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Abstract. This paper considers a problem of testing, from a finite sample, a topological conjugacy of two4
trajectories coming from dynamical systems (X, f) and (Y, g). More precisely, given x1, . . . , xn ⊂ X5
and y1, . . . , yn ⊂ Y such that xi+1 = f(xi) and yi+1 = g(yi) as well as h : X → Y , we deliver a6
number of tests to check if f and g are topologically conjugated via h. The values of the tests are7
close to zero for systems conjugate by h and large for systems that are not. Convergence of the test8
values, in case when sample size goes to infinity, is established. We provide a number of numerical9
examples indicating scalability and robustness of the presented methods. In addition, we show how10
the presented method gives rise to a test of sufficient embedding dimension, mentioned in Takens’11
embedding theorem. Our methods also apply to the situation when we are given two observables12
of deterministic processes, of a form of one or higher dimensional time-series. In this case, their13
similarity can be accessed by comparing the dynamics of their Takens’ reconstructions. Finally, we14
include a proof-of-concept study using the presented methods to search for an approximation of the15
homeomorphism conjugating given systems.16
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1. Introduction. Understanding sampled dynamics is of primal importance in multiple20

branches of science where there is a lack of solid theoretical models of the underlying phe-21

nomena [9, 10, 18, 20, 31]. It delivers a foundation for various equation–free models of ob-22

served dynamics and allows to draw conclusions about the unknown observed processes. In23

the considered case we start with two, potentially different, phase spaces X and Y and a24

map h : X → Y . Given two sampled trajectories, referred to in this paper by time series,25

x1, . . . , xn ⊂ X and y1, . . . , yn ⊂ Y we assume that they are both generated by a continuous26

maps f : X → X and g : Y → Y 1 in a way that xi+1 = f(xi) and yi+1 = g(yi). In what27

follows, we build a number of tests that allow to distinguish trajectories that are conjugated28

by the given map h from those that are not. It should be noted that the problem of finding29
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2 P. D LOTKO, M. LIPIŃSKI, AND J. SIGNERSKA-RYNKOWSKA

an appropriate h for two conjugated dynamical system is in general very difficult and goes30

beyond the scope of this paper. However, in Section 5 and in Appendix A we propose and31

validate a method of approximating map h for one dimensional systems f and g utilizing one32

of the proposed statistics.33

The presented problem is practically important for the following reasons. Firstly, the34

proposed machinery allows to test for conjugacy, in case when the formulas that generate the35

underlying dynamics, as f and g above, are not known explicitly, and the input data are based36

on observations of the considered system.37

Secondly, some of the presented methods apply in the case when the dynamics f and g38

on X and Y is explicitly known, but we want to test if a given map h : X → Y between the39

phase spaces has a potential to be a topological conjugacy. It is important as the theoretical40

results on conjugacy are given only for a handful of systems and our methods give a tool for41

numerical hypothesis testing.42

Thirdly, those methods can be used to estimate the optimal parameters of the dynamics43

reconstruction. A basic way to achieve such a reconstruction is via time delay embedding, a44

technique that depends on parameters including the embedding dimension and the time lag (or45

delay). When the parameters of the method are appropriately set up and the assumptions of46

Takens’ Embedding Theorem hold (see [29, 7]), then (generically) a reconstruction is obtained,47

meaning that for generic dynamical system and generic observable, the delay-coordinate map48

produces a conjugacy (dynamical equivalence) between reconstructed dynamics and the orig-49

inal (unknown) dynamics (cut to the limit set of a given trajectory)2. However, without the50

prior knowledge of the underlying dynamics (e.g. dimensions of the attractor), the values of51

those parameters have to be determined experimentally from the data. It is typically achieved52

by implicitly testing for a conjugacy of the time delay embeddings to spaces of constitutive di-53

mensions. Specifically, it is assumed that the optimal dimension of reconstruction d is achieved54

when there is no conjugacy of the reconstruction in dimension d to the reconstruction in the55

dimension d′, where d′ < d, while there is a conjugacy between reconstruction in dimension56

d and reconstruction in dimension d′′, where d < d′′. Those conditions can be tested with57

methods presented in this paper.58

The main contributions of this paper include:59

• We propose a generalization of the FNN (False Nearest Neighbor) method [13] so that60

it can be applied to test for topological conjugacy of time series3. Moreover, we present61

its further modification called KNN method.62

• We propose two entirely new methods: ConjTest and ConjTest+. Instead of providing63

an almost binary answer to a question if two sampled dynamical systems are conjugate64

(which happens for the generalized FNN and the KNN method), their result is a65

continuous variable that can serve as a scale of similarity of two dynamics. This66

2One should, though, be aware that the generic set in the classical Takens’ Embedding Theorem might be
a set of a small measure. However, recent advances in probabilistic versions of Takens’ Theorem ([3]) assert
that, under even milder assumptions, the delay-coordinate map provides injective (not necessary conjugacy)
correspondence between the points of the original system in the subset of full measure and the points in the
reconstructed space.

3Classical FNN method was used only to estimate the embedding dimension in a dynamics reconstruction
using time delay embedding.
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TESTING TOPOLOGICAL CONJUGACY OF TIME SERIES 3

property makes the two new methods appropriate for noisy data.67

• We present a number of benchmark experiments to test the presented methods. In68

particular we analyze how different methods are robust for the type of testing (e.g.69

noise, determinism, alignment of a time series).70

• Additionally, in one dimensional setting, we propose a heuristic method for approx-71

imating the possible conjugating homeomorphism between two dynamical systems72

given by time series.73

To the best of our knowledge there are no “explicit” methods available to test conjugacy74

of dynamical systems given by their finite sample in a form of time series as proposed in this75

paper. A number of methods exist to estimate the parameters of a time delay embedding.76

They include, among others, mutual information [12], autocorrelation and higher order corre-77

lations [1], a curvature-based approach [11] or wavering product [8] for selecting the time-lag,78

selecting of embedding dimension based on GP algorithm [2] or the above mentioned FNN79

algorithm, as well as some methods allowing to choose the embedding dimension and the time80

lag simultaneously as, for example, C-C method based on correlation integral [17], methods81

based on symbolic analysis and entropy [19] or some rigorous statistical tests [24]. However,82

the problem of topological conjugacy between the maps generating two given time series and83

finding the connecting homeomorphism which conjugates the two dynamical systems, due to84

its complexity, has been mainly approached using machine learning tools (see e.g. the recent85

work [6] which for the unknown map f and given time series generated by f, employed deep86

neural network for discovering the simple map g which could model the unknown dynamics87

f together with the map h conjugating f and g). Some theoretical ideas on finding conju-88

gating homeomorphism (or, in general, a commuter between two maps) are discussed later in89

Section 5 together with related works.90

Numerous methods providing some similarity measures between time series exist (see91

reviews [16]). However, we claim that those classical methods are not suitable for the problem92

we tackle in this paper. While those methods often look for an actual similarity of signals or93

correlation, we are more interested in the dynamical generators hiding behind the data. For94

instance, two time series sampled from the same chaotic system can be highly uncorrelated,95

yet we would like to recognize them as similar, because the dynamical system constituting96

them is the same. Moreover, methods introduced in this work are applicable for time series97

embedded in any metric space, while most of the methods are restricted to R, some of them98

are still useful in Rd.99

The paper consists of four parts: Section 2 introduces the basic concepts behind the100

proposed methods. Section 3 presents four methods designed for data-driven evaluation of101

conjugacy of two dynamical systems. Section 4 explores the features of the proposed methods102

using a number of numerical experiments. Section 5 develops the method of estimating the103

possible conjugacy map h : X → Y for time series generated from dynamical systems (X, f)104

and (Y, g) in the case when the phase spaces X and Y are intervals in R. Additional details105

of that procedure and proofs are contained in A. Lastly, in Section 6 we summarize most106

important observations and discuss their possible significance in real-world time series analysis.107

Finally, it should be noted that in the continuous setting, topological conjugacy is very108

fragile; it may be destroyed by an infinitesimal change of parameters of the system once that109

causes bifurcation. However, two finite sample of the trajectories obtained from the system110
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4 P. D LOTKO, M. LIPIŃSKI, AND J. SIGNERSKA-RYNKOWSKA

before and after bifurcation are very close and it would require much large change of param-111

eters to detect problems with conjugacy. It is a consequence of the fact that the techniques112

proposed in this paper operates on finite data. Therefore, they can provide evidences that113

the proposed connecting homeomorphism is not a topological conjugacy of the two considered114

systems, but they will not allow to prove, in any rigorous sense, the conjugacy between them.115

2. Preliminaries.116

2.1. Topological conjugacy. We start with a pair of metric spaces X and Y and a pair of117

dynamical systems: φ : X ×T→ X and ψ : Y ×T→ Y , where T ∈ {Z,R}. Fixing tX , tY ∈ T118

define f : X ∋ x→ φ(x, tX) and g : Y ∋ y → ψ(y, tY ). We say that f and g are topologically119

conjugate if there exists a homeomorphism h : X → Y such that the diagram120

(2.1)

X X

Y Y

f

h h

g

121

commutes, i.e., h◦f = g ◦h. If the map h : X → Y is not a homeomorphism but a continuous122

surjection then we say that g is topologically semiconjugate to f .123

Let us consider as an example X being a unit circle, and fα a rotation of X by an angle124

α. In this case, two maps, fα, fβ : X → X are conjugate if and only if α = β or α = −β. This125

known fact is verified in the benchmark test in Section 4.1.126

In our work we will consider finite time series A = {xi}ni=1 and B = {yi}ni=1 so that127

xi+1 = f i(x1) and yi+1 = gi(y1) for i ∈ {1, 2, . . . , n − 1}, x1 ∈ X and y1 ∈ Y and derive128

criteria to test (semi)topological conjugacy of f and g via h based on those samples and the129

given possible (semi)conjugacy h.130

In what follows, a Hausdorff distance between A,B ⊂ X will be used. It is defined as131

dH(A,B) = max{sup
a∈A

d(a,B), sup
b∈B

d(b, A)}132

where d is metric in X and d(x,A) := infa∈A d(x, a).133

2.2. Takens’ Embedding Theorem. Our work is related to the problem of reconstruction134

of dynamics from one dimensional time series. For a fixed map f : X → X and x1 ∈ X take a135

time series A = {xi = f i−1(x1)}i≥1 being a subset of an attractor Ω ⊂ X of the (box-counting)136

dimension m. Take s : X → R, a generic measurement function of observable states of the137

system, and one dimensional time series S = {s(xi)}xi∈A, associated to A . The celebrated138

Takens’ Embedding Theorem [29] states that given S it is possible to reconstruct the original139

system with delay vectors, for instance (s(xi), s(xi+1), . . . , s(xi+d−1)), for sufficiently large140

embedding dimension d ≥ 2m + 1 (the bound is often not optimal). The Takens’ theorem141

implies that, under certain generic assumptions, an embedding of the attractor Ω into Rd142

given by143

(2.2) Fs,f : Ω ∋ x 7→
(
s(x), s(f(x)), . . . , s(fd−1(x))

)
∈ Rd144
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TESTING TOPOLOGICAL CONJUGACY OF TIME SERIES 5

establishes a topological conjugacy between the original system (Ω, f) and (Fs,f (Ω), σ) with145

the dynamics on Fs,f (Ω) ⊂ Rd given by the shift σ on the sequence space. Hence, Takens’146

Embedding Theorem allows to reconstruct both the topology of the original attractor and the147

dynamics.148

The formula presented above is a special case of a reconstruction with a lag l given by149

Π(A, d, l) :=
{
(s(xi), s(xi+l), . . . , s(xi+(d−1)l)) | i ∈ {1, 2, . . . , n− d l}

}
.150

From the theoretical point of view, the Takens’ theorem holds for an arbitrary lag. However151

in practice a proper choice of l may strongly affect numerical reconstructions (see [14, Chapter152

3]).153

The precise statements, interpretations and conclusions of the mentioned theorems can be154

found in [7, 29, 25], and references therein.155

2.3. Search for an optimal dimension for reconstruction. In practice, the bound in156

Takens’ theorem is often not sharp and an embedding dimension less than 2m+ 1 is already157

sufficient to reconstruct the original dynamics (see [3, 4]). Moreover, for time series encoun-158

tered in practice, the attractor’s dimension m is almost always unknown. To discover the159

sufficient dimension of reconstruction, the False Nearest Neighbor (FNN) method [13, 15], a160

heuristic technique for estimating the optimal dimension using a finite time series, is typi-161

cally used. It is based on an idea to compare the embeddings of a time series into a couple162

of consecutive dimensions and to check if the introduction of an additional d + 1 dimension163

separates some points that were close in d-dimensional embedding. Hence, it tests whether d-164

dimensional neighbors are (false) neighbors just because of the tightness of the d-dimensional165

space. The dimension where the value of the test stabilizes and no more false neighbors can166

be detected is proclaimed to be the optimal embedding dimension.167

2.4. False Nearest Neighbor and beyond. The False Nearest Neighbor method implic-168

itly tests semiconjugacy of d and d + 1 dimensional Takens’ embedding by checking if the169

neighborhood of d-embedded points are preserved in d+ 1 dimension. This technique was an170

inspiration for stating a more general question: given two time series, can we test if they were171

generated from conjugate dynamical systems? The positive answer could suggest that the172

two observed signals were actually generated by the same dynamics, but obtained by a differ-173

ent measurement function. In what follows, a number of tests inspired by these observations174

concerning False Nearest Neighbor method and Takens’ Embedding Theorem, are presented.175

3. Conjugacy testing methods. In this section we introduce a number of new methods176

for quantifying the dynamical similarity of two time series. Before digging into them let us177

introduce some basic pieces of notation used throughout the section. From now on we assume178

that X is a metric space. Let A = {xi}ni=1 be a finite time series in space X. For k ∈ N,179

by κ(x, k,A) we denote the set of k-nearest neighbors of a point x ∈ X among points in A.180

Thus, the nearest neighbor of point x can be denoted by κ(x,A) := κ(x, 1,A). If x ∈ A then181

clearly κ(x,A) = {x}. Hence, it is handful to consider also κ(x, k,A) := κ(x, k,A \ {x}) and182

κ(x,A) := κ(x, 1,A \ {x})4.183

4In case of non uniqueness, and arbitrary choice of a neighbor is made.
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6 P. D LOTKO, M. LIPIŃSKI, AND J. SIGNERSKA-RYNKOWSKA

3.1. False Nearest Neighbor method. The first proposed method is an extension of the184

already mentioned FNN technique for estimating the optimal embedding dimension of time185

series. The idea of the classical FNN method relies on counting the number of so-called false186

nearest neighbors depending on the threshold parameter r. This is based on the observation187

that if the two reconstructed points188

s1d := (s(xk1), s(xk1+l), . . . , s(xk1+(d−1)l))189

and190

s2d := (s(xk2), s(xk2+l), . . . , s(xk2+(d−1)l))191

are nearest neighbors in the d-dimensional embedding but the distance between their (d+1)-192

dimensional counterparts193

s1d+1 := (s(xk1), . . . , s(xk1+(d−1)l), s(xk1+dl))194

and195

s2d+1 := (s(xk2), . . . , s(xk2+(d−1)l), s(xk2+dl))196

in (d+1)-dimensional embedding differs too much, then s1d and s2d were d-dimensional neighbors197

only due to folding of the space. In this case, we will refer to them as “false nearest neighbors”.198

Precisely, the ordered pair (s1d, s
2
d) of d-dimensional points is counted as false nearest neighbor,199

if the following conditions are satisfied: (I.) the point s2d is the closest point to s1d among all200

points in the d-dimensional embedding, (II.) the distance |s1d − s2d| between the points s1d and201

s2d is less than σ/r, where σ is the standard deviation of d-dimensional points formed from202

delay-embedding of the time series and (III.) the ratio between the distance |s1d+1 − s2d+1|203

of d + 1-dimensional counterparts of these points, s1d+1 and s2d+1, and the distance |s1d − s2d|204

is greater than the threshold r. The condition (III.) is motivated by the fact that under205

continuous evolution, even if the original dynamics is chaotic, the position of two close points206

should not deviate too much in the nearest future (we assume that the system is deterministic,207

even if subjected to some noise, which is the main assumption of all the nonlinear analysis208

time series methods). On the other hand, the condition (II.) means that we consider only pairs209

of points which are originally not too far away since applying the condition (III.) to points210

which are already outliers in d dimensions does not make sense. Next, the statistic FNN(r)211

counts the relative number of such false nearest neighbors i.e. after normalizing with respect212

to the number of all the ordered pairs of points which satisfy (I.) and (II.). For discussion213

and some examples see e.g. [14].214

We generalize the FNN method to operate in the case of two time series (not necessarily215

created in a time-delay reconstruction) as follows. Let A = {ai}ni=1 ⊂ X and B = {bi}ni=1 ⊂ Y216

be two time series of the same length. Let ξ : A → B be a bijection relating points with the217

same index, i.e., ξ(ai) := bi. Then we define the directed FNN ratio between A and B as218

(3.1) FNN(A,B; r) :=

∑n
i=1Θ

(
dY (bi,ξ(κ(ai,A)))
dX(ai,κ(ai,A)) − r

)
Θ
(
σ
r − dX(ai, κ(ai,A))

)∑n
i=1Θ

(
σ
r − dX(ai, κ(ai,A))

)219

where dX and dY denote the distance function respectively in X and Y , σ is the standard220

deviation of the data (i.e. the standard deviation of the elements of the sequence A), r is the221
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TESTING TOPOLOGICAL CONJUGACY OF TIME SERIES 7

parameter of the method and Θ is the usual Heaviside step function, i.e. Θ(x) = 1 if x > 0222

and 0 otherwise. Note that the distance d (i.e. dX or dY ) might be defined in various ways223

however, as elements of time-series are usually elements of Rk (for some k), then d(x, y) is224

often simply the Euclidean norm |x− y|.225

In the original FNN procedure we compare embeddings of a 1-dimensional time series A226

into d- versus (d+1)-dimensional space for a sequence of values of d and r. In particular, the227

following application of (3.1):228

(3.2) FNN(A; r, d) := FNN(Πd(A),Πd+1(A); r),229

coincides with the formula used in the standard form of FNN technique (compare with [14]).230

For a fixed value of d, if the values of FNN decline rapidly with the increase of r, then we231

interpret that dimension d is large enough not to introduce any artificial neighbors. The232

heuristic says that the lowest d with that property is the optimal embedding dimension for233

time series A.234

3.2. K-Nearest Neighbors. The key to the method presented in this section is an attempt235

to weaken and simplify the condition posed by FNN by considering a larger neighborhood of236

a point. As in the previous case, let A = {ai}ni=1 and B = {bi}ni=1 be two time series of the237

same length. Let ξ : A → B be a bijection defined ξ(ai) := bi. The proposed statistics, taking238

into account k nearest neighbors of each point, is given by the following formula:239

(3.3) KNN(A,B; k) :=
∑n

i=1min {e ∈ N | ξ (κ(ai, k,A)) ⊆ κ(ξ(ai), e+ k,B)}
n2

,240

where n is the length of time series A and B. We refer to the above method as KNN distance.241

The idea of the KNN method can be seen in the Figure 1.242

Remark 3.1. In the above formula (3.3), for simplicity there is no counterpart of the243

parameters r that was present in FNN which controlled the dispersion of data and outliers.244

This means that one should assume that the data (perhaps after some preprocessing) does not245

contain unexpected outliers. Alternatively, the formula might be easily modified to include246

such a parameter.247

Set κ(ai, k,A) can be interpreted as a discrete approximation of the neighborhood of ai.248

Thus, for a point ai the formula measures how much larger neighborhood of the corresponding249

point bi = ξ(ai) we need to take to contain the image of the chosen neighborhood of ai. This250

discrepancy is expressed relatively to the size of the point cloud. Next we compute the251

average of this relative discrepancy among all points. Moreover, looking at the formula (3.3)252

immediately reveals that in the numerator we sum up n terms each of which takes values253

between 0 and n and it is not hard to give an example when all of these terms are n actually254

(like a standard n-simplex). Therefore, as we want KNN to be upper-bounded by 1, we put255

n2 in the denominator of (3.3) as the normalization factor.256

Note that neither f nor g appear in the definitions of FNN and KNN. Nevertheless, the257

dynamics is hidden in the indices. That is, aj ∈ κ(ai, k,A) means that ai returns to its own258

vicinity in |j − i| time steps.259
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8 P. D LOTKO, M. LIPIŃSKI, AND J. SIGNERSKA-RYNKOWSKA

κ

κ

Figure 1. Top (continuous) black line represents trajectory from which A is sampled (black dots). Bottom
(continuous) trajectory is sampled to obtain B (burgundy dots). Set U := κ(a6, 4,A) highlighted with orange
color, represents 4-nearest neighbors of a6 ∈ A. The smallest k-neighborhood of b6 that contains ξ(U) is the
one with k = 6. The corresponding κ(b6, 4,B) is highlighted with green color. Hence, the contribution of point
a6 to the numerator of KNN(A,B, 4) is 6− 4 = 2.

3.3. Conjugacy test. The third method tests the conjugacy of two time series by directly260

checking the commutativity of the diagram (2.1) which is tested in a more direct way compared261

to the methods presented so far. We no longer assume that both time series are of the262

same size, however, the method requires a connecting map h : X → Y , a candidate for a263

(semi)conjugating map. Unlike the map ξ in FNN and KNN method map h may transform264

a point ai ∈ A into a point in Y that doesn’t belong to B. Nevertheless, the points in B are265

crucial because they carry the information about the dynamics g : Y → Y . Thus, in order to266

follow trajectories of points in Y we introduce h̃ : A → B, a discrete approximation of h:267

(3.4) h̃(ai) := κ (h(ai),B) .268

The map h̃ simply assigns to ai the closest element(s) of h(ai) from the time series B. For269

a set A ⊂ A we compute the value pointwise, i.e. h̃(A) = {h̃(a) | a ∈ A} (see Figure 2). Note270

that it may happen that h̃(A) has less elements than A.271

Denote the discrete k-approximation of the neighborhood of ai in A, namely the k nearest272

neighbors of ai, by U
k
i := κ(ai, k,A) ⊂ A. Then we define273

ConjTest(A,B; k, t, h) :=

∑n
i=1 dH

(
(h ◦ f t)(Uki ), (gt ◦ h̃)(Uki )

)
n diam(B)

,(3.5)274

where dH is the Hausdorff distance between two discrete sets and diam(B) is the diameter275

of the set B. The idea of the formula (3.5) is to test at every point ai ∈ A how two time276

series together with map h are close to satisfy diagram (2.1) defining topological conjugacy.277

First, we approximate the neighborhood of ai ∈ A with Uki and then we try to traverse the278
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TESTING TOPOLOGICAL CONJUGACY OF TIME SERIES 9

Figure 2. A pictorial visualization of a difference between h, h̃ and h̃+. Map h transforms a point a ∈ A
into a point h(a) ∈ Y . Map h̃ approximates the value of the map h by finding the closest point in B for h(a).
The discrete neighborhood U2

i ⊂ A of ai consists of three points and its image under h̃ has three points as well.
However, h̃+(U2

i ) counts five elements, as there are points in B closer to h̃(ai) then points in h̃(U2
i ).

diagram in two possible ways. Thus, we end up with two sets in Y , that is (h ◦ f t)(Uki ) and279

(gt ◦ h̃)(Uki ). We measure how those two sets diverge using the Hausdorff distance.280

The extended version of the test presented above considers a larger approximation of281

h̃(Uki ). To this end, find the smallest ki such that h̃(Uki ) ⊂ κ(h(ai), ki,B). The corresponding282

superset defines the enriched approximation (see Figure 2):283

(3.6) h̃+(Uki ) := κ(h(ai), ki,B).284

We use it to define a modified version of (3.5).285

(3.7) ConjTest+(A,B; k, t, h) :=

∑n
i=1 dH

(
(h ◦ f t)(Uki ), gt

(
h̃+(Uki )

))
n diam(B)

.286

The extension of ConjTest to ConjTest+ was motivated by results of Experiment 4A287

described in Subsection 4.4. The experiment should clarify the purpose of making the method288

more complex.289

We refer collectively to ConjTest and ConjTest+ as ConjTest methods.290

The forthcoming results provide mathematical justification of our method, i.e. “large”291

and non-decreasing values of the above tests suggest that there is no conjugacy between two292

time-series.293

Theorem 3.2. Let f : X → X and g : Y → Y , where X ⊂ RdX and Y ⊂ RdY , be294

continuous maps (dX and dY denote dimensions of the spaces). For y1 ∈ Y define Bm :=295 {
bi := gi−1(y1) | i ∈ {1, . . . ,m}

}
.296
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10 P. D LOTKO, M. LIPIŃSKI, AND J. SIGNERSKA-RYNKOWSKA

Suppose that Y is compact and that the trajectory of y1 is dense in Y , i.e. the set Bm297

becomes dense in Y as m → ∞. If g is semiconjugate to f with h as a semiconjugacy map,298

then for every fixed n, t and k299

(3.8) lim
m→∞

ConjTest(An,Bm; k, t, h) = 0,300

where An :=
{
ai := f i−1(x1) | i ∈ {1, . . . , n}

}
, x1 ∈ X, is any time-series in X of a length n.301

Moreover, the convergence is uniform with respect to n and with respect to the choice of302

the starting point x1 (i.e. the “rate” of convergence does not depend on the time-series An).303

Proof. Since g is semiconjugate to f via h, h : X → Y is a continuous surjection such304

that for every t ∈ N we have h ◦ f t = gt ◦ h. Fix t ∈ N and k ∈ N and let ε > 0. We will305

show that there exists M such that for all m > M , all n ∈ N and every finite time-series306

An :=
{
ai := f i−1(x1) | i ∈ {1, . . . , n}

}
⊂ X of length n (where x1 ∈ X is some point in X)307

it holds that308

(3.9) ConjTest(An,Bm; k, t, h) < ε.309

Note that |b2 − b1| ≤ |Bm| for any m ≥ 2 (with |Bm| denoting cardinality of the set310

Bm), which we will use at the end of the proof. As g is continuous and Y is compact,311

there exists δ such that |gt(y) − gt(ỹ)| < ε |b2 − b1| for every y, ỹ ∈ Y with |y − ỹ| < δ.312

As B = {y1, g(y1), . . . , gm(y1), . . .} = {b1, . . . , bm, . . .} is dense in Y , there exists M such313

that if m > M then for every n ∈ N, every x1 ∈ X and every i ∈ {1, 2, . . . , } there exists314

jm(i) ∈ {1, 2, . . . ,m} such that315

|bjm(i) − h(ai)| < δ,316

where ai = f i−1(x1) ∈ An.317

Thus for m > M , we always (independently of the point ai ∈ X) have318

|h(f t(ai))− gt(h̃(ai))| = |gt(h(ai))− gt(h̃(ai))| < ε |b2 − b1|319

as gt(h(ai)) = h(f t(ai)) and |h̃(ai)− h(ai)| < δ. Consequently,320

dH

(
(h ◦ f t)(Uki ), (gt ◦ h̃)(Uki )

)
< ε |b2 − b1|,321

where Uki = κ(ai, k,An) and h̃(Uki ) = {κ(h(aj),Bm) | aj ∈ U ik}. Therefore322

∑n
i=1 dH

(
(h ◦ f t)(Uki ), (gt ◦ h̃)(Uki )

)
n diam(Bm)

<
nε |b2 − b1|
n diam(Bm)

≤ ε323

since |b2 − b1| ≤ diam(Bm) for every m ≥ 1. This proves (3.9).324

The compactness of Y and the density of the set B = {y1, g(y1), . . . , gm(y1), . . .} in Y is325

needed to obtain the uniform convergence in (3.8) but, as follows from the proof above, these326

assumptions can be relaxed at the cost of possible losing the uniformity of the convergence:327
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TESTING TOPOLOGICAL CONJUGACY OF TIME SERIES 11

Corollary 3.3. Let f : X → X and g : Y → Y , where X ⊂ RdX and Y ⊂ RdY , be328

continuous maps. Let x1 ∈ X and y1 ∈ Y . Define An :=
{
ai := f i−1(x1) | i ∈ {1, . . . , n}

}
329

and Bm :=
{
bi := gi−1(y1) | i ∈ {1, . . . ,m}

}
. Suppose that {h(a1), . . . h(an)} ⊂ Ŷ for some330

compact set Ŷ ⊂ Y such that the set Ŷ ∩ B is dense in Ŷ , where B = {b1, . . . , bm, . . .}.331

If g is semiconjugate to f with h as a semiconjugacy, then for every t and k332

lim
m→∞

ConjTest(An,Bm; k, t, h) = 0.333

Remark 3.4. In the above corollary the assumption on the existence of the set Ŷ means334

just that the trajectory of the point y1 contains points gji(y1) which, respectively, “well-335

approximate” points h(ai), i = 1, 2, . . . , n.336

Note also that we do not need the compactness of the space X nor the density of A =337

{a1, a2, . . . , an, . . .} in X.338

The following statement is an easy consequence of the statements above339

Theorem 3.5. Let X ⊂ RdX and Y ⊂ RdY be compact sets and f : X → X and g : Y → Y340

be continuous maps which are conjugate by a homeomorphism h : X → Y . Let x1 ∈ X,341

y1 ∈ Y and An and Bm be defined as before. Suppose that An and Bm are dense, respectively,342

in X and Y as n→∞ and m→∞. Then for every t and k343

lim
m→∞

ConjTest(An,Bm; k, t, h) = lim
n→∞

ConjTest(Bm,Am; k, t, h) = 0.344

The assumptions on the compactness of the spaces and density of the trajectories can be345

slightly relaxed in the similar vein as before.346

The above results concern ConjTest. Note that in case of ConjTest+ the neighborhoods347

h̃+(Uki ), thus also (gt ◦ h̃+)(Uki ), can be significantly enlarged by adding additional points348

to h̃(Uki ) and thus increasing the Hausdorff distance between corresponding sets. In order349

to still control this distance and formally prove desired convergence additional assumptions350

concerning space X and the sequence A are needed:351

Theorem 3.6. Let f : X → X and g : Y → Y , where X ⊂ RdX and Y ⊂ RdY be continuous352

functions. For x1 ∈ X and n ∈ N define An :=
{
ai := f i−1(x1) | i ∈ {1, 2, . . . , n}

}
. Similarly,353

for y1 ∈ Y and m ∈ N define Bm := {bi := gi−1(y1) | i ∈ {1, 2, . . . ,m}}. Assume that X and354

Y are compact and that the set An becomes dense in X as n → ∞, and Bm becomes dense355

in Y as m → ∞. Under those assumptions, if g is semiconjugate to f with h : X → Y as a356

semiconjugacy we have that357

(3.10) lim
n→∞

lim
m→∞

ConjTest+(An,Bm; k, t, h) = 0358

for any k ∈ N and t ∈ N.359

Proof. Since g is semiconjugate to f via h, for every t ∈ N we have h ◦ f t = gt ◦ h, where360
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12 P. D LOTKO, M. LIPIŃSKI, AND J. SIGNERSKA-RYNKOWSKA

h : X → Y is a continuous surjection. Expanding (3.10) yields361

lim
n→∞

lim
m→∞

∑n
i=1 dH

(
(h ◦ f t)(Uki ), (gt ◦ h̃+)(Uki )

)
n diam(Bm)

≤

lim
n→∞

lim
m→∞

∑n
i=1 dH

(
(h ◦ f t)(Uki ), (gt ◦ h̃)(Uki )

)
n diam(Bm)

+

lim
n→∞

lim
m→∞

∑n
i=1 dH

(
(h ◦ f t)(Uki ), (gt(h̃+(Uki ) \ h̃(Uki )))

)
n diam(Bm)

.

(3.11)362

Recall that Uki := κ(ai, k,An), h̃(ai) := κ(h(ai),Bm), h̃(Uki ) := {h̃(aj) : aj ∈ Uki }363

and h̃+(Uki ) := κ(h(ai), ki,Bm), where ki is the smallest integer ki such that h̃(Uki ) ⊂364

κ(h(ai), ki,Bm). Thus in particular, h̃(Uki ) ⊂ h̃+(Uki ). Obviously all these neighborhoods365

Uki , h̃(U
k
i ) and h̃

+(Uki ) depend on n and m (since they are taken with respect to An and Bm).366

Note that from Theorem 3.2 already follows that the first of the two terms in the sum in367

(3.11) vanishes. Thus we will only show that the second double limit vanishes as well.368

Let ε > 0, k ∈ N and t ∈ N. Since gt : Y → Y is a continuous function on a compact369

metric space Y , there exists δ such that |gt(x) − gt(y)| < ε
2 whenever x, y ∈ Y are such that370

|x− y| < δ. Similarly, since X is compact and h : X → Y is continuous, there exists δ1 such371

that |h(x)− h(y)| < δ
2 whenever x, y ∈ X such that |x− y| < δ1.372

Since B is dense in Y , there exists M ∈ N such that for m > M and every y ∈ Y ,373

there exists b̃ ∈ Bm such that |b̃ − y| < δ
4 . Moreover, from the density of A, there exists374

N ∈ N such that for every n > N and every i ∈ {1, 2, . . . , n} we have diam(Uki ) < δ1, i.e. if375

aj ∈ Uki = κ(ai, k,An) then |aj − ai| < δ1 and consequently376

(3.12) |gt(h(aj))− gt(h(ai))| <
ε

2
.377

Assume thus n > N . Then for m > M and every i ∈ {1, 2, . . . n} we have diam(Uki ) < δ1378

which also implies diam(h(Uki )) <
δ
2 . As m > M , every point of h(Uki ) can be approximated379

by some point of Bm with the accuracy better than δ
4 . Consequently, diam(h̃(Uki )) < δ for380

every i ∈ {1, 2, . . . , n}.381

Suppose that b̃ ∈ h̃+(Uki ) \ h̃(Uki ) for some b̃ ∈ Bm. Then, by definition of h̃+,382

(3.13) |b̃− h(ai)| ≤ diam(h̃(Uki )) < δ.383

Thus for any aj ∈ Uki = κ(ai, k,An) and any b̃ ∈ h̃+(Uki ) \ h̃(Uki ) we obtain384

|h(f t(aj))− gt(b̃)|
≤ |h(f t(aj)− gt(h(aj))|+ |gt(h(aj))− gt(h(ai))|+ |gt(h(ai))− gt(b̃)|

385

where386

• |h(f t(aj)− gt(h(aj))| = 0 by semiconjugacy assumption387

• |gt(h(aj))− gt(h(ai))| < ε
2 as follows from (3.12)388

• |gt(h(ai))− gt(b̃)| < ε
2 as follows from (3.13).389
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TESTING TOPOLOGICAL CONJUGACY OF TIME SERIES 13

Finally for every i ∈ {1, 2, . . . n}, every aj ∈ Uki and every b̃ ∈ (h̃+(Uki ) \ h̃(Uki )) we have390

|h(f t(aj))− gt(b̃)| < ε meaning that391

∑n
i=1 dH

(
(h ◦ f t)(Uki ), gt(h̃+(Uki ) \ h̃(Uki ))

)
n diam(Bm)

<
ε

diam(Bm)
392

if only n > N and m > M .393

This shows that the value of ConjTest+(An,Bm; k, t, h) can be arbitrarily small if n and394

m are sufficiently large and ends the proof.395

Finally, let us mention that conjugacy tests described in this Section are not tests in396

the statistical sense. They should be rather considered as methods of assessing dynamical397

similarity of the two unknown systems when only small finite samples of their trajectories are398

available. Trajectories related by topological conjugacy will give values of the tests close to399

0, and those coming from not conjugate systems are expected to result with higher values of400

the tests.401

The discussed task is already, to a certain extent, considered in the literature. The pa-402

per [23] develops sets of statistics which are intended to characterize, in terms of probabilities403

and confidence levels, whether time delay embeddings of the two time series are connected by404

a continuous, injected or differentiable map. The work [23] presents method to assess (gen-405

eralized) synchronization of time series, coupling in complex population dynamics (see [22])406

or detecting damage in some material structures (see [21]). The statistics proposed in those407

papers are inspired by notions of continuity, differentiability etc., typically involving quantities408

like ϵ’s and δ’s. These values need to be fixed and enforce the user to understand how δ’s409

scale with ϵ which is typically hard. It seems to be possible to adopt ConjTest’s methods to410

the framework of statistical tests and will be considered in the future.411

4. Conjugacy experiments. In this section the behavior of the described methods is ex-412

perimentally studied. For that purpose a benchmark set of a number of time series originating413

from (non-)conjugate dynamical systems is generated. A time series of length N generated414

by a map f : X → X with a starting point x1 ∈ X is denoted by415

ϱ(f, x1, N) :=
{
f j−1(x1) ∈ X | j ∈ {1, 2, . . . , N}

}
.416

All the experiments were computed in Python using floating number precision. The im-417

plementations of the methods presented in this paper as well as the notebooks recreating the418

presented experiments are available at https://github.com/dioscuri-tda/conjtest.419

4.1. Irrational rotation on a circle. The first example involves a dynamics generated by420

rotation on a circle by an irrational angle. Let us define a 1-dimensional circle as a quotient421

space S := R/Z. Denote the operation of taking a decimal part of a number (modulo 1)422

by x1 := x − ⌊x⌋. Then, for a parameter ϕ ∈ [0, 1) we define a rigid rotation on a circle,423

f[ϕ] : S→ S, as424

f[ϕ](x) := (x+ ϕ)1.425

This manuscript is for review purposes only.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

https://github.com/dioscuri-tda/conjtest
http://mostwiedzy.pl


14 P. D LOTKO, M. LIPIŃSKI, AND J. SIGNERSKA-RYNKOWSKA

We consider the following metric on S426

(4.1) dS : S× S ∋ (x, y) 7→ min ((x− y)1, (y − x)1) ∈ [0, 1).427

In this case dS(x, y) can be interpreted as the length of the shorter arc joining points x428

and y on S. It is known that two rigid rotations, f[ϕ] and f[ψ], are topologically conjugate429

if and only if ϕ = ψ or ϕ + ψ = 1 (see e.g. Theorem 2.4.3 and Corollary 2.4.1 in [28]). In430

the first case the conjugating circle homeomorphism h preserves the orientation i.e. the lift431

H : R→ R of h : S→ S satisfies H(x+ 1) = H(x) + 1 for every x ∈ R and in the second case432

h reverses the orientation H(x + 1) = H(x) − 1 and the two rotations f[ϕ] and f[ψ] are just433

mutually inverse.434

Moreover, for a map f[ϕ] we introduce a family of topologically conjugate maps given by435

f[ϕ],s(x) :=
(
(xs

1
+ ϕ)1

)1/s
, x ∈ R436

with s > 0. In particular, f[ϕ] = f[ϕ],1. It is easy to check that by putting hs(x) := xs
1
we get437

f[ϕ],s = h−1
s ◦ f[ϕ] ◦ hs.438

4.1.1. Experiment 1A.439

Setup. Let α =
√
2

10 . In the first experiment we compare the following time series:440

R1 = ϱ(f[α], 0.0, 2000), R2 = ϱ(f[α], 0.25, 2000),441

R3 = ϱ(f[α+0.02], 0.0, 2000), R4 = ϱ(f[2α], 0.0, 2000),442

R5 = ϱ(f[α],2, 0.0, 2000), R6 = R5 + err(0.05),443

where err(ϵ) denotes a uniform noise sampled from the interval [−ϵ, ϵ].444

As follows from Poincaré Classification Theorem, f[α] and f[2α] are not conjugate nor445

semiconjugate whereas f[α] and f[α],2 are conjugate via h2. Thus the expectation is to confirm446

conjugacy of R1 and R2 and of R1 and R5 and indicate deviations from conjugacy in all the447

remaining cases.448

In case of ConjTest the comparison R1 versus R2, R1 versus R3 and R1 versus R4 was449

done with h ≡ idS. As we already mentioned, there is no conjugacy between R1 and R3,450

nor between R1 and R4, as the angles of these rotations are different. Thus there is no451

true connecting homeomorphism between R1 and R3 and between R1 and R4. However, in452

order to apply ConjTests we need to pick some candidate for a matching map between two453

point clouds and as the first choice one can always start with the identity map, especially for454

comparing point clouds generated by trajectories starting at the same or close initial points.455

Therefore in this experiment we use h ≡ idS for comparing R1 both with R3 and R4. When456

comparing R1 versus R4 and R1 versus R5 we use homeomorphism h2(x) := x2
1
. Let us recall457

that for FNN and KNN methods we always use h(xi) = yi, a connecting homeomorphism458

based on the indices correspondence.459

Results. The results are presented in Table 1. Since the presented methods are not sym-460

metric, order of input time series matters. To accommodate this information, every cell461

contains two values, above and below the diagonal. For the column with header ”Ri vs.462

Rj”, the cells upper value corresponds to the outcome of FNN(Ri,Rj ; r), KNN(Ri,Rj ; k),463
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TESTING TOPOLOGICAL CONJUGACY OF TIME SERIES 15

method
test

R1 vs. R2

(starting point
perturbation)

R1 vs. R3

(angle
perturbation)

R1 vs. R4

(angle
doubled)

R1 vs. R5

(nonlinear
rotation)

R1 vs. R6

(noise)

FNN (r=2)
0.0

0.0
1.0

1.0
.393

.393
.063

0.0
.987

.986

KNN (k=5)
0.0

0.0
.257

.756
.003

.997
0.0

0.0
.150

.152

ConjTest
(k=5, t=5)

.001
.001

.201
.201

.586
.586

0.0
0.0

.142
.181

ConjTest+

(k=5, t=5)
.001

.001
.201

.201
.586

.586
0.0

0.0
.162

.181

Table 1
Comparison of conjugacy measures for time series generated by the rotation on a circle. The number in

the upper left part of the cell corresponds to a comparison of the first time series vs. the second one, while the
lower right corresponds to the inverse comparison. As follows from formulas at the beginning of Section 4.1.1
the considered trajectories have length N = 2000, other corresponding parameters are stated in the table.

ConjTest(Ri,Rj ; k, t, h) and ConjTest+(Ri,Rj ; k, t, h), respectively to the row. The lower464

values corresponds to FNN(Rj ,Ri; r), KNN(Rj ,Ri; k), ConjTest(Rj ,Ri; k, t, h) and465

ConjTest+(Rj ,Ri; k, t, h), respectively.466

As we can see from Table 1 the starting point does not affect results of methods (R1 vs.467

R2) since all the values in the first column are close to 0. It is expected due to the symmetry468

of the considered system. A nonlinearity introduced in time series R5 also does not affect the469

results. Despite the fact that f[α],2 is nonlinear, it is conjugate to the rotation f[α] which is470

reflected by tests’ values. However, when we change the rotation parameter we can see an471

increase of measured values (R1 vs. R3 and R1 vs. R4). It is particularly visible in the case472

of FNN and KNN. Interestingly, a small perturbation of the angle (R3) can cause a bigger473

change in a value then a large one (R4). We investigate how the perturbation of the rotation474

parameter affects values of examined methods in Experiment 1B. Moreover, the last column475

(R1 vs. R6) shows that FNN is very sensitive to noise, while KNN and ConjTest methods476

present some robustness. The influence of noise on the value of the test statistics is further477

studied in Experiment 1C.478

Note also that additional summary comments concerning Table 1, as well as results of479

other forthcoming experiments, will be also presented at the end of the article.480

4.1.2. Experiment 1B. In this experiment we test how the difference of the system pa-481

rameter affects tested methods.482

Setup. Let α :=
√
2

10 ≈ 0.141. We consider a family of time series parameterized by β.483

(4.2)

{
Rβ := ϱ(f[β], 0.0, 2000) | β = α+

iα

100
, i ∈ [−50,−49, . . . , 125]

}
.484

Thus, the tested interval of values of β is approximately [0.07, 0.32]. As a reference value we485

chose α =
√
2

10 ≈ 0.141. We denote the corresponding time series as Rα. We compare all time486

series from the family (4.2) with Rα. In the case of ConjTest methods we use h = id.487

This manuscript is for review purposes only.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl
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Figure 3. Dependence of the conjugacy measures on the perturbation of rotation angle. Top left: FNN
method. Top right: ConjTest method. Bottom: KNN method.

Results. The outcome of the experiment is plotted in Figure 3. We can see that all methods488

give values close to 0 when comparing Rα with itself. For different values of parameter489

r of FNN plots (Figure 3 top left looks almost identically. Even a small perturbation of490

the rotation parameter causes an immediate jump of FNN value from 0 to 1, making it491

extremely sensitive to any changes in the system. Obviously, unless β = α, Rα and Rβ492

are not conjugate. However, sometimes it might be convenient to have a somehow smoother493

relation of the test value to the infinitesimal change of the rotation angle. KNN method seems494

to behave inconsistently, but we can see that the higher parameter k gets the closer we get495

to a shape resembling the curve obtained with FNN. On the other hand, ConjTest shows a496

linear dependence on β parameter. Moreover, different values of ConjTest’s parameter t result497

in a different slope of this dependency.498

This manuscript is for review purposes only.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


TESTING TOPOLOGICAL CONJUGACY OF TIME SERIES 17

0.00 0.05 0.10 0.15 0.20 0.25

- noise level

0.0

0.2

0.4

0.6

0.8

1.0

te
st

 v
al

ue
FNN(R1, R ; r=2)

FNN(R1, R ; r=5)

FNN(R1, R ; r=8)

KNN(R1, R ; k=1)

KNN(R1, R ; k=3)
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Figure 4. Dependence of conjugacy measures on the perturbation of time series.

Both, FNN and KNN exhibit an interesting drop of the value when β ≈ 0.283 that is499

β = 2α. Formally, we know that f[α] and f[2α] are not conjugate systems. However, we500

can explain this outcome by analyzing the methods. Let ai ∈ Rα and let τ ∈ Z such that501

aj := ai+τ ∈ Rα be the nearest neighbor of ai. In particular, τ ∈ Z. By (4.1) we get502

dS(ai, aj) = (ατ)1 or (−ατ)1. There is an N ∈ Z and a δ ∈ [0, 1) such that ατ = N + δ.503

Since dS(ai, aj) ≈ 0, it follows that δ1 ≈ 0. To get FNN we also need to know dS(bi, bj). Let504

β = zα. Then, bi = (zαi)1, bj = (zαi + zατ)1 and dS(bi, bj) = (zατ)1 or (−zατ)1. Thus,505

zατ = zN + zδ. We assume that zδ ∈ [0, 1), because δ1 ≈ 0 and z is not very large . Again,506

there exists an M ∈ Z and ϵ ∈ [0, 1) such that zN = M + ϵ. Now, if zN ∈ Z, then ϵ = 0,507

dS(bi, bj) = (zδ)1 = z dS(ai, aj) (last equality given by δ1 ≈ 0) and
dS(bi,bj)
dS(ai,aj)

= z. If zN ̸∈ Z508

then ϵ ̸= 0 and
dS(bi,bj)
dS(ai,aj)

= >0
∼0 . Hence, the fraction gives a large number and the numerator509

of FNN will count most of the points, unless zN ∈ Z which is always satisfied when z ∈ Z.510

Moreover, for the irrational rotation τ might be large. In our experiments we usually get511

|τ | > 1000. Thus, N is large and ϵ is basically a random number. In the case of KNN there is512

a chance that at least for some of the k-nearest neighbors zN ∈ Z. Hence, the more rugged513

shape of the curve.514

In the case of ConjTest we observe a clear impact of ConjTest’s parameter t on the shape515

of the curve. The method takes k-nearest neighbors of a point xi (U
k
i in the formula (2.1))516

and moves them t times about angle α. At the same time the corresponding image of those517

points in the system Rβ (h̃(Uki ) in the formula (2.1)) is rotated t times about β angle. Thus,518

the discrepancy of the position of those two sets of points is proportional to tβ. In particular,519

when (tβ)1 = α, these two sets are in the same position.520
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18 P. D LOTKO, M. LIPIŃSKI, AND J. SIGNERSKA-RYNKOWSKA

4.1.3. Experiment 1C. In this experiment, instead of perturbing the parameter of the521

system we perturb the time series itself by applying a noise to every point of the series.522

Setup. Set α =
√
2

10 . We compare a time series R1 := ϱ(f[α], 0.0, 2000) with a family of523

time series:524

(4.3)
{
R̃ϵ := ϱ(f[α],2, 0.0, 2000) + err(ϵ) | ϵ ∈ [0.00, 0.25]

}
,525

where err(ϵ) is a uniform noise sampled from the interval [−ϵ, ϵ] applied to every point of the526

time series. In the case of ConjTest we again use h(x) = x21.527

Results. Results are presented in Figure 4. Again, FNN presents a very high sensitivity on528

any disruption of a time series and even a small amount of noise gives a conclusion that two529

systems are not conjugate. On the other hand, KNN and ConjTest present an almost linear530

dependence on noise level. Note that higher values of parameters k and t make methods more531

sensitive to the noise.532

4.2. Example: irrational rotation on a torus. Let us consider a simple extension of the533

previous rotation example to a rotation on a torus. With a torus defined as T := S×S, where534

S = R/Z, we can introduce map f[ϕ1,ϕ2] : T→ T defined as535

f[ϕ1,ϕ2](x
(1), x(2)) = ((x(1) + ϕ1)1, (x

(2) + ϕ2)1),536

where ϕ1, ϕ2 ∈ [0, 1). We equip the space with the maximum metric dT:537

dT : T× T ∋ ((x1, y1), (x2, y2)) 7→ max (dS(x1, x2),dS(y1, y2)) ∈ [0, 1),538

where dS is the sphere metric (see (4.1)).539

Note that rotation on a torus described above and rotation on a circle f[ϕi] : S→ S studied540

in Section 4.1 give a simple example of semiconjugate systems. Namely, let h : T → S be a541

projection hi(x
(1), x(2)) = x(i), i = 1, 2. Then we get the equality hi ◦ f[ϕ1,ϕ2] = f[ϕi] ◦ hi for542

i ∈ {1, 2}.543

4.2.1. Experiment 2A.544

Setup. For this experiment we consider the following time series:545

T1 = ϱ(f[α,β], (0.0, 0.0), 2000), S1 = T (1)
1 ,546

T2 = ϱ(f[1.1α,β], (0.1, 0.0), 2000), S2 = T (1)
2 ,547

T3 = ϱ(f[β,β], (0.1, 0.0), 2000), S3 = T (1)
3 ,548

where α =
√
2/10, β =

√
3/10, and Si = T (1)

i , i = 1, 2, 3, is a time series obtained from the549

projection of the elements of Ti onto the first coordinate. When comparing Ti with Tj for550

i, j ∈ {1, 2, 3} we use h ≡ id. When we compare Ti versus Sj we use h(x, y) = x, and for Si551

versus Tj we get h(x) = (x, 0).552

Results. The asymmetry of results in the first column (T1 vs. S1) in Table 2 shows that553

all methods detect a semiconjugacy between T1 and S1, i.e. that f[α] is semiconjugate to f[α,β]554

via h1. An embedding of a torus into a 1-sphere preserves a neighborhood of a point. The555

inverse map clearly does not exist.556
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TESTING TOPOLOGICAL CONJUGACY OF TIME SERIES 19

method
test T1 vs. S1 T1 vs. T2 T1 vs. S2 T1 vs. T3 T1 vs. S3

FNN (r=2)
0.0

1.0
1.0

.978
1.0

1.0
0.0

1.0
0.0

1.0

KNN (k=5)
.042

.617
.275

.855
.514

.690
.041

.938
.041

.938

ConjTest
(k=5, t=5)

.001
.270

.149
.148

.142
.270

.451
.322

.318
.322

ConjTest+

(k=5, t=5)
.018

.272
.154

.158
.143

.271
.458

.325
.319

.324

Table 2
Comparison of conjugacy measures for time series generated by the rotation on a torus. The number in

the upper left part of the cell corresponds to a comparison of the first time series vs. the second one, while the
lower right number corresponds to the inverse comparison.

The rest of the results confirm conclusions from the previous experiment. The second557

and the third column (T1 vs. T2 and T1 vs. S2) show that FNN and KNN are sensitive to a558

perturbation of the system parameters. The fourth and the fifth column (T1 vs. T3 and T1559

vs. S3) present another example where those two methods produce a false positive answer560

suggesting a semiconjugacy. This time the problematic case is not due to a doubling of the561

rotation parameter, but because of coinciding rotation angles. Again, the behavior of the562

ConjTest method exhibits a response that is relative to the level of perturbation.563

4.3. Example: the logistic map and the tent map. Our next experiment examines two564

broadly studied chaotic maps defined on a real line. The logistic map and the tent map,565

fl, gµ : [0, 1]→ [0, 1], respectively defined as:566

(4.4) fl(x) := lx(1− x) and gµ(x) := µmin{x, 1− x},567

where, typically, l ∈ [0, 4] and µ ∈ [0, 2]. For parameters l = 4 and µ = 2 the systems are568

conjugate via homeomorphism:569

(4.5) h(x) :=
2 arcsin(

√
x)

π
,570

that is, h ◦ f4 = g2 ◦ h. In this example we use the standard metric induced from R.571

4.3.1. Experiment 3A.572

Setup. In the initial experiment for those systems we compare the following time series:573

A = ϱ(f4, 0.2, 2000), B2 = ϱ(f4, 0.21, 2000),574

B1 = ϱ(g2, h(0.2), 2000), B3 = ϱ(f3.99, 0.2, 2000),575

B4 = ϱ(f3.99, 0.21, 2000).576

Time series A is conjugate to B1 through the homeomorphism h. Time series A and B2577

come from the same system – f4, but are generated using different starting points. Sequences578

B3 and B4 are both generated by the logistic map but with different parameter value (l = 3.99)579

than A; thus, they are not conjugate with A. For ConjTest methods we use (4.5) to compare580

A with B1, and the identity map to compare A with B2, B3 and B4.581
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20 P. D LOTKO, M. LIPIŃSKI, AND J. SIGNERSKA-RYNKOWSKA

method
test A vs. B1

A vs. B2

(starting point
perturbation)

A vs. B3

(parameter
perturbation)

A vs. B4

(st.point + param.
perturbation)

FNN (r=2)
.205

0.0
.998

1.0
1.0

1.0
1.0

.999

KNN (k=5)
0.0

0.0
.825

.828
.831

.832
.835

.833

ConjTest
(k=5, t=5)

0.0
0.0

.017
.017

.099
.059

.099
.059

ConjTest+

(k=5, t=5)

0.0
.001

.027
.023

.104
.065

.104
.064

Table 3
Comparison of conjugacy measures for time series generated by logistic and tent maps. The number in

the upper left part of the cell corresponds to a comparison of the first time series vs. the second one, while the
lower right number corresponds to the inverse comparison.

Results. The first column of Table 3 shows that all methods properly identify the tent map582

as a system conjugate to the logistic map (provided that the two time series are generated583

by dynamically corresponding points, i.e. a1 and b1 := h(a1), respectively). The second584

column demonstrates that FNN and KNN get confused by a perturbation of the starting585

point generating time series. This effect was not present in the circle and the torus example586

(Sections 4.1 and 4.2) due to a full symmetry in those examples. The ConjTest methods are587

only weakly affected by the perturbation of the starting point. Nevertheless, we expect that588

higher values of parameter tmay significantly affect the outcome of ConjTest due to the chaotic589

nature of the map. We test it further in the context of Lorenz attractor (Experiment 4C).590

The third and the fourth column reflect high sensitivity of FNN and KNN to the parameter591

of the system. On the other hand, ConjTest methods admit rather conservative response to592

a change of the parameter.593

The experiment shows that FNN and KNN are able to detect a change caused by a594

perturbation of a system immediately. However, in the context of empirical data we may595

not be able to determine whether the starting point was perturbed, or if the system has596

actually changed, or whether there was a noise in our measurements. Thus, some robustness597

with respect to noise might be desirable and the seemingly blurred concept of the conjugacy598

represented by ConjTest might be helpful.599

4.3.2. Experiment 3B. The logistic map is one of the standard examples of chaotic maps.600

Thus, we expect that the behavior of the system will change significantly if we modify the601

parameter l. Here, we examine how the perturbation of l affects the outcome of tested602

methods.603

Setup. We generated a collection of time series:604

{B(l) := ϱ(fl, 0.2, 2000) | l ∈ {3.8, 3.805, 3.81, . . . , 4.0}} .605

Every time series B(l) in the collection was compared with a reference time series B(4.0).606
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Figure 5. Dependence of the conjugacy measures on a change of the parameter of the logistic map.

Results. The results are plotted in Figure 5. As Experiment 3A suggested, FNN and KNN607

quickly saturate, providing almost “binary” response i.e. the output value is either 0 or a fixed608

non-zero number depending on parameter k. Similarly to Experiment 1B we observe that with609

a higher parameter k the curve corresponding to KNN gets more similar to FNN and becomes610

nearly a step function. ConjTest admits approximately continuous dependence on the value611

of the parameter of the system. However, higher values of the parameter t of ConjTest make612

the curve more steep and forms a significant step down in the vicinity of l = 4. This makes613

sense, because the more time-steps forward we take into account the more nonlinearity of the614

system affects the tested neighborhood.615

We presume that the observed drop of FNN values and increase of ConjTest values for the616

parameter l value approximately in the interval {3.83, 3.86} is caused by the collapse of the617

attractor to the 3-periodic orbit observed for these parameter values (see bifurcation diagram618

in Figure 7).619

Obviously, the logistic map with different parameter values won’t be conjugate. However,620

since we work with only finite samples, it might be not enough to rigorously distinguish them621

if the difference of the parameter is small. The results can only suggest an empirical similarity622

of the underlying dynamical systems.623

4.3.3. Experiment 3C. As observed in the previous experiment, a change of the parameter624

l in the logistic equation may significantly change the dynamical nature of the system. In this625

experiment we use the ConjTest to grasp the types of dynamics as a function of l parameter.626

Setup. First, we generated the following collection of time series:627

(4.6)
{
B(l, p) := ϱ(fl, f

500
l (p), 2000) | l ∈ {3.4, 3.405, 3.41, . . . , 4.0}, p ∈ {0.11, 0.31}

}
.628
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Figure 6. Dendrogram obtained from the single-linkage agglomerative hierarchical clustering of the collection
of time series (4.6) generated from the logistic map using similarity score defined (4.7). The horizontal dashed
line represents the threshold chosen for the clustering. The distribution of the clustered time series on bifurcation
diagram is presented in Figure 7.

Note that each time series starts at 500-th iterate of point p. It is a standard procedure629

allowing the trajectory to settle down on an attractor. We compared every two time series630

B(l, p) and B(l′, p′) with the formula We assign a similarity for each pair of time series B(l, p)631

and B(l′, p′) via632

(4.7) max
{
ConjTest(B(l, p),B(l′, p′); k, t, id),ConjTest(B(l′, p′),B(l, p); k, t, id)

}
633

with fixed k = 5 and t = 2. The obtained similarity matrix was then applied to the single-634

linkage agglomerative hierarchical clustering.635

Results. The dendrogram in Figure 6 presents the output of the experiment. Every leaf636

represents a single time series corresponding to a pair (l, p) of the parameter value and a637

starting point. With a threshold value 0.35 we can distinguish 10 clusters. For every value of638

parameter l, both time series B(l, 0.11) and B(l, 0.31) fall into the same cluster.639

We draw the result of the clustering on the bifurcation diagram in Figure 7. As one640

can expect, the time series grouped according to their dynamics type and their proximity641

in the parameter space. The dendrogram structure indicates additional substructures within642

the clusters. For instance, the pink cluster contains two visible subclasses from which one643

corresponds to a set of 4-periodic orbit, while the second aggregates the attractors after the644

initial period doubling bifurcations.645
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TESTING TOPOLOGICAL CONJUGACY OF TIME SERIES 23

Figure 7. Partition of the bifurcation diagram based on the clustering of time series generated from the
logistic map presented in Figure 6. Every square at the bottom of the image represents a time series corre-
sponding to a value of parameter l given by the horizontal axis. Top row corresponds to the starting point 0.11,
bottom row to 0.31. Color of a square indicates the cluster into which the corresponding trajectory belongs.

4.4. Example: Lorenz attractor and its embeddings. The fourth example is based on646

the Lorenz system defined by equations:647

(4.8)


ẋ = σ(y − x),
ẏ = x(ρ− z)− y,
ż = xy − βz,

648

which induces a continuous dynamical system φ : R3 × R → R3. We consider the classical649

values of the parameters: σ = 10, ρ = 28, and β = 8/3. A time series can be generated by650

iterates of the map f(x) := φ(x, t̃), where t̃ > 0 is a fixed value of the time parameter. For651

the following experiments we chose t̃ = 0.02 and we use the Runge-Kutta method of an order652

5(4) to generate the time series.653
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24 P. D LOTKO, M. LIPIŃSKI, AND J. SIGNERSKA-RYNKOWSKA

Figure 8. A time series generated from the Lorenz system (top left) and 3-d embeddings of its projections
onto the x-coordinate (top right), y-coordinate (bottom left) and z-coordinate (bottom right) with a delay pa-
rameter l = 5.

4.4.1. Experiment 4A.654

Setup. Let p1 = (1, 1, 1) and p2 = (2, 1, 1). In this experiment we compare the following655

time series:656

Li = ϱ(f, f2000(pi), 10000), P ix,d = Π(L(1)i , d, 5), P iz,d = Π(L(3)i , d, 5),657

where i ∈ {1, 2}. Recall that Π denotes the embedding of a time series into Rd and Lji is a658

projection of time series Li onto its j-th coordinate. In all the embeddings we choose the lag659

l = 5. Note that the first point of time series Li is equal to the 2000-th iterate of point pi660

under map f . It is a standard procedure to cut off some transient part of the time series.661

Time series P ix,d and P iz,d are embeddings of the first and third coordinate of Li, respec-662

tively. As Figure 8 (top right) suggests, the embedding of the first coordinate into R3 results663

in a structure topologically similar to the Lorenz attractor. The embedding of the third coor-664

dinate, due to the symmetry of the system, produces a collapsed structure with “wings” of the665

attractor glued together (Figure 8, right). Thus, we expect time series P iz,d to be recognized666

as non-conjugate to Li.667

In order to compare Li and embedded time series with ConjTest we shall find the suitable668

map h. Ideally, such a map should be a homeomorphism between the Lorenz attractor L ⊂ R3669
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TESTING TOPOLOGICAL CONJUGACY OF TIME SERIES 25

(or precisely the ω-limit set of the corresponding initial condition under the system (4.8)) and670

its image h(L). However, the construction of the time series allows us to easily define the best671

candidate for such a correspondence map pointwise for all elements of the time series.672

For instance, a local approximation of h when comparing Li ⊂ R3 and P jx,d ⊂ Rd will be673

given by:674

(4.9) h : Li ∋ xt 7→ (x
(1)
t ,x

(1)
t+5, . . . ,x

(1)
t+5d) ∈ P

i
x,d ⊆ Rd,675

where xt := (xt, yt, zt) ∈ R3 denotes the state of the system (4.8) at time t and x
(1)
t = xt676

denotes its projection onto the x-coordinate. When j = i this formula matches the points of677

Li to the corresponding points of P jx,d = P ix,d. However, if j ̸= i then the points of Li are678

mapped onto the points of P ix,d, not to P jx,d, thus in fact in our comparison tests we verify679

how well P jx,d approximates the image of Li under h and the original dynamics.680

For the symmetric comparison of P jx,d with Li the local approximation of h−1 : Rd → R3681

will take a form:682

(4.10) h−1 : P jx,d ∋ (x
(1)
t ,x

(1)
t+5, . . . ,x

(1)
t+5d) 7→ xt ∈ Lj ⊂ R3.683

These are naive and data driven approximations of the potential connecting map h. In partic-684

ular the homeomorphism from the Lorenz attractor to its 1D embedding cannot exist, but we685

still can construct map h using the above receipt, which seems natural and the best candidate686

for such a comparison. More sophisticated ways of finding the optimal h in general situations687

will be the subject of our future studies.688

In the experiments below we use the maximum metric.689

Results. As one can expect, Table 4 shows that embeddings of the first coordinate give690

in general noticeably lower values then embeddings of the z’th coordinate. Thus, suggesting691

that L1 is conjugate to P1
x,3, but not to P1

z,3. Again, Table 5 shows that, in the case of chaotic692

systems, FNN and KNN are highly sensitive to variation in starting points of the series.693

All methods suggest that 2-d embedding of the x-coordinate has structure reasonably694

compatible with L1. With the additional dimension values gets only slightly lower. One could695

expect that 3 dimensions would be necessary for an accurate reconstruction of the attractor.696

Note that Takens’ Embedding Theorem suggests even dimension of 5, as the Hausdorff dimen-697

sion of the Lorenz attractor is about 2.06 [30]. However, it often turns out that the dynamics698

can be reconstructed with the embedding dimension less than given by Takens’ Embedding699

Theorem (as implied e.g. by Probabilistic Takens’ Embedding Theorem, see [3, 4]). We also700

attribute our outcome to the observation that the x-coordinate carries a large piece of the701

system information, which is visually presented in Figure 8.702

Interestingly, when we use ConjTest to compare L1 with embedding time series generated703

from L1 we always get values 0.0. The connecting maps used in this experiment, defined by704

(4.9) and (4.10), establish a direct correspondence between points in two time series. As a705

result we get h̃ = h in the definition of ConjTest, and consequently, every pair of sets in the706

numerator of equation (3.5) is the same. If the embedded time series comes from another707

trajectory then h̃ ̸= h and ConjTest gives the expected results, as visible in Table 5. On the708

other hand, computationally more demanding ConjTest+ exhibits virtually the same results709
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method
test L1 vs. P1

x,1 L1 vs. P1
x,2 L1 vs. P1

x,3 L1 vs. P1
z,1 L1 vs. P1

z,3

FNN (r=3)
0.0

1.0
0.0

.362
.05

.196
0.0

1.0
.111

.541

KNN (k=5)
.019

.465
.003

.036
.003

.007
.024

.743
.002

.519

ConjTest
(k=5, t=10)

0.0
0.0

0.0
0.0

0.0
0.0

0.0
0.0

0.0
0.0

ConjTest+

(k=5, t=10)
.330

.401
.030

.087
.024

.051
.406

.396
.046

.407

Table 4
Comparison of conjugacy measures for time series generated by the Lorenz system. The number in the

upper left part of the cell corresponds to a comparison of L1 vs. the second time series, while the lower right
number corresponds to the inverse comparison.

method
test L1 vs. L2 L1 vs. P2

x,1 L1 vs. P2
x,2 L1 vs. P2

x,3 L1 vs. P2
z,1 L1 vs. P2

z,3

FNN (r=3)
.995

.996
.955

1.0
.987

.996
.991

.996
.963

1.0
.996

997.

KNN (k=5)
.822

.827
.826

.832
.829

.826
.829

.825
.823

.828
.820

.833

ConjTest
(k=5, t=10)

.010
.009

.236
.012

.016
.010

.010
.009

.391
.012

.017
.009

ConjTest+

(k=5, t=10)
.020

.017
.331

.400
.039

.092
.033

.056
.431

.392
.060

.404

Table 5
Comparison of conjugacy measures for time series generated by the Lorenz system. The number in the upper

left part of the cell corresponds to a comparison of L1 vs. the second time series, the lower right corresponds
to the symmetric comparison.

in both cases, when L1 is compared with embeddings of its own (Table 4) and when L1 is710

compared with embeddings of L2 (Table 5).711

4.4.2. Experiment 4B. This experiment is proceeded according to the standard use of712

FNN for estimating optimal embedding dimension without an explicit knowledge about the713

original system.714

Setup. Let p = (1, 1, 1), we generate the following collection of time series715

L = ϱ(f, f2000(p), 10000), Pd = Π(L(1), d, 5),716

where d ∈ {1, 2, 3, 4, 5, 6}. In the experiment we compare pairs of embedded time series717

corresponding to consecutive dimensions, e.g., Pd with Pd+1, for the entire range of parameter718

values. We are looking for the minimal value of d such that Pd−1 is dynamically different from719

Pd, but Pd is similar to Pd+1. The interpretation says that d is optimal, because by passing720

from d − 1 to d we split some false neighborhoods apart (hence, dissimilarity of dynamics),721

but by passing from d to d+ 1 there is no difference, because there is no false neighborhood722
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TESTING TOPOLOGICAL CONJUGACY OF TIME SERIES 27

left to be separated.723

Results. Results are presented in Figure 9. In general, the outputs of all methods are724

consistent. When the one-dimensional embedding, P1, is compared with two-dimensional725

embedding, P2, we get large comparison values for the entire range of every parameter. When726

we compare P2 with P3 the estimation of dissimilarity drops significantly, i.e. we conclude727

that the time series P2 and P3 are more “similar” than P1 and P2. The comparison of P3728

with P4 still decreases the values, suggesting that the third dimension improves the quality of729

our embedding. The curve corresponding to P4 vs. P5 essentially overlaps P3 vs. P4 curve.730

Thus, the third dimension seems to be a reasonable choice.731

We can see that FNN (Figure 9 top left), originally designed for this test, gives a clear732

answer. However, in the case of KNN (Figure 9 top right) the difference between the yellow733

and the green curve is rather subtle. Thus, the outcome could be alternatively interpreted734

with a claim that two dimensions are enough for this embedding. In the case of ConjTest+735

we have two parameters. For the fixed value of t = 10 we manipulated the value of k (Figure736

9 bottom left) and the outcome matched up with the FNN result. However, the situation is737

slightly different when we fix k = 5 and vary the t (Figure 9 bottom right). For t < 30 the738

results suggest dimension 3 to be optimal for the embedding, but for t > 40 the green and739

the red curve split. Moreover, for t > 70, we can observe the beginning of another split of the740

red (P4 vs. P5) and the violet (P5 vs. P6) curves. Hence, the answer is not fully conclusive.741

We attribute this effect to the chaotic nature of the attractor. The higher the value of t the742

higher the effect. We investigate it further in the following experiment.743

4.4.3. Experiment 4C. In this experiment we investigate the dependence of ConjTest+744

on the choice of value of parameter t. Parameter t of ConjTest+ controls how far we push745

the approximation of a neighborhood of a point xi (U
i
k in (3.7)) through the dynamics. In746

the case of systems with a sensitive dependence on initial conditions (e.g., the Lorenz system)747

we could expect that higher values of t spread the neighborhood over the attractor. As a748

consequence, we obtain higher values of ConjTest+.749

Setup. Let p1 = (1, 1, 1), p2 = (2, 1, 1), p3 = (1, 2, 1), and p4 = (1, 1, 2). In this experiment750

we study the following time series:751

Li = ϱ(f, f2000(pi), 10000), P ix,d = Π(L(1)i , d, 5), P iy,d = Π(L(2)i , d, 5),752

where i ∈ {1, 2, 3, 4} and d ∈ {1, 2, 3, 4}. We compare the reference time series L1 with all the753

others using ConjTest+ method with the range of parameter754

t ∈ {1, 5, 9, 13, 17, 21, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80}.755

Results. The top plot of Figure 10 presents the results of comparing L1 to the time series756

Li and P ix,d with i ∈ {2, 3, 4} and d ∈ {1, 2, 3, 4}. Red curves correspond to L1 vs. P ix,1,757

green curves to L1 vs. P ix,2, blue curves to L1 vs. P ix,3, and dark yellow curves to L1 vs.758

P ix,4. There are three curves of every color, each one corresponds to a different starting point759

pi, i ∈ {2, 3, 4}. The bottom part shows results for comparison of L1 to P iy,d (we embed760

the y-coordinate time series instead of x-coordinate). The color of the curves is interpreted761

analogously. Black curves on both plots are the same and correspond to the comparison of762

L1 with Lj for j ∈ {2, 3, 4}.763
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Figure 9. A comparison of embeddings for consecutive dimensions. Top left: FNN with respect to parameter
r. Top right: KNN with respect to parameter k. Bottom left: ConjTest+ with respect to parameter k. Bottom
right: ConjTest+ with respect to parameter t.

As expected, we can observe a drift toward higher values of ConjTest+ as the value of764

parameter t increases. Let us recall that Uki in (3.7) is a k-element approximation of a765

neighborhood of a point xi. The curve reflects how the image of Uki under f t gets spread across766

the attractor with more iterations. In consequence, a 2D embedding with t = 10 might get767

lower value than 3D embedding with t = 40. Nevertheless, Figure 10 (top) shows consistency768

of the results across the tested range of values of parameter t. Red curves corresponding to 1D769

embeddings give significantly higher values then the others. We observe the strongest drop of770

values for 2D embeddings (green curves). The third dimension (blue curves) does not improve771

the situation essentially, except for t ∈ [1, 25]. The curves corresponding to 4D embeddings772

(yellow curves) overlap those of 3D embeddings. Thus, the 4D embedded system does not773

resemble the Lorenz attractor essentially better than the 3D embedding. It agrees with the774

analysis in the Experiment 4B.775

The y-coordinate embeddings presented in the bottom part of Figure 10 give similar776

results. However, we can see that gaps between curves corresponding to different dimensions777

are more visible. Moreover, the absolute level of all curves is higher. We interpret this outcome778

with a claim that the y-coordinate inherits a bit less information about the original system779
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TESTING TOPOLOGICAL CONJUGACY OF TIME SERIES 29

than the x-coordinate. In Figure 8 we can see that y-embedding is more twisted in the center780

of the attractor. Hence, generally values are higher, and more temporal information is needed781

(reflected by higher embedding dimension) to compensate.782

Note that the comparison of L1 to any embedding P ix,d is always significantly worse than783

comparison of L1 to any Lj . This may suggest that any embedding is not perfect.784

4.5. Example: rotation on the Klein bottle. In the next example we consider the Klein785

bottle, denoted K and defined as an image K := imβ of the map β:786

(4.11) β : [0, 2π)× [0, 2π) ∋
[
x
y

]
7→


cos x2 cos y − sin x

2 sin(2y)
sin x

2 cos y + cos x2 sin(2y)

8 cosx(1 + sin y
2 )

8 sinx(1 + sin y
2 )

 ∈ R4.787

In particular, the map β is a bijection onto its image and the following “rotation map”788

f[ϕ1,ϕ2] : K→ K over the Klein bottle is well-defined:789

f[ϕ1,ϕ2](x) := β

(
β−1(x) +

[
ϕ1
ϕ2

]
mod 2π

)
.790

4.5.1. Experiment 5A. We conduct an experiment analogous to Experiment 4B on esti-791

mating the optimal embedding dimension of a projection of the Klein bottle.792

Setup. We generate the following time series793

K = ϱ(f[ϕ1,ϕ2], (0, 0, 0, 0), 8000),794

Pd = Π
(
(K(1) +K(2) +K(3) +K(4))/4, d, 8

)
,795

where ϕ1 =
√
2

10 , ϕ2 =
√
3

10 , d ∈ {2, 3, 4, 5} and K(i) denotes the projection onto the i-th796

coordinate. Note that in previous experiments we mostly used a simple observable s which797

was a projection onto a given coordinate. However, in general, one can consider any (smooth)798

function as an observable. Therefore in the current experiment, in the definition of Pd, s is a799

sum of all the coordinates, not the projection onto a chosen one. Note also that because of800

the symmetries (see formula (4.11)) a single coordinate might be not enough to reconstruct801

the Klein bottle.802

Results. We can proceed with the interpretation similar to Experiment 4B. The FNN803

results (Figure 11 top left) suggests that 4 is a sufficient embedding dimension. The similar804

conclusion follows from KNN (Figure 11 top right) and ConjTest+ with a fixed parameter805

k = 10 (Figure 11 bottom right). The bottom left figure of 11 is inconclusive as for the higher806

values of k the curves do not stabilize even with high dimension.807

Note that the increase of parameter t in ConjTest+ (Figure 11 bottom right) does not result808

in drift of values as in Figure 9 (bottom right). In contrast to the Lorenz system studied in809

Experiment 4B the rotation on the Klein bottle is not sensitive to the initial conditions.810
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and embedding dimension of the x-coordinate.
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Figure 10. Dependence of ConjTest+ on the parameter t for Lorenz system. In this experiment multiple
time series with different starting points were generated. Each of them was used to produce an embedding. Top:
comparison of x-coordinate embedding with L1. Bottom: comparison of y-coordinate embedding with L1. For
more explanation see text.
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Figure 11. A comparison of the conjugacy measures for embeddings of the Klein bottle for consecutive
dimensions. Top left: FNN with respect to parameter r. Top right: KNN with respect to parameter k. Bottom
left: ConjTest+ with respect to parameter k (t = 10 fixed). Bottom right: ConjTest+ with respect to parameter
t (k = 5 fixed).

5. Approximation of the connecting homeomorphism. In whole generality, finding the811

connecting homeomorphism between conjugate dynamical systems, is a very difficult task.812

Some prior work has been done in this direction but the existing methods still have many813

limitations in applying for a broader class of systems. In particular, the works [26, 27, 32]814

developed a method to produce conjugacy functions based on a functional fixed-point iteration815

scheme that can also be generalized to compare non-conjugate dynamical systems in which816

case the limit point of a fixed-point iteration scheme yields a function called a “commuter”.817

Quantifying how much the commuter function fails to be a homeomorphism (in various mea-818

sures) led to the notion of a “homeomorphic defect” that, as the authors point out, allows one819

to quantify the dissimilarity of the two dynamical systems. However, the method has been820

illustrated on a very few specific examples and could be rigorously mathematically justified821

only under very restrictive assumptions e.g. uniform contraction of at least one of the systems822

when comparing systems in one dimension. Significant problems occur in rigorous extension823

to systems of higher dimension. Consequently, later work [5] extended this theory to allow for824

multivariate transformations and presented ideas on constructing commuter functions differ-825
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ent than fixed-point iteration scheme. This method is based on symbolic dynamics approach826

which, however, requires existence and finding a general partition for systems being compared.827

Although the approach of finding a (semi-)conjugacy to a symbolic shift space through gen-828

erating or Markov partition seems very natural from the point of view of dynamical systems829

theory, in practice finding a reasonable partition even for systems given by explicit equations830

(not to mention time series of real data) is often not feasible. Moreover, one can face an831

explosion of computational complexity as the number of symbols increases. Later work [33]832

employs a method of graph matching between the graphs representing the underlying sym-833

bolic dynamics or, alternatively, between the graphs approximating the action of the systems834

on some eligible partition. Interestingly, the authors show that the permutation matrices that835

relate the adjacency matrices of the merging graphs coincide with the solution of Monge’s836

mass transport problem.837

The above earlier works contain valuable ideas on finding to-be-conjugacies or commuter838

functions and the defect measures of the arising commuters might serve as a quantification of839

the dynamical similarity between two given systems. In turn, our proposed tools, ConjTest840

and ConjTest+ can be applied, among others, to explicitly assess the quality of the matching841

between the two systems through the commuting functions obtained by the above mentioned842

methods and these matching functions can be candidates for testing (semi-)conjugacy of given843

systems by ConjTests. Note also that, contrary to the previous works, ConjTest methods can844

be applied directly to the time-series since we work on the point clouds and do not need a845

priori the formulas for systems which generated them - these are only used as benchmark846

tests.847

However, as our contribution and small step forward towards effective algorithms of finding848

conjugating maps, in this section we present a proof-of-concept gradient-descent algorithm,849

utilizing the ConjTest as a cost function, to approximate such a connecting homeomorphism.850

More precisely, as an example, we use it to discover an approximation of the map (4.5) that851

constitutes a topological conjugacy between the tent and the logistic map (see Section 4.3).852

Instead of finding an analytical formula approximating the connecting homeomorphism our853

strategy aims to construct a cubical set representing the map. Further development and854

generalization of the presented procedure will be a subject of forthcoming studies.855

Consider the following sequence 0 = a1 < a2 < . . . < an+1 = 1. Denote Ai,j := [ai, ai+1]×856

[aj , aj+1] and A := {Ai,j | i, j ∈ {1, 2, . . . n}}. Let h : I → I be an increasing homeomorphism857

from the unit interval I to itself and by π(h) := {(x, y) ∈ I × I | y = h(x)} denote the graph858

of h. We say that a collection h = {Ai,j ∈ A | int Ai,j ∩π(h) ̸= ∅} is a the cubical approximation859

of h and we denote it by [h]. Equivalently, h is the minimal subset of A such that π(h) ⊂
⋃
h.860

We refer to861

H := {[h] ⊂ A | h : I → I - an increasing homeomorphism}862

as a family of all cubical homeomorphisms of A.863

In A we show how to construct a class of piecewise linear homeomorphisms for any h ∈ H.864

We denote a selector of h, that is a homeomorphism representing h, by fh. Take, as an865

example, cubical sets marked with yellow cubes in Figure 12. At every panel, the blue curve866

corresponds to the graph of the selector.867

The size of family H grows exponentially with the resolution of the grid (the explicit868
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TESTING TOPOLOGICAL CONJUGACY OF TIME SERIES 33

formula for the size of H is given in A). For instance, the number of cubical homeomorphisms869

for m = 21 is about 2.6 · 1014. Thus, it is hopeless to find the optimal approximation of the870

connecting homeomorphism by a brute examination of all elements of H. Instead, we propose871

an algorithm based on the gradient descent strategy using ConjTest as a cost function.872

Algorithm 5.1 ApproximateH

Input: A,B – time series on an interval, h0 ∈ h – initial approximation of the homeomor-
phism, nsteps – number of steps, p – memory size.

Output: best h – approximated connecting homeomorphism
1: h← h0
2: q← initialize queue of size p with null’s
3: best h← h

4: for t = 0 to nsteps do
5: c← {h′ ∈ h | h′ ∈ nbhd(h) and diff(h, h′) ̸⊂ q}
6: if #c = 0 then
7: break
8: else
9: h← h′ ∈ c with a minimal value of score(h′,A,B)

10: if score(h,A,B) < score(best h,A,B) then
11: best h← h

12: end if
13: q.append(diff(h, h′)) {append the unique element differentiating h and h′}
14: q.pop()
15: end if
16: end for
17: return best h

Let A and B be time series on a unit interval. Algorithm 5.1 attempts to find an element873

of H with as small value of the ConjTest as possible. For that purpose, each element h ∈ H874

can be assigned with the following score:875

score(h,A,B) := max
{
ConjTest(A,B; k, t, fh),ConjTest(B,A; k, t, f−1

h )
}
.876

Since elements h, h′ ∈ H are collections of sets, the symmetric difference gives a set of cubes877

differing h and h′. We denote it by878

diff(h, h′) := (h \ h′) ∪ (h′ \ h).879

Let h ∈ H be an initial guess for the connecting homeomorphism. In each step of the880

algorithm an attempt is made to update it in a way that the score gets improved. Each881

iteration of the main loop considers all neighbors h′ of h in H such that nbhd(h) := {h′ ∈ H |882

# diff(h, h′) = 1} (a unit sphere in a Hamming distance centered in h). The element h′ of883

nbhd(h) with minimal score(h′) is chosen for the next iteration of the algorithm. Note that884

it might happen that score(h′) < score(h). This prevents the algorithm from being stuck at885

a local minimum. In addition, to avoid orbiting around them we exclude elements of nbhd(h)886

This manuscript is for review purposes only.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl
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for which element diff(h, h′) is an element added or removed in previous p iterations of the887

algorithm. This strategy is more restrictive from just avoiding assigning to h the same cubical888

homeomorphism twice within p consecutive steps which still could result in oscillatory changes889

of some cubes.890

We conducted an experiment for the problem studied in Section 4.3, that is, a comparison891

of time series generated by the logistic and the tent map. Take the following time series892

A = ϱ(f4, 0.02, 500) and B = ϱ(g2, 0.87, 500),893

where f4 and g2 are respectively a logistic and a tent map as in Section 4.3. We use score894

with parameters k = 5 and t = 1. As an initial guess of the connecting homeomorphism h0895

we naively took a cubical approximation of a h(x) = x5 with resolution m = 21, as presented896

in the top-left panel of Figure 12. We run Algorithm 5.1 for time series A and B for 1000897

steps with the memory parameter p = m = 21. Figure 13 shows the values of the score898

for the consecutive approximations. We can see that the algorithm falls temporarily into899

local minima, but eventually, thanks to the memory parameter, it escapes them and settles900

down towards the low score values. Figure 12 shows relations corresponding to the 1st, 200th,901

400th, and 612nd iteration of the algorithm run. The bottom-right panel, the 612nd iteration902

is the relation inducing the lowest score among all iterations. The orange curve, at the903

same panel, is the graph of homeomorphism (4.5) – the analytically correct map conjugating904

f4 and g2. Clearly, the iterations are converging towards the right value of the connecting905

homeomorphism.906

Clearly, the presented approach can be applied to any one-dimensional time series. A907

generalization of the algorithm will be a subject of further studies.908

6. Discussion and Conclusions. There is a considerable gap between theory and prac-909

tice when working with dynamical systems; In theoretical consideration, the exact formulas910

describing the considered system is usually known. Yet in biology, economy, medicine, and911

many other disciplines, those formulas are unknown; only a finite sample of dynamics is given.912

This sample contains either sequence of points in the phase space, or one-dimensional time913

series obtained by applying an observable function to the trajectory of the unknown dynamics.914

This paper provides tools, FNN, KNN, ConjTest, and ConjTest+, which can be used to test915

how similar two dynamical systems are, knowing them only through a finite sample. Proof of916

consistency of some of the presented methods is given.917

The first method, FNN distance, is a modification of the classical False Nearest Neighbor918

technique designed to estimate the embedding dimension of a time series. The second one,919

KNN distance, has been proposed as an alternative to FNN that takes into account larger920

neighborhood of a point, not only the nearest neighbor. The conducted experiments show921

a strong similarity of FNN and KNN methods. Additionally, both methods admit similar922

requirements with respect to the time series being compared: they should have the same923

length and their points should be in the exact correspondence, i.e., we imply that an i-th924

point of the first time series is a dynamical counterpart of the i-th point of the second time925

series. An approximately binary response characterizes both methods in the sense that they926

return either a value close to 0 when the compared time series come from conjugate systems, or927

a significantly higher, non-zero value in the other case. This rigidness might be advantageous928
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Figure 12. Steps 0, 200, 400, and 612 (top left, top right, bottom left, bottom right, respectively) of the run
of Algorithm 5.1 in a search for the connecting homeomorphism between the logistic and the tent map. The
blue lines corresponds to a selector of a cubical homeomorphism. The orange curve in bottom right panel is a
graph of the actual connecting homeomorphism (4.5) between the logistic and the tent map.

in some cases. However, for most empirical settings, due to the presence of various kind of929

noise, FNN and KNN may fail to recognize similarities between time series. Consequently,930

these two methods are very sensitive to any perturbation of the initial condition of time931

series as well as the parameters of the considered systems. However, KNN, in contrast to932

FNN, admits robustness on a measurements noise as presented in Experiment 1C. On the933
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Figure 13. The value of score(h,A,B) for every step of the experiment approximating the connecting
homeomorphism between the logistic and the tent map.

other hand, FNN performs better than KNN in estimating the sufficient embedding dimension934

(Experiments 4B, 5A). Moreover, the apparently clear response given by FNN and KNN tests935

might not be correct (see Experiment 1A, R1 vs. R4).936

Both ConjTest and ConjTest+ (collectively called ConjTest methods) are directly inspired937

by the definition and properties of topological conjugacy. They are more flexible in all con-938

sidered experiments and can be applied to time series of different lengths and generated by939

different initial conditions (the first point of the series). In contrast to FNN and KNN, they940

admit more robust behavior with respect to any kind of perturbation, be it measurement941

noise (Experiment 1C), perturbation of the initial condition (Experiments 1A, 2A, 3A, and942

4A), t parameter (Experiment 4C), or a parameter of a system (Experiment 1B). In most943

experiments, we can observe a continuous-like dependence of the test value on the level of per-944

turbations. We see this effect as softening the concept of topological conjugacy by ConjTest945

methods. A downside of this weakening is a lack of definite response whether two time series946

come from conjugate dynamical systems. Hence the ConjTest methods should be considered947

as a means for a quantification of a dynamical similarity of two processes. Experiments 1A,948

2A, and 3A show that both methods, ConjTest and ConjTest+, capture essentially the same949

information from data. In general, ConjTest is simpler and, thus, computationally more ef-950

ficient. However, Experiment 4A shows that ConjTest (in contrast to ConjTest+) does not951

work well in the context of embedded time series, especially when the compared embeddings952

are constructed from the same time series. Experiments 4B and 5A show that the varia-953

tion of ConjTest methods with respect to the t parameter can also be used for estimating954
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Property
Method FNN KNN ConjTest ConjTest+

Requirements
identical matching between indexes
of the elements (in particular the se-
ries must be of the same length)

• an exact correspondence between the
two time series is not needed

• allow examining arbitrary, even very
complicated potential relations be-
tween the series

• can be used for comparison of time se-
ries of different length

• require defining the possible
(semi)conjugacy h at least locally
i.e. giving the corresponding relation
between indexes of the elements of the
two series

Parameters

only one param-
eter: r (but one
should examine
large interval of r
values)

only one parame-
ter: k (but is rec-
ommend to check
a couple of differ-
ent k values)

involve two parameters: k and t

Robustness

• less robust to noise and perturba-
tion than ConjTest methods

• give nearly a binary output
• KNN seems to admit robustness

with respect to the measurement
noise

• more robust to noise and perturba-
tion

• the returned answer depends contin-
uously on the level of perturbation
and noise compared to the binary
response given by FNN or KNN

Recurrent properties

takes into ac-
count only the
one closest return
of a series (tra-
jectory) to each
neighborhood

takes into account k-closest returns

Further properties

more likely to
give false posi-
tive answer than
ConjTest+

more computation-
ally demanding
than ConjTest
but usually more
reliable

Table 6
Comparison of the properties of discussed conjugacy measures.

a good embedding dimension. Further comparison between ConjTest and ConjTest+ reveals955

that ConjTest+ is more computationally demanding than ConjTest, but also more reliable.956

Indeed, in our examples with rotations on the circle and torus and with the logistic map, both957

these tests gave nearly identical results, but the examples with the Lorenz system show that958

ConjTest is more likely to give a false positive answer. This is due to the fact that ConjTest959

works well if the map h connecting time series A and B is a reasonably good approximation960

of the true conjugating homeomorphism, but in case of embeddings and naive, point-wise961

connection map, as in some of our examples with Lorenz system, the Hausdorff distance in962

formula (3.5) might vanish resulting in false positive.963
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The advantages of ConjTest and ConjTest+ methods come with the price of finding a964

connecting map relating two time series. When it is unknown, in the simplest case, one can965

try the map h which is defined only locally i.e. on points of the time series and provide966

an order- preserving matching of indexes of corresponding points in the time series. The967

simplest example of such a map is an identity map between indices. The question of finding968

an optimal matching is, however, much more challenging and will be a subject of a further969

study. Nonetheless, in Section 5 and Appendix A we present preliminary results approaching970

this challenge.971

A convenient summary of the presented methods is gathered in Table 6.972

Appendix A. Cubical homeomorphisms.973

This appendix offers additional characterization of the family of cubical homeomorphisms974

introduced in Section 5.975

At first, observe that elements of H have the following straightforward observations.976

Proposition A.1. Let [h] ∈ H. Then, A1,1, An,n ∈ [h].977

Proof. Since h is an increasing homeomorphism it follows that (0, 0), (1, 1) ∈ π(h). In978

consequence, A1,1, An,n ∈ [h], because these are the only elements of A containing (0, 0) and979

(1, 1).980

We picture the idea of the following simple proposition with Figure 14.981

Proposition A.2. Let π(h) ∩ int Ai,j ̸= ∅ then exactly one of the following holds982

(1) int Ai+1,j ∩ π(h) ̸= ∅ and int Ai,j+1 ∩ π(h) = ∅, when h(ai+1) ∈ (aj , aj+1),983

(2) int Ai,j+1 ∩ π(h) ̸= ∅ and int Ai+1,j ∩ π(h) = ∅, when h−1(ai+1) ∈ (ai, ai+1),984

(3) int Ai+1,j+1 ∩ π(h) ̸= ∅, int Ai+1,j ∩ π(h) = ∅ and int Ai,j+1 ∩ π(h) = ∅, when h(ai+1) =985

aj+1.986

(ai+1,h(ai+1))

(h-1(aj+1),aj+1)
(ai+1,aj+1)

Figure 14. From left to right, cases (1), (2) and (3) of Proposition A.2.

Again, the proof for the next proposition is a consequence of basic properties of homeo-987

morphism h such that [h] = h.988

Proposition A.3. Let h ∈ H. Then989

(i) for every i ∈ {1, . . . , n} set
⋃
{Ai,j ∈ h | j ∈ {0, 1, . . . , n}} is nonempty and connected,990

(ii) for every j ∈ {1, . . . , n} set
⋃
{Ai,j ∈ h | i ∈ {0, 1, . . . , n}} is nonempty and connected.991

(iii) if Ai,j ∈ h then for every i′ > i and j′ < j we have Ai′,j′ ̸∈ h,992

(iv) if Ai,j ∈ h then for every j′ > j and i′ < i we have Ai′,j′ ̸∈ h,993
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TESTING TOPOLOGICAL CONJUGACY OF TIME SERIES 39

The above propositions implies that every element h ∈ H can be seen as a path starting994

from element A1,1 and ending at An,n. In particular, h can be represented as a vector of symbols995

R (right, incrementation of index i, case (1)), U (up, incrementation of index j, case (2)), and996

D (diagonal, incrementation of both indices, case (3)). The vectors do not have to be of the997

same length. In particular, a single symbol D can replace a pair of symbols R and U. Denote998

by nR, nU and nD the number of corresponding symbols in the vector. As indices i and j999

have to be incremented from 1 to n we have the following properties:1000

0 ≤ nR, nU , nD ≤ n− 1, nR + nU + 2nD = 2(n− 1) and nR = nU .(A.1)1001

Actually, any vector V of symbols {R,U,D} satisfying the above conditions (A.1) corre-1002

sponds to a cubical homeomorphism. We show it by constructing a piecewise-linear homeo-1003

morphism h such that [h] = h for any h represented by V. We refer to the constructed h as1004

a selector of h. In particular, Algorithm A.1 produces a sequence of points corresponding1005

to points of non-differentiability of the homeomorphism. We have five type of points, the1006

starting point (0, 0) (type B), the ending point (1, 1) (type E), and points corresponding to1007

subsequences UR (type UR), RU (type RU) and D (type D). Proposition A.4 shows that1008

the map generated by the algorithm is an actual homeomorphism.1009

Algorithm A.1 FindSelector

Input: V – a vector of symbols {R,U,D} satisfying (A.1), p – a parameter for breaking points
selection

Output: L – a sequence encoding the selector
1: L← {(0, 0)}
2: prev← Null

3: i, j ← 0
4: for s ∈ V do
5: if prev = U and s = R then
6: L = L ∪ {(p ai + (1− p) ai+1, (1− p) aj + p aj+1)}
7: else if prev = R and s = U then
8: L = L ∪ {((1− p) ai + p ai+1, p aj + (1− p) aj+1)}
9: else if s = D then

10: L = L ∪ {(ai+1, aj+1)}
11: end if
12: prev← s

13: if s = R or s = D then
14: i← i+ 1
15: end if
16: if s = U or s = D then
17: j ← j + 1
18: end if
19: end for
20: L← {(1, 1)}
21: return L
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Proposition A.4. Let V be a vector of symbols {R,U,D} satisfying (A.1) and h the corre-1010

sponding cubical set. Let L = {(x1, y1), (x2, y2), . . . , (xK , yK)} be a sequence of points gener-1011

ated by Algorithm A.1 for V. Then, for every k ∈ {1, 2, . . .K − 1} following properties are1012

satisfied:1013

(i) xk < xk+1 and yk < yk+1,1014

(ii) if (xk, yk) ∈ L then (xk, yk) + (1− t)(xk, yk+1) ∈
⋃
h for t ∈ [0, 1].1015

Proof. First, note that if (xk, yk) is of type UR or RU then we have (xk, yk) ∈ intAi,j .1016

If (xk, yk) is of type D we have (xk, yk) = Ai,j ∩ Ai+1,j+1. In particular, in that case xk, yk ∈1017

{a2, a3, . . . , an}.1018

Sequence L always begins (x0, y0) = (0, 0) and ends with (xK , yK) = (1, 1). By Proposition1019

A.1 we have A0,0, An,n ∈ h. The above observations shows that for every (xk, yk) with k ∈1020

{1, 2 . . . ,K − 1} we have 0 < xk, yk < 1. Thus, two first and two last points of L satisfies1021

(i). If (x1, y1) is of type UR then it follows that V begins with a sequence of U ’s. We have1022

(x1, y1) ∈ int A0,j for some j > 0. By Proposition A.3(ii) all A0,j′ ∈ h for 0 ≤ j′ ≤ j. Hence,1023

the interval spanned by (x0, y0) and (x1, y1) is contained in
⋃
h proving (ii). The cases when1024

(x1, y1) is of type RU or D as well as analysis of points (xn−1, yn−1) and (xn, yn) follows by1025

similar argument.1026

Let (x, y) and (x′, y′) be two consecutive points of L. Suppose that (x, y) is of type UR1027

and (x′, y′) of type RU . This situation arises when two symbols U are separated by a positive1028

number of symbols R (see Figure 15 top). It follows that1029

(x, y) = (p ai + (1− p) ai+1, (1− p) aj + p aj+1) int Ai,j ,1030

(x′, y′) = ((1− p) ai′ + p ai′+1, p aj + (1− p) aj+1) int Ai′,j ,1031

where i < i′. Thus,1032

y′ − y = paj + (1− p)aj+1 − ((1− p)aj + paj+1)1033

= 2paj + aj+1 − aj > aj+1 − aj > 0.1034

Consequently, we get x < x′ and y < y′ proving (i) for this case. By Proposition A.3(ii) we1035

get that Ai′′,j ∈ h for all i ≤ i′′ ≤ i′. Hence, the interval spanned by (x, y) and (x′, y′) is1036

contained in
⋃
h proving (ii).1037

The case when (x, y) is of type RU and (x′, y′) of type UR is analogous.1038

Suppose that (x, y) is of type UR and (x′, y′) of type D. This situation arises when1039

symbols U and D are separated by a positive number of symbols R (see Figure 15 middle).1040

It follows that1041

(x, y) = (p ai + (1− p) ai+1, (1− p) aj + p aj+1) ∈ int Ai,j ,1042

(x′, y′) = (ai′+1, aj+1) = Ai′,j ∩ Ai′+1,j+1,1043

where i < i′. It follows that x < x′ and y < y′ proving (i) for this case. Again, by Proposition1044

A.3(ii) we can prove (ii).1045

The case when (x, y) is of type RU and (x′, y′) of type D is analogous.1046
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TESTING TOPOLOGICAL CONJUGACY OF TIME SERIES 41

Now, suppose that (x, y) is of type D and (x′, y′) of type UR. This situation arises when1047

symbols D and R are separated by a positive number of symbols U (see Figure 15 bottom).1048

It follows that1049

(x, y) = (ai+1, aj+1) = Ai,j ∩ Ai+1,j+1,1050

(x′, y′) = (p ai+1 + (1− p) ai+2, (1− p) aj′ + p aj′+1) ∈ int Ai+1,j′+1,1051

where j < j′. It follows that x < x′ and y < y′ proving (i) for this case. By Proposition A.3(i)1052

follows property (ii).1053

The case when (x, y) is of type D and (x′, y′) of type RU is analogous.1054

Finally, if both (x, y) and (x′, y′) are of type D it follows that1055

(x, y) = (ai+1, aj+1) = Ai,j ∩ Ai+1,j+1,1056

(x′, y′) = (ai+2, aj+2) = Ai+1,j+1 ∩ Ai+2,j+2.1057

Thus, (x, y) and (x′, y′) are the opposite corners of cube Ai+1,j+1 which immediately gives1058

both properties (i) and (ii).1059

By counting all possible vectors of symbols {R,U,D} satisfying (A.1) we obtain an exact1060

size of family H. In case of nD = 0, the vector has size 2(n− 1) and, therefore, we get
(2(n−1)
(n−1)

)
1061

ways of ordering symbols R and U . If nD = 1 then the vector size is 2(n − 1) − 1 = 2n − 31062

and nR = n − 2. Hence, we have
(
2n−3
n−2

)
choices of slots for symbols R and we have choose1063

a place for D symbol among the remaining 2n − 3 − (n − 2) = n − 1 slots. Thus, the total1064

number of ordering for nD = 1 is
(
2n−3
n−2

)
(n− 1). In the general case, we get

(
2n−2−nD
n−1−nD

)(
n−1
nD

)
.1065

Finally, the total number of vectors of H is given by the following formula:1066

n−1∑
nD=0

(
2n− 2− nD
n− 1− nD

)(
n− 1

nD

)
.1067
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42 P. D LOTKO, M. LIPIŃSKI, AND J. SIGNERSKA-RYNKOWSKA

[7] H. Broer and F. Takens, Reconstruction and time series analysis, Springer New York, New York, NY,1085
2011, pp. 205–242, https://doi.org/10.1007/978-1-4419-6870-8 6.1086

[8] T. Buzug and G. Pfister, Comparison of algorithms calculating optimal embedding parameters for1087
delay time coordinates, Physica D: Nonlinear Phenomena, 58 (1992), pp. 127–137, https://www.1088
sciencedirect.com/science/article/pii/016727899290104U.1089

[9] K. Champion, B. Lusch, J. N. Kutz, and S. L. Brunton, Data-driven discovery of coordinates and1090
governing equations, Proceedings of the National Academy of Sciences, 116 (2019), pp. 22445–22451.1091

[10] D. L. DeAngelis and S. Yurek, Equation-free modeling unravels the behavior of complex ecological1092
systems., Proc Natl Acad Sci U S A, 112 (2015), pp. 3856–3857.1093

[11] V. Deshmukh, E. Bradley, J. Garland, and J. D. Meiss, Using curvature to select the time lag for1094
delay reconstruction, Chaos: An Interdisciplinary Journal of Nonlinear Science, 30 (2020), p. 063143,1095
https://doi.org/10.1063/5.0005890.1096

[12] A. M. Fraser and H. L. Swinney, Independent coordinates for strange attractors from mutual informa-1097
tion, Phys. Rev. A, 33 (1986), pp. 1134–1140, https://link.aps.org/doi/10.1103/PhysRevA.33.1134.1098

[13] R. Hegger and H. Kantz, Improved false nearest neighbor method to detect determinism in time series1099
data, Phys. Rev. E, 60 (1999), pp. 4970–4973, https://link.aps.org/doi/10.1103/PhysRevE.60.4970.1100

[14] H. Kantz and T. Schreiber, Nonlinear Time Series Analysis, Cambridge University Press, 2 ed., 2003,1101
https://doi.org/10.1017/CBO9780511755798.1102

[15] M. B. Kennel, R. Brown, and H. D. I. Abarbanel, Determining embedding dimension for phase-1103
space reconstruction using a geometrical construction, Phys. Rev. A, 45 (1992), pp. 3403–3411, https:1104
//link.aps.org/doi/10.1103/PhysRevA.45.3403.1105

[16] A. Kianimajd, M. Ruano, P. Carvalho, J. Henriques, T. Rocha, S. Paredes, and A. Ru-1106
ano, Comparison of different methods of measuring similarity in physiologic time series, IFAC-1107
PapersOnLine, 50 (2017), pp. 11005–11010, https://www.sciencedirect.com/science/article/pii/1108
S2405896317333967. 20th IFAC World Congress.1109

[17] H. Kim, R. Eykholt, and J. Salas, Nonlinear dynamics, delay times, and embedding windows, Physica1110
D: Nonlinear Phenomena, 127 (1999), pp. 48–60, https://www.sciencedirect.com/science/article/pii/1111
S0167278998002401.1112

[18] F. Lejarza and M. Baldea, Data-driven discovery of the governing equations of dynamical systems via1113
moving horizon optimization, Scientific Reports, 12 (2022), p. 11836.1114
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Figure 15. Segments of the piecewise linear homeomorphism being a selector constructed by Algorithm A.1
for a certain cubical homeomorphism h. Three panels corresponds to cases when: point of type UR is followed
by point of type UR (top), point of type UR is followed by point of type D (middle), point of type D is followed
by point of type UR (bottom).
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