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The application of nonlinear curvature sections in the turnout diverging track  

 

Abstract: The paper presents the analytical method of modelling the diverging track of 

railway turnout with nonlinear curvature sections. These sections were used for smoothing the 

graph of curvature in the extreme areas of turnout. The problem of the curvature distribution 

was identified with the use of differential equations. The resulting solutions are of universal 

nature for example the ability of assuming any values of curvature at the beginning and 

ending of the layout. The comparative analysis was performed for two cases with nonlinear 

curvature and  corresponding cases where linear curvature was used. As a result, the analysis 

of selected cases showed a beneficial curvature distribution in a nonlinear variant, the extreme 

areas of circular arc are smoothed as well as the curvature at both ends of the layout is equal 

to zero. 

 

Keywords: Railway turnouts; Curvature modelling; Analysis of horizontal ordinates 

 

 

Introduction 

In a typical geometrical configuration of the return path in railway displacement called 

ordinary, a single circular arc is used without transition curves. This solution is not used on 

railway routes and means the need to limit the speed of trains. This is due to the occurrence of 

places of rapid, abrupt change in the ordinates of the curvature diagram at the beginning and 

the end of the turnout. In recent years, in some countries, in particular on high-speed railways, 

the aim is to soften the curvature diagram in these regions. This is achieved by introducing the 

so-called "Clothoid sections" on both sides of a circular arc, on which the curvature varies in a 

linear manner, but often without reaching zero values in the end points [2, 8, 9, 10]. 

In the case of standard turnouts, the change of the operated switchgear to a turnout with 

a larger radius in the reverse path leads most often to the need to increase track gauge. In the 

case of switches with variable curvature - due to the individual nature of their design, it is 

possible to adjust the given turnout to local requirements. This is particularly important in 

parallel tracks connections, where the main issue is maintaining the proper track gauge. 

The length of the return path is divided into three zones here (Figure 1): 

an initial zone of length  ��, having a linear curvature, 

a middle zone with length ��, having a fixed curvature, 

an end zone of length ��, having a linear curvature. 

Of course, different variants are possible here, related to the curvature values and the 

lengths of individual zones. 

In the starting zone, for� ∈ 〈0, ��〉, the curvature grows linearly from 
� = �� (or 
� = 0) 

to  
� = ���, in the middle zone, for � ∈ 〈��, �� + ��〉, is constant and equals 
� = ���, whereas in 

the end zone, for � ∈ 〈�� + ��, �� + �� + ��〉, linearly decreases from 
� = ��� to  
� = ��� (or 
� = 0).  
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1. Curvature diagram with segments of linear curvature along the turnout path of the 

crossover (��= 16000 m, ��= 55 m, ��= 6000 m, ��= 60 m, ��= 65 m, ��= 25000 m) 

 

Modelling the curvature along the turnout path of the crossover makes possible to create 

an analytical record in the form of a function 
��� , where parameter  l  determines position of 

a given point on the length of the curve. We can save the coordinate equations of the searched 

connection in a parametric form [3]: 

   ���� = � cos ������     (1) 

     ���� = � sin ������     (2) 

 

The tangent angle function ���� is defined according to the equation: 

 

  ���� = � 
�����     (3) 
 

Commonly used, among others in commercial design support programs [1, 7], way of 

determining coordinates ���� i ���� is numerical integration of function  cos ����  and  sin ����. From a practical point of view, it gives sufficient accuracy. However, this method 

has one fundamental weakness and each geometrical case must be considered separately and 

the introduction of any generalization is very difficult here. If we want to get an opportunity 

to look at the problem more broadly, we should have an analytical method which  is of 

general and full character. 

An analytical solution to the problem of the application of linear curvature segments, i.e. the 

so-called "clotoid sections", is presented in [4]. It would be worthwhile to consider the 

application of sections of non-linear curvature and this issue was devoted to this study. 

Knowledge of the appropriate analytical formulas made it possible to conduct a comparative 

analysis of selected variants in the final part of the work, both with sections of linear and non-

linear curves. 

 

Analytical solution for the relief of curvature in extreme zones of crossover 
The course of curvature shown in Figure 1 is not, of course, the ideal solution. It would be 

worth considering the possibility of softening the entry into the turnout arc on its both sides 
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and - in addition - resetting the curvature value at the extreme points of the geometrical 

system. 

 

Solving the problem for the initial zone 

We assume the boundary conditions 

 

   
�0� = 
�   
���� = 
� 

            (4) 

        
′�0� =  !�"!#     
′���� = 0  

 

and differential equation 

    
�$���� = 0      (5) 

 

assuming a numerical coefficient  ≥ 0.  

 

As a result of solving the differential problem (4), (5) we obtain the equation of curvature 

 

      
��� = 
� + &# �
� − 
�� � − �&"�#� �
� − 
�� �� + &"�#� �
� − 
�� ��  (6) 

 

The tangent angle function ���� is described by a dependence 

 

          ���� = 
�� + &� # �
� − 
�� �� − �&"�� #� �
� − 
���� + &"�$ #� �
� − 
���$  (7) 

 

If we want to get a monotonic course of curvature 
��� along the entire length of the 

curve, then the derivative 
′��� must be positive and at the same time the second derivative 
′′��� must be negative for � ∈ 〈0, ��〉. 
  
′��� = &# �
� − 
��  − $&"(#� �
� − 
��� + ��&"��#� �
� − 
�� �� ≥ 0  

 
′′��� =  − $&"(#� �
� − 
�� + (�&"��#� �
� − 
�� � ≤ 0  

 

As you can see, the course of the function 
′′��� is linear, so fulfilling the condition means 

that it is valid at both ends of the interval, i.e. 
′′�0� ≤ 0 i 
′′���� ≤ 0. It follows that the 

parameter C must take values from the range  ∈ 〈1.5;  3〉. 
Due to the ratio of the length of the parametric curve to the length of the curve with linear 

curvature, i.e. generalized clotoid, the most preferred solution seems to be a parametric 

transition curve for the value of C = 1.5. We receive from dependencies (6) and (7) 

 

      
��� = 
� + �� # �
� − 
�� � − �� #� �
� − 
�� ��   (8) 

 

    ���� = 
�� + �$ # �
� − 
�� �� − �/ #� �
� − 
���$   (9) 

 

 At the end of the zone, for � = �� , angle value  ����� = �!01!�/ �� . 

 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Transportation Overview - Przegląd Komunikacyjny 07/2017 

 

44 

 

To determine parametric equations ���� i ���� the procedure in [3] is used. We save the 

function ���� in the form 

 ���� = 2�� � + 2�� �� + 2�� �$   
 

where   2�� = 
� ,  2�� = ��!�"!�$ #   2�� = − !�"!/ #�  

 

and develop cos ���� and sin ���� into the Taylor series using the Maxima program [6]. As it 

turns out, the equation obtained in practice ���� can be simplified much, because most of its 

expressions are irrelevant. We get the following parametric equations: 

 

           ���� = �           (10) 

 

   ���� = �� 2�� �� + �� 2���� − ��$ 2��� �$ − ��3 �2��� 2�� − 2 2����1   (11) 

 

Solving the problem for the middle zone 

In the circular arc zone, i.e. for � ∈ 〈��, �� + ��〉 , there is a constant curvature 

 

            
��� = 
�                (12) 
   

Function ����  for the assumed C = 1,5 is described by the dependence  

 

        ���� = − � !/ �� + 
� �            (13) 

 

At the end of a circular arc, for � = �� + �� ,  angle  ���� + ��� = �!01!�/ �� + 
� �� . 

 

The diagram showing the location of a circular arc is shown in Figure 2. We take the 

length of the circular arc l_ (2) (measured along the arc itself). Its radius is �� measured on the 

arc itself. Its radius is ��, and slope of the tangent at the starting point 5� = tan �����. We 

determine the coordinates of the centre of the arc point 8��9 , �9� . 

 

 �9 = ���1� − :
;�0:�

��          (14) 

 

 �9 = ���1� + �
;�0:�

��       (15) 
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2. Diagram showing the location of a circular arc 

 

The equation of a circular arc is as follows: 

 ���� = �9 − <��� − ��9 − ���=�    , � ∈ 〈���1� , ���1 + �2�〉   (16) 

 

The return angle of tangents is ∝ = #��� . The angle of tangent of the arc at its end, i.e. for ���1 + �2�, is  ���� + ��� = ����� + ∝ , where is the value of the tangent slope at this point. 

 

 5� = tan<���1� + ∝=        (17) 

 

To determine the coordinates of the end of a circular arc, you must first determine the 

coordinates of the point M  (Fig. 2); it is finally obtained 

 

 ���1 + �2� = ���1� + tan ∝� ? �
;�0:�

+ �
;�0:��

@ ��            (16) 

               ���1 + �2� = ���1� + tan ∝� ? :
;�0:�

+ :�
;�0:��

@ ��      (17) 

 

Solving the problem for the end zone 

We accept boundary conditions 

 

        
��� + ��� = 
�   
��� + �� + ��� = 
� 

        (18) 

        
′��� + ��� = 0    
A��� + �� + ��� =  !�"!�#�    

 

and differential equation (5). We assume that the numeric factor  ≥ 0. The solution to the 

differential problem (5), (18) is as follows: 
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��� = B� + B�� + B��� + B$��       (19) 

 

where 

 

  B� = 
� + C�"&#�� ��� + ���� + �"&#�� ��� + ����D �
� − 
��  

  

  B� = − C���"&�#�� ��� + ��� + ���"&�#�� ��� + ����D �
� − 
��  
  

 B� = C�"&#�� + ���"&�#�� ��� + ���D �
� − 
��  

  

 B$ = − �"&#�� �
� − 
��  

 

For C = 1.5 the values of these coefficients are 

 

 B� = 
� + C �� #�� ��� + ���� + �� #�� ��� + ����D �
� − 
��  

  

 B� = − C �#�� ��� + ��� + �� #�� ��� + ����D �
� − 
��  
  

 B� = C �� #�� + �� #�� ��� + ���D �
� − 
��  

  

 B$ = − �� #�� �
� − 
��  

  

and the equation of the tangent inclination angle has the form 

 ���� = B3 + B�� + �� B��� + �� B��� + �$ B$�$     (20) 

  

where B3 = ��!"!��/ �� − C �� #�� ��� + ���� + �/ #�� ��� + ���$D �
� − 
��  

 

Figures 3 and 4 show curvature graphs and tangent slope angles for values   = 1.5 on 

the length of turnout of the crossroads having nonlinear curvature sections, and numerical 

characteristics corresponding to the turnout from Figure 1. 

Parametric equations ���� i ���� for this zone, after the assumption  = 1.5, is 

determined using the procedure outlined in [3]. We save the function ���� in the form 

 

     ���� = 2�� + 2��� + 2���� + 2�$�� + 2�1�$   

 

where  

  2�� = ��!"!��/ �� − C �� #�� ��� + ���� + �/ #�� ��� + ���$D �
� − 
��  

 

 2�� = B� = 
� + C �� #�� ��� + ���� + �� #�� ��� + ����D �
� − 
��  
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 2�� = �� B� = − C �� #�� ��� + ��� + �$ #�� ��� + ����D �
� − 
��   
 

 2�$ = �� B� = C �� #�� + �� #�� ��� + ���D �
� − 
��   

 

 2�1 = �$ B$ = − �/ #�� �
� − 
��  

 

 

 
3. Curvature diagram with non-linear curvature segments for  = 1.5 on the length of turnout 

of the turnout (��= 16000 m, ��= 55 m, ��= 6000 m, ��= 60 m, ��= 65 m, ��= 25000m) 

 

 

 
4. Graph of the tangent angle for  = 1.5  on the length of turnout of the turnout from Figure 

7 (��= 16000 m, ��= 55 m, ��= 6000 m, ��= 60 m, ��= 65 m, ��= 25000 m) 

 

After expanding the function cos ���� and sin ���� in the Taylor series using the Maxim 

program [6] and integration we get the following parametric equations: 
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 ���� = �� �3� + cos �3� � − �3� − �� �2�� + 4 2�1 �3� + 3 2�$ �3�  + 2 2�� �3� sin �3 �� − �3��  

(21) 

 

 ���� = ���0� + sin �0 �� − �0� + ��  F232 + 4 235 �03 + 3 234 �02  + 2 233 �0G cos �0 �� − �0�� 

 − �(  F2322 + 8 232 235 �03  + 6 232  234 �02  + 4 232 233 �0  + 16 2352 �06 + 24 234 235 �05  +16 233 235 �04  + 9 2342 �04 + 12 233 234 �03  + 4 2332 �02G sin �0 �� − �0��  

 − ��$  F2323 + 12 2322 235 �03 + 9 2322 234 �02 + 6 2322 233 �0 + 48 2322352 �06 + 72 232234235�05 +48 232233235�04 + 27 2322342 �04 + 36 232233234�03 + 12 2322332 �02 + 64 2353 �09 + 144 2342352 �08 +96 2332352 �07 + 108 2342 235�07 + 144 233234225�06 + 27 2343 �06 + 48 2332 235�05 + 54 2332342 �05 +36 2332 234�04 + 8 2333 �03 − 24 235 �0 − 6 234G cos �0 �� − �0�$            (22) 

 

where 

 

   �3 = �� + ��          �0 = ���1 + �2�    

  

Analysis of selected variants 

Variants considered in the work arose as a result of the introduction of three zones of 

curvature distribution along the turnout path of the crossover. In the central zone the curvature 

is constant, i.e. a circular arc is used here. In contrast, in the extreme zones curvature is 

variable, as is the case in the transition curve. The course of the curvature can be linear and 

the problem solution is then unambiguous [4] or non-linear, where different solutions are 

possible. This paper proposes a polynomial solution for the latter case. Of course, for both the 

linear and non-linear curves segments, various detailed cases are possible, related to the 

curvature values and the lengths of individual zones. 

The theoretical relations given in this work and in [4] are of universal nature, i.e. they 

allow any curvature values to be accepted at the beginning and at the end of the geometrical 

system. Zero values can be of particular interest here. The general cases appearing in Figures 

1 and 2 and the corresponding cases with zero curvature on both sides of the system, which 

were created after the admission, were subjected to a comparative analysis. 
� = 
� = 0 . 

 Turnout I (with sections of linear curvature) 

      ��= 16000 m, ��= 55 m, ��= 6000 m, ��= 60 m, ��= 65 m, ��= 25000 m 

 Turnout II (with sections of linear curvature) ��= ∞, ��= 55 m, ��= 6000 m, ��= 60 m, ��= 65 m, ��= ∞ 

 Turnout III (with sections of nonlinear curvature) 

      ��= 16000 m, ��= 55 m, ��= 6000 m, ��= 60 m, ��= 65 m, ��= 25000 m 

 Turnout IV (with sections of nonlinear curvature) ��= ∞, ��= 55 m, ��= 6000 m, ��= 60 m, ��= 65 m, ��= ∞ 

The results of calculations of characteristic values of the return path of the mentioned 

turnouts are presented in the Table 1. Compound curvature plots on the length are shown in 

Figure 5. 
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Tab. 1. List of characteristic values for compared turnouts 

 � = �� � = �� + �� � = �� + �� + �� 

 ���� 

[m] 

���� 

[m] 

L��� 

[rad] 

���� 

[m] 

���� 

[m] 

L��� 

[rad] 

���� 

[m] 

���� 

[m] 

L��� 

[rad] 

I 54,999

3 

0,147 0,00630 114,995 0,825 0,01630 179,982 2,148 0,02302 

II 54,999
9 

0,084 0,00458 114,997 0,659 0,01458 179,986 1,842 0,02000 

III 54,999

6 

0,165 0,00702 114,995 0,887 0,01702 179,979 2,291 0,02476 

IV 54,999
7 

0,113 0,00573 114,996 0,757 0,01573 179,983 2,061 0,02250 

 

 
5. Curve diagrams on the length of the return path of the compared turnouts 

(��= 16000 m / ∞ , ��= 55 m, ��= 6000 m, ��= 60 m, ��= 65 m, ��= 25000 m / ∞) 

 

Currently, the most common type of crossover with segments of variable linear curvature 

is turnout I. The linear curvature along the entire length of the extreme zones in the 2nd 

junction is the most deviating from the other cases. Turnout III is the closest to turnout I, and 

its main advantage is the lack of bends in the curvature diagram at the beginning and end of 

the circular arc. Particularly noteworthy is the turnout IV. In addition to the gentle transition 

in the extreme regions of the circular arc, it is characterized by zero curvature at both ends of 

the geometrical system. Perhaps this solution should replace the use of "clotoid sections". The 

dynamic analysis presented in paper [5] indicates the benefits resulting from its use. However, 

this requires further analysis, but there is no doubt that the method presented in this work 

allows for creating many different solutions. Figure 6 shows charts of horizontal ordinates 

over the length of the analysed turnouts. 
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6. Plots of horizontal ordinates on the length of the return path of the compared turnouts (��= 

16000 m / ∞ , ��= 55 m, ��= 6000 m, ��= 60 m, ��= 65 m, ��= 25000 m / ∞) 
 

Summary 

In the reverse track of a typical railway junction, called ordinary, a single circular arc is used 

without transients. As a result, there are places of rapid, abrupt change in the ordinates of the 

curvature diagram at the beginning and end of the turnout. In recent years, in some countries, 

aiming at smoothing the curvature graph in these regions, the so-called "Clothoid sections" on 

both sides of a circular arc on which the curvature changes in a linear manner.  

In the case of switches with variable curvature due to the individual nature of their design 

it is possible to adjust the given turnout to local requirements. This is particularly important in 

parallel tracks connections, where the main issue is maintaining the proper track gauge. The 

decisive role here is played by the final elevation of the reverse path, which can be shaped in 

switches with variable curvature by manipulating the slant and the crossover radius. 

Numerical integration of functions cos ����  i sin ����  is commonly used for 

determining coordinates ���� i ���� in switches with variable curvature. Each geometric case 

must therefore be considered separately and the introduction of any generalization is very 

difficult here. This work presents an analytical method of solving the problem, which is 

general and full. Appropriate equations for the case of proposed sections of non-linear 

curvature have been determined. In the comparative analysis of selected variants, the 

dependencies for segments of linear curvature presented in [4] were also used. 

The theoretical relations are of universal nature, i.e. they allow any curvature values to be 

accepted at the beginning and at the end of the geometrical system. Zero values can be of 

particular interest here. A comparative analysis of selected variants indicated a favourable 

course of curvature in the non-linear variant, which in addition to the smooth transition in the 

extreme regions of the circular arc is characterized by zero curvature at both ends of the 

geometric system. Perhaps this solution should replace the use of the so-called "Clotoid 

sections". 
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