+$. Jednostką odległości międzyatomowej R jest a_0 , a jednostką energii jest cm⁻¹. Kontynuacja tabeli na dwóch kolejnych stronach.

B	$1^{3}\Sigma^{+}$	$2^{3}\Sigma^{+}$	$33\Sigma^+$	$\sqrt{3\Sigma^+}$	$5^3\Sigma^+$	$6^3\Sigma^+$	$7^3\Sigma^+$	$8^{3}\Sigma^{+}$	$0^{3}\Sigma^{+}$
20.0	11.04	12650.63	16045.57	10245-20	2002012	23567 51	25264.45	25553.67	26102.10
20,0	10 70	12030,03	16043 70	19240,50	20020,12	23570.50	25240.84	25546.24	20192,10
10.6	13 56	12638.02	160/1 88	10220,00	20010,05	23574 22	25240,04	25538.81	20103,00
10.4	14.47	12030,32	16030.82	19200,00 10222 10	20010,20	23578 70	25186.66	25531.42	26124.07
19,4	-14,47	12032,40	16027.61	19222,19	20009,65	23378,70	25155.94	25551,42	20124,97
19,2	-10,44	12020,00	16025.24	19215,58	20000,42	20000,70	20100,04	25524,11	20105,05
19,0	-10,49	12010,17	10955,24	19204,50	20005,04	23069,49	20122,42	25510,94	20062,90
18,8	-17,62	12610,28	16932,70	19194,91	19999,68	23595,93	25086,32	25509,97	26063,37
18,6	-18,84	12601,85	16929,99	19184,82	19996,34	23603,07	25047,52	25503,25	26044,81
18,4	-20,15	12592,84	16927,09	19174,19	19993,04	23610,90	25005,99	25496,86	26027,29
18,2	-21,56	12583,22	16924,01	19163,02	19989,76	23619,42	24961,73	25490,88	26010,77
18,0	-23,08	12572,94	16920,73	19151,29	19986,50	23628,62	24914,76	25485,38	25995,20
17,8	-24,72	12561,96	16917,26	19139,00	19983,25	23638,47	24865,12	25480,46	25980, 49
17,6	-26,48	12550,23	16913,58	19126,11	19980,00	23648,93	24812,84	25476,24	25966,51
17,4	-28,38	12537,71	16909,70	19112,62	19976,74	23659,97	24757,95	25472,82	25953, 15
17,2	-30,43	$12524,\!34$	$16905,\!62$	19098,52	$19973,\!43$	23671,51	24700,51	25470, 34	25940,26
17,0	-32,63	$12510,\!07$	16901,34	19083,78	19970,05	23683,49	24640,54	25468,93	$25927,\!68$
16,8	-35,00	$12494,\!84$	16896,87	$19068,\!40$	19966, 57	23695,81	24578,08	25468,76	25915, 25
16,6	-37,55	$12478,\!59$	$16892,\!23$	$19052,\!36$	$19962,\!94$	23708, 37	$24513,\!17$	$25469,\!98$	$25902,\!80$
16,4	-40,30	$12461,\!25$	16887,42	$19035,\!64$	19959, 11	23721,01	24445,82	25472,77	25890, 14
16,2	-43,25	12442,76	$16882,\!47$	$19018,\!23$	19955,02	23733,58	$24376,\!07$	25477, 31	25877,08
16,0	-46,43	12423,04	16877,41	19000,10	19950, 59	23745,89	24303,94	25483,78	$25863,\!45$
15,8	-49,83	12402,01	16872,27	18981,23	19945,75	23757,67	24229,47	25492,37	25849,02
15,6	-53,48	$12379,\!60$	16867,07	$18961,\!59$	19940,39	23768,60	24152,74	25503,23	$25833,\!62$
15,4	-57,39	12355,71	16861,88	18941,17	19934,40	23778,22	24073,97	25516,49	25817,07
15,2	-61,57	12330,26	16856,73	18919,93	19927,66	23785,63	23993,70	25532,19	25799,23
15,0	-66,04	12303,14	16851,69	18897,84	19920,01	23788,28	23914,16	25550,22	25780,07
14,8	-70,81	12274,25	16846,82	18874,89	19911,29	23772,73	23848,38	25570,10	25759,89
14,6	-75,89	12243,48	16842,18	18851,04	19901,31	23709,88	23825,06	25590,37	25739,81
14,4	-81,28	12210,72	16837,83	18826,28	19889,84	23623,60	23819,86	25606,90	25723,51
14,2	-87,00	12175,85	16833,83	18800,61	19876,66	23530,61	23815,58	25610,20	25719,77
14,0	-93,06	12138,73	16830,24	18774,06	19861,51	23433,78	23808,86	25593,18	25734,59
13.8	-99,44	12099,25	16827.08	18746,68	19844.08	23333.80	23798,48	25561,13	25760,89
13.6	-106.14	12057.27	16824.35	18718.56	19824.06	23230.94	23783.63	25519.60	25790.02
13.4	-113.17	12012.65	16821.99	18689.88	19801.12	23125.32	23763.64	25470.58	25814.36
13.2	-120.49	11965.27	16819.89	18660.88	19774.90	23017.05	23737.90	25414.47	25824.10
13.0	-128.09	11915.01	16817.83	18631.94	19745.02	22906.23	23705 79	25351 12	25809.08
12.8	-135.93	11861 74	16815.45	18603 58	19711 12	22702.96	23666 75	25280.15	25767.25
12,0	-143.97	11805.37	16812.25	18576 51	19672.84	22132,30	23620.25	25200,10	25704 73
12,0	-152.13	11745.83	16807.51	18551 70	19629.83	22559.62	23565.83	25113 58	25627.87
12,4	-160.35	11683.05	16800.26	18530.36	10581.81	22000,02	23503.08	25115,00	25540.61
12,2	-168 52	11617.03	16789.27	18514 03	19528 57	22318 22	23431 75	24011.83	25445 15
11.8	-176 51	11547.80	16773.06	18504 48	19470 02	22010,00	23351.68	24707 /0	25440,10
11.6	-18/ 10	11475 44	167/0.06	18503 71	19/06 25	22130,22	23367.88	24674.15	25042,00
11 /	-104,19	11/00/11	16718.25	18512 72	10327 57	22010,19	23165 56	24014,10	25234,09
11.4	-191,94 _107.75	11200.11	16676 20	10010,70	10964 79	21940,02	23100,00	24042,00	25120,90
11,2	-191,10	11941 50	16600 77	10000,20	10100.05	21019,10	2000,00	24403,07	20002,40
11,0	-203,14	11241,50	10022,77	100/2,18	19189,25	21092,58	22947,00	24200,08	24019,44
10,8	-207,17	11075.00	10000,80	18020,43	19114,48	21000,12	22827,31	24104,25	24751,23
10,6	-209,44	11075,20	16478,27	18674,31	19049,11	21440,28	22701,87	23946,85	24586,83
10,4	-209,48	10990,59	16387,33	18711,18	19017,47	21315,77	22572,05	23785,67	24420,99
10,2	-206,71	10906,11	16284,87	18695,08	19056,97	21193,57	22439,38	23621,99	24254,37
10,0	-200,44	10822,81	16172,18	18632,76	19161,98	21075,07	22305,68	23457,25	24087,82
9,8	-189,86	10741,96	16050,91	18551,80	19305,60	20962,41	22173,07	23293,06	23922,44
9,6	-174,02	10665,06	15923,06	18465,50	19474,01	20859,15	22044,09	23131,20	23759,58
9,4	-151,78	$10593,\!87$	15790,95	18379, 83	19657,98	20771,92	21921,81	22973,72	23600,89
9,2	-121,81	10530, 50	15657,17	18298,55	19843,23	20714,61	21810,24	22822,93	23448,35
9,0	-82,52	$10477,\!39$	$15524,\!66$	$18224,\!82$	20000,05	20716,32	21715,30	22681,49	23304,29
8,8	-32,07	10437,41	$15396,\!67$	18161,77	20088,08	20813,09	21647,78	22552,52	23171,45

R	$1^3\Sigma^+$	$2^3\Sigma^+$	$3^3\Sigma^+$	$4^3\Sigma^+$	$5^3\Sigma^+$	$6^3\Sigma^+$	$7^3\Sigma^+$	$8^3\Sigma^+$	$9^3\Sigma^+$
8,6	31,70	$10413,\!88$	$15276,\!85$	18112,70	$20107,\!47$	$20986,\!62$	21633, 16	22439,78	23053,02
8,4	111,30	$10410,\!68$	15169,22	18081,30	20097,08	21146,27	21730,69	$22348,\!55$	$22952,\!68$
8,2	209,66	$10432,\!27$	15078,27	18071,65	20086, 27	21227,51	21976,24	$22292,\!25$	$22874,\!68$
8,0	330,16	10483,79	15008,96	18088,42	20091,09	21272,15	22178,91	22418,82	22823,88
7,8	476,67	$10571,\!16$	14966,77	18136,87	20122,07	21325,77	22197,41	$22805,\!84$	22824,78
7,6	653,65	10701, 16	14957,77	18222,96	20187,98	21409,34	22233,40	$22826,\!89$	23224,49
7,4	866,14	10881,50	14988,65	$18353,\!45$	20297,37	21534,83	$22313,\!17$	$22894,\!18$	23400,90
7,2	1119,84	11120,93	15066,74	18535, 93	20459,22	21711,70	22446,91	23015,79	$23568,\!45$
7,0	1421,13	11429,30	15200,05	18778,89	20683,22	21948,92	22644,06	23200,73	23791,94
6,8	1777,04	11817,60	15397,23	19091,75	20979,92	$22255,\!67$	22914,67	$23458,\!99$	24086,23
6,6	2195,21	12297,87	15667,55	19484,83	21360,77	22641,55	23269,57	$23801,\!47$	24462,99
6,4	2683,82	12883,11	16020,79	19969,24	21838,02	23116,62	23720,36	24239,78	24933,89
6,2	3251,34	13586,79	16467,08	20556,63	22424,59	23691,30	24279,14	24785, 98	25510,88
6,0	3906,30	14422,23	17016,79	21258,90	23133,61	24376,15	24958,04	$25452,\!12$	26206,01
5,8	4656,89	15401,29	17680,45	22087,55	23977,95	25181,51	25768,54	$26249,\!53$	27030,82
5,6	5510,49	16532,04	18469,24	23052,92	24969,35	26117,01	26720,58	27188,02	27995,61
5,4	6473,05	$17814,\!32$	19397,04	24163,03	26117,19	27190,75	27821,40	$28274,\!83$	29108,29
5,2	7548,49	19230,02	20487,27	25422,22	27426, 96	28408,35	29074,44	$29513,\!35$	30373,07
5,0	8738,12	$20725,\!64$	21787,44	26829,61	28898, 14	29771,92	30478,16	30901,89	31788,92
4,8	10040,32	22223,27	23356,11	28377,70	30521,72	31279,48	32025,18	32432,56	33348,33
4,6	11450,54	23711,72	25171,91	30051,74	32277,76	32862,25	33701,96	34090,75	35036,70

Tab. A.3. Adiabatyczne potencjały energetyczne cząsteczki NaRb $(1-5)^1\Pi$. Jednostką odległości międzyatomowej R jest a_0 , a jednostką energii jest cm⁻¹. Kontynuacja tabeli na dwóch kolejnych stronach.

D	1111	ிர	∘1п	41 17	-1 T
R 86.0	12720.48	2-11	3-11	4-11	0-11 25700-42
84.0	12739,40	16067.03	19357,05	23764.67	25700,42
82.0	12739,40	16067.03	19357,05	23764.67	25700,42
80.0	12739,40	16067.03	19357,05	23764.66	25700,41
78.0	12739,40	16067.03	19357,03	23764.66	25700,41
76.0	12739,40	16067.02	19557.64	23704,00	25700,40
70,0	12739,40	16067.02	19557.64	23704,03	25700,40
72.0	12739,40	16967.03	19357,04	23764,04	25700,39
70.0	12739,40	16967.03	19357.64	23764.63	25700,30
68.0	12739.47	16967.03	19357.63	23764.62	25700,37
66.0	12730.47	16967.03	10357.63	23764.60	25700.35
64.0	12739,47	16967.03	10357.60	23764.58	25700,33
62.0	12739,40	16967.02	19357.62	23764.56	25700,35
60.0	12739,40	16067.02	10357.61	23764.54	25700,50
58.0	12739,40	16967.02	19357.60	23764.50	25700,21
56.0	12739.44	16967.02	19357,50	23764.46	25700,25
54.0	12739 42	16967.01	19357 57	23764 40	25700.11
52.5	12739 40	16967.01	19357 55	23764.35	25700.04
48.0	12739.35	16966.99	19357 49	23764 11	25699 70
46.0	12739.30	16966 98	19357 44	23763.95	25699.45
44.0	12739.25	16966.96	19357.37	23763 72	25699.09
42.0	12739.17	16966 94	19357.28	23763 42	25698.56
40.0	12739.07	16966.90	19357.16	23762.99	25697.76
39.0	12739.00	16966.88	19357.07	23762.72	25697.23
38.0	12738.92	16966.85	19356.97	23762.38	25696.56
37.0	12738,82	16966.82	19356,85	23761,99	25695,73
36,0	12738,71	16966,78	19356,71	23761,51	25694,70
35,0	12738,56	16966,73	19356,53	23760,92	25693,42
34,0	12738,39	16966, 67	19356,31	23760,21	25691,82
33,0	12738,18	16966, 59	19356,04	23759,34	25689,83
32,0	12737,91	16966, 50	19355,70	23758,26	25687,35
31,0	12737,58	16966, 37	19355, 27	23756,94	25684,29
$_{30,5}$	$12737,\!39$	16966, 30	$19355,\!01$	23756, 16	25682,50
$_{30,0}$	$12737,\!17$	16966, 21	19354,72	$23755,\!29$	25680,50
29,5	12736,92	16966, 12	19354,40	23754,32	25678,30
29,0	$12736,\!65$	16966,01	19354,03	$23753,\!23$	25675,86
28,5	12736,33	16965, 88	19353,61	23752,02	25673,16
28,0	12735,98	16965,74	19353,13	$23750,\!67$	25670,18
27,5	12735,58	16965,58	19352,59	23749, 15	25666,90
27,0	12735,13	16965,39	19351,97	$23747,\!45$	25663,30
26,5	12734,61	16965,17	19351,26	23745,55	25659,35
26,0	12734,01	16964,91	19350,44	23743,42	25655,02
25,5	12733,34	16964,62	19349,50	23741,03	25650,29
25,0	12732,56	16964,27	19348,41	23738,35	25645,14
24,5	12731,67	16963,87	19347,16	23735,34	25639,53
24,0	12730,64	16963,39	19345,70	23731,97	25633,43
23,5	12729,45	16962,83	19344,01	23728,18	25626,81
23,0	12728,06	16962,17	19342,05	23723,92	25619,63
22,5	12726,44	16961,38	19339,77	23719,13	25611,83
22,0	12724,56	16960,44	19337,11	23/13,74	25603,34
21,5	12722,35	16957.06	19334,02	23707,00	25592.94
21,0	12/19,/0	16056 20	19330,41	23100,18	20003,84
20,5	12/10,69	10956,32	19326,20	23092,96	25572,50

R	$1^{1}\Pi$	$2^{1}\Pi$	$3^{1}\Pi$	$4^{1}\Pi$	$5^{1}\Pi$
20,0	12713.07	16954.33	19321,28	23684,03	25559,74
19,8	12711,44	16953,42	19319,10	23680,10	25554,16
19,6	12709,69	16952,43	19316,77	23675,94	25548,24
19.4	12707.82	16951.36	19314.29	23671.54	25541.97
19.2	12705.81	16950.20	19311.65	23666.86	25535.30
19.0	12703.66	16948.94	19308.84	23661.88	25528.16
18.8	12701.36	16947.57	19305.84	23656.58	25520.51
18.6	12698.88	16946.08	19302.66	23650.93	25512.27
18.4	12696 22	16944 45	19299.26	23644 89	25503.37
18.2	12693 36	16942.68	19295.64	23638.42	25493 72
18.0	12690.29	16940 76	19290,04	23631.47	25483.22
17.8	12686.00	16038.65	10201,10	23623.00	25471 74
17,0	12000,35	16036 34	10283.20	23615.03	25450.17
17.0	12000,40	16033.82	10278 62	23607.21	25445.25
17,4	12075,03	16021.06	19270,02	23007,21	25440,55
17,2	12075,55 12671,12	16028.02	19273,03	23597,70	25450,10
16.9	12011,12	16024 70	10262 60	20001,00	25304 56
10,0	12000,37	16021.04	19202,00	20070,02	20094,00
10,0	12001,25	10921,04	19200,52	20004,12	20313,81
16,4	12000,70	10917,01	19250,01	23000,77	25350,74
16,2	12049,84	16912,56	19243,04	23030,13	25325,05
16,0	12643,46	16907,64	19235,57	23520,04	25296,45
15,8	12636,61	16902,20	19227,56	23502,32	25264,62
15,6	12629,23	16896,16	19218,96	23482,77	25229,21
15,4	12621,29	16889,46	19209,73	23461,16	25189,90
15,2	12612,75	16881,98	19199,79	23437,27	25146,37
15,0	12603,56	16873,65	19189,09	23410,80	25098,32
14,8	12593,68	16864,33	19177,57	23381,47	25045,49
14,6	12583,05	16853,89	19165,14	23348,97	24987,71
14,4	12571,64	16842,17	19151,71	23312,97	24924,85
14,2	12559,37	16828,99	19137,22	23273,11	24856,89
14,0	12546, 19	16814,12	19121,55	23229,07	24783,90
13,8	12532,04	16797,33	19104,63	23180,49	24706,02
13,6	12516,86	16778,33	19086,36	23127,07	24623,48
13,4	12500,56	16756,81	19066,64	23068,55	24536,56
13,2	12483,09	16732,40	19045,40	23004,71	24445,58
13,0	12464,35	16704,70	19022,58	22935,44	24350,83
12,8	$12444,\!28$	$16673,\!24$	18998,11	22860,71	24252,60
12,6	12422,76	$16637,\!55$	18972,00	$22780,\!61$	24151,12
12,4	12399,72	16597,06	18944,27	22695, 35	24046,58
12,2	12375,06	$16551,\!23$	18914,98	22605, 25	23939,11
12,0	$12348,\!65$	16499,48	18884,26	$22510,\!69$	23828,77
11,8	12320,39	16441,22	18852,32	22412,16	23715,65
11,6	$12290,\!17$	16375,92	18819,41	$22310,\!13$	23599,79
11,4	$12257,\!86$	16303,12	18785,88	22205,10	23481,29
11,2	12223,32	16222,48	18752,16	22097,52	23360,31
11,0	$12186,\!43$	16133,81	18718,72	21987,78	23237,05
10,8	12147,06	16037, 15	18686, 12	21876,20	23111,85
$10,\!6$	$12105,\!11$	15932,79	18655,00	21763,08	22985,11
10,4	12060, 48	$15821,\!35$	18626,05	$21648,\!66$	22857,38
10,2	$12013,\!10$	15703,75	18600,03	$21533,\!24$	22729,28
10,0	11963,00	15581,31	18577,80	21417,21	22601,63
9,8	11910,26	15455,71	18560,29	21301,15	22475,37
9,6	11855, 12	$15328,\!99$	18548,59	21185,93	22351,67
9,4	11797,98	15203,58	18543,88	21072,76	22231,95
9,2	11739,51	15082,24	18547,54	20963,29	22117,91
9,0	11680,69	14968,06	18561,11	20859,65	22011,64
8,8	11622,94	14864,43	18586,32	20764,56	21915,61

R	$1^{1}\Pi$	$2^{1}\Pi$	$3^{1}\Pi$	$4^{1}\Pi$	$5^{1}\Pi$
8,6	11568,20	14775,00	18625,14	20681,33	21832,75
8,4	11519,03	14703,69	18679,76	20613,91	21766,49
8,2	11478,73	14654,66	18752,63	20566, 97	21720,76
8,0	11451,40	14632,33	18846,53	20545, 92	21700,07
7,8	11442,03	14641,43	18964,55	20556, 92	21709,53
7,6	$11456,\!58$	14687,00	19110,28	20606,93	21754,90
7,4	11501,94	14774,49	19287,92	20703,56	21842,62
7,2	11585,98	14909,78	19502,50	20855,01	21979,85
7,0	11717,56	15099,19	19760,17	21069,76	$22174,\!54$
6,8	11906, 43	$15349,\!47$	20068,47	$21356,\!24$	$22435,\!38$
6,6	$12163,\!15$	15667,62	20436,35	$21722,\!65$	22771,81
6,4	12498,97	16060,76	20874,08	$22176,\!66$	23193,91
6,2	$12925,\!56$	16535,70	21392,73	$22725,\!40$	23712,29
6,0	$13454,\!60$	17098,53	22003,50	$23375,\!35$	24337,81
5,8	14097,31	17754,06	$22716,\!85$	$24132,\!24$	$25081,\!16$
5,6	14863,73	18505,21	$23541,\!55$	$25001,\!02$	25952,34
5,4	$15761,\!84$	19352,65	24483,70	25986, 10	$26959,\!66$
5,2	$16796,\!65$	20294,74	$25545,\!66$	$27091,\!87$	28108,62
5,0	17969,22	21328,05	$26725,\!60$	$28323,\!05$	29400,53
4,8	19276,02	22448,53	28018,40	29683,88	30831,26
4,6	20708,79	23652,91	29418,77	31175,37	32390,60

Tab. A.4. Adiabatyczne potencjały energetyczne cząsteczki NaRb $(1-5)^3\Pi$. Jednostką odległości międzyatomowej R jest a_0 , a jednostką energii jest cm⁻¹. Kontynuacja tabeli na dwóch kolejnych stronach.

R	1 ³ ∏	$2^3\Pi$	3 ³ П	$4^3\Pi$	$5^3\Pi$
86.0	12739.48	16967.03	19357.65	23764.67	25700.42
84.0	12739.48	16967.03	19357.65	23764.67	25700.42
82.0	12739.48	16967.03	19357.65	23764.67	25700.41
80.0	12739.48	16967.03	19357.65	23764.66	25700.41
78.0	12739.48	16967.03	19357.64	23764.66	25700.40
76.0	12739.48	16967.03	19357 64	23764 65	25700.40
74.0	12739.48	16967.03	19357 64	23764 64	25700.39
72.0	12739.48	16967.03	19357 64	23764 64	25700.38
70.0	12739.47	16967.03	19357 64	23764 63	25700.37
68.0	12739.47	16967.03	19357 63	23764 62	25700.36
66.0	12730.47	16967.03	10357.63	23764.60	25700.35
64.0	12739.46	16967.03	10357.62	23764.58	25700,33
62.0	12739,40	16967.02	19357.62	23764.56	25700,35
60.0	12739,40	16067.02	10357.61	23764.54	25700,50
58.0	12739,40	16067.02	10257.60	22764.50	25700,27
56.0	12739,44	16067.02	19557,00	23704,30	25700,25
50,0	12739,43	16067.01	19557,59	23704,40	25700,10
59.5	12739,42	16067.01	10357 55	23704,40 23764.2F	25700,11
48.0	12739,40	16066.00	10357 40	23764 11	25600.70
46,0	12739,33	16066.08	19557,49	23704,11	25099,70
40,0	12739,30	16066.06	19557,44	23703,93	25099,45
44,0	12739,23	10900,90	19557,57	23703,72	20099,00
42,0	12739,17	16966,94	19357,28	23763,42	25698,46
40,0	12739,07	10900,90	19357,10	23762,98	20097,02
39,0	12739,00	16966,88	19357,07	23762,70	25696,85
38,0	12738,92	16966,85	19356,97	23762,36	25695,97
37,0	12738,82	16966,82	19356,85	23761,95	25694,82
36,0	12738,71	16966,78	19356,71	23761,45	25693,28
35,0	12738,56	16966,73	19356,53	23760,83	25691,22
34,0	12738,39	16966,67	19356,31	23760,05	25688,42
33,0	12738,18	16966,59	19356,03	23759,07	25684,57
32,0	12737,91	16966,50	19355,69	23757,82	25679,22
31,0	12737,38	10900,37	19355,25	23750,21	20071,73
30,5	12737,39	16966,30	19354,99	23755,23	25666,90
30,0	12737,17	16966,21	19354,70	23754,10	25661,13
29,5	12736,92	16966,12	19354,36	23752,80	25654,24
29,0	12736,65	16966,01	19353,97	23751,30	25645,99
28,5	12735,33	16965,88	19353,53	23749,55	20030,08
28,0	12735,98	16905,74	19353,02	23/4/,51	25024,17
21,5	12735,58	16065.32	19352,44	23745,12	20009,82
21,0	127324 00	16065 10	19351,70	23/42,31	20092,03
20,5	12734,00	10905,10	19350,97	23738,99	200/1,09
26,0	12734,01	16964,90	19350,05	23735,05	25546,57
25,5	12/33,33	10964,60	19348,96	23730,35	20010,38
25,0	12732,54	16964,25	19347,67	23724,72	25480,22
24,5	12731,04	16963,84	19340,13	23717,93	20437,10
24,0	12730,60	10903,34	19344,28	23709,70	20386,30
23,5	12729,38	16962,76	19342,06	23699,67	25326,90
23,0	12727,96	16962,06	19339,36	23687,37	25258,47
22,5	12726,30	10901,21	10222.02	23072,18	20180,88
22,0	12724,35	16960,17	19332,03	23653,28	25094,50
21,5	12722,03	16958,91	19327,04	23029,02	25000,22
21,0	12/19,28	10957,34	19320,84	23599,80	24899,52
20,5	12715,98	16955,38	19313,09	23562,03	24794,47

R.	1 ³ ∏	$2^3\Pi$	3 ³ ∏	$4^3\Pi$	$5^3\Pi$
20.0	12712.01	16952.91	19303.35	23514.10	24687.69
19.8	12710.19	16951.73	19298.78	23491.51	24645.17
19.6	12708 23	16950.44	19293 75	23466 73	24603.08
10,0	12706,20	169/9 00	10288.22	23430.57	24000,00
19,4	12700,10	16047.41	19200,22	23439,37	24501,01
19,2	12703,80	16045.64	19202,14	23403,03	24020,91
19,0	12701,29	16042.67	19275,45	20011,04	24401,34
10,0	12090,07	16041.46	19206,09	23342,42	24442,09
18,0	12090,01	16028.00	19209,97	23304,44	24405,75
10,4	12092,30	10956,99	19201,00	20200,07	24370,02
18,2	12088,85	10930,22	19241,18	23219,82	24335,70
18,0	12684,99	10933,11	19230,32	23173,24	24302,98
17,8	12680,77	16929,60	19218,37	23123,95	24271,66
17,6	12676,14	16925,63	19205,20	23072,10	24241,74
17,4	12671,05	16921,15	19190,71	23017,91	24213,10
17,2	12665,45	16916,06	19174,78	22961,61	24185,63
17,0	12659,27	16910,27	19157,29	22903,49	24159,15
16,8	12652,46	16903,67	19138,11	22843,87	24133,48
16,6	12644,92	16896,14	19117,12	22783,10	24108,43
16,4	12636,57	16887,52	19094,21	22721,53	24083,78
16,2	12627,30	16877,64	19069,26	22659,55	24059,30
16,0	12616,99	16866,29	19042,20	22597,56	24034,74
15,8	12605,51	16853,25	19012,97	22535,96	24009,86
15,6	12592,69	16838,22	18981,54	22475,16	23984,37
15,4	12578,38	16820,90	18947,96	22415,56	23958,00
15,2	12562,35	16800,93	18912,31	22357,55	23930,41
15,0	12544,37	16777,89	18874,76	22301,49	23901,27
14,8	12524,18	16751,34	18835,57	22247,71	23870,20
14,6	12501,45	16720,77	18795,10	22196,50	23836,78
14,4	$12475,\!85$	16685, 66	18753,79	22148,09	23800,57
14,2	12446,96	16645,45	18712,20	22102,64	23761,04
14,0	12414,32	16599,60	18670,96	22060,21	23717,66
13,8	12377,39	16547,62	18630,78	22020,80	23669,84
13,6	12335,60	16489,07	18592,39	21984,26	23616,94
13,4	12288,26	16423,65	18556,53	21950,34	23558,34
13,2	12234,61	16351,21	18523,89	21918,64	23493,44
13,0	12173,84	16271,80	18495,10	21888,62	23421,73
12,8	$12105,\!04$	16185,71	18470,66	21859,55	23342,81
12,6	12027,22	16093,42	18451,00	21830,56	23256,52
12,4	11939,36	15995,66	18436,40	21800,56	23162,94
12,2	11840,40	15893,30	18427,05	21768,29	23062,43
12,0	11729,29	15787,35	18423,08	21732,32	22955,63
11,8	11605,03	15678,90	18424,55	21691,08	22843,39
$11,\!6$	11466,72	15569,01	18431,52	21642,95	22726,71
11,4	11313,59	15458,70	18444,05	21586,34	22606,67
11,2	11145,11	15348,89	18462,25	21519,81	22484,37
11,0	10960, 97	$15240,\!30$	18486,28	$21442,\!25$	22360,89
10,8	10761,17	15133,54	18516,39	21352,91	22237,32
$10,\!6$	10546,00	15029,04	18552,88	$21251,\!58$	22114,74
10,4	10316,06	14927,09	18596, 15	21138,56	21994,26
10,2	10072,28	14827,94	18646,66	21014,75	21877,05
10,0	9815,86	14731,82	18704,91	$20881,\!61$	21764,33
9,8	9548,31	14639,04	18771,34	20741,23	21657,35
9,6	9271,40	14550,05	18846,31	20596,37	21557,47
9,4	8987,17	$14465,\!54$	18929,83	$20450,\!58$	21466,13
9,2	8697,93	14386,51	19021,22	20308,56	21385,00
9,0	8406,29	14314,31	19118,25	20176,92	21315,99
8,8	8115,15	14250,71	19215,30	20066,06	21261,39

R	$1^3\Pi$	$2^{3}\Pi$	$3^3\Pi$	$4^3\Pi$	$5^3\Pi$
8,6	7827,77	14197,94	19299,78	$19993,\!69$	21223,94
8,4	7547,79	14158,74	19351,31	19985,75	21206,92
8,2	7279,25	14136,39	19360,03	$20058,\!05$	21214,23
8,0	7026,73	14134,75	19345,29	20197,73	21250,46
7,8	6795,31	14158,30	19334,83	20384,18	21320,92
7,6	6590,74	14212,12	19348,49	20605, 56	21431,49
7,4	6419,40	14302,00	19400,11	$20857,\!47$	21588,38
7,2	6288,45	14434,38	19501,04	21140, 15	21797,42
7,0	$6205,\!85$	14616,37	19662,01	$21457,\!65$	22063,33
6,8	6180,39	14855,74	19893,91	$21817,\!34$	22389,59
6,6	6221,68	15160,78	20208,10	$22228,\!68$	22779,36
6,4	6340,14	$15540,\!17$	20616, 45	$22701,\!10$	23237,00
6,2	6546, 82	16002,74	21131,20	$23241,\!34$	23769, 93
6,0	6853, 23	16557,05	21764,61	23850,97	24391,42
5,8	7271,03	17210,91	22528,42	24525,74	$25121,\!62$
5,6	7811,56	17970,71	23432,98	$25261,\!33$	25981,42
5,4	8485,29	18840,70	24486,19	$26061,\!07$	26983,27
5,2	9301,20	19822, 17	25692,09	26935,75	28130,06
5,0	10266,06	20912,87	27048,87	27899,69	29418,50
4,8	11383,94	22106,79	28542,39	28973,74	30840,59
4,6	12656,02	23394,52	30048,02	30282,81	32383,60

Tab.	A.5.	Adiabatyczne potencjały energetyczne cząsteczki NaRb $(1-2)^1 \Delta$ i $(1-2)^3 \Delta$).
		Jednostką odległości między atomowej R jest $\mathbf{a}_0,$ a jednostką energii jest $\mathbf{cm}^{-1}.$
		Kontynuacja tabeli na dwóch kolejnych stronach.

			-	-
R	$1^{1}\Delta$	$2^{1}\Delta$	$1^{3}\Delta$	$2^{3}\Delta$
86,0	19357,65	25700,43	$19357,\!65$	25700, 43
84,0	19357,65	25700,43	$19357,\!65$	25700, 43
82,0	19357,65	25700,43	19357,65	25700,42
80,0	19357,65	25700,42	19357,65	25700,42
78,0	$19357,\!65$	25700, 42	$19357,\!65$	25700, 42
76,0	19357,65	25700,42	$19357,\!65$	25700, 42
74,0	19357,65	25700,42	19357,65	25700,42
72,0	19357,65	25700,41	19357,65	25700,41
70,0	19357,65	25700,41	$19357,\!65$	25700,41
68,0	19357,64	25700,40	19357,64	25700,40
66,0	19357,64	25700,40	19357,64	25700,40
64,0	19357,64	25700,39	$19357,\!64$	25700, 39
62,0	19357,64	25700,38	$19357,\!64$	25700,38
60,0	$19357,\!63$	25700,37	$19357,\!63$	25700, 36
58,0	19357,63	25700,35	$19357,\!63$	25700, 35
56,0	19357,62	25700,33	$19357,\!62$	25700,32
54,0	19357,61	25700,30	19357,61	25700,29
$52,\!5$	19357,61	25700,27	$19357,\!61$	25700,27
48,0	19357,57	25700,15	19357,57	25700,14
46,0	19357,55	25700,06	$19357,\!55$	25700,05
44,0	19357,52	25699,93	$19357,\!52$	25699,93
42,0	19357,48	25699,76	$19357,\!48$	25699,76
40,0	19357,42	25699,51	$19357,\!42$	25699,51
39,0	19357,38	25699,35	$19357,\!38$	25699, 35
38,0	19357,33	25699, 16	$19357,\!33$	25699, 16
37,0	19357,27	25698,93	$19357,\!27$	25698, 93
36,0	19357,20	$25698,\!64$	$19357,\!20$	$25698,\!64$
35,0	19357,12	25698,30	$19357,\!12$	$25698,\!30$
34,0	19357,01	25697,87	19357,01	$25697,\!87$
33,0	19356,89	25697,35	19356,89	25697,35
32,0	19356,73	25696,70	19356,73	25696,70
31,0	$19356,\!53$	25695,88	$19356,\!53$	$25695,\!89$
$_{30,5}$	19356,41	25695,40	19356,41	25695,41
30,0	19356,28	25694,86	19356, 28	25694, 87
29,5	19356,13	25694,25	19356,13	25694,27
29,0	19355,96	25693,57	19355, 95	25693, 59
28,5	19355,76	25692,80	19355,76	25692,83
28,0	19355,54	25691,93	$19355,\!54$	$25691,\!97$
27,5	19355,30	25690,95	19355, 30	25691,00
27,0	19355,01	25689,83	19355,01	25689,90
26,5	19354,69	25688,57	$19354,\!69$	$25688,\!66$
26,0	19354,32	25687,14	$19354,\!32$	25687,24
25,5	19353,89	25685,50	19353,89	25685,64
25,0	19353,40	25683,64	19353,40	25683,81
24,5	19352,83	25681,51	19352,83	25681,73
24,0	19352,17	25679,07	19352,17	25679,35
23,5	19351,40	25676,27	19351,40	25676,62
23,0	19350,50	25673,04	19350,51	25673,48
22,5	19349,45	25669,32	19349,46	25669,86
22,0	19348,21	25665,01	19348,23	25665,69
21,5	19346,75	25660,00	19346,77	25660,86
21,0	19345,01	25654,17	19345,04	25655,23
20,5	19342,93	25647,34	19342,99	25648, 66

R	$1^{1}\Delta$	$2^{1}\Delta$	$1^{3}\Delta$	$2^{3}\Delta$
20,0	19340,44	25639,31	19340,53	25640,96
19,8	19339,31	25635,71	19339,41	25637,51
19,6	19338,09	25631,86	19338,20	25633,81
19,4	19336,77	25627,74	19336,91	25629,87
19,2	19335,35	25623,32	19335,51	25625,64
19,0	19333,81	25618,58	19334,00	25621,10
18,8	19332,14	25613,49	19332,37	25616,23
18,6	19330,34	25608,02	19330,60	25610,99
18,4	19328,38	25602,13	19328,69	25605,36
18,2	19326,26	25595,78	19326,61	25599,29
18,0	19323,94	25588,93	19324,37	25592,74
17.8	19321,42	25581.52	19321,92	25585,67
17,6	19318,68	25573,50	19319,27	25578,01
17,4	19315,69	25564,82	19316,38	25569,70
17,2	19312,42	25555,38	19313,23	25560,68
17,0	19308,85	25545,12	19309,80	25550,87
16,8	19304.93	25533.94	19306.06	25540.18
16,6	19300.64	25521.74	19301.96	25528.51
16,4	19295.93	25508.40	19297.47	25515.75
16,2	19290,74	25493,79	19292,56	25501,76
16,0	19285,04	25477,75	19287,18	25486,41
15,8	19278,74	25460,12	19281,26	25469,52
15,6	19271,79	25440,69	19274,76	25450,91
15,4	19264,11	25419,26	19267,59	25430,37
15,2	19255.60	25395.56	19259.70	25407.66
15,0	19246.18	25369.33	19251.00	25382.51
14.8	19235,71	25340.24	19241.38	25354.64
14,6	19224,08	25307,94	19230,74	25323,69
14,4	19211.13	25272.04	19218,97	25289,32
14,2	19196.71	25232.11	19205.91	25251,11
14,0	19180,62	25187,67	19191,44	25208,62
13,8	19162,66	25138,22	19175,37	25161,40
13,6	19142,60	25083,20	19157,51	25108,93
13,4	19120,17	25022,07	19137,67	25050,71
13,2	19095,07	24954,25	19115,59	24986,21
13,0	19066.98	24879.19	19091.02	24914.93
12.8	19035.55	24796.41	19063.68	24836,38
12,6	19000.37	24705.49	19033.27	24750,17
12,4	18961,02	24606,18	18999,43	24655,95
12,2	18917.05	24498.38	18961.82	24553,54
12,0	18867.96	24382.24	18920.05	24442,90
11,8	18813,26	24258,14	18873,72	24324,16
11.6	18752.42	24126.71	18822.44	24197.67
11.4	18684.96	23988.79	18765.80	24063.96
11.2	18610.39	23845,44	18703.42	23923.79
11.0	18528.29	23697.83	18634.95	23778.08
10.8	18438.33	23547.25	18560.13	23627.93
10.6	18340.29	23395.02	18478.76	23474.56
10.4	18234.13	23242.52	18390.78	23319.33
10.2	18119.99	23091.11	18296.29	23163.68
10.0	17998.26	22942.20	18195.59	23009.16
9.8	17869.62	22797.22	18089.26	22857.41
9.6	17735.06	22657.70	17978.15	22710.21
9.4	17595.94	22525.25	17863.46	22569.43
9.2	17453.99	22401.69	17746.76	22437.18
9.0	17311.32	22289.06	17630.06	22315.74
8.8	17170.49	22189.70	17515.81	22207.70
,.	1	,	1 1.010,01	,

R	$1^{1}\Delta$	$2^{1}\Delta$	$1^{3}\Delta$	$2^{3}\Delta$
8,6	17034,48	22106,32	17406,94	22115,98
8,4	16906,72	22042,00	17306,90	22043,90
8,2	16791,11	22000,28	17219,68	21995,25
8,0	16692,07	21985,11	17149,84	21974,36
7,8	16614,50	22000,87	17102,54	21986,13
7,6	16563,84	22052,06	17083,57	22036,16
7,4	16546,12	22143,28	17099,37	22130,73
7,2	16567,91	22279,05	17157,03	22276,87
7,0	16636,32	22464,59	17264,32	22482,39
6,8	16759,00	22707,52	17429,61	22755,87
6,6	16944,00	23018,68	17661,80	23106,61
6,4	17199,68	23410,79	17970,12	23544,54
6,2	17534,43	23896,85	18363,87	24080,10
6,0	17956,46	24489,34	18852,01	24723,84
5,8	18473,42	25199,87	19442,58	25486,06
5,6	19092,03	26038,70	20142,05	26376,01
5,4	19817,75	27014,01	20954,47	27400,96
5,2	20654,56	28131,00	21880,67	28565,05
5,0	21604,92	29390,91	22917,61	29868,04
4,8	22669,94	30790,34	24058,00	31304,27
4,6	23849,73	32321,38	25290,59	32862,24

B. Potencjały relatywistyczne cząsteczki NaRb

Tab. B.1. Adiabatyczne potencjały energetyczne cząsteczki NaRb (1-9) 0⁺. Jednostką odległości międzyatomowej R jest a_0 , a jednostką energii jest cm^{-1} . Kontynuacja tabeli na dwóch kolejnych stronach.

R	$(1) 0^+$	$(2) 0^+$	(3) 0 ⁺	$(4) 0^+$	$(5) 0^+$	$(6) 0^+$	$(7) 0^+$	(8) 0 ⁺	$(9) 0^+$
86,0	0,00	12579,55	12818,89	16953,82	16973,64	19357,38	$19358,\!04$	20128,52	23713,34
84,0	0,00	12579,55	12818,88	16953,82	16973,64	19357,38	$19358,\!04$	20128,52	23713,34
82,0	0,00	$12579,\!54$	12818,88	16953,82	16973,64	19357,38	19358,04	20128,52	23713,33
80,0	0,00	$12579,\!54$	12818,88	16953,82	16973,64	19357,38	$19358,\!04$	20128,51	23713,33
78,0	0,00	$12579,\!54$	12818,88	16953,82	16973,64	19357,37	$19358,\!04$	20128,51	23713,32
76,0	0,00	$12579,\!54$	12818,87	16953,82	16973,64	19357,37	19358,04	20128,50	23713,31
74,0	0,00	$12579,\!54$	12818,87	16953,82	16973,64	19357,37	19358,03	20128,50	23713,30
72,0	0,00	$12579,\!54$	12818,87	16953,82	16973,64	19357,37	19358,03	20128,49	23713,29
70,0	0,00	12579,53	12818,86	16953,82	16973,64	19357,36	19358,03	20128,48	23713,27
68,0	0,00	12579,53	12818,86	16953,82	16973,64	19357,36	19358,02	20128,47	23713,26
66,0	-0,01	$12579,\!52$	12818,85	16953,82	16973,64	19357,35	19358,02	20128,46	23713,24
64,0	-0,01	12579,52	12818,84	16953,82	16973,64	19357,35	19358,01	20128,44	23713,21
62,0	-0,01	12579,51	12818,83	16953,82	16973,64	19357,34	19358,00	20128,42	23713,18
60,0	-0,01	12579,50	12818,82	16953,82	16973,64	19357,33	19357, 99	20128,39	23713,13
58,0	-0,02	12579,48	12818,80	16953,82	16973,64	19357,32	$19357,\!98$	20128,36	23713,07
56,0	-0,02	12579,47	12818,78	16953,82	16973,64	19357,30	19357, 97	20128,32	23713,00
54,0	-0,03	12579,45	12818,75	16953,82	16973,64	19357,28	19357,95	20128,26	23712,91
52,5	-0,03	12579,43	12818,72	16953,82	16973,65	19357,26	19357,93	20128,21	23712,81
48,0	-0,05	12579,34	12818,60	16953,81	16973,65	19357,17	19357,85	20127,97	23712,34
46,0	-0,07	12579,28	12818,51	16953,80	16973,65	19357,10	19357,79	20127,80	23711,92
44,0	-0,09	12579,20	12818,40	16953,79	16973,65	19357,01	19357,72	20127,56	23711,06
42,0	-0,12	12579,09	12818,24	16953,78	16973,65	19356,88	19357,61	20127,22	23708,26
40,0	-0,16	12579,01	12818,05	16953,76	16973,65	19356,69	19357,46	20126,72	23662,76
39,0	-0,19	12578,85	12817,87	16953,74	16973,64	19356,57	19357,36	20126,39	23545,71
38,0	-0,22	12578,71	12817,68	16953,72	16973,64	19356,40	19357, 25	20125,97	23398,80
37,0	-0,26	$12578,\!55$	12817,46	16953,70	16973,63	19356,20	19357,11	20125,44	23238,33
36,0	-0,31	12578, 36	12817,20	16953,67	16973,62	19355,93	19356, 95	20124,76	23066,77
35,0	-0,36	12578, 14	12816,87	16953,63	16973,60	19355,57	19356,75	20123,86	22884,32
34,0	-0,43	12577,86	12816,47	16953,58	16973,57	19355,09	19356, 51	20122,65	22690,67
33,0	-0,52	12577,52	12815,98	16953,52	16973,53	19354,41	19356, 22	20120,94	22485,35
32,0	-0,63	12577,09	12815,36	16953,43	16973,47	19353,44	19355,86	20118,45	22267,94
31,0	-0,76	12576,55	12814,58	16953,32	16973,38	19352,01	19355,41	20114,67	22038,21
30,5	-0,84	12576,23	12814,12	16953,25	16973,33	19351,02	19355, 14	20112,02	21918,80
30,0	-0,93	12575,87	12813,59	16953,17	16973,26	19349,78	19354,84	20108,63	21796,50
29,5	-1,04	12575, 46	12813,00	16953,07	16973,17	19348,21	$19354{,}50$	20104,23	21671,55
29,0	-1,15	$12574,\!99$	12812,32	16952,96	16973,07	19346,16	19354, 11	20098,45	21544,33
28,5	-1,28	$12574,\!46$	12811,55	16952,83	16972,95	19343,49	$19353,\!66$	20090,74	21415,44
28,0	-1,43	12573,86	12810,66	$16952,\!67$	16972,79	19339,93	19353, 15	20080,31	21285,82
27,5	-1,60	12573,16	12809,64	16952,49	16972,61	19335,11	19352,57	20065,99	21156,89
27,0	-1,80	$12572,\!35$	12808,47	$16952,\!27$	16972,38	19328,44	$19351,\!89$	20046,15	21030,82
26,5	-2,02	$12571,\!42$	12807,11	16952,01	16972,09	19319,03	$19351,\!10$	20018,51	20910,68
26,0	-2,28	12570,34	12805,52	16951,69	16971,74	19305,39	19350, 17	19980,41	20800,59
25,5	-2,57	12569,07	12803,66	16951,31	16971,31	19285,10	19349,07	19929,63	20705,17
25,0	-2,91	$12567,\!57$	12801,47	16950,85	16970,76	19254,17	19347,78	19866, 35	20628,23
24,5	-3,31	12565,79	12798,89	16950,27	16970,09	19206,46	19346,24	19795,38	20571,13
24,0	-3,77	12563,66	12795,81	16949,56	16969,24	19134,14	19344,39	19726,08	20532,44
23,5	-4,31	12561,08	12792,12	16948,67	16968,17	19030,80	19342,16	19668,05	20509,10
23,0	-4,95	12557,93	12787,68	16947,53	16966,84	18895,40	19339,46	19625,74	20497,93
22,5	-5,70	12554,04	12782,30	16946,04	16965,18	18732,10	19336,16	19597,83	20496,40

B	$(1) 0^+$	$(2) 0^+$	$(3) 0^+$	$(4) 0^+$	$(5) 0^+$	$(6) 0^+$	$(7) 0^+$	$(8) 0^+$	$(9) 0^+$
22.0	-6.60	12549.17	12775 75	16944.06	16963 12	18546.66	19332 12	19580 75	20502 73
21.5	-7.67	12542.96	12767 77	16941.35	16960.61	18344.05	19327.12	19571 21	20515.83
21,0	-8.96	12534.92	12758.03	16937.54	16957.65	18128.07	19320.91	19566.88	20535.06
20.5	-10.52	12524 29	12746 19	16932.08	16954 24	17901.66	19313 15	19566 20	20560 11
20,0	-12.44	12509.91	12731.95	16924.24	16950.41	17667.43	19303.40	19568.11	20590.92
19.8	-13.32	12502.74	12725.53	16920.23	16948 76	17572.12	19298 82	19569.41	20604.88
19.6	-14 28	12494 54	12718 71	16915.64	16947.02	17476.14	19293 78	19570.97	20619 79
19.4	-15.33	12434,04	12711.47	16910.39	16945.19	17379.69	19288 25	19572.74	20635.67
19.2	-16.48	12474.34	12703.85	16904.39	16943.23	17282.97	19282.16	19574.68	20652.54
19.0	-17 73	12461.89	12695.87	16897.57	16941 13	17186.20	19275 46	19576 77	20670.42
18.8	-19.10	12447 51	12687.58	16889.80	16938 86	17089.65	19268.09	19578.98	20689.33
18.6	-20.61	12430.92	12679.02	16880.92	16936 33	16993.67	19259.98	19581.27	20000,00
18.4	-22.27	12400,02 12411 76	12670.24	16869.90	16899.04	16945.82	19251.05	19583.61	20730.34
18.2	-22,21	12389.69	12661.30	16802.33	16861 11	16943.07	19241 22	19585.97	20752 50
18.0	-26.10	12364 32	12652.24	16709.57	16848.17	16939.98	19230 38	19588 33	20775 79
17.8	-28,33	12335 27	12643 10	16618 13	16833.98	16936 49	19218 44	19590.64	20110,15
17.6	-30.79	12302.14	12633.86	16528.63	16818 11	16932.55	19205.30	19592.88	20825.91
17.4	-33 52	12002,14 12264 54	12624 53	16441.48	16800.33	16928.08	19190.83	19595.02	20852 79
17,4 17.2	-36.55	12204,04	12615.07	16357.08	16780.41	16923.02	19174 93	19597.01	20880.93
17.0	-30,00	12222,01	12605.42	16275.83	16758 13	16917 27	19157 47	19598 81	20000,30
16.8	-43.69	12171,00	12595.49	16198.12	16733.23	16910 71	10138 33	19600.39	20010,01
16.6	-47.89	12061.69	12585 20	16124 30	16705.46	16903 22	19117 38	19601.69	20941,00
16.4	-52.59	11996.08	12574 43	16054 73	16674 54	16894 65	19094 52	19602.68	21006.51
16.2	-57.86	11923.86	12563.05	15989 72	16640.19	16884.83	19069.63	19603.28	21000,01
16.0	-63 76	11844 78	12550.93	15929.52	16602.14	16873.55	19042.63	19603.45	21041,20
15.8	-70.40	11758.65	12537.89	15874 31	16560.11	16860 57	19012,00	19603 11	21011,44
15.6	-77.87	11665 31	12523 76	15824.20	16513.86	16845.63	18982-13	19602.20	21110,00
15.4	-86 30	11564.68	12508 34	15779.17	16463 18	16828.41	18947 29	19600.62	21100,37
15.2	-95.80	11456 73	12491 41	15739.11	16407.92	16808.55	18911.54	19598 27	21236.19
15.0	-106.53	11341 51	12472 71	15703 70	16348.07	16785.65	18873.87	19595.07	21200,10
14.8	-118.67	11219.15	12451.97	15672.42	16283.77	16759.26	18834.56	19590.87	21210,11
14.6	-132.41	11089.81	12428.87	15644 42	16215.47	16728.88	18793 94	19585.54	21370.24
14.4	-147.98	10953.73	12403.04	15618.35	16144.11	16694.00	18752.47	19578.92	21417.79
14.2	-165.63	10811.23	12374.06	15592.04	16071.44	16654.05	18710.71	19570.82	21466.76
14.0	-185.66	10662.63	12341.48	15562.05	16000.47	16608.53	18669.29	19561.05	21517.11
13.8	-208.40	10508.35	12304.77	15523.30	15935.89	16556.92	18628.91	19549.36	21568.74
13.6	-234.20	10348.82	12263.33	15469.83	15883.31	16498.81	18590.32	19535.48	21621.44
13.4	-263.50	10184.52	12216.48	15397.39	15846.66	16433.90	18554.24	19519.09	21674.72
13.2	-296.76	10015.99	12163.49	15305.90	15825.76	16362.07	18521.37	19499.85	21727.55
13.0	-334.50	9843.78	12103.52	15198.30	15817.43	16283.37	18492.34	19477.35	21777.21
12.8	-377.30	9668.49	12035.67	15078.08	15818.00	16198.09	18467.65	19451.14	21813.33
12,6	-425,78	9490,77	11958.96	14948.04	15824,40	16106.73	18447,72	19420,72	21808.14
12,4	-480.65	9311,29	11872.38	14810.28	15833.62	16010.00	18432.84	19385.53	21782.26
12,2	-542,64	9130,76	11774.84	14666.44	15834.72	15908.78	18423.18	19344.97	21751.06
12.0	-612.54	8949,93	11665.29	14517.88	15762.94	15876.68	18418.87	19298.37	21714.87
11.8	-691.20	8769,59	11542.74	14365.83	15657.21	15889.52	18419.96	19245.05	21667.17
11.6	-779,46	8590,51	11406.23	14211,50	15547,23	15905,43	18426,51	19184.31	21572,53
11.4	-878.18	8413,52	11255.02	14056.06	15436.15	15921.89	18438.56	19115.45	21457.02
11.2	-988.21	8239,44	11088.51	13900.74	15325.33	15938.30	18456.22	19037.83	21332,90
11,0	-1110.34	8069,09	10906.37	13746.75	15215.67	15954.54	18479.65	18950.89	21202,97
10.8	-1245.28	7903,28	10708.53	13595.40	15107.85	15970.78	18509.06	18854.23	21069.24
10.6	-1393.63	7742,81	10495.25	13447.99	15002.34	15987.46	18544.78	18747.65	20933.45
10,4	-1555.80	7588,47	10267.10	13305.88	14899.50	16005.30	18587.11	18631.32	20797.21
10.2	-1731.99	7441.04	10024.98	13170.46	14799.61	16025.28	18505.29	18636.87	20662.03
10.0	-1922.15	7301.33	9770.08	13043.11	14702.89	16048.68	18370.82	18694.09	20529.36
9.8	-2125.93	7170,20	9503.89	12925.28	14609.68	16077.03	18228.91	18759.46	20400.68
1 1 1	,	/ -	,	, -	,	,	,-	, -	,

R	$(1) 0^+$	$(2) 0^+$	(3) 0+	$(4) 0^+$	$(5) 0^+$	$(6) 0^+$	$(7) 0^+$	(8) 0+	(9) 0+
9,4	-2571,06	6937,56	8944,99	$12724,\!05$	14435,83	$16155,\!81$	$17929,\!84$	18915,72	20161,67
9,2	-2809,78	6838,45	8656,65	12643,73	14356,85	16210,38	17777,28	19006,00	20055,03
9,0	-3056,75	6752,84	8365,78	12579,17	14284,83	16278,04	$17626,\!50$	19102,02	19959,92
8,8	-3309,46	6682,67	8075,33	$12532,\!25$	14221,53	16361,13	17480,86	19198,29	19879,04
8,6	-3564,86	6630,30	7788,62	12505,08	14169,15	16462,03	17344, 17	19282,51	19815,64
8,4	-3819,30	6598,50	7509,43	12500, 15	14130,43	16583,09	17220,77	19334,57	19773,42
8,2	-4068,49	6590,41	7242,27	12520,36	14108,63	16726, 47	17115,72	19344,26	19756,39
8,0	-4307,45	6608,54	6993,34	$12569,\!18$	14107,59	16891,89	17037,21	19330,24	19769,29
7,8	-4530,41	6641,34	6784,20	12650,68	14131,77	16968,44	17104,97	19320,12	19817,59
7,6	-4730,77	6531,35	6783,70	12769,69	14186,27	16954,49	17330,58	19333,88	19907,37
7,4	-4901,01	6367,52	6915,77	12931,77	14276,84	16979, 13	17596, 33	19385,41	20045,30
7,2	-5032,61	6237,89	7106,81	13143,31	14409,93	17053,71	17904,11	19486,14	20238,64
7,0	-5115,97	6155,09	7360,28	13411,49	14592,64	17187,50	18259,92	19646,83	20495,22
6,8	-5140,43	6128,74	7684,31	13744,23	14832,73	17390,37	$18671,\!45$	19878,37	20823,46
6,6	-5094,24	6168,69	8088,31	14150,08	15138,48	17673,05	19147,84	20192,14	21232,26
6,4	-4964,65	6285, 45	8582,42	14637,98	15518,59	18047,08	19699,54	20600,02	21730,97
6,2	-4738,17	6490,11	9177,04	$15216,\!96$	15981,86	18524,73	20337,98	21114,26	22329,15
6,0	-4400,87	6794,20	9882,43	$15895,\!65$	16536,86	19118,68	$21075,\!08$	21747,14	23036,27
5,8	-3938,92	7209,39	10708,00	16681,68	17191,46	19841,68	21922,62	22510,37	23861,19
5,6	-3339,43	7747,02	11661,43	17580,87	17952,18	20705,85	$22891,\!50$	23414,32	24811,36
5,4	-2591,44	8417,57	12747,60	$18596,\!27$	18823,81	21721,70	23990,83	24466,86	25891,81
5,2	-1687,30	9229,83	13967,27	$19723,\!51$	19812,44	22896,70	25227,07	25671,97	26876,94
5,0	-623,91	10190,94	15315,97	20883,38	20992,72	24233,44	26603,53	27027,60	27834,52
4,8	595,72	11304,83	16783,26	22082,08	22129,27	$25727,\!62$	28119,91	28517,49	28904,71
4,6	1961,81	12572,67	18353,02	$23370,\!44$	23417,66	27366,53	29772,60	29983,63	30245,61

Tab. B.2. Adiabatyczne potencjały energetyczne cząsteczki NaRb (10-14) 0⁺. Jednostką odległości międzyatomowej R jest a_0 , a jednostką energii jest cm⁻¹. Kontynuacja tabeli na dwóch kolejnych stronach.

R	$(10) 0^+$	$(11) 0^+$	$(12) 0^+$	$(13) 0^+$	$(14) 0^+$
86,0	23790,87	25698,71	25701,55	25737,54	26307,59
84,0	23790, 87	25698,70	$25701,\!55$	$25737,\!54$	26307,58
82,0	23790,86	25698,70	25701,54	$25737,\!53$	26307,57
80,0	23790,85	25698, 69	25701,54	$25737,\!53$	26307,55
78,0	23790,84	$25698,\!69$	25701,53	$25737,\!52$	26307,54
76,0	23790,83	$25698,\!68$	25701,52	25737,51	26307,51
74,0	23790,81	$25698,\!67$	25701,51	25737,50	26292,95
72,0	23790,80	$25698,\!66$	25701,50	25737, 49	26210,11
70,0	23790,78	$25698,\!64$	25701,48	$25737,\!48$	26122,48
68,0	23790,76	$25698,\!63$	25701,46	25737,46	26029,65
66,0	23790,73	$25698,\!60$	25701,44	$25737,\!43$	25931,12
64,0	$23790,\!69$	25698,57	25701,39	25737,41	25826,37
62,0	23790,64	25698,40	25701, 16	25715,09	25737,38
60,0	23790,58	25595, 45	25698,53	25701,37	25737,33
58,0	23790,50	25467,92	25698, 47	25701,29	25737,28
56,0	23790,40	25331,07	25698,40	25701,22	25737,21
54,0	23790,26	25183,85	25698,32	25701,13	25737,12
$52,\!5$	23790,13	25065, 89	25698, 24	25701,06	25737,04
48,0	23789,40	24666,64	25698,04	25700,92	25736,66
46,0	$23788,\!69$	$24463,\!68$	25697, 97	$25701,\!05$	25736, 39
44,0	$23787,\!05$	24242,79	25697, 85	25701,61	25736,02
42,0	23780,92	$24006,\!30$	$25697,\!51$	$25703,\!12$	25735,50
40,0	23734,70	$23827,\!24$	25696,74	25706, 38	25734,77
39,0	$23722,\!13$	$23811,\!01$	25696, 12	25709,01	25734,28
$_{38,0}$	23719, 31	$23807,\!30$	25695, 29	$25712,\!54$	25733,70
37,0	23718,42	$23807,\!12$	25694, 16	$25717,\!20$	25732,99
36,0	23718,23	23808,81	$25692,\!65$	25723,24	25732,12
35,0	23718,38	23812,07	$25690,\!60$	25730,55	25731,44
34,0	23718,70	23817,02	25687,81	$25729,\!62$	25740,70
33,0	23719,07	23823,99	25683,97	25727,89	25752,68
32,0	23719,32	23833,42	$25678,\!63$	$25725,\!65$	25767,24
31,0	23719,29	23845, 87	25671,14	25722,70	25784,62
$_{30,5}$	23719,09	23853,42	25666,31	25720,87	25794,41
30,0	23718,74	23861,94	25660,54	25718,73	25804,94
29,5	23718,20	23871,53	25653,65	25716,22	25816,22
29,0	23717,42	23882,24	25645,40	25713,26	25828,23
28,5	23716,37	23894,15	25635,48	25709,74	25840,94
28,0	23715,00	23907,32	25623,56	25705,52	25854,30
27,5	23713,25	23921,79	25609,20	25700,42	25868,26
27,0	23711,03	23937,60	25591,89	25694,21	25882,74
26,5	23708,28	23954,77	25571,02	25686,58	25897,65
26,0	23704,88	23973,30	25545,87	25677,13	25912,85
25,5	23700,68	23993,17	25515,63	25665,32	25928,21
25,0	23695,53	24014,33	25479,39	25650,43	25943,59
24,5	23689,22	24036,68	25436,24	25631,48	25958,80
24,0	23681,45	24060,13	25385,26	25607,17	25973,66
23,5	23671,88	24084,52	25325,71	25575,78	25987,98
23,0	23660,05	24109,65	25257,07	25535,03	26001,59
22,5	23645,35	24135,30	25179,22	25482,05	26014,27
22,0	23627,00	24161,17	25092,51	25413,44	26025,85
21,5	23603,96	24191,63	24997,83	25325,55	26036,12
21,0	23574,85	24212,25	24896,62	25215,13	26044,89
20,5	23537,94	24236,62	24790,93	25080,18	26051,90

R	$(10) 0^+$	$(11) 0^+$	$(12) 0^+$	$(13) 0^+$	$(14) 0^+$
20,0	23491,05	24259,53	24683,39	24920,57	26056,89
19,8	23468,94	24268,14	24640,54	24850,19	26058,24
19,6	23444,66	24276,36	24598,10	24776, 33	26059, 18
19,4	23418,05	24284,12	24556,30	24699,25	26059,69
19,2	23388,94	24291,32	24515,37	24619,23	26059,72
19,0	23357, 19	24297,80	$24475,\!53$	24536,62	26059,24
18,8	23322,70	24303,16	24436,97	24452,04	26058,20
18,6	23285, 36	24305,45	24366,80	24400,70	26056,55
18,4	$23245,\!15$	24268,01	24317,36	24367,31	26054,24
18,2	23202,04	24180,74	24307,96	24342,96	26051,18
18,0	23156,11	24089,44	24285, 15	24335,59	26047,31
17,8	23107,44	23996,87	24256,23	24335,40	26042,53
17,6	23056,19	23903,65	24226,95	24336,21	26036,72
17,4	23002,55	23810,21	24198,40	24336,63	26029,75
17,2	22946,77	23716,93	24170,81	24336,21	26021,48
17,0	22889,14	23624,20	24144,09	24334,68	26011,68
16,8	22829,96	$23532,\!42$	24118,19	24331,84	26000,01
$16,\! 6$	22769,57	23441,97	24092,89	24327,52	$25981,\!82$
16,4	$22708,\!35$	23353,23	24068,01	24321,43	25944,78
16,2	22646,68	23266,63	24043,34	24313,43	25904,58
16,0	$22584,\!95$	23182,52	24018,61	24303,22	25861,84
15,8	$22523,\!58$	23101,30	23993,58	24290,50	25816,55
15,6	22462,97	23023,30	23967,97	24274,94	25768,80
15,4	22403,53	22948,82	23941,50	24256, 15	25718,93
15,2	22345,64	22878,11	$23913,\!85$	24233,69	25665,03
15,0	22289,69	22811,34	$23884,\!65$	24207,09	25609,24
14,8	22236,00	22748,57	23853,58	24175,83	25550,83
14,6	$22184,\!87$	22689,71	23820,16	24139,38	25489,79
14,4	$22136{,}53$	$22634,\!56$	$23783,\!95$	$24097,\!21$	$25426,\!08$
14,2	$22091,\!14$	22582,70	23744,43	24048,86	$25359,\!61$
14,0	$22048,\!82$	$22533,\!55$	$23701,\!05$	$23993,\!93$	25290, 29
13,8	$22009,\!54$	$22486,\!37$	$23653,\!20$	$23932,\!29$	$25221,\!97$
$13,\!6$	$21973,\!23$	$22440,\!07$	23600, 26	$23863,\!58$	$25143,\!68$
13,4	21939,74	$22393,\!86$	$23541,\!59$	$23788,\!23$	25066, 99
13,2	21908, 93	22346, 93	$23476,\!59$	$23725,\!46$	24989,05
13,0	$21881,\!30$	22299,25	23404,68	$23619,\!05$	24912,32
12,8	$21862,\!88$	$22252,\!66$	23325,57	23526,72	24837, 49
$12,\!6$	$21872,\!60$	22213,20	23239,10	$23430,\!59$	24741,80
12,4	$21874,\!58$	22193,05	23145,41	23332,13	24648,75
12,2	21840,50	$22201,\!57$	23044,90	23233,47	24562,48
12,0	21773,32	22230,87	22938,27	23137,87	24482,48
11,8	21689,40	22264,57	22826,41	23050,51	24404,84
11,6	21630,31	22287,21	22710,36	22979,22	24315,80
11,4	21572,80	22284,98	22591,15	22933,12	24199,77
11,2	21506,11	22249,85	22469,83	22916,29	24062,67
11,0	21428,55	22184,58	22347,42	22921,64	23914,99
10,8	21339,29	22098,72	22224,96	22934,62	23761,58
$10,\!6$	21238,07	22001,49	22103,52	22941,07	23604,79
10,4	21125,37	21899,37	21984,26	22931,05	23446,18
10,2	21001,64	21796,63	21868,40	22899,98	23287,06
10,0	20868,64	21696,17	21757,25	22848,16	23128,71
9,8	20728,38	21600,12	21652,24	22779,18	22972,52
9,6	20583,60	21510,12	21555,04	22698,11	22820,07
9,4	20437,95	21427,46	21467,48	22610,19	22673,37
9,2	20295,99	21353,34	21391,72	22517,11	22542,15
9,0	20164,33	21289,37	21329,80	22398,80	22442,18
8,8	20053, 20	21238,03	21283,46	22281,77	22366,70

R	$(10) 0^+$	(11) 0+	$(12) 0^+$	$(13) 0^+$	(14) 0+
8,6	$19979,\!99$	21202,47	$21254,\!34$	$22179,\!36$	22306,72
8,4	19970, 35	21186,35	21244,46	22095,88	22267,02
8,2	20040,71	21193,77	21256,38	$22035,\!57$	22253,07
8,0	20179,07	21229,34	21293,35	22003,29	22270,59
7,8	20364,97	21298,29	21359,45	22004,59	22325,36
7,6	20586,52	21406,27	21459,83	22052,01	22379,37
7,4	20839,21	21558,84	21601,12	22133,88	22435,10
7,2	21123,13	21760,21	21792,40	22276,27	22549,80
7,0	21441,96	22012,32	22045,05	22464,44	22734,76
6,8	21802,60	22323,15	22364,44	22707,51	23000,51
6,6	22214,02	22706,14	22750,90	$23018,\!83$	23355,89
6,4	22685, 15	23172,82	23208,29	23411,21	23809,14
6,2	23222,13	23726,48	23752,56	23897,71	24369,00
6,0	23825, 91	24357,36	24418,48	24490,71	25044,74
5,8	24492,50	25093,62	25149,20	$25208,\!45$	25845, 35
5,6	25219,31	25959,16	26003,29	26127, 15	26778,45
5,4	26009,46	26965,07	26999,58	$27180,\!58$	27744,34
5,2	27104,38	28114,18	28129,91	$28252,\!98$	29003,96
5,0	28446,48	28976,14	29390,94	29432,82	30406,00
4,8	29831,29	29915,38	30790,58	30853,74	31955,77
4,6	30845,87	31491,17	32371,20	32396,29	33633,49

R	$(1) 0^{-}$	$(2) 0^{-}$	(3) 0-	$(4) 0^{-}$	$(5) 0^{-}$	(6) 0-	(7) 0-	$(8) 0^{-}$	$(9) 0^{-}$
86,0	0,00	12579,55	12818,89	16953,82	16973,63	19357,38	19358,04	20128,52	23713,34
84,0	0,00	12579,55	12818,88	16953,82	16973,63	19357,38	19358,04	20128,52	23713,34
82,0	0,00	12579,54	12818,88	16953,82	16973,63	19357,38	19358,04	20128,52	23713,33
80,0	0,00	12579,54	12818,88	16953,82	16973,64	19357,38	19358,04	20128,51	23713,33
78,0	0,00	$12579,\!54$	12818,88	$16953,\!82$	16973,64	19357,37	19358,04	20128,51	23713,32
76,0	0,00	12579,54	12818,87	16953,82	16973,64	19357,37	19358,04	20128,50	23713,31
74,0	0,00	12579,54	12818,87	$16953,\!82$	16973,64	19357,37	19358,03	20128,50	23713,30
72,0	0,00	12579,54	12818,87	$16953,\!82$	16973,64	19357,37	19358,03	20128,49	23713,29
70,0	0,00	$12579,\!53$	12818,86	$16953,\!82$	$16973,\!64$	19357,36	19358,03	20128,48	$23713,\!27$
68,0	0,00	$12579,\!53$	12818,86	$16953,\!82$	$16973,\!64$	19357,36	19358,02	20128,47	$23713,\!26$
66,0	-0,01	$12579,\!52$	$12818,\!85$	$16953,\!82$	$16973,\!64$	$19357,\!35$	19358,02	$20128,\!46$	$23713,\!24$
64,0	-0,01	$12579,\!52$	12818,84	$16953,\!82$	$16973,\!64$	$19357,\!35$	19358,01	20128,44	$23713,\!21$
62,0	-0,01	$12579,\!51$	12818,83	$16953,\!82$	$16973,\!64$	19357,34	19358,00	20128,42	$23713,\!18$
60,0	-0,01	$12579,\!50$	12818,82	$16953,\!82$	$16973,\!64$	19357,33	19357,99	20128,39	$23713,\!13$
58,0	-0,02	$12579,\!48$	12818,80	$16953,\!82$	$16973,\!64$	19357,32	19357,98	20128,36	23713,08
56,0	-0,02	$12579,\!47$	12818,78	$16953,\!82$	$16973,\!64$	19357,30	19357,97	20128,32	23713,00
54,0	-0,03	$12579,\!45$	12818,75	$16953,\!82$	$16973,\!64$	19357,28	19357,95	20128,26	23712,91
52,5	-0,03	$12579,\!43$	12818,72	$16953,\!82$	$16973,\!64$	19357,26	19357,93	20128,21	23712,82
48,0	-0,05	$12579,\!34$	12818,60	$16953,\!81$	$16973,\!64$	19357, 17	19357,85	20127,97	23712,39
46,0	-0,07	$12579,\!28$	12818,51	$16953,\!81$	$16973,\!64$	19357,10	19357,79	20127,80	$23712,\!07$
44,0	-0,09	12579,20	12818,39	$16953,\!80$	16973,64	19357,01	19357,72	20127,56	23711,62
42,0	-0,12	12579,09	12818,23	16953,79	16973,64	19356,88	19357,61	20127,22	23710,94
40,0	-0,16	$12578,\!93$	12818,00	16953,77	16973,63	19356,70	19357,46	20126,74	23709,92
39,0	-0,19	12578,82	12817,85	16953,76	16973,63	19356,57	19357,37	20126,41	23709,21
38,0	-0,22	12578,69	12817,67	16953,74	16973,62	19356,41	19357,25	20126,02	23708,31
37,0	-0,26	$12578,\!54$	12817,45	16953,72	16973,61	19356,22	19357,12	20125,54	23707,18
36,0	-0,31	12578, 36	12817,19	16953,70	16973, 59	19355,97	19356,95	20124,95	23705,72
35,0	-0,36	12578,14	12816,87	$16953,\!66$	16973, 57	19355,64	19356,76	20124,21	23703,84
34,0	-0,43	12577,86	12816,47	$16953,\!62$	16973,53	19355,23	19356,52	20123,28	23701,40
33,0	-0,52	12577,52	12815,98	16953, 56	16973,48	19354,68	19356,23	20122,11	23698,19
32,0	-0,63	12577,09	12815,36	16953, 49	16973,42	19353,97	19355,87	20120,64	23693,96
31,0	-0,76	12576,56	12814,59	16953, 39	16973,32	19353,04	19355,42	20118,75	23688,35
30,5	-0,84	12576, 25	12814,13	16953, 32	16973,26	19352,46	19355,16	20117,62	23684,90
30,0	-0,93	12575,89	12813,60	16953, 25	16973,18	19351,79	19354,85	20116,34	23680,94
29,5	-1,04	12575,48	12813,02	16953, 16	16973,09	19351,01	19354,51	20114,88	23676,41
29,0	-1,15	12575,02	12812,35	16953,06	16972,98	19350,10	19354,12	20113,23	23671,26
28,5	-1,28	12574,50	12811,59	16952,94	16972,85	19349,04	19353,68	20111,36	23665,44
28,0	-1,43	12573,91	12810,73	16952,80	16972,70	19347,81	19353,17	20109,24	23658,92
27,5	-1,60	12573,23	12809,75	16952,64	16972,51	19346,36	19352,58	20106,85	23651,68
27,0	-1,80	12572,45	12808,63	16952,44	16972,28	19344,65	19351,90	20104,14	23643,73
26,5	-2,02	12571,56	12807,34	16952,21	16972,01	19342,66	19351,10	20101,08	23635,12
26,0	-2,28	12570,53	12805,86	16951,94	16971,67	19340,31	19350,17	20097,64	23625,92
25,5	-2,57	12569,34	12804,15	16951,61	16971,27	19337,55	19349,08	20093,78	23616,24
25,0	-2,91	12567,96	12802,19	16951,22	16970,78	19334,30	19347,79	20089,48	23606,22
24,5	-3,30	12566,35	12799,91	16950,74	16970,19	19330,47	19346,24	20084,69	23596,05
24,0	-3,76	12564,47	12797,28	16950,17	16969,48	19325,95	19344,40	20079,39	23585,94
23,5	-4,29	12562,26	12794,23	16949,47	16968,61	19320,63	19342,17	20073,58	23576,12
23,0	-4,92	12559,66	12790,68	16948,63	16967,56	19314,34	19339,46	20067,23	23566,82
22,5	-5,65	12556,59	12786,55	16947,59	16966,28	19306,92	19336,17	20060,36	23558,23
22,0	-6,52	12552,93	12781,73	16946,31	16964,74	19298,17	19332,12	20053,01	23550,35
21,5	-7,54	12548,57	12776,12	16944,72	16962,87	19287,88	19327,12	20045,23	23542,61
21,0	-8,76	12543,34	12769,57	16942,75	16960,62	19275,81	19320,91	20037,08	23532,73
20,5	-10,21	12537,02	12761,94	16940, 27	16957, 89	19261,70	19313,15	20028,68	23514,22

Tab. B.3. Adiabatyczne potencjały energetyczne cząsteczki NaRb (1-9) 0⁻. Jednostką odległości międzyatomowej R jest a_0 , a jednostką energii jest cm⁻¹. Kontynuacja tabeli na dwóch kolejnych stronach.

			1			1		1	
R	$(1) 0^{-}$	$(2) 0^{-}$	(3) 0-	$(4) 0^{-}$	$(5) 0^-$	(6) 0-	(7) 0-	(8) 0-	(9) 0-
20,0	-11,94	12529,38	12753,05	16937, 17	16954,60	19245,30	19303,40	20020,12	23478,89
19,8	-12,72	12525, 87	12749,11	16935,72	16953,09	19238,03	19298,82	20016,69	23459,53
19,6	-13,56	12522,08	12744,91	16934, 13	$16951,\!47$	19230,33	19293,79	20013,25	23437,29
19,4	-14,47	$12517,\!97$	12740,46	$16932,\!39$	16949,71	19222, 19	$19288,\!25$	20009,83	$23412,\!20$
19,2	-15,44	$12513,\!52$	12735,73	16930, 49	$16947,\!80$	$19213,\!58$	$19282,\!17$	20006, 42	$23384,\!25$
19,0	-16,49	$12508,\!68$	12730,71	$16928,\!41$	16945,72	19204,50	$19275,\!46$	20003,04	$23353,\!40$
18,8	-17,62	12503,43	12725,38	16926, 15	16943,46	19194,91	19268,09	19999,68	23319,59
18,6	-18,84	12497,73	12719,73	$16923,\!69$	16940,99	19184,82	19259,98	19996,34	23282,80
18,4	-20,15	12491,54	12713,73	16921,02	16938,29	19174,19	19251,05	19993,04	23243,01
18,2	-21,56	12484,80	12707,36	16918,12	16935,32	19163,02	19241,22	19989,76	23200,25
18,0	-23,08	12477,48	12700,60	16914,98	16932,05	19151,29	19230,38	19986,50	23154,59
17,8	-24,72	12469,51	12693,42	16911,58	16928, 45	19139,00	19218,44	19983,25	23106,14
17,6	-26,48	12460,83	12685,79	16907,90	16924,46	19126,11	19205,30	19980,00	23055,07
17,4	-28,38	12451,40	12677,69	16903,92	16920,06	19112,62	19190,83	19976,74	23001,58
17,2	-30,43	12441,13	12669,06	16899,58	16915,20	19098,52	19174,93	19973,43	22945,92
17,0	-32,63	12429,97	12659,86	16894,81	16909,87	19083,78	19157,47	19970,05	22888,37
16,8	-35,00	12417,83	12650,05	16889, 49	16904,10	19068,40	19138,33	19966, 57	22829,26
16,6	-37,55	12404,64	12639,55	16883,40	16897,98	19052,36	19117,38	19962,94	22768,94
16,4	-40,30	12390,32	12628,30	16876,20	16891,71	19035,65	19094,52	19959,11	22707,76
16,2	-43,25	12374,77	12616,22	16867,53	16885,51	19018,23	19069,63	19955,02	22646,12
16,0	-46,43	12357,92	12603,19	16857,08	16879,50	19000,10	19042,63	19950,59	22584,42
15,8	-49,83	12339,67	12589,10	16844,63	16873,69	18981,23	19013,47	19945,75	22523,06
15,6	-53,48	12319,92	12573,82	16829,98	16868,05	18961,59	18982,13	19940,39	22462,46
15,4	-57,39	12298,56	12557,19	16812,87	16862,56	18941,15	18947,31	19934,41	22403,01
15,2	-61,57	12275,50	12539,00	16793,00	16857,22	18911,52	18919,95	19927,66	22345,12
15,0	-66,04	12250,62	12519,05	16769,98	16852,04	18873,87	18897,85	19920,01	22289,15
14,8	-70,81	12223,82	12497,08	16743,37	16847,08	18834,55	18874,89	19911,29	22235,53
14,6	-75,89	12194,95	12472,80	16712,69	16842,37	18793,94	18851,04	19901,31	22184,48
14,4	-81,28	12163,90	12445,88	16677,41	16837,99	18752,47	18826,28	19889,84	22136,09
14,2	-87,00	12130,53	12415,93	16636,98	16833,97	18710,71	18800,62	19876,66	22090,61
14,0	-93,06	12094,69	12382,51	16590,86	16830,37	18669,29	18774,07	19861,51	22048,13
13,8	-99,44	12056,22	12345,15	16538,53	16827,21	18628,91	18746,68	19844,08	22008,39
13,6	-106,14	12014,96	12303,28	16479,57	16824,49	18590,32	18718,57	19824,06	21971,76
13,4	-113,17	11970,70	12256,31	16413,65	16822,14	18554,24	18689,88	19801,12	21937,74
13,2	-120,49	11923,24	12203,58	16340,63	16820,05	18521,37	18660,88	19774,90	21905,93
13,0	-128,09	11872,32	12144,40	16260,55	16818,01	18492,34	18631,93	19745,02	21875,78
12,8	-135,93	11817,62	12078,08	16173,68	16815,66	18467,65	18603,57	19711,12	21846,59
12,6	-143,97	11758,67	12004,01	16080,51	16812,48	18447,72	18576,50	19672,84	21817,47
12,4	-152,13	11694,77	11921,80	15981,75	16807,76	18432,84	18551,68	19629,83	21787,36
12,2	-160,35	11624,70	11831,56	15878,28	16800,52	18423,18	18530,34	19581,81	21754,98
12,0	-168,52	11546,18	11734,50	15771,13	16789,54	18418,87	18514,00	19528,57	21718,92
11,8	-176,52	11455,17	11633,68	15661,38	16773,35	18419,96	18504,45	19470,02	21677,62
11,6	-184,19	11346,04	11533,88	15550,14	16750,26	18426,49	18503,69	19406,25	21629,45
11,4	-191,34	11214,66	11438,64	15438,44	16718,55	18438,51	18513,74	19337,57	21572,82
11,2	-197,75	11060,88	11347,73	15327,22	16676,59	18456,11	18536,32	19264,73	21506,30
11,0	-203,14	10886,69	11259,19	15217,26	16623,07	18479,46	18572,31	19189,26	21428,75
10,8	-207,17	10693,94	11171,54	15109,20	16557,16	18508,82	18620,61	19114,51	21339,45
10,6	-209,45	10484,01	11084,19	15003,49	16478,57	18544,48	18674,51	19049,17	21238,15
10,4	-209,48	10258,17	10997,19	14900,48	16387,63	18586,86	18711,31	19017,63	21125,18
10,2	-206,71	10017,65	10911,01	14800,41	16285,16	18636,41	18695,11	19057,24	21001,42
10,0	-200,44	9763,90	10826,49	14703,53	16172,46	18632,75	18693,62	19162,30	20868,35
9,8	-189,87	9498,54	10744,72	14610,16	16051,19	18551,77	18758,97	19305,91	20728,05
9,6	-174,03	9223,41	10667,12	14520,76	15923,35	18465,46	18832,80	19474,30	20583,25
9,4	-151,80	8940,62	10595,41	14436,01	15791,23	18379,79	18915,18	19658,19	20437,51
9,2	-121,82	8652,51	10531,62	14356,89	15657,45	18298,51	19005,46	19843,34	20295,49
9,0	-82,54	8361,73	10478,19	14284,73	15524,94	18224,78	19101,49	20000,06	20163,75
8,8	-32,09	8071,20	10437,95	14221,30	15396,97	18161,72	19197,81	20052,45	20088,14
R	$(1) 0^{-}$	$(2) 0^{-}$	(3) 0-	(4) 0-	$(5) 0^-$	(6) 0-	(7) 0-	$(8) 0^{-}$	$(9) 0^{-}$
-----	-------------	-------------	-----------	----------	--------------	--------------	----------	--------------	--------------
8,6	$31,\!67$	7784, 19	10414,23	14168,79	15277, 15	$18112,\!65$	19282,13	19979, 25	$20107,\!55$
8,4	111,27	7504, 36	10410,86	14129,96	$15169,\!54$	18081,24	19334,39	$19969,\!62$	$20097,\!23$
8,2	209,62	7235,76	10432,31	14108,04	$15078,\!61$	18071,59	19344,27	20039,67	20086, 81
8,0	330,10	6982, 97	10483,72	14106,88	15009,32	18088,36	19330,32	20090,80	20178, 91
7,8	476,60	6751,09	10571,00	14130,96	14967,16	18136,80	19320,23	20121,98	20364, 59
7,6	653,55	$6545,\!86$	10700,91	14185,38	14958,19	18222,88	19334,00	20187,94	20586, 11
7,4	866,01	$6373,\!65$	10881,17	14275,82	14989,10	18353,36	19385,53	20297,36	$20838,\!85$
7,2	1119,68	6241,64	11120,53	14408,79	15067,23	18535,81	19486,26	20459,23	21122,90
7,0	1420,92	6157,79	11428,84	14591,40	15200,58	18778,75	19646,95	20683,25	21441,80
6,8	1776,77	6130,88	11817,06	14831,39	15397,80	19091,57	19878,49	20979,96	$21802,\!38$
6,6	2194,87	6170,51	12297,26	15137,04	15668, 16	19484,60	20192,26	21360,81	22213,73
6,4	2683,38	6287, 10	12882,40	15517,03	16021,43	19968,93	20600,15	21838,08	$22684,\!90$
6,2	3250,76	6491,70	13585,97	15980,17	16467,75	20556,22	21114,41	22424,64	23221,77
6,0	3905,53	6795,84	14421,27	16535,06	17017,45	21258,35	21747,33	23133,66	$23825,\!81$
5,8	4655,87	7211,18	15400,11	17189,52	17681,06	22086,81	22510,64	23978,00	$24492,\!36$
5,6	5509, 13	7749,07	16530, 50	17950,01	18469,75	23051,90	23414,72	24969, 36	$25219,\!14$
5,4	6471,21	8420,04	17812,09	18820,93	19397,40	24161,62	24467,49	$26010,\!44$	$26117,\!39$
5,2	7546,00	9233,09	19226,01	19804,36	20487,41	25420,28	25673,01	26879,00	$27427,\!04$
5,0	8734,77	10195,06	20712,51	20904,10	21787,44	26826,93	27029,30	27837,69	$28898,\!18$
4,8	10035,85	11310,09	22069,79	22129,27	23356, 12	28374,00	28520,21	28909,52	30521,70
4,6	11444,69	12579,34	23365,33	23417,66	25171,93	29989,07	30047,11	30250,63	32277,28

Tab. B.4. Adiabatyczne potencjały energetyczne cząsteczki NaRb (10-14) 0⁻. Jednostką odległości międzyatomowej R jest a_0 , a jednostką energii jest cm⁻¹. Kontynuacja tabeli na dwóch kolejnych stronach.

R	$(10) 0^{-}$	$(11) 0^{-}$	$(12) 0^{-}$	$(13) 0^{-}$	$(14) 0^{-}$
86,0	23790,87	25698,70	$25701,\!55$	$25737,\!54$	26307,59
84,0	23790, 87	25698,70	$25701,\!55$	$25737,\!54$	26307,57
82,0	23790,86	25698,70	25701,54	$25737,\!53$	26307,56
80,0	23790,85	25698, 69	25701,54	$25737,\!52$	26307,55
78,0	23790,84	$25698,\!68$	25701,53	$25737,\!52$	26307,53
76,0	23790,83	$25698,\!68$	25701,52	25737,51	26307,51
74,0	23790,81	25698,67	25701,51	25737,50	26307,48
72,0	23790,80	25698,66	25701,50	25737,49	26307,45
70,0	23790,78	25698,64	25701,48	25737,47	26307,42
68,0	23790,76	25698,62	25701,46	25737,46	26307,37
66,0	23790,73	25698,60	25701,44	25737,43	26307,31
64,0	23790,69	25698,57	25701,40	25737,41	26307,23
62,0	23790,64	25698,53	25701,36	25737,37	26307,14
60,0	23790,58	25698,48	25701,30	25737,33	26307,02
58,0	23790,51	25698,41	25701,22	25737,28	26306,85
56,0	23790,40	25698,32	25701,12	25737,21	26306,64
54,0	23790,27	25698,18	25700,97	25737,12	26306,34
52,5	23790,13	25698,03	25700,82	25737,04	26306,04
48,0	23789,50	25697,16	25700,11	25736,66	26304,53
46.0	23789,03	25696.32	25699,63	25736.39	26303.36
44,0	23788,35	25694,86	25699,01	25736.02	26301.67
42.0	23787.33	25692.33	25698.23	25735.50	26299.26
40.0	23785.78	25688.11	25697.17	25734.77	26295.92
39.0	23784.73	25685.10	25696.45	25734.29	26293.84
38.0	23783.43	25681.30	25695.53	25733.71	26291.48
37.0	23781.81	25676.55	25694.35	25733.00	26288.86
36.0	23779.83	25670.66	25692.80	25732.14	26286.01
35.0	23777,38	25663,44	25690,72	25731.08	26283.02
34,0	23774,41	25654,69	25687,90	25729,76	26280,01
33,0	23770,83	25644,24	25684,04	25728,12	26277,16
32,0	23766,59	25631,94	25678,69	25726,07	26274,69
31,0	23761,65	25617,74	25671,19	25723,46	26272,84
30,5	23758,92	25609,92	25666,35	25721,90	26272,23
30,0	23756,02	25601,65	25660,58	25720,14	26271,86
29,5	23752,94	25592,95	25653,69	25718,15	26271,78
29,0	23749,69	25583,85	25645,43	25715,88	26272.00
28,5	23746,25	25574,38	25635,51	25713,31	26272,54
28,0	23742,62	25564,58	25623,59	25710,38	26273,42
27,5	23738,75	25554,50	25609,23	25707.05	26274,65
27,0	23734,60	25544,15	25591,92	25703,25	26276,23
26,5	23730,09	25533,56	25571,06	25698,93	26278,17
26,0	23725,13	25522,72	25545,93	25693,99	26280,46
25,5	23719,59	25511,40	25515,91	25688,36	26283,07
25,0	23713.32	25479.34	25500.31	25681.95	26285.97
24,5	23706.10	25436.21	25488.38	25674.64	26289.10
24,0	23697.69	25385.25	25475.79	25666.33	26292.37
23,5	23687.78	25325.69	25462,20	25656.89	26295.62
23.0	23675.99	25257.06	25447,12	25646.20	26298.58
22,5	23661.92	25179.21	25429.87	25634.16	26300.70
22.0	23645.15	25092.49	25409.50	25620.68	26300.81
21.5	23625.65	24997.80	25384.70	25605.75	26296.09
21,0	23604.79	24896.57	25353.76	25589.43	26279.98
20.5	23587.77	24790,84	25314,50	25571,94	26244.10
1 (· · · · ·	· · · ·	· · · ·	· · · · ·	

R	(10) 0-	(11) 0-	$(12) 0^{-}$	$(13) 0^{-}$	(14) 0-
20,0	23581,00	24683,21	25264,44	$25553,\!64$	26192,10
19,8	23581,21	24640,31	25240,84	25546,21	26169,60
19,6	23582,78	24597,78	25214,95	25538,78	26147,08
19,4	23585,51	24555,86	25186,65	25531,38	26124,97
19,2	23589,27	24514,73	25155,83	25524,07	26103,53
19,0	23593,99	24474,60	25122,41	25516,90	26082,96
18,8	23599,59	24435,61	25086,31	25509,93	26063,36
18,6	23606,04	24397,93	25047,51	25503,22	26044,80
18,4	23613,29	24361,65	25005,98	25496,84	26027,28
18,2	23621,31	24326,84	24961,72	25490,85	26010,77
18,0	23630,07	24293,55	24914,76	25485,34	25995,20
17,8	23639,52	24261,74	24865,11	25480,42	25980,48
17,6	23649,62	24231,36	24812,83	25476,19	25966,51
17,4	23660,32	24202,32	24757,94	25472,76	25953,14
17,2	23671,53	24174,49	24700,50	25470,27	25940,25
17,0	23683,19	24147,71	24640,53	25468,86	25927,67
16,8	23695,18	24121,82	24578,07	25468,67	25915,24
16,6	23707,39	24096,62	24513,15	25469,88	25902,78
16,4	23719,67	24071,90	24445,80	25472,65	25890,12
16,2	23731,84	24047,45	24376,05	25477,17	25877,07
16,0	23743,67	24023,04	24303,92	25483,63	25863,42
15,8	23754,88	23998,47	24229,45	25492,18	25849,00
15,6	23765,11	23973,45	24152,75	25503,01	25833,59
15,4	23773.80	23947.75	24074.02	25516.23	25819.50
15,2	23779,98	23921,01	23994,00	25531,87	25782,91
15,0	23781.26	23890.35	23917.01	25549.81	25740.16
14,8	23767,45	23834,69	23874,26	25569,53	25693,28
14,6	23708,91	23796,37	23850,94	25589,31	25641,60
14,4	23623,36	23769,18	23835,82	25574,78	25607,49
14,2	23530,52	23735,37	23825,63	25508,58	25610,17
14,0	23433,73	23695,07	23815,76	25433,22	25593,17
13,8	23333,77	23649,03	23803,52	25348,55	25561,13
13,6	23230,92	23597,27	23787,47	25255,02	25519,59
13,4	23125,30	23539,42	23766,64	25154,51	25469,85
13,2	23017,03	23475,01	23740,27	25049,96	25368,07
13,0	22906,21	23403,58	23707,69	24944,59	25262,70
12,8	22792,95	23324,75	23668,27	24841,47	25155,07
12,6	22677,36	23238,45	23621,47	24742,38	25043,60
12,4	22559,61	23144,73	23566,81	24649,06	24927,75
12,2	22439,86	23044,03	23503,89	24562,79	24807,81
12,0	22318,32	22936,92	23432,42	24482,83	24685,26
11,8	22195,21	22824,51	23352,25	24405,10	24565,60
11,6	22070,78	22707,62	23263,39	24316,04	24463,43
11,4	21945,31	22587,48	23166,01	24199,91	24396,03
11,2	21819,12	22465,15	23060,50	24062,74	24358,64
11,0	21692,58	22341,88	22947,45	23915,01	24256,53
10,8	21566,11	22218,56	22827,67	23761,56	24104,20
10,6	21440,28	22096,35	22702,20	23604,72	23946,83
10,4	21315,77	21976,38	22572,35	23446,07	23785,66
10,2	21193,57	21859,73	22439,64	23286,88	23621,98
10,0	21075,07	21747,60	22305,90	23128,43	23457,25
9,8	20962,40	21641,21	22173,25	22972,09	23293,06
9,6	20859,12	21541,95	22044,22	22819,32	23131,21
9,4	20771,86	21451,24	21921,89	22671,86	22973,73
9,2	20714,45	21370,71	21810,27	22531,70	22822,95
9,0	20715,87	21302,37	21715,29	22401,16	22681,51
8,8	20811,80	21248,80	21647,77	22282,93	22552,55

R	(10) 0-	(11) 0-	$(12) 0^{-}$	$(13) 0^{-}$	(14) 0-
8,6	20982,87	21213,57	21633,37	22180,17	22439,82
8,4	21132,25	21205,86	21731,55	22096,49	22348,62
8,2	21184,85	21240,55	21977,11	22047,03	22292,44
8,0	21225,13	21280,10	22014,64	22179,17	22405,21
7,8	21293,33	21334,57	22015,83	22197,46	22372,30
7,6	21394,76	21425,53	22056,93	22233,44	22379,37
7,4	21529,28	21570,97	22145,24	22313,21	22435,10
7,2	21708,93	21774,35	22276,26	22446,94	22549,80
7,0	21947,17	22036,66	22464,44	22644,09	22734,76
6,8	22254,34	22359,44	22707,51	22914,70	23000,51
6,6	22640,35	22746,77	23018,82	23269,60	23355,89
6,4	23115,22	23203,91	23411,21	23720,38	23809,13
6,2	23688,58	23738,25	23897,69	24279,16	24368,99
6,0	24354,00	24382,22	24490,69	$24958,\!05$	25044,73
5,8	25093,55	25149,16	25183,05	25768,56	25845,34
5,6	25959,30	26003,27	26117,86	26720,59	26778,44
5,4	26965,50	26999,55	27191,35	27821,41	27848,89
5,2	28115,06	28129,87	28408,81	29057,46	29074,46
5,0	29390,97	29432,81	29772,29	30412,72	30478,19
4,8	30790,61	30827,94	31279,77	31962,84	32025,22
4,6	32321,74	32371,83	32925,19	33641,33	33702,02

R	(1) 1	(2) 1	(3) 1	(4) 1	(5) 1	(6) 1	(7) 1	(8) 1	(9) 1
86,0	0,00	12579,55	12818,89	12818,89	16953,82	16973,63	16973,64	19357,38	19357,39
84,0	0,00	12579,55	12818,88	12818,89	16953,82	16973,63	16973,64	19357,38	19357,38
82,0	0,00	12579,54	12818,88	12818,89	16953,82	16973,63	16973,64	19357,38	19357,38
80,0	0,00	12579,54	12818,88	12818,89	16953,82	16973,63	16973,64	19357,38	19357,38
78,0	0,00	12579,54	12818,88	12818,89	16953,82	16973,63	16973,64	19357,37	19357,38
76,0	0,00	12579,54	12818,87	12818,89	16953,82	16973,63	16973,64	19357,37	19357,38
74,0	0,00	12579,54	12818,87	12818,88	16953,82	16973,63	16973,64	19357,37	19357,38
72,0	0,00	$12579{,}54$	12818,87	12818,88	$16953,\!82$	16973,63	$16973,\!64$	19357,37	$19357,\!38$
70,0	0,00	12579,53	12818,86	12818,88	16953,82	16973,63	16973,64	19357,36	19357,37
68,0	0,00	12579,53	12818,86	12818,88	16953,82	16973,63	16973,64	19357,36	19357,37
66,0	-0,01	$12579,\!52$	12818,85	12818,87	16953,82	16973,63	$16973,\!64$	19357,35	19357, 37
64,0	-0,01	12579,52	12818,84	12818,87	16953,82	16973,63	16973,64	19357,35	19357,36
62,0	-0,01	12579,51	12818,83	12818,86	16953,82	16973,63	16973,64	19357,34	19357,36
60,0	-0,01	12579,50	12818,82	12818,86	16953,82	16973,63	16973,64	19357,33	19357,35
58,0	-0,02	12579,48	12818,80	12818,85	16953,82	16973,62	16973,64	19357,32	19357,34
56,0	-0,02	12579,47	12818,78	12818,84	16953,82	16973,62	16973,64	19357,30	19357,33
54,0	-0,03	$12579,\!45$	12818,75	12818,82	16953,82	16973,61	16973,64	19357,28	19357,31
52,5	-0,03	12579,43	12818,72	12818,81	16953,82	16973,61	16973,64	19357,26	19357,30
48,0	-0,05	12579,34	12818,60	12818,75	16953,81	16973,59	$16973,\!65$	19357,17	19357,24
46,0	-0,07	12579,28	12818,51	12818,71	16953,81	16973,58	$16973,\!65$	19357,10	19357,19
44,0	-0,09	12579,20	12818,39	12818,65	16953,80	16973,56	$16973,\!65$	19357,01	19357,13
42,0	-0,12	12579,09	12818,23	12818,58	16953,79	16973,54	$16973,\!65$	19356,88	19357,05
40,0	-0,16	12578,93	12818,00	12818,47	16953,77	16973,50	16973,64	19356,70	19356, 93
39,0	-0,19	12578,82	12817,85	12818,40	16953,75	16973,48	$16973,\!64$	19356,57	$19356,\!85$
38,0	-0,22	$12578,\!69$	12817,67	12818,32	16953,74	16973,45	$16973,\!63$	19356,41	19356,76
37,0	-0,26	12578,54	12817,45	12818,22	16953,72	16973,42	16973,62	19356,22	19356,64
36,0	-0,31	$12578,\!36$	12817,19	12818,10	$16953,\!69$	16973,38	$16973,\!61$	19355, 97	19356, 50
35,0	-0,36	$12578,\!13$	12816,87	12817,96	$16953,\!66$	16973,33	$16973,\!59$	19355,64	19356, 33
34,0	-0,43	$12577,\!86$	12816,47	12817,78	$16953,\!61$	16973, 26	$16973,\!56$	19355, 23	19356, 12
33,0	-0,52	$12577,\!52$	12815,98	12817,56	16953,55	16973, 18	$16973,\!51$	$19354,\!68$	$19355,\!85$
32,0	-0,63	12577,09	$12815,\!36$	12817,30	16953, 47	16973,09	$16973,\!45$	19353,97	19355,52
31,0	-0,76	$12576,\!56$	12814,59	12816,96	$16953,\!37$	16972,96	16973, 36	19353,04	19355,09
30,5	-0,84	$12576,\!24$	$12814,\!13$	12816,76	$16953,\!30$	$16972,\!88$	$16973,\!30$	$19352,\!46$	$19354,\!84$
30,0	-0,93	$12575,\!89$	$12813,\!61$	$12816{,}54$	$16953,\!23$	$16972,\!80$	$16973,\!23$	$19351,\!79$	$19354,\!55$
29,5	-1,04	$12575,\!48$	12813,02	12816, 29	$16953,\!14$	16972,70	$16973,\!15$	$19351,\!01$	$19354,\!22$
29,0	-1,15	$12575,\!02$	$12812,\!36$	12816,01	$16953,\!04$	$16972,\!59$	$16973,\!05$	19350, 10	$19353,\!84$
28,5	-1,28	$12574{,}50$	12811,60	$12815,\!69$	$16952,\!92$	16972,46	$16972,\!93$	$19349,\!05$	$19353,\!41$
28,0	-1,43	$12573,\!90$	12810,74	$12815,\!34$	16952,78	16972, 31	$16972,\!78$	19347,81	$19352,\!92$
27,5	-1,60	$12573,\!23$	12809,76	12814,93	$16952,\!61$	$16972,\!14$	$16972,\!60$	19346, 36	$19352,\!35$
27,0	-1,80	$12572,\!45$	12808,63	12814,47	16952,41	16971,94	16972,39	19344,66	$19351,\!69$
26,5	-2,02	$12571,\!56$	12807,35	12813,94	$16952,\!17$	16971,72	$16972,\!12$	19342,66	19350, 92
26,0	-2,28	$12570,\!53$	$12805,\!87$	12813,34	$16951,\!90$	$16971,\!45$	$16971,\!81$	19340,31	$19350,\!00$
25,5	-2,57	$12569,\!34$	12804, 17	12812,65	16951, 56	16971, 13	$16971,\!44$	19337,55	19348, 93
25,0	-2,91	$12567,\!96$	12802,21	12811,86	16951, 16	16970,75	$16971,\!00$	$19334,\!30$	$19347,\!64$
24,5	-3,30	12566, 35	12799,94	12810,95	$16950,\!68$	16970, 25	16970, 51	19330,47	19346,11
24,0	-3,76	12564, 47	12797,31	12809,90	16950, 10	16969, 61	16969, 97	19325, 95	$19344,\!27$
23,5	-4,29	$12562,\!27$	12794,26	12808,67	16949,41	16968,79	16969, 37	19320,63	$19342,\!05$
23,0	-4,92	$12559,\!68$	12790,72	12807,25	16948,56	16967,78	16968,67	19314,34	19339,36
22,5	-5,65	$12556,\!62$	12786,60	12805,59	16947,51	16966, 56	$16967,\!84$	19306,92	19336,07
22,0	-6,52	12552,98	12781,81	12803,64	16946,24	16965,08	16966,84	19298,17	19332,03
21,5	-7,54	12548,64	12776,22	12801,35	16944,66	16963,30	$16965,\!64$	19287,88	19327,04
21,0	-8,76	$12543,\!44$	12769,72	$12798,\!63$	16942,70	16961, 15	16964, 17	19275,81	19320,84
20,5	-10,21	12537,19	12762,15	12795,40	16940,25	16958,58	16962,38	19261,70	19313,09

Tab. B.5. Adiabatyczne potencjały energetyczne cząsteczki NaRb (1-9) 1. Jednostką od-
ległości międzyatomowej R jest a_0 , a jednostką energii jest cm⁻¹. Kontynuacja
tabeli na dwóch kolejnych stronach.

B	(1) 1	(2) 1	(3) 1	(4) 1	(5) 1	(6) 1	(7) 1	(8) 1	(9) 1
20.0	-11.94	12529.62	12753 36	12791 55	16937 18	16955.48	16960 17	19245 30	19303 35
10.8	-19.79	12526.15	12735,50	12731,00	16035 75	16054.08	16050 15	10238.03	10208 78
19,0	-12,72	12520,15	12745,40	12709,01	16024 19	16052.56	16058.04	19230,03	19298,78
19,0	-13,50	12522,41	12740,05	12707,95	16022.47	16050.00	10356,04	19230,33	19295,75
19,4	-14,47	12010,00	12740,95	12760,90	10952,47	10950,92	10950,82	19222,19	19288,22
19,2	-10,44	12010,90	12730,30	12703,72	10950,00	10949,10	10955,51	19215,58	19282,14
19,0	-16,49	12509,18	12731,39	12781,30	16928,56	16947,23	16954,07	19204,50	19275,45
18,8	-17,62	12504,01	12726,18	12778,81	16926,34	16945,13	16952,51	19194,91	19268,09
18,6	-18,84	12498,40	12720,67	12776,06	16923,93	16942,84	16950,81	19184,82	19259,97
18,4	-20,15	12492,30	12714,85	12773,09	16921,31	16940,32	16948,96	19174,19	19251,03
18,2	-21,56	12485,67	12708,69	12769,86	16918,47	16937,53	16946,96	19163,02	19241,18
18,0	-23,08	12478,46	12702,18	12766,37	16915,42	16934,45	16944,79	19151,29	19230,33
17,8	-24,72	12470,62	12695,31	12762,58	16912,12	16931,00	16942,43	19139,00	19218,37
17,6	-26,48	12462,09	12688,03	12758,46	16908,59	16927,14	16939,89	19126,11	19205,20
17,4	-28,38	12452,81	12680,35	12754,00	16904,79	16922,81	16937,13	19112,62	19190,71
17,2	-30,43	12442,71	12672,23	12749,14	16900,72	16917,94	16934,14	19098,52	19174,79
17,0	-32,63	12431,73	12663,63	12743,85	16896, 34	16912,47	16930,91	19083,78	19157,29
16,8	-35,00	12419,79	12654,51	12738,11	16891,59	16906,35	16927,39	19068,40	19138,11
16,6	-37,55	$12406,\!81$	12644,84	$12731,\!85$	16886, 34	16899,59	$16923,\!56$	$19052,\!36$	19117, 12
16,4	-40,30	12392,71	12634,55	12725,04	16880, 29	16892,37	16919, 39	$19035,\!65$	19094,21
16,2	-43,25	$12377,\!40$	12623,58	$12717,\!63$	$16872,\!84$	16885, 12	$16914,\!82$	$19018,\!23$	19069, 26
16,0	-46,43	12360,80	12611,84	12709,57	16863, 28	16878, 35	16909,82	19000,10	19042,20
15,8	-49,83	$12342,\!81$	12599,22	12700,80	$16851,\!33$	16872,17	$16904,\!33$	$18981,\!23$	19012, 97
15,6	-53,48	12323,33	12585,60	12691, 29	16836, 96	16866,34	$16898,\!28$	$18961,\!59$	18981,55
15,4	-57,39	12302,28	12570,82	12680,98	16820,05	16860,71	16891,62	18941,16	18947,97
15,2	-61,57	12279,52	12554,69	12669,83	16800,34	16855,20	16884,26	18912,30	18919,94
15,0	-66,04	12254,98	12536,96	12657,80	16777,49	16849,75	16876,16	18874,76	18897,85
14,8	-70,81	12228,52	12517,37	12644,88	16751,07	16844,32	16867,27	18835,58	18874,89
14,6	-75,89	12200,04	12495,57	12631,04	16720,60	16838,72	16857,71	18795,10	18851,04
14,4	-81,28	12169,41	12471,17	12616,28	16685,56	16832,33	16847,98	18753,80	18826,28
14,2	-87,00	12136,49	12443,71	12600,60	16645,41	16823,61	16839,47	18712,21	18800,62
14,0	-93,06	12101,17	12412,69	12584,00	16599,62	16811,23	16833,37	18670,97	18774,06
13,8	-99,44	12063,29	12377,51	12566,49	16547,68	16795,59	16829,03	18630,79	18746,68
13,6	-106,14	12022,71	12337,54	12548,06	16489,16	16777,19	16825,70	18592,40	18718,56
13,4	-113,17	11979,27	12292,08	12528,68	16423,77	16756,01	16823,00	18556,54	18689,88
13,2	-120,49	11932,81	12240.39	12508,31	16351,36	16731.82	16820,68	18523,90	18660,88
13,0	-128,09	11883,15	12181,66	12486,90	16271,98	16704,26	16818,48	18495,11	18631,93
12.8	-135.93	11830.09	12115.06	12464.38	16185.92	16672.91	16816.01	18470.67	18603.57
12.6	-143.97	11773.36	12039.78	12440.65	16093.67	16637.28	16812.75	18451.01	18576.50
12,4	-152,13	11712,61	11955.08	12415,62	15995,94	16596.86	16807,96	18436,41	18551,69
12.2	-160.35	11647.21	11860.49	12389.16	15893.62	16551.07	16800.67	18427.06	18530.35
12.0	-168.52	11575.86	11756.26	12361.16	15787.72	16499.35	16789.65	18423.08	18514.00
11.8	-176.52	11495.41	11644.58	12331.49	15679.31	16441.12	16773.42	18424.55	18504.46
11.6	-184.19	11398.31	11532.20	12300.02	15569.48	16375.85	16750.30	18431.50	18503.69
11.4	-191.34	11273.99	11429.12	12266.60	15459.22	16303.07	16718.57	18444.01	18513.72
11.2	-197.75	11120.93	11336.53	12231.09	15349.46	16222.44	16676.60	18462.17	18536.25
11.0	-203.14	10944 84	11248 80	12193 35	15240.93	16133 79	16623.06	18486 16	18572.20
10.8	-207 17	10749.63	11162.43	12153.25	15134 22	16037 14	16557 14	18516 21	18560.08
10.6	-209.45	10537 33	11076.27	12110.65	15029 76	15932 70	16478 54	18478 71	18552.61
10.4	-209.48	10309 31	10990 25	12065 46	14927 86	15821 36	16387 59	18390 74	18595 53
10.9	-205,40	10066.88	10904.86	12000,40	14828 74	15703 77	16285.12	18296 27	18599 57
10,2	-200,71	9811 45	10890 07	11067 10	14739 64	15581 25	16179 49	18105 50	18577 54
0.0	-200,44	0544.69	10720.71	11014 00	14620.96	15/55 76	16051.15	18080.94	18551 79
3,0	-109,01	0060 00	10662 51	11859 50	14009,00	15320.07	15022.20	17079 10	18465 47
9,0	-1/4,03	9200,28	10501.11	11000,09	14000,80	15002.00	15701.19	17962.20	10400,47
9,4	-101,79	8984,48	10591,11	11749.59	14400,34	15203,69	15791,18	17740.00	18379,80
9,2	-121,82	0090,58	10327,58	11692.64	14387,27	14062.04	15007,41	17600.02	10298,52
9,0	-82,53	8404,21	10424.33	11083,64	14315,02	14908,24	15524,90	17515.04	18224,79
8,8	-32,08	8113,30	10434,21	11625,83	14251,35	14864,65	15396,92	17515,64	18161,74

R	(1) 1	(2) 1	(3) 1	(4) 1	(5) 1	(6) 1	(7) 1	(8) 1	(9) 1
8,6	$31,\!68$	7826, 10	10410,55	11571,07	14198,50	$14775,\!27$	$15277,\!11$	17406,74	$18112,\!67$
8,4	111,28	7546, 26	10407,18	11521,94	14159,20	14704,02	$15169{,}50$	$17306,\!67$	$18081,\!26$
8,2	209,64	$7277,\!84$	10428,57	11481,75	14136,76	$14655,\!05$	$15078,\!56$	17219,42	$18071,\!61$
8,0	330,12	7025,41	10479,82	11454,60	14135,02	14632,77	$15009,\!27$	$17149,\!56$	$18088,\!37$
7,8	476,63	6794,09	10566,81	11445,56	14158,46	14641,90	14967,11	17102,24	18136,82
7,6	653,59	6589,58	10696,24	11460,67	14212,22	14687,50	$14958,\!16$	17083,24	$18222,\!90$
7,4	866,06	6418,30	10875,66	11506,88	14302,01	14774,97	14989,10	17099,02	$18353,\!38$
7,2	1119,75	6287,40	11113,40	11592,57	14434,33	14910,21	15067,27	17156,66	$18535,\!84$
7,0	1421,01	6204, 85	11417,82	11728,08	14616,29	15099,49	15200,73	$17263,\!94$	18778,77
6,8	1776,88	6179,44	11789,27	11933,76	$14855,\!65$	15349,37	$15398,\!32$	17429,22	$19091,\!60$
6,6	2195,02	6220,78	12142,07	12317,93	15160,69	15662,19	15673, 97	17661,41	$19484,\!64$
6,4	2683,56	6339, 29	12490,45	12890,56	15540,11	16020,37	16062,14	17969,74	19968, 98
6,2	3251,01	6546,02	12920,40	13590,82	16002,72	16467,04	$16536,\!67$	18363,52	20556, 27
6,0	3905,86	6852,51	13450,96	14424,67	16557,12	17016,85	17099,36	18851,70	$21258,\!40$
5,8	4656,32	7270,42	14094,53	15402,78	17211,12	17680,49	17754,84	19442,34	$22086,\!84$
5,6	5509,73	7811,09	14861,49	16532,82	17971,16	18468,98	18506, 19	20141,92	$23051,\!87$
5,4	6472,04	8485,02	15759,97	17814,40	18841,56	19352,67	$19397,\!64$	$20954,\!48$	$24161,\!31$
5,2	7547,13	9301,11	16794,96	19228,99	19824,01	20295, 12	20487,41	$21880,\!48$	$25418,\!09$
5,0	8736,32	10266,33	17967,72	20720,22	20918,90	21328,59	21787,43	22917,14	26720,01
4,8	10037,95	11384,68	19274,67	22097,79	22232,23	22449,60	23356,10	24057,15	$28015{,}51$
4,6	11447,49	12657,33	20707,55	23390,96	23650,51	23718,64	25171,91	25289,25	29415,56

Tab. B.6. Adiabatyczne potencjały energetyczne cząsteczki NaRb (10-18) 1. Jednostką odległości między
atomowej Rjest $\mathbf{a}_0,$ a jednostką energii jest
 cm^{-1}. Kontynuacja tabeli na dwóch kolejnych stronach.

R	(10) 1	(11) 1	(12) 1	(13) 1	(14) 1	(15) 1	(16) 1	(17) 1	(18) 1
86,0	19358,04	19358,05	20128,52	23713,34	23790,87	23790,89	25698,71	25699,53	25700,42
84.0	19358.04	19358,05	20128,52	23713,34	23790.87	23790.89	25698,70	25698,72	25701,55
82.0	19358.04	19358.05	20128.52	23713.33	23790.86	23790.89	25698.70	25698.71	25701.54
80.0	19358.04	19358.05	20128.51	23713.33	23790.85	23790.88	25698.69	25698.71	25701.54
78.0	19358.04	19358.05	20128.51	23713.32	23790.84	23790.88	25698.69	25698.71	25701.53
76.0	19358.04	19358.04	20128.50	23713.31	23790.83	23790.87	25698.68	25698.71	25701.52
74.0	19358.03	19358.04	20128.50	23713.30	23790.81	23790.87	25698.67	25698.70	25701.51
72.0	19358.03	19358.04	20128.49	23713.29	23790.80	23790.86	25698.66	25698.70	25701.50
70.0	19358.03	19358.04	20128.48	23713 27	23790 78	23790.85	25698.64	25698.69	25701.48
68.0	19358.02	19358.04	20128,10	23713 26	23790 76	23790.83	25698.63	25698.69	25701.46
66.0	19358.02	19358.04	20128.46	23713 24	23790 73	23790.82	25698.60	25698.68	25701.44
64.0	19358.01	19358.03	20128,10	23713 21	23790.69	23790.80	25698.58	25698.67	25701.41
62.0	19358.00	19358.03	20120,44	23713.18	23790.64	23790 78	25698.54	25698.65	25701.36
60.0	10357.00	10358.02	20120,42	23713.13	23700.58	23790.75	25608.40	25698.64	25701.30
58.0	10357.08	19358.02	20120,33	23713,13	23790,50	23790,75	25608 42	25608.61	25701,50
56.0	10357.07	19358.01	20120,30	23713,00	23730,30	23790,72	25608 32	25608 50	25701,25
54.0	10357.05	19358.00	20120,02	23712.01	23700.27	23790.62	25608.18	25608 55	25700.97
52.5	10357.03	19357.00	20120,20	23712,31	23730,21	23790,02	25608.03	25698 51	25700,37
48.0	10357.85	19357.99	20120,21	23712,02	23730,14	23730,37	25607.16	25608 33	25700,82
40,0	10257 70	10257.02	20127,97	23712,39	22789,01	23730,33	25606.22	25608.20	25700,12
40,0	19557,79	19357,95	20127,60	23712,07	23789,04	23790,10	25604.86	25608.00	25600.03
44,0	10257.61	10257.84	20127,50	23711,01	23700,33	23789,94	25602.24	25607.68	25099,05
42,0	19557,01	19307,84	20127,22	23710,94	23101,33	23789,03	25092,54	25097,00	20090,20
20.0	19557,40	19557,77	20120,74	22709,92	23103,19	23789,20	25685 10	25606 52	25097,55
39,0	19507,57	19307,73	20120,41	23709,21	23104,13	23100,92	25065,10	25090,52	25090,84
38,0	19357,25	19357,08	20126,02	23708,32	23783,43	23788,38	20081,30	20090,09	20090,28
37,0	19507,12	19557,01	20125,54	23707,19	23701,02	23700,17	25070,55	25094,57	20090,00
30,0	19500,90	19557,54	20124,95	23703,74	23779,04	23101,00	25070,07	20095,09	20094,00
35,0	19350,70	19357,45	20124,21	23703,87	237774.45	23787,07	20003,40	20091,07	20093,34
34,0	19350,52	19357,34	20123,28	23701,44	23774,45	23780,32	25054,70	20088,31	20091,70
33,0	19350,23	19357,20	20122,11	23098,20	23770,91	23785,39	25644,24	25684,49	20089,78
32,0	19355,88	19357,04	20120,64	23694,05	23766,72	23784,23	25631,95	25679,17	25687,32
31,0	19355,43	19350,83	20118,75	23088,49	23761,87	23782,75	25017,74	25671,70	20084,20
30,5	19355,17	19356,71	20117,62	23685,06	23759,20	23781,80	25609,93	25666,87	25682,47
30,0	19354,87	19356,57	20116,34	23681,13	23756,39	23780,86	25601,66	25661,11	25680,48
29,5	19354,53	19356,42	20114,88	23676,64	23753,44	23779,72	25592,96	25654,23	25678,27
29,0	19354,15	19356,24	20113,23	23671,52	23750,35	23778,43	25583,86	25645,98	25675,84
28,5	19353,72	19356,05	20111,36	23665,74	23747,12	23776,95	25574,39	25636,07	25673,14
28,0	19353,23	19305,83	20109,24	23059,20	23743,70	23115,21	20004,09	20024,17	20070,17
27,5	19352,67	19355,58	20106,85	23052,06	23740,24	23773,34	20004,50	20009,82	20000,89
21,0	19352,04	19355,29	20104,14	23044,10	23730,52	237769 50	20044,10	20092,54	20003,28
20,5	19351,31	19354,90	20101,08	20030,00	23732,30	23708,59	20033,57	20071,70	20009,33
26,0	19350,48	19354,59	20097,64	23626,46	23728,27	23765,69	25522,74	25546,59	25655,01
25,5	19349,52	19354,16	20093,78	23616,85	23723,54	23762,37	25511,55	25516,50	25650,28
25,0	19348,43	19353,66	20089,48	23606,93	23718,22	23758,58	25480,19	25500,28	25645,13
24,5	19347,17	19353,09	20084,69	23596,87	23712,10	23754,28	25437,14	25488,37	25639,52
24,0	19345,71	19352,43	20079,39	23586,92	23704,89	23749,45	25386,30	25475,78	25633,43
23,5	19344,02	19351,66	20073,58	23577,32	23696,21	23744,07	25326,91	25462,19	25626,81
23,0	19342,05	19350,76	20067,23	23568,37	23685,58	23738,16	25258,48	25447,11	25619,62
22,5	19339,77	19349,71	20060,36	23560,33	23672,37	23731,74	25180,90	25429,86	25611,82
22,0	19337,11	19348,47	20053,01	23553,41	23655,88	23724,85	25094,53	25409,50	25603,33
21,5	19334,02	19347,01	20045,23	23547,53	23635,46	23717,48	25000,27	25384,70	25594,05
21,0	19330,41	19345,28	20037,08	23541,58	23611,20	23709,60	24899,59	25353,76	25583,83
20,5	19326,20	19343,22	20028,68	23530,11	23587,14	23701,14	24794,58	25314,50	25571,86

no z mostwiedzy.pl
Pobra
WIEDZY
MOST
\leq

D	(10) 1	(11) 1	(19) 1	(19) 1	(14) 1	(15) 1	(16) 1	(17) 1	(10) 1
n 20.0	(10) 1	(11) 1	(12) 1	(15) 1	(14) 1		(10) 1		(10) 1
20,0	19321,20	19340,70	20020,12	23499,34	23070,01	23092,00	24007,00	25204,45	20000,00
19,8	19319,10	19339,03	20010,09	23480,58	23574,37	23088,14	24040,37	25240,84	20040,21
19,6	19316,77	19338,43	20013,25	23458,29	23575,37	23684,17	24603,31	25214,95	25538,77
19,4	19314,29	19337,13	20009,83	23432,91	23577,59	23680,10	24561,88	25186,65	25531,37
19,2	19311,65	19335,73	20006,42	23404,54	23580,75	23675,95	24521,29	25155,83	25524,07
19,0	19308,84	19334,22	20003,04	23373,19	23584,64	23671,77	24481,71	25122,41	25516,91
18,8	19305,84	19332,58	19999,68	23338,85	23589,05	23667,65	24443,32	25086,32	25509,93
18,6	19302,66	19330,81	19996,34	23301,49	23593,73	23663,76	24406,24	25047,51	25503,21
18,4	19299,26	19328, 89	19993,04	23261,11	23598, 29	23660,41	24370,59	25005,98	25496,82
18,2	$19295,\!64$	$19326,\!82$	19989,76	23217,76	23602, 12	23658,15	24336,40	24961,72	25490,82
18,0	19291,79	$19324,\!57$	19986,50	23171,51	23604, 36	23657,73	24303,71	24914,76	$25483,\!18$
17,8	$19287,\!68$	$19322,\!12$	19983, 25	23122,49	$23604,\!20$	23659,89	24272,48	24865,11	25471,73
17,6	19283, 29	$19319,\!46$	19980,00	23070,87	$23601,\!37$	23664,80	24242,66	24812,83	25459, 16
17,4	$19278,\!62$	$19316,\!57$	19976,74	23016,85	23596, 18	23672,01	24214,13	24757,94	$25445,\!34$
17,2	19273,63	$19313,\!42$	19973,43	22960,70	23589,10	23680,91	24186,76	24700,50	25430,10
17,0	19268,30	19309,98	19970,05	22902,71	23580,48	23691,00	24160,40	24640,53	25413,24
16,8	19262,60	19306,23	19966,57	22843,20	$23570,\!48$	23701,90	24134,86	24578,06	25394,55
16,6	$19256,\!52$	19302,12	19962,94	22782,51	23559,14	23713,36	24109,95	24513,15	25373,80
16,4	19250,01	19297,63	19959,11	22721,01	23546,46	23725,11	24085,45	24445,80	25350,73
16,2	19243,04	19292,72	19955,02	22659,09	23532,34	23736,92	24061,14	24376,05	25325,05
16,0	19235,57	19287,32	19950,59	22597,16	23516,67	23748,54	24036,77	24303,91	25296,45
15,8	19227,56	19281,40	19945,75	22535,60	23499,30	23759,68	24012,12	24229,45	25264,62
15,6	19218,96	19274,89	19940,39	22474,84	23480,05	23769,99	23986,92	24152,74	25229,22
15,4	19209,73	19267,72	19934,41	22415,27	23458,71	23778,93	23960,89	24074,11	25189,91
15,2	19199,79	19259,82	19927,66	22357,28	23435,03	23785,58	23933,64	23993,89	25146,38
15,0	19189,10	19251,10	19920,01	22301,24	23408,79	23787,38	23902,21	23917,23	25098,32
14,8	19177,57	19241,47	19911,29	22247,50	23379,82	23771,82	23843,21	23878,99	25045,50
14,6	19165,14	19230,83	19901,31	22196,33	23347,69	23709,81	23812,69	23851,48	24987,73
14,4	19151,72	19219,04	19889,84	22147,93	23311,84	23623,63	23789,62	23832,81	24924,88
14,2	19137,22	19205,98	19876,66	22102,53	23272,48	23530,66	23755,73	23822,72	24856,92
14,0	19121,56	19191,49	19861,51	22060,07	23228,16	23433,83	23714,59	23813,61	24783,94
13,8	19104,63	19175,41	19844,08	22020,66	23179,64	23333,85	23667,88	23801,98	24706,07
13,6	19086,36	19157,54	19824,06	21984,12	23126,29	23231,00	23615,64	23786,35	24623,54
13,4	19066,65	19137,68	19801,12	21950,20	23067,80	23125,42	23557,44	23765,81	24536,64
13,2	19045,41	19115,59	19774,90	21918,49	23003,74	23017,45	23492,87	23739,64	24445,67
13,0	19022,58	19091,03	19745,02	21888,42	22906,06	22934,91	23421,38	23707,20	24350,94
12,8	18998,12	19063,70	19711,12	21859,35	22792,89	22860,14	23342,63	23667,89	24252,73
12,6	18972,01	19033,30	19672,84	21830,35	22677,33	22780,09	23256,48	23621,17	24151,28
12,4	18944,27	18999,47	19629,83	21800,37	22559,59	22695,05	23163,01	23566,56	24046,77
12,2	18914,98	18961,86	19581,81	21768,04	22439,85	22604,84	23062,59	23503,65	23939,32
12,0	18884,27	18920,10	19528,57	21732,05	22318,32	22510,33	22955,82	23432,19	23829,02
11,8	18852,33	18873,78	19470,03	21690,78	22195,21	22411,84	22843,69	23352,03	23715,92
11,6	18819,42	18822,50	19406,25	21642,63	22070,78	22309,85	22727,00	23263,15	23600,09
11,4	18765,86	18785,92	19337,57	21585,99	21945,31	22204,85	22607,05	23165,77	23481,60
11,2	18703,48	18752,20	19264,73	21519,45	21819,12	22097,30	22484,78	23060,26	23360,63
11,0	18635,02	18718,80	19189,26	21441,86	21692,58	21987,59	22361,32	22947,21	23237,37
10,8	18620,37	18686,32	19114,50	21352,52	21566,11	21876,04	22237,85	22827,40	23112,17
10,6	18654,51	18674,98	19049,15	21251,19	21440,28	21762,95	22115,28	22701,98	22985,41
10,4	18626,34	18711,34	19017.59	21138.18	21315.77	21648.57	21994.82	22572.13	22857.66
10,2	18646,81	18695,12	19057,16	21014,38	21193,56	21533,19	21877,60	22439,45	22729,55
10,0	18632,76	18704,85	19162.20	20881.27	21075.06	21417.22	21764.86	22305.76	22601.88
9.8	18560.08	18771.23	19305.79	20740.92	20962.38	21301.24	21657.87	22173,12	22475.60
9,6	18548,39	18846,18	19474.17	20596.08	20859.09	21186.11	21558.01	22044.09	22351.89
9,4	18543.69	18929.69	19658.08	20450.33	20771.80	21073.08	21466.68	21921.80	22232,15
9,2	18547.34	19021.07	19843.25	20308.32	20714.30	20963.83	21385.63	21810.22	22118.11
9.0	18560.90	19118,12	19999.99	20176.70	20715.23	20860.91	21316.79	21715.23	22011.84
8,8	18586.10	19215.19	20065.79	20088.08	20760.49	20816.97	21262.58	21647.69	21915.81
- /	,==	- ,=-	,	,	, ==	,	,	,	,

R	(10) 1	(11) 1	(12) 1	(13) 1	(14) 1	(15) 1	(16) 1	(17) 1	(18) 1
8,6	18624,90	19299,73	19993,44	20107,49	$20680,\!66$	20985, 97	$21226,\!15$	$21633,\!18$	$21832,\!97$
8,4	18679, 49	$19351,\!32$	19985, 45	20097,16	$20613,\!63$	21140,72	21213,22	21731,07	21766, 79
8,2	18752,34	19360, 12	20057,40	20086,70	20566, 86	21202,89	21238,88	21721,00	21976,73
8,0	18846, 19	$19345,\!45$	20090,98	$20197,\!65$	$20545,\!89$	$21243,\!60$	21278,82	21700, 36	$21975,\!89$
7,8	18964,10	19335, 10	20122,03	20383,97	20557,00	21310,93	21335,50	21709,89	$21987,\!66$
7,6	19109,71	19349,01	20187,96	20602,13	20610,32	21404,96	21435,61	$21755,\!35$	$22037,\!68$
7,4	$19286,\!65$	$19401,\!30$	20297,36	20703,50	$20857,\!51$	$21533,\!07$	$21589,\!66$	$21843,\!21$	$22132,\!26$
7,2	19489,58	$19513,\!90$	20459,22	20855,01	$21140,\!17$	21710,70	21797,63	21980,71	$22278,\!41$
7,0	19660,45	19761,75	20683,23	21069,75	$21457,\!67$	21948,20	22062,93	$22175,\!99$	$22483,\!95$
6,8	19892,99	20069,51	20979,93	21356,22	21817,37	22255,02	22387,15	22438,60	$22757,\!46$
6,6	20207,36	20437,30	21360,79	21722,59	22228,72	22640,80	22763,30	22788,73	$23108,\!24$
6,4	20615,78	$20875,\!04$	21838,05	$22176,\!55$	$22701,\!15$	$23115,\!43$	$23191,\!59$	23240,82	$23546,\!23$
6,2	21130,51	$21393,\!81$	22424,61	22725,20	$23241,\!43$	23687,31	23713,32	$23773,\!15$	$24081,\!86$
6,0	21763,82	$22004,\!84$	23133,62	23375,01	$23851,\!20$	24333,05	24376,16	$24396,\!48$	24725,72
5,8	22527,31	22718,72	23977,94	24131,65	$24526,\!28$	25077, 14	25124,44	$25183,\!03$	$25488,\!08$
5,6	23430,76	$23544,\!84$	24968,98	25000,07	$25262,\!63$	25948, 19	25985,11	26117,86	$26378,\!21$
5,4	24468,00	$24503,\!50$	25980,30	26066,44	$26117,\!43$	26955,54	26986,76	$27191,\!25$	$27403,\!39$
5,2	$25546,\!66$	25695,03	$26931,\!67$	27094,72	27427,03	28103,84	28132,41	28256,90	28409,11
5,0	26832,62	27050,73	27897,44	28323,49	28897,70	28976, 11	29396,56	29423,04	29772,36
4,8	28377,38	28543,61	28972,36	29679,52	29837,13	30521,80	30825,24	30846,89	31279,82
4,6	30044,65	30051,42	30284,99	30839,56	31179,22	32277,42	32376,93	32397,91	32858,22

Tab. B.7. Adiabatyczne potencjały energetyczne cząsteczki NaRb (19-21) 1. Jednostką odległości między
atomowej Rjest $\mathbf{a}_0,$ a jednostką energii jest
 cm^{-1}. Kontynuacja tabeli na dwóch kolejnych stronach.

R	(19) 1	(20) 1	(21) 1
86,0	25701,88	25737,54	26307,59
84,0	25701,57	25737,54	26307,58
82,0	25701,57	$25737,\!53$	26307,57
80,0	25701,56	$25737,\!53$	26307,55
78,0	25701,56	25737,52	26307,53
76,0	25701,56	25737,51	26307,51
74,0	25701,56	25737,50	26307, 49
72,0	25701,55	25737, 49	26307, 46
70,0	25701,55	25737,47	26307,42
68,0	25701,54	25737,46	26307,37
66,0	25701,54	25737,43	26307,31
64,0	25701,53	25737,41	26307,24
62,0	25701,52	25737,38	26307,14
60,0	25701,50	25737,33	26307,02
58,0	25701,49	25737,28	26306,85
56,0	25701,46	25737,21	26306,64
54,0	25701,44	$25737,\!12$	26306,34
52,5	25701,41	25737,04	26306,05
48,0	25701,28	$25736,\!66$	26304,54
46,0	25701,19	25736, 39	26303,36
44,0	25701,07	25736,02	$26301,\!67$
42,0	25700,90	25735,50	26299, 26
40,0	$25700,\!65$	25734,77	26295, 92
39,0	25700, 49	$25734,\!29$	$26293,\!84$
38,0	25700,30	25733,71	$26291,\!48$
37,0	25700,07	25733,00	26288, 86
36,0	25699,78	25732,14	26286,01
35,0	25699,44	25731,08	26283,02
34,0	25699,01	25729,76	26280,02
33,0	25698,49	25728,13	26277,17
32,0	25697,84	25726,07	26274,69
31,0	25697,03	25723,46	26272,84
30,5	25696,55	25721,91	26272,23
30,0	25696,01	25720,14	26271,87
29,5	25695,41	25718,15	26271,78
29,0	25694,73	25715,88	26272,00
28,5	25693,97	25713,31	26272,54
28,0	25693,11	25710,38	26273,42
27,5	25692,14	25707,05	26274,65
27,0	25691,04	25703,26	26276,24
26,5	25689,80	25698,93	26278,18
26,0	25688,38	25693,99	26280,46
25,5	20080,78	20088,37	20283,07
25,0	25674.65	25084,95	20200,97
24,0	25666 33	25680 48	20209,10
24,0	25656.80	25677 75	26292,37
23.0	25646 21	25674 61	26295,02
22.5	25634 16	25671.00	26300 70
22.0	25620.69	25666.82	26300.81
21.5	25605.75	25661.99	26296.09
21,0	25589,44	25656,36	26279,99
20,5	25572,57	25649,79	26244,10

R (19) (20) (21) (21) 20,025559,7525642,0826192,119,825554,1625638,6326169,619,625548,2525634,9426147,019,425541,9725630,9926124,919,225535,3025626,7626103,519,025528,1625622,2226082,918,825520,5125617,3526063,318,625512,2725612,1126044,818,425503,3825606,4826027,218,225493,7425600,4126010,718,025485,3825593,8625995,217,825480,4325567,91225966,517,425472,7725570,8125933,117,225470,2825561,7925940,217,025468,6825541,2925915,216,625469,9025529,6225902,716,425477,2125502,8625890,116,225477,2125502,8625877,016,425470,622549,2425849,015,625452,0125503,0825833,615,425470,622549,2425849,015,625452,0125503,0825833,615,425431,4725516,4825817,115,225408,7625531,9925781,415,02538,612559,742560,7825408,762559,79,7025607,214,625324,8025589,8425638,814,425290,4	$\begin{array}{c} 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$
20,0 $25559,75$ $25642,08$ $26192,1$ $19,8$ $25554,16$ $25638,63$ $26169,6$ $19,6$ $25548,25$ $25634,94$ $26147,0$ $19,4$ $25541,97$ $25630,99$ $26124,9$ $19,2$ $25535,30$ $25626,76$ $26103,5$ $19,0$ $25528,16$ $25622,22$ $26082,9$ $18,8$ $25520,51$ $25617,35$ $26063,3$ $18,6$ $25512,27$ $25612,11$ $26044,8$ $18,4$ $25503,38$ $25606,48$ $26027,2$ $18,2$ $25493,74$ $25600,41$ $26010,7$ $18,0$ $25485,38$ $25593,86$ $25995,2$ $17,8$ $25480,43$ $25560,79$ $25906,68$ $17,4$ $25472,77$ $25570,81$ $25980,49$ $17,6$ $25476,20$ $25579,12$ $25966,52$ $17,4$ $25472,77$ $25570,81$ $2593,11$ $17,2$ $25470,28$ $25561,79$ $25940,24$ $17,0$ $25488,67$ $2551,98$ $25927,62$ $16,8$ $25468,68$ $25541,29$ $25915,24$ $16,6$ $25477,21$ $25502,86$ $25877,02$ $16,6$ $25477,21$ $25503,08$ $25833,64$ $15,4$ $25470,62$ $25492,24$ $25849,04$ $15,4$ $25431,47$ $25516,48$ $25817,14$ $15,2$ $25408,76$ $25531,99$ $25784,44$ $15,4$ $25324,80$ $25589,84$ $25688,84$ $14,4$ $25290,43$ $25579,70$ $25607,24$ $14,6$ 2	$\begin{array}{c} 10\\ 60\\ 8\\ 97\\ 53\\ 96\\ 37\\ 21\\ 12\\ 12\\ 12\\ 12\\ 12\\ 13\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12$
19,825554,1625638,6326169,619,625548,2525634,9426147,019,425541,9725630,9926124,519,225535,3025626,7626103,519,025528,1625622,2226082,518,825520,5125617,3526063,318,625512,2725612,1126044,818,425503,3825606,4826027,218,225493,7425600,4126010,718,025485,3825593,8625995,217,825480,4325586,7825980,417,625476,2025579,1225966,517,425472,7725570,812593,117,225470,2825561,7925940,217,025468,6825541,2925915,216,625469,9025529,6225902,716,425472,6825516,8525890,116,225477,2125502,8625877,016,425472,6825516,8525890,116,225477,2125503,082583,615,425470,6225492,2425849,015,625452,0125503,0825833,615,425431,4725516,4825817,115,225408,7625531,9925781,415,02538,6125589,8425688,814,425290,4325579,7025607,214,225252,2225514,8925610,114,025209,7525641,8525691,1	50 50 50 53
19,6 $25548,25$ $25634,94$ $26147,0$ 19,4 $25541,97$ $25630,99$ $26124,5$ 19,2 $25535,30$ $25626,76$ $26103,5$ 19,0 $25528,16$ $25622,22$ $26082,52$ 18,8 $25520,51$ $25617,35$ $26063,3$ 18,6 $25512,27$ $25612,11$ $26044,8$ 18,4 $25503,38$ $25606,48$ $26027,2$ 18,2 $25493,74$ $25600,41$ $26010,7$ 18,0 $25485,38$ $25593,86$ $25995,2$ 17,8 $25480,43$ $25586,78$ $25980,44$ 17,6 $25476,20$ $25579,12$ $25966,52$ 17,4 $25472,77$ $25570,81$ $2593,14$ 17,2 $25470,28$ $25561,79$ $25940,27$ 17,0 $25468,87$ $25593,86$ $25927,66$ 16,8 $25460,90$ $25529,62$ $25902,76$ 16,6 $25469,90$ $25529,62$ $25902,76$ 16,6 $25469,90$ $25529,62$ $25902,76$ 16,6 $25477,21$ $25502,86$ $25877,00$ 16,2 $25477,21$ $25503,08$ $25833,61$ 15,4 $25470,62$ $25492,24$ $25849,00$ 15,6 $25452,01$ $25503,08$ $25833,61$ 15,4 $25470,62$ $25593,19$ $25781,44$ 15,0 $25383,61$ $25589,84$ $25688,85$ 14,8 $25355,74$ $25569,78$ $25691,00$ 14,6 $25324,80$ $25589,84$ $25638,85$ 14,4 $25290,43$ $25579,70$ $25607,22$ </td <td>$\begin{array}{c} 08\\ \hline 97\\ \hline 53\\ \hline 96\\ \hline 37\\ \hline 81\\ \hline 29\\ \hline 77\\ \hline 21\\ \hline 49\\ \hline 51\\ \hline 15\\ \hline 26\\ \hline 38\\ \hline 25\\ \hline 79\\ \hline 13\\ \hline 14\\ \hline 01\\ \hline 31\\ \hline 11\\ \hline 12\\ \hline 36\\ \hline \end{array}$</td>	$\begin{array}{c} 08\\ \hline 97\\ \hline 53\\ \hline 96\\ \hline 37\\ \hline 81\\ \hline 29\\ \hline 77\\ \hline 21\\ \hline 49\\ \hline 51\\ \hline 15\\ \hline 26\\ \hline 38\\ \hline 25\\ \hline 79\\ \hline 13\\ \hline 14\\ \hline 01\\ \hline 31\\ \hline 11\\ \hline 12\\ \hline 36\\ \hline \end{array}$
19,4 $25541,97$ $25630,99$ $26124,5$ $19,2$ $25535,30$ $25626,76$ $26103,5$ $19,0$ $25528,16$ $25622,22$ $26082,5$ $18,8$ $25520,51$ $25617,35$ $26063,3$ $18,6$ $25512,27$ $25612,11$ $26044,8$ $18,4$ $25503,38$ $25606,48$ $26027,2$ $18,2$ $25493,74$ $25600,41$ $26010,7$ $18,0$ $25485,38$ $25593,86$ $25995,2$ $17,8$ $25480,43$ $25586,78$ $25980,44$ $17,6$ $25476,20$ $25579,12$ $25966,52$ $17,4$ $25472,77$ $25570,81$ $25953,14$ $17,2$ $25470,28$ $25561,79$ $25940,27$ $17,0$ $25468,87$ $25551,98$ $25927,62$ $16,6$ $25469,90$ $25529,62$ $25902,7$ $16,4$ $25472,68$ $25516,85$ $25890,14$ $16,2$ $25477,21$ $25502,86$ $25877,02$ $16,6$ $25483,67$ $25487,51$ $25863,44$ $15,8$ $25470,62$ $25492,24$ $25849,04$ $15,6$ $25452,01$ $25503,08$ $25833,64$ $15,4$ $25431,47$ $25516,48$ $25817,14$ $15,2$ $25408,76$ $25531,99$ $25738,35$ $14,8$ $25355,74$ $25569,78$ $25691,04$ $14,6$ $25324,80$ $25589,84$ $25638,88$ $14,4$ $25290,43$ $25579,70$ $25607,22$ $14,2$ $25225,22$ $25514,89$ $25610,14$ $14,0$ <t< td=""><td>$\begin{array}{r} \\ \\ \\$</td></t<>	$ \begin{array}{r} \\ \\ \\ $
19,225535,3025626,7626103,519,025528,1625622,2226082,518,825520,5125617,3526063,318,625512,2725612,1126044,818,425503,3825606,4826027,218,225493,7425600,4126010,718,025485,3825593,8625995,217,825480,4325586,7825980,417,625476,2025579,1225966,517,425470,2825561,7925940,217,025468,8725551,9825927,616,625469,9025529,6225902,716,625469,9025529,6225902,716,425477,2125502,8625877,016,225477,2125503,0825833,615,425431,4725516,4825817,115,225408,7625531,9925781,415,025383,6125549,9825738,314,82535,7425569,7825691,014,625324,8025589,8425638,814,425290,4325579,7025607,214,225252,2225514,8925610,114,025209,7525441,8525593,1	53 6 37 31 29 77 21 49 51 15 26 51 15 26 38 25 79 13 10 11 112 36
15,225553,6025526,1625526,1625506,6019,025528,1625622,2226082,518,825520,5125617,3526063,318,625512,2725612,1126044,818,425503,3825606,4826027,218,225493,7425600,4126010,718,025485,3825593,8625995,217,825480,4325586,7825980,417,625476,2025579,1225966,517,425472,7725570,8125953,117,225470,2825561,7925940,217,025468,8725529,6225927,616,625469,9025529,6225902,716,425472,6825516,8525890,116,225477,2125502,8625877,016,425470,6225492,2425849,015,625452,0125503,0825833,615,425470,6225492,2425849,015,625452,0125503,0825833,615,425431,4725516,4825817,115,225408,7625531,9925781,415,025383,612559,7825691,014,625324,8025589,8425638,814,425290,4325579,7025607,214,225252,2225514,8925610,114,025209,7525441,8525593,1	$ \begin{array}{r} \\ \\ \\ $
15,625622,3325622,2226663,318,825520,5125617,3526063,318,625512,2725612,1126044,818,425503,3825606,4826027,218,225493,7425600,4126010,718,025485,3825593,8625995,217,825476,2025579,1225966,517,425472,7725570,8125933,117,225470,2825561,7925940,217,025468,872559,9825927,616,825469,9025529,6225902,716,625469,9025529,6225902,716,225477,2125502,8625877,016,225470,2825516,852580,116,225477,2125502,8625877,016,42542,0125503,0825833,615,825470,6225492,2425849,015,625452,0125503,0825833,615,425431,4725516,4825817,115,225408,7625531,9925781,415,025383,6125549,9825691,014,625324,8025589,8425688,814,425290,4325579,7025607,214,225252,2225514,8925610,114,025209,7525441,8525593,1	37 31 29 77 21 49 51 15 26 68 25 79 13 08 14 01 11 12 36
13,3 $25320,31$ $25017,33$ $25003,3$ $18,6$ $25512,27$ $25612,11$ $26003,3$ $18,4$ $25503,38$ $25606,48$ $26027,2$ $18,2$ $25493,74$ $25600,41$ $26010,7$ $18,0$ $25485,38$ $25593,86$ $25995,2$ $17,8$ $25480,43$ $25586,78$ $25980,44$ $17,6$ $25476,20$ $25579,12$ $25966,55$ $17,4$ $25472,77$ $25570,81$ $25953,14$ $17,2$ $25470,28$ $25561,79$ $25940,22$ $17,0$ $25468,87$ $25551,98$ $25927,66$ $16,8$ $25468,68$ $25541,29$ $25915,22$ $16,6$ $25469,90$ $25529,62$ $25902,76$ $16,4$ $25472,68$ $25516,85$ $2580,11$ $16,2$ $25477,21$ $25502,86$ $25877,02$ $16,6$ $25483,67$ $25487,51$ $25863,46$ $15,6$ $25452,01$ $25503,08$ $25833,66$ $15,4$ $25470,62$ $25492,24$ $25849,00$ $15,6$ $25431,47$ $25516,48$ $25571,12$ $15,6$ $25433,61$ $25593,08$ $25738,36$ $15,4$ $25333,61$ $2559,78$ $25691,00$ $14,8$ $25355,74$ $25569,78$ $25691,00$ $14,4$ $25290,43$ $25579,70$ $25607,22$ $14,2$ $25225,22$ $25514,89$ $25610,11$ $14,0$ $25209,75$ $25441,85$ $25593,11$	$\begin{array}{c} 31 \\ 29 \\ 77 \\ 21 \\ 49 \\ 51 \\ 15 \\ 26 \\ 58 \\ 25 \\ 79 \\ 13 \\ 14 \\ 01 \\ 31 \\ 11 \\ 12 \\ 36 \end{array}$
15,0 $25312,27$ $25012,11$ $20044,3$ $18,4$ $25503,38$ $25606,48$ $26027,2$ $18,2$ $25493,74$ $25600,41$ $26010,7$ $18,0$ $25485,38$ $25593,86$ $25995,2$ $17,8$ $25480,43$ $25586,78$ $25980,44$ $17,6$ $25476,20$ $25579,12$ $25966,55$ $17,4$ $25472,77$ $25570,81$ $25953,14$ $17,2$ $25470,28$ $25561,79$ $25940,22$ $17,0$ $25468,87$ $25551,98$ $25927,66$ $16,8$ $25468,68$ $25541,29$ $25915,22$ $16,6$ $25469,90$ $25529,62$ $25902,76$ $16,4$ $25472,68$ $25516,85$ $2580,11$ $16,2$ $25477,21$ $25502,86$ $25877,02$ $16,6$ $25483,67$ $25487,51$ $25863,44$ $15,8$ $25470,62$ $25492,24$ $25849,60$ $15,6$ $25431,47$ $25516,48$ $25583,66$ $15,4$ $25431,47$ $25516,48$ $25817,11$ $15,2$ $25408,76$ $25531,99$ $25781,44$ $15,0$ $25383,61$ $2559,78$ $25691,01$ $14,8$ $25355,74$ $25569,78$ $25691,01$ $14,4$ $25290,43$ $25579,70$ $25607,22$ $14,2$ $25252,22$ $25514,89$ $25610,11$ $14,0$ $25209,75$ $25441,85$ $25593,11$	29 77 21 49 51 15 26 58 25 79 13 14 01 31 12 36
16,4 $25303,38$ $25006,48$ $20027,2$ $18,2$ $25493,74$ $25600,41$ $26010,7$ $18,0$ $25485,38$ $25593,86$ $25995,2$ $17,8$ $25480,43$ $25586,78$ $25980,44$ $17,6$ $25476,20$ $25579,12$ $25966,55$ $17,4$ $25472,77$ $25570,81$ $25953,14$ $17,2$ $25470,28$ $25561,79$ $25940,24$ $17,0$ $25468,87$ $25551,98$ $25927,66$ $16,8$ $25468,68$ $25541,29$ $25915,22$ $16,6$ $25469,90$ $25529,62$ $25902,76$ $16,4$ $25472,68$ $25516,85$ $25800,14$ $16,2$ $25477,21$ $25502,86$ $25877,02$ $16,6$ $25483,67$ $25487,51$ $25863,44$ $15,8$ $25470,62$ $25492,24$ $25849,60$ $15,6$ $25431,47$ $25516,48$ $25573,66$ $15,4$ $25431,47$ $25516,48$ $25817,11$ $15,2$ $25408,76$ $25531,99$ $25781,44$ $15,0$ $25324,80$ $25589,84$ $25691,00$ $14,6$ $25324,80$ $25589,84$ $25638,86$ $14,4$ $25290,43$ $25579,70$ $25607,22$ $14,2$ $25252,22$ $25514,89$ $25610,12$ $14,0$ $25209,75$ $25441,85$ $25593,11$	23 77 21 49 51 15 26 58 25 79 13 08 14 01 51 11 12 36 12
18,2 $253493,44$ $25000,41$ $20010,7$ $18,0$ $25485,38$ $25593,86$ $25995,2$ $17,8$ $25480,43$ $25586,78$ $25980,44$ $17,6$ $25476,20$ $25579,12$ $25966,55$ $17,4$ $25472,77$ $25570,81$ $25953,14$ $17,2$ $25470,28$ $25561,79$ $25940,22$ $17,0$ $25468,87$ $25551,98$ $25927,66$ $16,8$ $25468,68$ $25541,29$ $25915,22$ $16,6$ $25469,90$ $25529,62$ $25902,76$ $16,4$ $25472,68$ $25516,85$ $25890,14$ $16,2$ $25477,21$ $25502,86$ $25877,02$ $16,6$ $25483,67$ $25487,51$ $25863,44$ $15,8$ $25470,62$ $25492,24$ $25849,60$ $15,4$ $25431,47$ $25516,48$ $25817,11$ $15,2$ $25408,76$ $25531,99$ $25781,44$ $15,0$ $25383,61$ $2559,78$ $25691,00$ $14,8$ $25355,74$ $25569,78$ $25691,00$ $14,4$ $25290,43$ $25579,70$ $25607,22$ $14,2$ $25252,22$ $25514,89$ $25610,10$ $14,0$ $25209,75$ $25441,85$ $25593,11$	
18,0 $25485,38$ $25593,366$ $25995,2$ $17,8$ $25480,43$ $25586,78$ $25996,4$ $17,6$ $25476,20$ $25579,12$ $25966,5$ $17,4$ $25472,77$ $25570,81$ $25953,1$ $17,2$ $25470,28$ $25561,79$ $25940,2$ $17,0$ $25468,87$ $25551,98$ $25927,6$ $16,8$ $25468,68$ $25541,29$ $25915,2$ $16,6$ $25469,90$ $25529,62$ $25902,7$ $16,4$ $25472,68$ $25516,85$ $25890,1$ $16,2$ $25477,21$ $25502,86$ $25877,0$ $16,0$ $25483,67$ $25492,24$ $25849,60$ $15,6$ $25452,01$ $25503,08$ $25833,61$ $15,4$ $25431,47$ $25516,48$ $25718,44$ $15,0$ $25383,61$ $25599,78$ $25691,0$ $14,8$ $25355,74$ $25569,78$ $25691,0$ $14,4$ $25290,43$ $25579,70$ $25607,2$ $14,2$ $25252,22$ $25514,89$ $25610,1$ $14,0$ $25209,75$ $25441,85$ $25593,1$	$\begin{array}{c} 21 \\ 49 \\ 51 \\ 15 \\ 26 \\ 38 \\ 25 \\ 79 \\ 13 \\ 38 \\ 14 \\ 31 \\ 11 \\ 12 \\ 36 \end{array}$
17,8 $25480,43$ $25586,78$ $25980,43$ $17,6$ $25476,20$ $25579,12$ $25966,5$ $17,4$ $25472,77$ $25570,81$ $25953,1$ $17,2$ $25470,28$ $25561,79$ $25940,2$ $17,0$ $25468,87$ $25551,98$ $25927,6$ $16,8$ $25468,68$ $25541,29$ $25915,2$ $16,6$ $25469,90$ $25529,62$ $25902,7$ $16,4$ $25472,68$ $25516,85$ $25890,1$ $16,2$ $25477,21$ $25502,86$ $25877,0$ $16,0$ $25483,67$ $25487,51$ $25863,4$ $15,8$ $25470,62$ $25492,24$ $25849,6$ $15,6$ $25452,01$ $25503,08$ $25833,6$ $15,4$ $25431,47$ $25516,48$ $25817,1$ $15,2$ $25408,76$ $25531,99$ $25781,4$ $15,0$ $25383,61$ $2559,78$ $25691,0$ $14,8$ $25355,74$ $25569,78$ $25691,0$ $14,4$ $25290,43$ $25579,70$ $25607,2$ $14,2$ $25252,22$ $25514,89$ $25610,1$ $14,0$ $25209,75$ $2541,85$ $25593,1$	$ \begin{array}{r} 49 \\ 51 \\ 15 \\ 26 \\ 58 \\ 25 \\ 79 \\ 13 \\ 18 \\ 14 \\ 11 \\ 12 \\ 36 \\$
17,6 $25476,20$ $25579,12$ $25966,5$ $17,4$ $25472,77$ $25570,81$ $25953,1$ $17,2$ $25470,28$ $25570,81$ $25953,1$ $17,2$ $25470,28$ $25561,79$ $25940,2$ $17,0$ $25468,87$ $25551,98$ $25927,6$ $16,8$ $25468,68$ $25541,29$ $25915,2$ $16,6$ $25469,90$ $25529,62$ $25902,7$ $16,4$ $25472,68$ $25516,85$ $25890,11$ $16,2$ $25477,21$ $25502,86$ $25877,02$ $16,0$ $25483,67$ $25487,51$ $25863,44$ $15,8$ $25470,62$ $25492,24$ $25849,02$ $15,6$ $25452,01$ $25503,08$ $25833,64$ $15,4$ $25431,47$ $25516,48$ $25817,11$ $15,2$ $25408,76$ $25531,99$ $25781,44$ $15,0$ $25383,61$ $25599,78$ $25691,02$ $14,8$ $25324,80$ $25589,84$ $25638,86$ $14,4$ $25290,43$ $25579,70$ $25607,22$ $14,2$ $25225,222$ $25514,89$ $25610,12$ $14,0$ $25209,75$ $25441,85$ $25593,12$	$\begin{array}{c} 51\\ 15\\ 26\\ 38\\ 25\\ 79\\ 13\\ 18\\ 14\\ 11\\ 11\\ 12\\ 36 \end{array}$
17,4 $25472,77$ $25570,81$ $25953,1$ $17,2$ $25470,28$ $25561,79$ $25940,2$ $17,0$ $25468,87$ $25551,98$ $25927,6$ $16,8$ $25468,68$ $25551,98$ $25927,6$ $16,6$ $25469,90$ $25529,62$ $25902,7$ $16,4$ $25472,68$ $25516,85$ $25890,1$ $16,2$ $25477,21$ $25502,86$ $25877,60$ $16,0$ $25483,67$ $25487,51$ $25863,44$ $15,8$ $25470,62$ $25492,24$ $25849,60$ $15,6$ $25452,01$ $25503,08$ $25833,61$ $15,4$ $25431,47$ $25516,48$ $25817,11$ $15,2$ $25408,76$ $25531,99$ $25781,44$ $15,0$ $25383,61$ $2559,78$ $25691,00$ $14,8$ $25325,74$ $25569,78$ $25691,00$ $14,4$ $25290,43$ $25579,70$ $25607,22$ $14,2$ $25252,22$ $25514,89$ $25610,10$ $14,0$ $25209,75$ $25441,85$ $25593,11$	15 26 38 25 79 13 08 14 01 31 11 12 36
17,2 $25470,28$ $25561,79$ $25940,2$ $17,0$ $25468,87$ $25551,98$ $25927,6$ $16,8$ $25468,68$ $25551,92$ $25927,6$ $16,6$ $25469,90$ $25529,62$ $25902,7$ $16,4$ $25472,68$ $25516,85$ $25800,1$ $16,2$ $25477,21$ $25502,86$ $25877,6$ $16,0$ $25483,67$ $25487,51$ $25863,4$ $15,8$ $25470,62$ $25902,24$ $25849,60$ $15,6$ $25452,01$ $25503,08$ $25833,66$ $15,4$ $25431,47$ $25516,48$ $25817,14$ $15,2$ $25408,76$ $25531,99$ $25781,44$ $15,0$ $25383,61$ $2559,78$ $25691,66$ $14,8$ $25325,74$ $25569,78$ $25691,66$ $14,4$ $25290,43$ $25579,70$ $25607,22$ $14,2$ $25252,22$ $25514,89$ $25610,16$ $14,0$ $25209,75$ $25441,85$ $25593,1$	$\frac{26}{58}$ $\frac{25}{79}$ $\frac{13}{51}$ $\frac{14}{12}$ $\frac{12}{36}$
17,0 $25468,87$ $25551,98$ $25927,6$ $16,8$ $25468,68$ $25541,29$ $25915,2$ $16,6$ $25469,90$ $25529,62$ $25902,7$ $16,4$ $25472,68$ $25516,85$ $25890,1$ $16,2$ $25477,21$ $25502,86$ $25877,0$ $16,0$ $25483,67$ $25487,51$ $25863,4$ $15,8$ $25470,62$ $25492,24$ $25849,0$ $15,6$ $25452,01$ $25503,08$ $25833,61$ $15,4$ $25431,47$ $25516,48$ $25817,1$ $15,2$ $25408,76$ $25531,99$ $25738,3$ $14,8$ $25355,74$ $25569,78$ $25691,0$ $14,6$ $25324,80$ $25589,84$ $25638,8$ $14,4$ $25290,43$ $25579,70$ $25607,2$ $14,2$ $25252,22$ $25514,89$ $25610,1$ $14,0$ $25209,75$ $25441,85$ $25593,1$	$\frac{58}{25}$ 79 13 08 14 01 31 12 36
16,8 $25468,68$ $25541,29$ $25915,2$ $16,6$ $25469,90$ $25529,62$ $25902,7$ $16,4$ $25472,68$ $25516,85$ $25890,1$ $16,2$ $25477,21$ $25502,86$ $25877,0$ $16,0$ $25483,67$ $25487,51$ $25863,4$ $15,8$ $25470,62$ $25492,24$ $25849,0$ $15,6$ $25452,01$ $25503,08$ $25833,61$ $15,4$ $25431,47$ $25516,48$ $25817,14$ $15,0$ $25383,61$ $25549,98$ $25738,33$ $14,8$ $25355,74$ $25569,78$ $25691,00$ $14,6$ $25324,80$ $25579,70$ $25607,22$ $14,2$ $25225,222$ $25514,89$ $25610,11$ $14,0$ $25209,75$ $25441,85$ $25593,11$	$\begin{array}{c} 25 \\ 79 \\ 13 \\ 08 \\ 14 \\ 01 \\ 11 \\ 12 \\ 36 \\ 36 \\ \end{array}$
16,6 25469,90 25529,62 25902,7 16,4 25472,68 25516,85 25890,1 16,2 25477,21 25502,86 25877,0 16,0 25483,67 25487,51 25863,4 15,8 25470,62 25492,24 25849,0 15,6 25452,01 25503,08 25833,6 15,4 25431,47 25516,48 25817,1 15,2 25408,76 25531,99 25781,4 15,0 25333,61 25549,98 25738,3 14,8 25355,74 25569,78 25609,10 14,6 25324,80 25589,84 25638,8 14,4 25290,43 25579,70 25607,2 14,2 25252,22 25514,89 25610,1 14,0 25209,75 25441,85 25593,1	$79 \\ 13 \\ 08 \\ 14 \\ 01 \\ 11 \\ 12 \\ 36 \\ 36 \\ 36 \\ 36 \\ 36 \\ 36 \\ 36 \\ 3$
16,4 25472,68 25516,85 25890,1 16,2 25477,21 25502,86 25877,0 16,0 25483,67 25487,51 25863,4 15,8 25470,62 25492,24 25849,0 15,6 25452,01 25503,08 25833,60 15,4 25431,47 25516,48 25817,1 15,2 25408,76 25531,99 25781,4 15,0 2533,61 25549,98 25738,3 14,8 25355,74 25569,78 25604,0 14,4 25290,43 25579,70 25607,2 14,2 25252,22 25514,89 25610,1 14,0 25209,75 25441,85 25593,1	$13 \\ 08 \\ 14 \\ 01 \\ 11 \\ 12 \\ 36 \\ 36 \\ 36 \\ 36 \\ 36 \\ 36 \\ 36 \\ 3$
16,2 $25477,21$ $25502,86$ $25877,0$ $16,0$ $25483,67$ $25487,51$ $25863,4$ $15,8$ $25470,62$ $25492,24$ $25849,0$ $15,6$ $25452,01$ $25503,08$ $25833,6$ $15,4$ $25431,47$ $25516,48$ $25817,1$ $15,2$ $25408,76$ $25531,99$ $25781,44$ $15,0$ $25383,61$ $25549,98$ $25738,33$ $14,8$ $25355,74$ $25569,78$ $25691,00$ $14,6$ $25324,80$ $25579,70$ $25607,22$ $14,2$ $25252,22$ $25514,89$ $25610,11$ $14,0$ $25209,75$ $25441,85$ $25593,11$	
16,0 25483,67 25487,51 25863,4 15,8 25470,62 25492,24 25849,0 15,6 25452,01 25503,08 25833,6 15,4 25431,47 25516,48 25817,1 15,2 25408,76 25531,99 25781,4 15,0 25383,61 25549,98 25738,3 14,8 25355,74 25569,78 25609,0 14,4 25290,43 25579,70 25607,2 14,2 25252,22 25514,89 25610,1 14,0 25209,75 2541,85 25593,1	$ \begin{array}{c} 44 \\ 51 \\ 11 \\ 12 \\ 36 \\ 36 \\ 36 \\ 36$
15,8 25470,62 25492,24 25849,0 15,6 25452,01 25503,08 25833,6 15,4 25431,47 25516,48 25817,1 15,2 25408,76 25531,99 25781,4 15,0 25383,61 25549,98 25738,5 14,8 25355,74 25569,78 25609,0 14,6 25324,80 25589,84 25638,8 14,4 25290,43 25579,70 25607,2 14,2 25252,22 25514,89 25610,1 14,0 25209,75 25441,85 25593,1)1 31 11 12 36
15,6 25452,01 25503,08 25833,6 15,4 25431,47 25516,48 25817,1 15,2 25408,76 25531,99 25781,4 15,0 25383,61 25549,98 25738,3 14,8 25355,74 25569,78 25691,0 14,6 25324,80 25589,84 25638,8 14,4 25290,43 25579,70 25607,2 14,2 25252,22 25514,89 25610,1 14,0 25209,75 25441,85 25593,1	51 11 12 36
15,4 25431,47 25516,48 25817,1 15,2 25408,76 25531,99 25781,4 15,0 25383,61 25549,98 25738,3 14,8 25355,74 25569,78 25691,6 14,6 25324,80 25589,84 25638,8 14,4 25290,43 25579,70 25607,2 14,2 25252,22 25514,89 25610,1 14,0 25209,75 25441,85 25593,1	$\frac{11}{12}$
15,2 25408,76 25531,99 25781,4 15,0 25383,61 25549,98 25738,3 14,8 25355,74 25569,78 25691,0 14,6 25324,80 25589,84 25638,8 14,4 25290,43 25579,70 25607,2 14,2 25252,22 25514,89 25610,1 14,0 25209,75 25441,85 25593,1	42 36
15,0 25383,61 25549,98 25738,3 14,8 25355,74 25569,78 25691,0 14,6 25324,80 25589,84 25638,8 14,4 25290,43 25579,70 25607,2 14,2 25252,22 25514,89 25610,1 14,0 25209,75 25441,85 25593,1	36
14,8 25355,74 25569,78 25691,0 14,6 25324,80 25589,84 25638,8 14,4 25290,43 25579,70 25607,2 14,2 25252,22 25514,89 25610,1 14,0 25209,75 25441,85 25593,1	~~
14,6 25324,80 25589,84 25638,8 14,4 25290,43 25579,70 25607,2 14,2 25252,22 25514,89 25610,1 14,0 25209,75 25441,85 25593,1)4
14,4 25290,43 25579,70 25607,2 14,2 25252,22 25514,89 25610,1 14,0 25209,75 25441,85 25593,1	34
14,2 25252,22 25514,89 25610,1 14,0 25209,75 25441,85 25593,1	21
14.0 25209.75 25441.85 25593.1	17
11,0 20200,10 20111,00 20000,1	17
13,8 25162,53 25360,17 25561,1	13
13,6 25110,07 25270,12 25519,6	30
13,4 25051,86 25172,98 25470,5	52
13,2 24987,38 25071,26 25383,0)6
13,0 24916,11 24968,12 25275,5	53
12,8 24837,59 24866,09 25166,2	22
12,6 24751,39 24767,86 25053,9	96
12,4 24657,21 24674,93 24938,0)2
12,2 24554,83 24587,83 24818,7	72
12,0 24444,21 24505,65 24698,3	
11,8 24325,50 24422,82 24583,7	33
11,6 $24199,04$ $24325,64$ $24489,7$	33 72
11,4 24065,37 24204,38 24427,7	33 72 73
11,2 23925,23 24065,92 24391,6	33 72 73 79
11,0 23779,55 23918,11 24256,6	33 72 73 79 39
	33 72 73 79 39 32
10,8 23629,42 23764,88 24104,2	33 72 73 79 39 32 23
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	33 72 73 79 39 32 23 35
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	33 72 73 79 39 32 23 35 37
10,8 23629,42 23764,88 24104,2 10,6 23476,08 23608,34 23946,8 10,4 23320,87 23449,98 23785,6 10,2 23165,23 23291,09 23621.5	33 72 73 79 39 32 23 35 37 99
10,8 23629,42 23764,88 24104,2 10,6 23476,08 23608,34 23946,8 10,4 23320,87 23449,98 23785,6 10,2 23165,23 23291,09 23621,5 10,0 23010,73 23132,92 23457.2	33 72 73 79 59 52 23 35 37 99 26
10,8 23629,42 23764,88 24104,2 10,6 23476,08 23608,34 23946,8 10,4 23320,87 23449,98 23785,6 10,2 23165,23 23291,09 23621,5 10,0 23010,73 23132,92 23457,2 9,8 22858,99 22976,81 23293,0	33 72 73 79 59 52 23 35 37 99 26
10,8 23629,42 23764,88 24104,2 10,6 23476,08 23608,34 23946,8 10,4 23320,87 23449,98 23785,6 10,2 23165,23 23291,09 23621,9 10,0 23010,73 23132,92 23457,2 9,8 22858,99 22976,81 23293,0 9,6 22711,79 22824,25 23131,2	33 72 73 79 59 52 23 35 37 99 26 26 21
10,8 23629,42 23764,88 24104,2 10,6 23476,08 23608,34 23946,8 10,4 23320,87 23449,98 23785,6 10,2 23165,23 23291,09 23621,9 10,0 23010,73 23132,92 23457,2 9,8 22858,99 22976,81 23293,0 9,6 22711,79 22824,25 23131,2 9,4 22571,02 22676.98 22973,7	33 72 73 79 59 52 23 35 37 99 26 26 21 73
10,8 23629,42 23764,88 24104,2 10,6 23476,08 23608,34 23946,8 10,4 23320,87 23449,98 23785,6 10,2 23165,23 23291,09 23621,9 10,0 23010,73 23132,92 23457,2 9,8 22858,99 22976,81 23293,0 9,6 22711,79 22824,25 23131,2 9,4 22571,02 22676,98 22973,7 9,2 22438,76 22536.97 22822,2	33 72 73 79 59 52 23 35 37 99 26 21 73 94
10,8 23629,42 23764,88 24104,2 10,6 23476,08 23608,34 23946,8 10,4 23320,87 23449,98 23785,6 10,2 23165,23 23291,09 23621,9 10,0 23010,73 23132,92 23457,2 9,8 22858,99 22976,81 23293,0 9,6 22711,79 22824,25 23131,2 9,4 22571,02 22676,98 22973,7 9,2 22438,76 22536,97 22822,9 9,0 22317,32 22406.54 22681,5	33 72 73 79 59 52 23 35 37 99 26 26 21 73 94 51

R	(19) 1	(20) 1	(21) 1
8,6	22117,55	22185,67	22439,81
8,4	22045,46	22102,03	$22348,\!59$
8,2	21996,79	22041,74	22292,36
8,0	22009,15	22179,03	22419,38
7,8	22010,38	22197,43	$22805,\!69$
7,6	22051,47	22233,43	22826,73
7,4	22139,58	22313,19	22894,01
7,2	22282,77	22446,93	$23015,\!61$
7,0	22489,84	22644,08	23200,53
6,8	22770,51	22914,69	23458,77
6,6	23135,10	23269,59	23801,20
6,4	23594,93	23720,37	24239,46
6,2	24162,46	24279,15	$24785,\!59$
6,0	24850,54	24958,04	$25451,\!62$
5,8	25670,63	25768,56	26248,91
5,6	26632,01	26720,59	27187,25
5,4	27654,81	27741,11	27821,70
5,2	28567,78	29000,79	29074,53
5,0	29871, 13	30409,32	$30478,\!23$
4,8	31300,76	31959,30	32025, 25
4,6	32866,31	33637,39	33702,04

Tab. B.8. Adiabatyczne potencjały energetyczne cząsteczki NaRb (1-9) 2. Jednostką od-
ległości międzyatomowej R jest a_0 , a jednostką energii jest cm⁻¹. Kontynuacja
tabeli na dwóch kolejnych stronach.

R	(1) 2	(2) 2	(3) 2	(4) 2	(5) 2	(6) 2	(7) 2	(8) 2	(9) 2
86,0	12818,89	16973,63	19357,39	19357,39	19358,05	23790,89	25698,72	25701,56	25701,57
84,0	12818,89	16973,63	19357,38	19357,39	19358,05	23790,89	25698,72	25701,56	25701,57
82,0	12818,89	16973,63	19357,38	19357,39	19358,05	23790,89	25698,71	25701,55	25701,57
80,0	12818,89	16973,63	19357,38	19357,39	19358,05	23790,88	25698,71	25701,55	25701,56
78,0	12818,89	16973,63	19357,38	19357,39	19358,05	23790,88	25698,71	25701,55	25701,56
76,0	12818,89	16973,63	19357,38	19357,39	19358,04	23790,87	25698,71	25701,54	25701,56
74,0	12818,88	16973,63	19357,38	19357,38	19358,04	23790,87	25698,70	25701,54	25701,56
72,0	12818,88	16973,63	19357,38	19357,38	19358,04	23790,86	25698,70	25701,53	25701,55
70,0	12818,88	16973,63	19357,37	19357,38	19358,04	23790,85	25698,69	25701,52	25701,55
68,0	12818,88	16973,63	19357,37	19357,38	19358,04	23790,83	25698,69	25701,51	25701,54
66,0	12818,87	16973,63	19357,37	19357,38	19358,04	23790,82	25698,68	25701,50	25701,54
64,0	12818,87	16973,63	19357,36	19357,37	19358,03	23790,80	25698,67	25701,48	25701,53
62,0	12818,86	16973,63	19357,36	19357,37	19358,03	23790,78	$25698,\!65$	25701,46	25701,52
60,0	12818,86	16973,63	19357,35	19357,37	19358,02	23790,75	25698,64	25701,43	25701,50
58,0	12818,85	16973,62	19357,34	19357,36	19358,02	23790,72	25698,61	25701,39	25701,49
56,0	12818,84	16973,62	19357,33	19357,36	19358,01	23790,67	25698, 59	25701,35	25701,46
54,0	12818,82	16973,62	19357,31	19357, 35	19358,00	23790,62	25698,55	25701,29	25701,44
52,5	12818,81	16973,61	19357,30	19357,34	19357,99	23790,57	25698,51	25701,23	25701,41
48,0	12818,75	16973,60	19357,24	19357,31	19357,95	23790,33	25698,33	25700,94	25701,28
46,0	12818,71	16973,58	19357,19	19357,29	19357,93	23790,16	25698,20	25700,72	25701,19
44,0	12818,65	16973,56	19357,13	19357,26	19357,89	23789,94	$25697,\!99$	25700,41	25701,07
42,0	12818,58	16973,54	19357,05	19357,21	19357,84	23789,63	25697,67	25699,98	25700,90
40,0	12818,47	16973,51	19356,93	19357,15	19357,77	23789,20	25697,09	25699,38	25700,65
39,0	12818,40	16973, 49	19356,85	19357,11	19357,73	23788,91	$25696,\!61$	25699,02	25700,49
38,0	12818,32	16973, 46	19356,76	$19357,\!07$	$19357,\!68$	23788,57	$25695,\!92$	$25698,\!64$	25700,30
37,0	12818,22	$16973,\!43$	19356,64	$19357,\!01$	19357,61	23788,16	$25694,\!93$	$25698,\!24$	25700,07
36,0	12818,10	16973, 39	19356, 50	19356, 94	$19357,\!54$	23787,65	$25693,\!53$	25697, 83	25699,78
35,0	12817,96	$16973,\!34$	19356,33	19356, 85	$19357,\!45$	23787,02	$25691,\!56$	25697, 39	$25699,\!44$
34,0	12817,78	$16973,\!28$	19356,12	19356,75	$19357,\!34$	23786,24	$25688,\!82$	25696, 90	25699,01
33,0	$12817,\!57$	16973, 20	19355, 85	$19356,\!62$	19357,20	23785,26	25685,02	25696, 33	25698, 49
32,0	12817,30	16973, 11	19355, 52	19356, 46	19357,04	23784,00	25679,71	$25695,\!64$	$25697,\!83$
31,0	12816, 96	$16972,\!98$	19355,09	$19356,\!27$	19356, 83	23782,37	$25672,\!25$	$25694,\!81$	25697,02
$_{30,5}$	12816,77	$16972,\!91$	$19354,\!83$	19356, 15	19356,71	$23781,\!38$	$25667,\!42$	25694, 32	$25696,\!54$
30,0	$12816,\!55$	$16972,\!83$	$19354,\!54$	19356,01	$19356,\!57$	23780,24	$25661,\!67$	25693,77	25696,00
29,5	12816,30	16972,73	19354,20	$19355,\!86$	19356, 42	23778,93	$25654,\!79$	25693, 16	$25695,\!40$
29,0	12816,01	$16972,\!62$	$19353,\!82$	$19355,\!69$	$19356,\!24$	23777,41	$25646{,}54$	$25692,\!47$	25694,72
28,5	12815,70	$16972,\!50$	19353,38	$19355,\!50$	$19356,\!05$	$23775,\!65$	$25636,\!65$	25691,70	$25693,\!95$
28,0	$12815,\!34$	16972, 36	19352,88	19355, 28	19355, 83	23773,59	25624,75	25690, 84	25693,09
27,5	12814,93	$16972,\!20$	19352,30	$19355,\!04$	$19355,\!58$	23771,18	$25610,\!42$	25689,85	$25692,\!11$
27,0	$12814,\!47$	16972,01	19351,63	19354,75	19355, 29	23768,34	$25593,\!16$	25688,75	25691,00
26,5	12813,95	16971,79	19350,84	19354,43	19354,96	23764,99	25572,34	25687,49	25689,75
26,0	12813,34	$16971,\!54$	19349,92	19354,06	$19354,\!59$	23761,00	$25547,\!27$	25686,07	25688,32
25,5	12812,65	16971,24	19348,83	19353,63	19354,16	23756,25	25517,13	25684,45	25686,70
25,0	12811,86	16970,89	19347,54	$19353,\!14$	19353,66	23750,55	25481,04	25682,60	25684,86
24,5	12810,94	16970,48	19346,01	19352,57	19353,09	23743,68	25438,07	25680, 49	25682,75
24,0	12809,88	16970,00	19344,17	19351,91	19352,43	23735,35	$25387,\!35$	25678,08	25680,34
23,5	12808,65	16969,41	19341,95	19351, 15	19351,66	23725,19	25328,12	25675,31	25677,58
23,0	12807,22	16968,72	19339,26	19350, 25	19350,76	23712,72	25259,90	25672,12	25674,40
22,5	12805,53	16967,88	19335,97	19349,20	19349,71	23697,31	25182,59	25668,44	25670,75
22,0	12803,55	16966, 85	19331,94	19347,97	19348,47	23678,13	$25096,\!55$	25664,18	25666, 52
21,5	12801,20	$16965,\!60$	19326,96	19346, 51	19347,01	23654,10	25002,72	25659,33	25661,68
21,0	12798,41	16964,05	19320,77	19344,78	$19345,\!27$	23623,78	24902,59	25653,46	25655,93
20,5	12795,06	16962,10	19313,03	19342,71	19343,20	23585,35	24798,27	25646,70	25649,30

D	(1) 0	(2) 2	(2) 2	(1) 2	(=) 0	(0) 0	(=) 2	(2) 2	(0) 0
R	(1) 2	(2) 2	(3) 2	(4) 2	(5) 2	(6) 2	(7) 2	(8) 2	(9) 2
20,0	12791,03	16959,65	19303,30	19340,24	19340,73	23536,56	24692,43	25638,75	25641,52
19,8	12789,19	16958, 48	19298,73	19339,12	19339,60	23513,56	24650,36	25635,18	25638,03
19,6	12787,20	16957,19	19293,71	19337,91	19338,39	23488,33	24608,74	25631,36	25634,31
19,4	12785,04	16955,77	19288,19	19336,60	19337,08	23460,68	24567,79	25627,27	25630,34
19,2	12782,71	16954, 19	19282,12	19335, 18	$19335,\!68$	23430,48	24527,70	25622,88	25626,08
19,0	12780, 17	$16952,\!43$	$19275,\!44$	$19333,\!66$	19334, 15	23397,57	$24488,\!65$	$25618,\!17$	$25621,\!51$
18,8	12777,41	16950, 47	19268,09	19332,00	$19332,\!51$	$23361,\!87$	$24450,\!81$	$25613,\!10$	$25616,\!62$
18,6	$12774,\!40$	$16948,\!27$	19259,96	19330, 21	19330,73	23323,29	$24414,\!30$	$25607,\!66$	$25611,\!36$
18,4	$12771,\!13$	$16945,\!82$	19251,01	19328, 26	19328,81	23281,81	24379,20	25601,79	25605,70
18,2	$12767,\!55$	$16943,\!07$	19241,14	19326, 15	19326,72	23237,44	24345,58	25595,46	$25599,\!61$
18,0	12763,63	16939,98	19230,27	19323,85	19324,46	23190,26	24313,44	$25588,\!63$	25593,03
17,8	12759,35	16936,49	19218,29	19321,35	19322,00	23140,38	24282,73	25581,25	25585,94
17,6	$12754,\!65$	16932,55	19205,11	19318,62	19319,34	23087,97	24253,40	25573,26	25578, 25
17,4	12749,48	16928,08	19190,59	19315,63	19316,44	23033,24	24225,33	25564,58	25569,93
17,2	12743,79	16923,02	19174,64	19312,37	19313,28	22976,45	24198,37	25555,17	25560,89
17.0	12737,53	16917,27	19157,11	19308,81	19309.84	22917.88	24172,37	25544,93	25551,07
16.8	12730,61	16910,71	19137,90	19304,90	19306.09	22857,85	24147,15	25533,76	25540,36
16.6	12722.95	16903.22	19116.86	19300.61	19301.99	22796.71	24122.49	25521.58	25528.68
16,4	12714,47	16894,65	19093.90	19295,90	19297,50	22734,82	24098,18	25508,25	25515,94
16.2	12705.06	16884.83	19068.90	19290.72	19292.58	22672.57	24074.01	25493.65	25501.90
16.0	12694.59	16873.55	19041.78	19285.02	19287.19	22610.35	24049.72	25477.62	25486.53
15.8	12682.93	16860.57	19012.47	19278.73	19281.27	22548.55	24025.06	25460.00	25469.63
15.6	12669.92	16845.63	18980.97	19271.78	19274.76	22487.60	23999.76	25440.59	25451.01
15.4	12655 38	16828.41	18948.63	19264 10	19267.60	22427.88	23973.53	25419.16	25430.46
15.2	12639.10	16808 55	18913.09	19255 60	19259 71	22421,00	23946.06	25395.48	25407 74
15.0	12620.84	16785.65	18875.66	19246 17	19251.00	22300,11	23017.01	25369.25	25382.59
14.8	12620,04	16759.26	18836.60	10240,11	102/1 38	22010,00	23886.01	25340.17	25354 70
14,0	12000,02	16728.88	18706.27	10200,11	19230 74	22200,04	23852.63	25307.88	25303.76
14,0	12571,24	16694.00	18755 12	10224,07	10218.07	22200,00	23816.45	25001,00	25280.37
14,4	12501,22	16654.05	18713 70	19211,15	10205.01	22100,24	23010,40	25232.06	25259,57
14,2	12021,00	16608 53	18672.64	10180.62	10101 44	22114,00	237733 58	25252,00	25201,10
13.8	12400,03 19451 17	16556.02	18632.66	10162.66	10175.27	22012,41	23735,50	25138.01	25200,07
13,0	12401,17	16408.81	18504.47	19102,00	10157 51	22055,14	23083,18	25130,21	25101,45
13,0	12400,70	16433.00	18558.83	19142,00 10120.17	10137.67	21990,70	23032,33	25022.05	25050 73
12.9	12300,39	16262.07	19526 42	10005.07	10115 50	21302,03	23574,40	23022,03	20000,10
13,2	12300,00	16082.07	18407.96	19095,07	10001.02	21951,51	23309,03	24954,25	24960,25
13,0	12244,33	10205,57	10497,00	19000,98	19091,02	21901,42	23430,00	24079,10	24914,94
12,8	12174,43	16198,09	18473,08	19035,55	19003,08	21872,48	23359,40	24796,40	24830,39
12,0	12095,40	10100,73	18454,28	19000,37	19033,27	21843,02	23273,39	24705,48	24750,17
12,4	12006,19	15010,00	18439,90	18901,03	18999,43	21813,74	23180,15	24606,17	24055,90
12,2	11702.05	15908,78	18430,92	18917,05	18901,82	21/81,57	23080,00	24498,37	24003,04
12,0	11793,05	15606.06	18427,29	18807,90	18920,05	21745,68	22913,50	24382,24	24442,90
11,8	11500.00	15090,90	10429,13	10013,20	100/3,72	21704,50	22801,05	24208,14	24324,10
11,0	11920,90	15588,47	18430,51	18792,43	18822,44	21000,41	22145,22	24120,70	24197,00
11,4	11371,97	15479,60	18449,51	18084,96	18709.40	21099,81	22025,34	23988,79	24063,96
11,2	11201,58	15371,21	18468,24	18610,40	18703,42	21533,29	22503,09	23845,43	23923,78
11,0	11015,53	15264,03	18492,82	18528,35	18634,96	21455,71	22379,53	23697,83	23778,07
10,8	10813,86	15158,59	18438,30	18523,70	18560,13	21366,35	22255,75	23547,24	23627,92
10,6	10596,88	15055,30	18340,28	18478,76	18560,93	21264,98	22132,84	23395,02	23474,55
10,4	10365,26	14954,44	18234,12	18390,78	18605,03	21151,93	22011,96	23242,51	23319,32
10,2	10119,91	14856,21	18119,98	18296,29	18656,46	21028,07	21894,28	23091,11	23163,67
10,0	9862,09	14760,84	17998,25	18195,59	18715,69	20894,88	21781,07	22942,19	23009,15
9,8	9593,29	14668,62	17869,61	18089,26	18783,17	20754,44	21673,62	22797,22	22857,41
9,6	9315,32	14580,03	17735,05	17978,15	18859,23	20609,52	21573,30	22657,69	22710,20
9,4	9030,21	14495,75	17595,94	17863,46	18943,86	20463,69	21481,60	22525,24	22569,43
9,2	8740,28	14416,79	17453,98	17746,76	19036,33	20321,66	21400,19	22401,68	22437,17
9,0	8448,13	$14344,\!53$	17311,31	17630,06	19134,36	20190,11	21331,00	22289,05	22315,73
8,8	$8156,\!68$	14280,73	17170,48	$17515,\!81$	$19232,\!17$	20079,54	$21276,\!35$	$22189,\!69$	22207,70

R	(1) 2	(2) 2	(3) 2	(4) 2	(5) 2	(6) 2	(7) 2	(8) 2	(9) 2
8,6	7869,16	$14227,\!66$	17034,47	17406,94	19316,90	20007,93	21239,03	22106, 31	$22115,\!97$
8,4	7589,21	14188,08	16906,71	17306,90	19367,89	20001,41	21222,36	$22041,\!99$	22043,89
8,2	7320,90	$14165,\!27$	16791,10	17219,68	$19375,\!67$	20075,36	21230,32	$21995,\!24$	22000,27
8,0	7068,78	14163,12	16692,06	17149,84	19360,28	20216,14	21267,57	$21974,\!34$	21985,11
7,8	6837,95	14186,10	16614,48	17102,54	19349,53	20402,96	21339,52	21986,10	22000,85
7,6	6634,13	14239,33	16563,83	17083,57	19363,18	20624,02	21452,14	22036,11	22045,73
7,4	6463,75	$14328,\!58$	16546,11	17099,37	19414,93	20874,99	21611,63	22130,62	22143,10
7,2	6333,94	14460,32	16567,89	17157,03	19516,12	21156,31	21823,64	22279,50	22288,36
7,0	6252,67	$14641,\!68$	16636,30	17264,32	19677,43	21472,38	22092,57	$22482,\!47$	$22495,\!59$
6,8	6228,75	14880,41	16758,98	17429,61	19909,76	21831,05	22421,49	$22755,\!90$	22776,47
6,6	6271,80	15184,84	16943,97	17661,80	20224,44	22242,22	22813,27	$23106,\!64$	23141,17
6,4	6392,23	$15563,\!66$	17199,64	17970,12	20633,34	22715,70	23272,09	$23544,\!59$	23600,73
6,2	6601,12	16025,70	17534,39	18363,88	21148,70	23258,84	23804,80	$24080,\!15$	24167,62
6,0	6909,99	16579,55	17956,41	18852,01	21782,79	23873,88	24423,80	24723,90	24854,96
5,8	7330,49	17233,04	18473,36	19442,58	22547,32	24556,71	25201,54	25486, 12	$25674,\!47$
5,6	7873,99	17992,59	19091,95	20142,05	$23452,\!64$	25301,50	26040,56	26376,06	26635, 46
5,4	8550,94	18862,46	19817,65	20954,47	$24506,\!68$	26109,63	27016,86	27401,02	27737,82
5,2	9370,33	19843,98	20654,44	21880,68	25713,48	26991,29	28147,28	28565,11	28997,56
5,0	10338,91	20934,91	21604,77	22917,62	27071,37	27960,97	29405,07	29868, 10	30399,26
4,8	11460,76	22237,90	22669,75	24058,00	28567,54	29038,61	30853,75	31304,33	31863,87
4,6	12737,00	23717,86	23849,52	25290,60	30102,58	30324,10	32396,29	32862,31	33434,95

Tab. B.9. Adiabatyczne potencjały energetyczne cząsteczki NaR
b(1-2)3. Jednostką odległości między
atomowej Rjest $\mathbf{a}_0,$ a jednostką energii jest
 cm^{-1}. Kontynu
acja tabeli na dwóch kolejnych stronach.

R	(1) 3	(2) 3
86,0	19357,39	$25701,\!56$
84,0	19357,39	$25701,\!56$
82,0	19357, 39	$25701,\!55$
80,0	19357, 39	$25701,\!55$
78,0	19357,39	25701,55
76,0	19357,39	$25701,\!54$
74,0	19357,38	$25701,\!54$
72,0	19357,38	25701,53
70,0	19357,38	25701,52
68,0	19357,38	25701,51
66,0	19357,38	25701,50
64,0	19357,37	25701,48
62,0	19357,37	25701,46
60,0	19357,37	25701,43
58,0	19357,36	25701,39
56,0	19357,36	25701,35
54,0	19357,35	25701,29
52,5	19357,34	25701,23
48,0	19357,31	25700,94
46,0	19357,29	25700,73
44,0	19357,26	25700,43
42.0	19357.21	25700.01
40.0	19357.15	25699.44
39.0	19357.11	25699.09
38.0	19357.07	25698.72
37.0	19357.01	25698.32
36.0	19356.94	25697.90
35.0	19356.86	25697.45
34.0	19356.75	25696.95
33.0	19356.62	25696.37
32.0	19356.47	25695.68
31.0	19356.27	25694.84
30.5	19356.15	25694.35
30.0	19356.02	25693.81
29.5	19355.86	25693.19
29.0	19355 70	25692.51
28.5	19355.50	25691.74
28.0	19355.29	25690.87
27.5	19355.04	25689.90
27.0	19354.75	25688.80
26.5	19354.43	25687.55
26.0	19354.06	25686 13
25.5	19353 64	25684 53
25.0	19353 14	25682 70
24 5	19352.58	25680.61
24.0	19351 92	25678 23
23.5	19351 15	25675.50
23.0	19350.26	25672.36
22.5	19349 21	25668 75
22,0	19347 98	25664 58
21.5	19346 53	25659 74
21,0	19344 81	25654 12
21,0	10349.75	25647 55
0,0	10044,10	20041,00

R	(1) 3	(2) 3
20,0	19340,30	25639,84
19,8	19339,18	25636,39
19,6	19337,98	25632,70
19,4	19336.69	25628,75
19.2	19335.29	25624.52
19.0	19333.78	25619.99
18.8	19332.15	25615.12
18.6	10330 30	25609.89
18.0	10328 48	25604.25
10,4	10226,40	25004,25
18,2	19320,41	25598,19
18,0	19324,17	25591,64
17,8	19321,73	25584,56
17,6	19319,08	25576,90
17,4	19316,19	25568,60
17,2	19313,05	25559,58
17,0	19309,62	25549,77
$16,\!8$	19305,88	25539,08
$16,\! 6$	19301,79	25527,41
16, 4	19297,31	$25514,\!65$
16,2	19292,41	$25500,\!66$
$16,\! 0$	19287,03	25485,31
$15,\!8$	19281,12	25468,42
$15,\!6$	19274,62	25449,81
15,4	19267,47	25429,27
15.2	19259,59	25406,56
15.0	19250.89	25381.42
14.8	19241.28	25353.54
14.6	19230.65	25322.59
14.4	19218 89	25288 21
14,4	19210,05	25250,21
14,2	10101 30	25200,00
12.0	10175 22	25207,51
13,0	10157.49	25100,28
13,0	19107,40	25107,60
13,4	19137,05	25049,56
13,2	19115,58	24985,05
13,0	19091,01	24913,75
12,8	19063,67	24835,19
$12,\!6$	19033,24	24748,95
12,4	18999,39	24654,71
12,2	18961,77	24552,27
$12,\!0$	18919,99	24441,60
$11,\!8$	18873,66	24322,83
$11,\!6$	18822,38	24196,30
$11,\!4$	18765,72	24062,57
11,2	18703,35	23922,36
$11,\!0$	18634, 89	23776,63
10,8	18560, 19	$23626,\!45$
$10,\!6$	18478,81	23473,06
10,4	18390,81	23317,80
10,2	18296,30	23162,13
10,0	18195,60	23007,60
9,8	18089,29	22855,85
9,6	17978,21	22708,63
9,4	17863.54	22567.86
9.2	17746.87	22435.60
9.0	17630.20	22314.17
8.8	17515.98	22206.14
-,-	1 1.010,00	,

R	(1) 3	(2) 3
8,6	17407,14	22114,43
8,4	17307,12	22042,36
8,2	17219,93	21993,72
8,0	17150,13	21972,82
7,8	17102,85	21984,60
7,6	17083,91	$22034,\!62$
7,4	17099,72	$22129,\!16$
7,2	17157,41	$22275,\!25$
7,0	17264,71	22480,76
6,8	17430,01	$22754,\!25$
6,6	17662,20	$23104,\!97$
6,4	17970, 51	$23542,\!87$
6,2	18364,24	$24078,\!35$
6,0	18852,34	$24721,\!99$
5,8	19442,84	$25484,\!07$
5,6	20142,21	$26373,\!83$
5,4	20954,49	27398,56
5,2	21880,91	28562,35
5,0	22918,13	29864, 97
4,8	24058,89	31307,81
4,6	25291,97	32925,24