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Abstract

In this paper we introduce a new homotopy invariant – the cohomological span of LS-Conley index. 
We prove the theorems on the existence of critical points for a class of strongly indefinite functionals with 
the gradient of the form Lx +K(x), where L is bounded linear and K is completely continuous. We give 
examples of Hamiltonian systems for which our methods give better results than the Morse inequalities. 
We also give a formula for the LS-index of an isolated critical point, which is an extension of the classical 
Dancer theorem for the case of LS-index.
© 2015 Elsevier Inc. All rights reserved.
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1. Introduction

The purpose of this paper is to present a new homotopy invariant, the cohomological span 
of LS-Conley index, and to show how this invariant can be applied to obtain existence and 
multiplicity results for strongly indefinite functionals.

The existence problem for solutions of differential equation can be restated in the terms of 
existence problems for critical points of functionals defined on Hilbert spaces. This approach 
leads to consider strongly indefinite functionals, i.e. both stable and unstable manifolds at a 
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critical point are of infinite dimension. There are many methods developed to deal with such a 
functionals including both variational and topological methods (e.g. [1–7]).

In this paper we are going to work with LS-Conley index – the extension of classical Conley 
index for Hilbert spaces presented by K. Gęba, M. Izydorek and A. Pruszko in [8]. Further 
development of this theory was given by Izydorek in [9]. He defined the cohomology groups of 
LS-index and gave the examples how this theory can be applied for the existence problems for 
periodic solution of Hamiltonian systems. Applications to PDE were given later by M. Izydorek 
and K. Rybakowski in [10].

In 1984, E. Dancer proved in [11] that if p is a critical point of F : Rn →R then the classical 
Conley index of {p} has the homotopy type of a k-fold suspension of some space connected with 
null space of ∇2F(p). In this paper we prove a similar statement for LS-index (Theorem 3.8). 
This is a crucial observation for further results when we deal with cohomological span.

Let X be an isolating neighborhood. The cohomological span of LS-index hLS(X) is defined 
to be a pair

� (hLS(X))= (γ (hLS(X)), γ (hLS(X))),

where γ (hLS(X)) and γ (hLS(X)) stand for the numbers of the first and the last nontrivial coho-
mology groups of LS-index hLS(X). In some cases, if InvX is an isolated critical point then the 
difference |� (X)| = γ (hLS(X))− γ (hLS(X)) can be globally bounded by some constant M . 
Hence, if for some set X we have |� (X)| ≥M then X does not contain only critical point (see 
Corollary 4.8). This observation, combined with examining certain long exact sequences, gives
us the existence results. Given examples show that in some situations our theory allows to find 
more critical points than another widely-applied method, i.e. examining Morse inequalities.

To be more precise, assume that S is an isolated invariant set and S1 ⊂ S is an isolated critical 
point. Suppose that Morse polynomials of S1 and S are P(t, S1) = t0 + t1 and P(t, S) = tm, 
m ≥M . In this case, the Morse equation

t0 + t1 = tm + (1+ t)Q(t)

is not satisfied. Therefore, there exists at least one critical point in S, say p, different to S1. 
Letting P(t, {p}) = tm and Q(t) = t0 we obtain equality t0+ t1+ tm = tm+ (1 + t)Q(t), which 
is true for all t .

On the other hand we have |� (S1)| = 2, |� (S)| = 1, γ (S)− γ (S1)=m − 1 and

|� (S)| + |� (S1)| + γ (S)− γ (S1)− 2=m≥M.

Theorem 4.16 follows that S \ S1 contains at least two critical points. This result cannot be 
obtained by examining Morse equation (cf. Section 5).

This paper is organized as follows. In Section 2 we recall basic definitions and facts about 
the LS-Conley index theory. We refer the reader to [8,9] for more details. In the next section 
we prove the formula for LS-index of an isolated critical point. In Section 4 we introduce the 
cohomological span and next we prove the theorems concerning the existence of critical points. 
Finally, in Section 5 we give simple examples to show how our theory works when asymptotically 
linear Hamiltonian systems are considered.
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2. LS-Conley index

To make this paper self-contained we briefly recall basic facts from LS-Conley index theory. 
The main references for this section are [8,9].

2.1. The LS-index

Let E be a real Hilbert space and L: E→E be a linear bounded operator.

Definition 2.1. We say that a pair (E, L) is a base pair if

(E1) L gives a splitting E =⊕∞
n=0 Ek onto finite dimensional, mutually orthogonal L-invariant 

subspaces,
(E2) σ0(L) = σ(L) ∩ iR is isolated in σ(L),
(E3) L(E0) ⊂E0, E0 is a subspace corresponding to σ0(L), and L(Ek) =Ek for all k > 0.

It follows easily that if (E, L) is a base pair then L is a Fredholm map of index 0. Let En =⊕n
k=0 Ek . We will denote by P n (resp. Pn) the orthogonal projection from E onto En (resp. En).
Let � be a compact space. A continuous map f : E ×� → E is completely continuous if it 

maps bounded sets to relatively compact sets.

Definition 2.2. A family of flows η: R × E ×� → E is a family of LS-flows if there exists a 
completely continuous map U : R ×E ×� →E such that η(t, x, λ) = etLx +U(t, xλ).

Definition 2.3. A family of maps f : E ×� → E is a family of LS-fields if there exists a com-
pletely continuous and locally Lipschitz continuous map K: E × � → E such that f (x, λ) =
Lx +K(x, λ).

If � = {λ0} then we drop � out from notation and we call η an LS-flow and f an LS-field. 
If η: R ×E ×� →E is a family of LS-flows and X ⊂E then we define

Inv(X×�,η)= {(x,λ) ∈X×�:η(t, x, λ) ∈X, t ∈R} .
The set Inv(X×�, η) is the maximal η-invariant subset of X.

Theorem 2.4. (See 2.3, [8].) Let η be a family of LS-flows. If X ⊂E is closed and bounded then 
S = Inv(X×�) is a compact subset of X×�.

Let f : E→E be a vector field. We say that f generates a (local) flow η if

η̇=−f ◦ η, η(0, x)= x.

We say that an LS-field f is subquadratic if there exist a, b > 0 such that

|〈K(x), x〉| ≤ a‖x‖2 + b, for all x ∈E.

Theorem 2.5. (See 2.6, [8].) If f is a subquadratic LS-field then f generates an LS-flow.
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Definition 2.6. We say that a closed and bounded subset X⊂E is an isolating neighborhood for 
η if Inv(X, η) ⊂ int(X).

To simplify notation we write Inv(X, f ) or Inv(X) instead of Inv(X, η). Let ν: N ∪ {0} →
N ∪ {0} be a fixed map and define ρ: N ∪ {0} →N ∪ {0} by setting

ρ(0)= 0 and ρ(n)=
n−1∑
i=0

ν(i), n≥ 1.

Let {En}∞n=n(E)
be a sequence of compact pointed spaces and let 

{
εn:Sν(n)En → En+1

}∞
n=n(E)

be 
a sequence of maps.

Definition 2.7. We say that a pair E =
(
{En}∞n=n(E)

, {εn}∞n=n(E)

)
is a spectrum if there exists 

n0 ≥ n(E) such that εn is a homotopy equivalence for all n ≥ n0.

One can define a notion of maps of spectra, homotopy of spectra, homotopy type of spectra,
etc. For fixed ν we denote by Spec(ν) the category of spectra. We refer the reader to [8,9] for 
more details. In order to define the homotopy type [E] of spectra E ∈ Spec(ν) one only needs 
a sequence {En} such that Sν(n)En � En+1 for sufficiently large n. The homotopy type [E] is 
uniquely determined by {En}.

Given two spectra E , E ′ ∈ Spec(ν) their wedge E ∨ E ′ is defined to be Ew ∈ Spec(ν) such that 
Ew

n = En ∨ E ′n and

εw
n :Sν(n)(En ∨ E ′n)→ Sν(n)En ∨ Sν(n)E ′n → En+1 ∨ E ′n+1 = Ew

n+1.

For E ∈ Spec(ν) and E ′ ∈ Spec(μ) we define smash product E ∧ E ′ to be E s ∈ Spec(ν + μ)

such that E s
n = En ∧ E ′n and

εs
n:Sν(n)+μ(n)(En ∧ E ′n)→ Sν(n)En ∧ Sμ(n)E ′n → En+1 ∧ E ′n+1 = E s

n+1.

Let O = ({On}∞n=0, {on}∞n=0

)
be a spectrum such that On consists only of the base point, 

on maps the base point into the base point. We call O the trivial spectrum.
The spectrum E has the homotopy type of O if En is homotopy equivalent to one-point space 

for n sufficiently large. Obviously, the trivial spectrum is an object of Spec(ν) for arbitrary ν.

Definition 2.8. Let ν0(n) = 0. The spectrum E is an object of Spec(ν0), if there exists n0 ≥ n(E)

such that En+1 � En provided n ≥ n0.

Fix k ∈ Z. Assume that there exists n ∈ N ∪ {0} such that k + ρ(n) ≥ 0. Let n(Sk) be the 
smallest number for which the above inequality holds. Define

Sk =
(
{Sk+ρ(n)}∞

n=n(Sk)
, {σk

n }∞n=n(Sk)

)
,

where σk
n = idSk+ρ(n+1) .

http://mostwiedzy.pl
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Definition 2.9. We call Sk the k-dimensional sphere in the category Spec(ν).

If k ≥ 0 then n(Sk) = 0. Hence, if k ≥ 0 then Sk is an object of Spec(ν) for arbitrary ν. Let 
E ∈ Spec(ν). Note that

[E] = [Sk] ⇐⇒ ∃n0≥max{n(E),n(Sk)}∀n≥n0En � Sk+ρ(n)

If E ∈ Spec(ν) and S1 ∈ Spec(ν0) then the spectrum S1 ∧ E ∈ Spec(ν) has a homotopy type 
of the suspension SE introduced in [8].

Let m−(A) denote the Morse index of a linear map A: E→E, i.e. the maximal dimension of 
a subspace of E on which 〈Ax, x〉 is negative definite.

Set ν(n) = dimE−n+1 =m−(L|En+1). Let f : E→E be an LS-field. For simplicity we assume 
that f is globally subquadratic. Let η denote the LS-flow generated by f and let X ⊂ E be an 
isolating neighborhood for η. Define

fn:En →En, fn(x)= Lx + P nK(x)

Let ηn be the flow induced by fn.

Lemma 2.10. (See 4.1, [8].) There exists n0 ∈ N ∪ {0} such that if n ≥ n0 then Xn =X ∩En is 
an isolating neighborhood for the flow ηn.

It follows that there exists an index pair (Y n, Zn) in Xn and the (classical) Conley index 
of Inv(Xn, ηn) is the homotopy type of the pointed space Yn/Zn. The sequence {En}∞n=n0

=
{Yn/Zn}∞n=n0

uniquely determines the homotopy type of spectrum E .

Definition 2.11. Let η be an LS-flow generated by an LS-field f and let X ⊂ E be an isolated 
neighborhood for η. Define hLS(X, η) = [E]. We call hLS(X, η) the LS-Conley index of X with 
respect to η.

Note that h(Xn, ηn) = [Yn/Zn]. The following theorem gives the basic properties of the 
LS-index.

Theorem 2.12. (See 4.4, 4.5, [8].)

1. (nontriviality) Let η be an LS-flow and X ⊂ E be an isolating neighborhood for η. If 
hLS(X, η) �= [O] then Inv(X, η) �= ∅.

2. (continuation) Let � be a compact, connected and locally contractible metric space. Assume 
that η: R ×E ×� → E is a family of LS-flows. Let X be an isolating neighborhood for a 
flow ηλ = η(·, ·, λ) for some λ ∈�. Then there is a compact neighborhood Uλ ⊂�, λ ∈Uλ

such that

hLS(X,ημ)= hLS(X,ην), for all μ,ν ∈Uλ.

If E is finite dimensional and L ≡ 0 then (E, L) is a base pair and every locally Lipschitz map 
f : E→E is an LS-field. In this case an LS-index is represented by a spectrum in Spec(ν0) and 
hLS(X, f ) is equal to h(X, f ), the classical Conley index.
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By abuse of notation, we write hLS(Inv(X), f ) instead of hLS(X, η), provided η is the flow 
generated by the LS-field f and X is an isolating neighborhood for η.

2.2. Cohomological LS-Conley index

The main reference for this section is [9]. Throughout and subsequently Ȟ denotes the (re-

duced) Čech cohomology with coefficients in Z. Let E =
(
{En}∞n=n(E)

, {εn}∞n=n(E)

)
be a spectrum 

in Spec(ν). For a fixed q ∈ Z consider a sequence of cohomology groups

Ȟ q+ρ(n)(En), n≥ n(E).

Define a sequence of homomorphisms hn

hn: Ȟ q+ρ(n+1)(En+1)
ε
q+ρ(n+1)
n−−−−−→ Ȟ q+ρ(n+1)(Sν(n)En)

(S∗)ν(n)

−−−−→ Ȟ q+ρ(n)(En)

where S∗ denotes the suspension isomorphism.

Definition 2.13. The q-th cohomology group of a spectrum E is defined to be Hq(E) =
lim←−{Ȟ

q+ρ(n)(En), hn}.

Since En+1 � Sν(n)En for sufficiently large n, we see that hn: Ȟ q+ρ(n+1)(En+1)→Ȟ q+ρ(n)(En)

is an isomorphism. The sequence of groups Ȟ q+ρ(n)(En) stabilizes and there is n0 ∈N such that 
Hq(E) � Ȟ q+ρ(n)(En) for all n ≥ n0. Notice that cohomology groups of E may be nonzero for 
both positive and negative integers (see [9]).

We say that the spectrum E is of finite type if H ∗(E) is finitely generated and almost all groups 
are trivial.

Clearly, for the trivial spectrum O we have Hq(O) = 0, for all q ∈ Z. If Sk is the 
k-dimensional sphere in Spec(ν) then

Hq(Sk)� Ȟ q+ρ(n)(Sk
n)� Ȟ q+ρ(n)(Sk+ρ(n)),

for all n ≥ n(Sk). Hence, Hq(Sk) = Z if q = k and Hq(Sk) = 0 if q �= k.

Proposition 2.14. If Sk ∈ Spec(ν) and E0 ∈ Spec(ν0) then Hq(Sk ∧ E0) =Hq−k(E0).

Proof. Let En = Sρ(n) ∧ E0,n. Then E = {En} ∈ Spec(ν). Moreover Hq(E) � Ȟ q+ρ(n)(Sρ(n) ∧
E0,n) � Ȟ q(E0,n). For n sufficiently large we have

Hq(Sk ∧ E0)� Ȟ q+ρ(n)(Sk+ρ(n) ∧ E0,n)� Ȟ q+ρ(n)−k(Sρ(n) ∧ E0,n)� Ȟ q−k(E0,n)

and Ȟ q−k(E0,n) �Hq−k(E0). �
For the pair of spectra (E, A) we define the q-th cohomology group Hq(E/A) as an inverse 

limit of the {Ȟ (En/An), γn} and the q-th cohomology group of (E, A) as Hq(E, A) =Hq(E/A). 

http://mostwiedzy.pl
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There is a long exact sequence

. . .
δq−1

−−−−→ Hq(E,A) −−−−→ Hq(E) −−−−→ Hq(A)
δq

−−−−→ . . .

Assume that all groups in the above sequence are of finite rank and trivial for all q less 
than some fixed q0 ∈ Z. Denote by rq(E) the rank of Hq(E) and by dq(E, A) the rank of 
im{δq : Hq(A) →Hq+1(E, A)}. Let

P(t,E)=
∑
q∈Z

rq(E)tq ,

Q(t,E,A)=
∑
q∈Z

dq(E,A)tq .

Lemma 2.15. (See 3.5, [9].)

P(t,E/A)+ P(t,A)= P(t,E)+ (1+ t)Q(t,E,A)

Since the P(t, E) and Q(t, E, A) are well defined for the homotopy type of spectra, we can 
substitute E, A, E/A by its homotopy type (see [9]).

2.3. Morse inequalities

Let η be an LS-flow generated by an LS-field f and assume that X ⊂ E is an isolating 
neighborhood for η. Set S = Inv(X, η).

Definition 2.16. The finite collection {M(π): π ∈ } of compact invariant sets in S is said to 
be a Morse decomposition of S if there exists an ordering π1, . . . , πn of  such that for every 
x ∈ S \⋃

π∈ M(π) there exists indices 1 ≤ i < j ≤ n such that ω(x) ∈M(πi), α(x) ∈M(πj ). 
The sets M(πi) are called Morse sets.

We allow the situation that a Morse decomposition consists of finite number of empty sets. The 
index of M(π) = ∅ can appear in any place in the ordering π1, . . . , πn. We adopt the convention 
that the empty set is an isolating neighborhood of the empty set and the LS-index of the empty 
set is a homotopy type of the trivial spectrum.

Theorem 2.17. (See 4.2, [9].) Let {M(π): π ∈ } be a Morse decomposition of S. There are 
closed subsets X1, . . . , Xn =X =X∗0, . . . , X∗n−1 of X such that:

1. Xi , X∗j are isolating neighborhoods for η,
2. Inv(Xi ∩X∗i−1, η) =M(πi), i = 1, . . . , n.

If one of the sets M(πi), M(πi+1) is empty, then we can assume that Xi =Xi+1, X∗i−1 =X∗i
and Xi ∩X∗i−1 = ∅.

Let (A, A∗) be an attractor–repeler pair in S. Since A and A∗ are isolated and invariant, there 
are isolating neighborhoods XA and X∗ for η such that A = Inv(XA, η) and A∗ = Inv(X∗ , η).
A A
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Theorem 2.18. (See 4.3, [9].) There exist spectra EA, EA∗ and ES representing LS-Conley in-
dices of XA, X∗A and XS such that the sequence

. . .
δq−1

−−−−→ Hq(EA∗) −−−−→ Hq(ES) −−−−→ Hq(EA)
δq

−−−−→ . . .

is exact.

From the above theorem and Lemma 2.15 we obtain:

P (t, [EA∗ ])+ P (t, [EA])= P (t, [ES])+ (1+ t)Q(t).

Let {M(πi): π = 1 . . . n} be a Morse decomposition of S. Denote by [EM(πi)] the LS-index of 
Inv(Xi ∩X∗i−1). From 2.17 we have an attractor–repeler pair

(
Inv(Xi−1, η), Inv(Xi ∩X∗i−1, η)

)

in Inv(Xi, η) and

P
(
t,

[
EXi−1

])+ P
(
t,

[
EM(πi)

])= P
(
t,

[
EXi

])+ (1+ t)Qi(t).

Adding these equations we obtain the following theorem.

Theorem 2.19. (See Morse inequalities, 4.7, [9].) Under the above assumptions,

n∑
i=1

P
(
t,

[
EM(πi)

])= P
(
t,

[
ES

])+ (1+ t)Q(t),

where Q(t) =∑n
i=2 Qi(t).

Remark 2.20. Recently, an alternative approach of computing cohomological Conley index was 
introduced by M. Starostka in [12], where author defines an index pair directly in a Hilbert 
space.

3. Dancer theorem for LS-index

3.1. E-Morse index

Let (E, L) be a base pair. Set ν(n) = dimE−n+1 and define ρ(n) as in the previous section. 
Assume that A: E→E is a linear and self-adjoint LS-field. Set X1 = imA and X2 = kerA. We 
will denote by Q the orthogonal projection from E onto X2, and by T n the orthogonal projection 
from X1 onto X1∩En, n ∈N ∪{0}. Since A is Fredholm, E =X1⊕X2. For x ∈E we will write 
x = x1 + x2 where x1 ∈X1, x2 ∈X2.

The following lemma is due to W. Kryszewski and A. Szulkin. For the proof we refer the 
reader to [13] (pp. 3198–3200).
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Lemma 3.1.

1. There exists nB ∈ N ∪ {0} such that for all n ≥ nB , P n|X2
: X2 → P nX2 is a linear isomor-

phism.
2. For all n ∈ N ∪ {0} the spaces X1 ∩ En and P nX2 are orthogonal. Moreover, En = (X1 ∩

En) ⊕ P nX2.
3. For all n ∈ N ∪ {0} the spaces X1 ∩ En and PnX2 are orthogonal. Moreover, En = (X1 ∩

En) ⊕ PnX2.
4. P n|X1

− T n → 0 in L(X1, E).
5. There exist c > 0 and n0 > 0 such that ‖T nAx1‖ ≥ c‖x1‖, for all n ≥ n0 and x1 ∈X1 ∩En.

Definition 3.2. Bounded linear operator A: E→E is said to be hyperbolic if

inf{|x − λ| : x ∈ iR, λ ∈ σ(A)}> 0.

The set of all hyperbolic operators is an open subset of the space of linear bounded operators 
(see [14]).

We denote by i0(A) the nullity of A, i.e. the dimension of kerA.

Definition 3.3. The E-Morse index of linear self-adjoint LS-field A is defined to be

i−(A)= lim
n→∞

(
m−(T nA|X1∩En)− ρ(n)

)
.

Definitions of i−(A) is similar to definition of the M−
E given by Kryszewski and Szulkin. In 

case of self-adjoint LS-fields these indexes are equal (see formula (5.1) in [13] and following 
remarks).

Lemma 3.4.

∃nA∈N∪{0}∀n≥nA
m−(T n+1A|X1∩En+1)=m−(T nA|X1∩En)+ ν(n)

Proof. The idea of the proof is adapted from [13]. Let K = A − L. Since A is an LS-field, 
K is compact. Note that P n+1X2 = P nX2 ⊕ Pn+1X2. Hence dimPn+1X2 = dimP n+1X2 −
dimP nX2 = 0, n ≥ nB by Lemma 3.1. This gives En+1 = (X1 ∩En+1)⊕Pn+1X2 =X1 ∩En+1
and

X1 ∩En+1 = (X1 ∩En)⊕En+1.

Set y + z ∈ (X1 ∩En) ⊕En+1. For n ≥ nB define Dn: [0, 1] ×X1 ∩En+1 →X1 ∩En+1 by:

Dn
t (y + z)= (1− t)T n+1A(y + z)+ t (T nAy +Lz).

For n ≥ nB , t ∈ [0, 1] and y + z ∈X1 ∩En+1, ‖y + z‖ ≤ 1, we get:
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Dn
0 (y + z)−Dn

t (y + z)

= t (T n+1A(y + z)− T nAy −Lz)

= t
(
−(P n+1 − T n+1)A(y + z)+ (P n − T n)Ay + P n+1A(y + z)− P nAy −Lz

)
.

Since y, z ∈En+1, L(En) =En and z= Pn+1z,

P n+1A(y + z)− P nAy −Lz= P n+1L(y + z)+ P n+1K(y + z)− P nLy − P nKy −Lz

= P n+1K(y + z)− P nKy = Pn+1Ky + P n+1KPn+1z.

It follows that

‖Dn
0 (y + z)−Dn

t (y + z)‖ ≤ ‖P n+1 − T n+1‖‖A‖ + ‖P n − T n‖‖A‖ + ‖Pn+1K‖ + ‖KPn+1‖.
Note that ‖Pn+1K‖ → 0, ‖KPn+1‖ → 0 and P n − T n → 0 uniformly on X1. Finally,

‖Dn
0 −Dn

t ‖→ 0, n→∞.

From Lemma 3.1 it follows that, for large n, the operator Dn
0 = T n+1A|X1∩En+1 is hyperbolic. 

Since hyperbolic operators form an open set, there exists nA ∈ N ∪ {0} such that, for all n ≥ nA

and t ∈ [0, 1] the operator Dn
t is hyperbolic. This shows that m−(Dn

t ) is constant. Thus

m−(T n+1A|X1∩En+1)=m−(T nA|X1∩En +L|En+1)=m−(T nA|X1∩En)+ ν(n),

which completes the proof. �
The next theorem follows directly from Lemma 3.4.

Theorem 3.5. The E-Morse index i−(A) is finite. Moreover,

i−(A)=m−(T nA|X1∩En)− ρ(n), for all n≥ nA.

The index i−(A) can take any integer values. Let {en} be an arbitrary basis of E. Set

L(e2n−1)=−e2n−1, L(e2n)= e2n

and set En to be the space spanned by e2n−1, e2n. Note that (E, L) is a base pair and ν(n) = 1, 
ρ(n) = n.

1. If A1 = L then i0(A1) = 0, i−(A1) = 0.
2. If A2 = L + idEn then i0(A2) = 1

2 dimEn, i−(A2) =−n.
3. If A3 = L ± 2idEn then i0(A3) = 0, i−(A3) =∓n.

Observe that {0} ⊂ E is an isolated invariant set for the flows generated by Aj , j = 1, 2, 3. 
Moreover hLS({0}, Aj) has the homotopy type of i−(Aj )-dimensional sphere in the category 
Spec(ν).
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3.2. LS-index of an isolated critical point

Let �: E→R. We assume that

(D1) � ∈ C2(E, R),
(D2) ∇�(x) = Lx +K(x), where K ∈C1(E, E) is a completely continuous function,
(D3) p ∈E is an isolated critical point of �.

Without loss of generality, we can assume p= 0. The Hessian A =∇2�(0) = L +DK(0) is 
a self-adjoint and Fredholm map as a sum of Fredholm and compact map. Since A is Fredholm, 
E =X1 ⊕X2.

Suppose i0(A) �= 0. According to the splitting lemma (Theorem 8.3, [15]), there exist r > 0, 
a local homeomorphism h: B(0, r) → E and a map u: B(0, r) ∩ X2 → X1, u ∈ C1 such that 
h(0) = 0, u(0) = 0, Du(0) = 0 and

�(h(x))= 1

2
〈Ax1, x1〉 +�(x2 + u(x2)),

where x = x1 + x2 ∈ B(0, r). Moreover, (I −Q)∇�(x2 + u(x2)) = 0, provided ‖x2‖ < r .
Set B(x2) =�(x2 + u(x2)). The map B is C2 and 0 ∈ X2 is an isolated critical point of B . 

Define �: B(0, r) →R by �(x1 + x2) = 1
2 〈Ax1, x1〉 +B(x2). Then

∇�(x)=Ax1 +∇B(x2)= Lx + (−Lx2 +DK(0)x1 +∇B(x2)) ,

where −Lx2+DK(0)x1+∇B(x2) is compact. It follows easily that 0 is an isolated critical point 
of � . Chose r0 < r such that X = B(0, r0) is an isolating neighborhood for the flows generated 
by ∇� and ∇� with {0} = Inv(X, ∇�) = Inv(X, ∇�). We can extend the field ∇� to E by 
setting

∇�(x)= Lx +μ(x) (−Lx2 +DK(0)x1 +∇B(x2)) ,

where μ: E→R is a smooth function, equals 1 on X and vanishing outside B(0, r). Obviously, 
∇� is a subquadratic LS-vector field.

Lemma 3.6.

hLS(X,∇�)= hLS(X,∇�)

Proof. Define H : X× [0, 1] →R by

H(x,λ)= 1

2
〈Ax1, x1〉 + 1

2
λ(2− λ)〈Au(x2), u(x2)〉

+ λG(x2 + u(x2))+ (1− λ)G(x1 + x2 + λu(x2)),

where G(v) = �(v) − 1
2 〈Av, v〉. This family has been introduced by Dancer in [11]. One can 

prove that

http://mostwiedzy.pl


J. Maksymiuk / J. Differential Equations 259 (2015) 5640–5666 5651

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

1. ∇H(x, 0) =∇�(x) and ∇H(x, 1) =∇�(x),
2. ∇H is a continuous family of LS-fields,
3. Inv(X× [0, 1], ∇H) = {0} × [0, 1].

For more details we refer the reader to [13]. Now the conclusion follows from Theorem 2.12. �
Set Y = X ∩X2 ⊂X2. The set Y is an isolating neighborhood for the flow ηB generated by 

∇B . Choose an index pair (NB, LB) in Y .

Definition 3.7. We will denote by B the spectrum in the category Spec(ν0) such that n(B) = 0
and B0 =NB/LB .

The homotopy type of B is independent of the choice of an index pair (NB, LB). Let 

(P n|X2
)∗∇B(z) = P n|X2

∇B
(
(P n|X2

)−1z
)

and let (P n|X2
)∗ηB denote the flow induced by

(P n|X2
)∗∇B(z) on P nX2. Then P n|X2

(Y ) ⊂ P nX2 is an isolated neighborhood for (P n|X2
)∗ηB

and

h
(
P n|X2

(Y ), (P n|X2
)∗ηB

)
= h(Y,ηB),

provided n ≥ nB . If i0(A) = 0 then X2 = {0} and A is an isomorphism. We can set B = 0 and 
B =O. Now, we can formulate the main theorem of this section.

Theorem 3.8. If �: E→R satisfies assumptions (D1)–(D3) then

hLS({p},∇�)=
[
S i−(A) ∧B

]
.

Proof. It is sufficient to prove that hLS(X, ∇�) =
[
S i−(A) ∧B

]
. Let [E] = hLS(X, ∇�), E ∈

Spec(ν). We can assume that X∩En is an isolated neighborhood for the flow generated by ∇� , 
provided n ≥ n(E). Assume that n ≥max{nA, nB, n(E)}.

If i0(A) = 0 then X1 =E, X2 = 0, B = 0 and T n = P n. From Lemmas 3.1 and 3.4 we get

En � Sm−(P nA|En) = Si−(A)+ρ(n).

Thus [E] = [S i−(A)]. Let i0(A) �= 0. It follows from Lemma 3.1 that En = (X1 ∩ En) ⊕ P nX2
and P nX2 �X2. For x1 + P nx2 ∈Xn =X ∩ ((X1 ∩En) ⊕ P nX2) we obtain

∇�n(x1 + P nx2)= P nA(x1 + P nx2)+ P n∇B(Q(x1 + P nx2))

= T nAx1 + (P n|X2
)∗∇B(P nx2)

+ (P n − T n)Ax1 + P nAP nx2 + P n
(∇B(QP nx2)−∇B(x2)

)
.

Again, by Lemma 3.1 sup{‖(P n − T n)Ax1‖: x1 ∈Xn} → 0.
Note that (P n|X2

)−1(X ∩ P nX2) ⊂X2 is compact. Since P n → I uniformly on compact sub-
sets of X2,

sup{‖P nAP nx2‖:P nx2 ∈Xn}→ 0
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and

sup{‖P n
(∇B(QP nx2)−∇B(x2)

)‖:P nx2 ∈Xn}
≤ LB sup{‖QP nx2 − x2‖:P nx2 ∈Xn}→ 0,

where LB is the Lipschitz constant for ∇B . It follows that

sup{‖∇�n(x1 + P nx2)− T nA|X1∩Enx1 − (P n|X2
)∗∇B(P nx2)‖:x1 + P nx2 ∈Xn}→ 0.

For n sufficiently large, X ∩ En is an isolated neighborhood for the flow generated by 
T nA|X1∩En + (P n|X2

)∗∇B and

En � h(Xn,∇�n)= h
(
Xn,T nA|X1∩En + (P n|X2

)∗∇B
)

.

By Lemma 3.1, for sufficiently large n, X ∩X1 ∩ En is an isolated neighborhood for the flow 
generated by T nA|X1∩En . Furthermore,

h(X ∩X1 ∩En,T nA|X1∩En)= [Sm−(T nA|X1∩En )]

From Lemma 3.4 it follows that the sequence {Sm−(T nA|X1∩En )} defines a spectrum in Spec(ν)

and its homotopy type is equal to [S i−(A)]. Note that

h
(
X ∩ P nX2, (P

n|X2
)∗∇B

)
� B0.

Since X1 ∩En and P nX2 are orthogonal,

h
(
Xn,T nA|X1∩En + (P n|X2

)∗∇B
)
� Si−(A)+ρ(n) ∧B0.

Hence hLS(X, ∇�) = [S i−(A) ∧B]. �
4. The cohomological span

Let E ∈ Spec(ν) be a spectrum of finite type.

Definition 4.1. The cohomological span of spectrum E is defined to be a pair

� (E)=
(
γ (E), γ (E)

)
,

where

γ (E)=min{q ∈ Z:Hq(E) �= 0} and γ (E)=max{q ∈ Z:Hq(E) �= 0}.

If all groups Hq(E) are trivial then we set � (E)= ∅.
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Definition 4.2. The length of �(E) �= ∅ is defined to be |� (E)| = γ (E)−γ (E)+1. For � (E)= ∅
we set |� (E)| = 0.

Given two spectra E1, E1 ∈ Spec(ν) such that � (E1), � (E2) �= ∅.

Definition 4.3.

� (E1)≺ � (E2)⇐⇒ γ (E1)≤ γ (E2)∧ γ (E1)≤ γ (E2).

As a special case of the above, we define:

� (E1) < � (E2)⇐⇒ γ (E1)≤ γ (E2)

Definition 4.4. The gap between spans � (E1) ≺ � (E2) is defined to be g(E1, E2) = γ (E2) −
γ (E1).

Suppose that �: E→R satisfies (D1)–(D3) and let the notation be as in the preceding section. 
Recall from Theorem 3.8 that hLS (X,∇�) = [

S i−(A) ∧ B
]
, where B ∈ Spec(ν0). It follows 

easily that

� (hLS(X,∇�))=
{

(i−(A), i−(A)) if i0(A)= 0,

either (i−(A)+ γ (B), i−(A)+ γ (B)) or ∅ if i0(A) > 0.

Moreover, if i0(A) > 0 then |� (hLS(X,∇�))| = |� (B)| and Hq+i−(A)(hLS(X, ∇�)) =
Hq(B), for all q ∈ Z. Note that q /∈ [0, i0(A)] implies Hq(B) = 0. Next proposition is analo-
gous to Theorem 4 in [11].

Proposition 4.5. Assume that p is a degenerate critical point of � and p2 =Qp. Then

� (hLS(X,∇�))=
{

(i−(A), i−(A)) if p2 is a local minimum of B,

(i−(A)+ i0(A), i−(A)+ i0(A)) if p2 is a local maximum of B.

If p2 is neither a maximum nor minimum of B then either � (hLS(X,∇�))= ∅ or

i−(A)+ 1≤ γ (hLS(X,∇�))≤ γ (hLS(X,∇�))≤ i−(A)+ i0(A)− 1.

Corollary 4.6.

1. If i0(A) = 0, 1, 2 then 0 ≤ |� (hLS(X,∇�))| ≤ 1.
2. If i0(A) > 2 then 0 ≤ |� (hLS(X,∇�))| ≤ i0(A) − 1.

Remark 4.7. M. Styborski proved in [14] (with a slightly different assumptions on L) the fol-
lowing formula relating LS-index to the Leray–Schauder degree:

χ(hLS(X,∇�))= degLS(∇�,X,0),
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where χ(hLS(X, ∇�)) =∑
q∈Z(−1)q rank

(
Hq(hLS(X, ∇�))

)
. Clearly, if i0(A) = 0, 1, 2 and 

�(hLS(X, ∇�)) �= ∅ then

rankHq(hLS(X,∇�))= (−1)q degLS(∇�, intX,0),

where q = γ (hLS(X,∇�)) (see also [11]).

Set S = Inv(X, ∇�). In what follows, to simplify the notation, we will write CHq(S) or 
CHq(X) instead of Hq(hLS(X, ∇�)) and � (S) or � (X) instead of � (hLS(X,∇�)).

4.1. Existence of the critical points

Suppose that �: E→R satisfies the following assumptions:

(�1) � ∈ C2(E, R),
(�2) ∇�(x) = Lx +K(x), K ∈C1(E, E) is completely continuous,
(�3) X is an isolating neighborhood for the flow generated by ∇�, S = Inv(X),
(�4) Crit(�) ∩ S is finite,
(�5) there exists a constant M =M(�, S) ≥ 0 such that

M ≥ dim ker∇2�(p), for all p ∈ Crit(�)∩ S,

(�6) there are K ≥ 1 critical points S1, . . . , SK ⊂ S of � and

hLS(S,∇�) �=
∨
K

hLS(Sk,∇�).

By (�4) every critical point of � is isolated. It follows from (�5) that for every critical 
point p ∈ Crit(�) dimension of ker∇2�(p) is finite. Assumption (�6) implies that the set S′ =
S \ (S1 ∪ . . . ∪ SK) is nonempty. Since we deal with the gradient flow, the set S′ contains only 
critical points and connecting orbits. In particular, if S′ is not a one point set and S′ ∩Crit(�) �= ∅
then S′ contains at least two critical points.

Let X̃ be an isolating neighborhood for the flow generated by ∇�. Directly from Corollary 4.6
we get

Lemma 4.8. If Inv(X̃) is one point set then |�(X̃)| ≤ 1, provided M = 0, 1, 2, and |�(X̃)| ≤
M − 1, provided M > 2.

Assume that Crit(�) ∩ S = {p1, . . . , pN }. Clearly, there exists 1 ≤ ik ≤ N such that Sk =
{pik }. Without loss of generality we can assume that �(pi) ≤ �(pj ) for i < j . Note that 
the family 

{{pi}: i = 1 . . .N
}

is a Morse decomposition of S. Define a new family {Mk: k =
1, . . .2K + 1} of Morse sets as follows

M1 =
i1−1⋃
i=1

{pi} ∪
i1−1⋃

0<i<j

C
(
{pj }, {pi}

)
,

M2k = {pi } = Sk,
k

http://mostwiedzy.pl


J. Maksymiuk / J. Differential Equations 259 (2015) 5640–5666 5655

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

M2k+1 =
ik+1−1⋃
i=ik+1

{pi} ∪
ik+1−1⋃
ik<i<j

C
(
{pj }, {pi}

)
,

M2K+1 =
N⋃

i=iK+1

{pi} ∪
N⋃

iK<i<j

C
(
{pj }, {pi}

)
.

Here C({p}, {q}) stands for the set of connecting orbits between {p} and {q}. It is possible 
that all of the sets M1, M3, . . . , M2K+1 are empty. In this case, the only critical points in S are 
S1, . . . , SK . However, if M2k+1 �= ∅ then M2k+1 contains at least one critical point and this point 
is different from known critical points S1, . . . , SK .

It is clear that the family {Mk: k = 1, . . . , 2K + 1} is a Morse decomposition of S. Note that 
if p ∈M2k+1 then �(M2k) ≤�(p) ≤�(M2k+2).

Remark 4.9. The above construction is a special case of more general procedure described in 
Section 2.2 of [16].

Applying Theorem 2.17 to {Mk: k = 1, . . . , 2K + 1} we get isolating neighborhoods
X1, . . . , X2K+1 = X such that for each k = 1, . . . , 2K , pair (Inv(Xk), Mk+1) is an attractor–
repeler pair in Xk+1. Note that M1 = Inv(X1) and S = Inv(X2K+1).

If for some k the set M2k+1 is empty then we have CHq(M2k+1) = 0 and CHq(X2k+1)

� CHq(X2k), for all q ∈ Z. We obtain the long exact sequence

. . . 0 CHq(X2k+1) CHq(X2k) 0 . . .δq−1 δq−1

If the set M2k+1 is non-empty then Theorem 2.18 gives us the long exact sequence for 
(Inv(Xk), Mk+1). Combining the above we get the following diagram of long exact sequences:

. . . CHq(S1) CHq(X2) CHq(M1) . . .

. . . CHq(Sk) CHq(X2k) CHq(X2k−1) . . .

. . . CHq(M2k+1) CHq(X2k+1) CHq(X2k) . . .

. . . CHq(M2K+1) CHq(S) CHq(X2K) . . .

δq−1 δq

δq−1 δq

δq−1 δq

δq−1 δq

(1)

If for some k = 0, . . . , K we have �(M2k+1) �= ∅ then there is q ∈ Z such that
CHq(M2k+1) is nontrivial. Then, the set M2k+1 is non-empty and contains at least one criti-
cal point.

Lemma 4.10. Assume that � (M2k+1) �= ∅ for some 0 ≤ k ≤K .

1. If M = 0, 1, 2 then the set M2k+1 contains at least �{q ∈ Z: CHq(M2k+1) �= 0} critical 
points.

2. If M > 2 and |� (M2k+1)|> M − 1 then the set M2k+1 contains at least two critical points.
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Proof. In the case M > 2 conclusion follows directly from Lemma 4.8. Let M = 0, 1, 2 and let 
CM = �M2k+1 ∩Crit(�) and CH = �{q ∈ Z: CHq(M2k+1) �= 0}. Suppose that CM < CH .

As before, the family {Q1, . . . , QCM
} =M2k+1∩Crit(�) is a Morse decomposition of M2k+1. 

By 2.17 and 2.18, renumbering the points if necessary, we have:

. . . CHq(Q2) CHq(X2) CHq(Q1) . . .

. . . CHq(Qn) CHq(Xn) CHq(Xn−1) . . .

. . . CHq(Qn+1) CHq(Xn+1) CHq(Xn) . . .

. . . CHq(QCM
) CHq(M2k+1) CHq(XCM−1) . . .

δq−1 δq

δq−1 δq

δq−1 δq

δq−1 δq

(2)

If CHq(M2k+1) �= 0 then at least one of the groups CHq(Qn) is nonzero. Otherwise, 
CHq(Xn) = 0, for all n, and

. . . 0 CHq(M2k+1) 0 . . .δq−1 δq

This contradicts the exactness of (2). Therefore, we have at least CH nonzero groups

CHq1(Qn1), . . . ,CHqCH (QnCH
).

Since |� (Qn)| ≤ 1, CM ≥ CH . A contradiction. �
In the case M > 2, when nontrivial cohomology groups of M2k+1 are “far enough”, we can 

obtain better estimations for the number of critical points in M2k+1.

Lemma 4.11. Let M > 2 and 1 ≤ k ≤ K . Suppose that there exists q1 < . . . < qN such that 
qi+1 − qi > M − 1 and CHqi (M2k+1) �= 0. Then the set M2k+1 contains at least N critical 
points.

Proof. If N = 1 then the conclusion follows from the nontriviality of the LS-index of M2k+1. 
Let CM = �M2k+1 ∩ Crit(�). Suppose that N > 1 and CM < N . As before, we have a Morse 
decomposition {P1, . . . , PCM

} = M2k+1 ∩ Crit(�) of M2k+1. Now, one can obtain a diagram 
similar to (2). From the exactness of the rows, every nontrivial group CHqi (M2k+1) gives at 
least one nontrivial group CHqi (Pji

). Since CM < N and qi+1− qi > M − 1, at least one of the 
lengths |� (Pi)| is greater than M − 1. A contradiction. �
Example 4.12. (Cf. p. 230, [17].) Suppose that S1, . . . , SK ⊂ S are all critical points of � such 
that hLS(Sk) =

[∨
ak

Sγk
]

and hLS(S) = [
Sm

]
. Theorem 2.19 implies 

∑K
k=1 akt

γk = tm + (1 +
t)Q(t). Setting t = 1 we get 

∑K
k=1 ak = 1 + 2Q(1). Hence, 

∑K
k=1 ak is odd.

In particular, if K is even and all of the Sk are nondegenerate (in this case ak = 1) then � has 
additionally at least one critical point. Similar result for the classical Conley index was obtained 
in [17] under the assumption that all critical points of � are nondegenerate.
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Remark 4.13. Note that our theory do not require any nondegeneracy conditions. The only as-
sumption on known critical point is to be isolated.

4.2. The case K = 1

We first consider the case K = 1, i.e. there is exactly one known critical point. Since (�6)

reduces to

hLS(S,∇�) �= hLS(S1,∇�),

it follows from properties of LS-index that the set S ′ = S \S1 contains at least one critical point.
Since K = 1, we have three-element Morse decomposition {M1, S1, M3} of S. Thus, the dia-

gram (1) reduces to the two-row diagram below

. . . CHq(S1) CHq(X2) CHq(M1) . . .

. . . CHq(M3) CHq(S) CHq(X2) . . .

δq−1 δq

δq−1 δq
(3)

Lemma 4.14. If for some q ∈ Z, CHq(S) �� CHq(S1), then at least one of the groups 
CHq−1(M1), CHq(M1), CHq(M3), CHq+1(M3) is nontrivial. In particular:

1. if CHq(S1) = 0 then CHq(M1) �= 0 or CHq(M3) �= 0,
2. if CHq(S) = 0 then CHq−1(M1) �= 0 or CHq+1(M3) �= 0.

Proof. If CHq−1(M1) = CHq(M1) = CHq(M3) = CHq+1(M1) = 0 then from exactness of 
the rows in (3) we get CHq(S1) � CHq(X2) and CHq(S) � CHq(X2). A contradiction.

Assume that CHq(S1) = 0. Then CHq(S) �= 0 and CHq(M3) �= 0 or CHq(X2) �= 0. It 
follows that CHq(X2) CHq(M1) is a monomorphism. Hence CHq(M1) �= 0. Similar ar-
guments apply in the case CHq(S) = 0. �

Now we give conditions under which the set S′ contains at least two critical points. We first 
consider M = 0, 1, 2, i.e. |� (S1)| ≤ 1.

Theorem 4.15. Assume that M = 0, 1, 2 and � (S) �= ∅.

1. If � (S1)= ∅ then the set S′ contains at least �{q ∈ Z: CHq(S) �= 0} critical points.
2. If � (S1) �= ∅ then the minimal number of critical points in the set S′ is equal to:

⎧⎨
⎩

�{q ∈ Z:CHq(S) �= 0} + 1 if g(S1, S) > 1 or g(S,S1) > 1,

�{q ∈ Z:CHq(S) �= 0} if g(S1, S)= 1 or g(S,S1)= 1,

�{q ∈ Z:CHq(S) �= 0} − 1 if g(S1, S)= 0 or g(S,S1)= 0.

Proof. Lemma 4.10 shows that the minimal number of critical points in the set S ′ is greater than 
or equal to the number of nonzero groups CHq(M1) and CHq(M3).

If � (S1)= ∅ then our statement follows from Lemma 4.14, since each nonzero cohomology 
group of S gives at least one nonzero cohomology group of M1 or M3.
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Suppose that � (S1) �= ∅. Since M = 0, 1, 2, |� (S1)| = 1 and γ (S1)= γ (S1). We prove only 
the case � (S1)≺ � (S). The other case is similar and the details are left to the reader.

Let g(S1, S) > 1. By Lemma 4.14, if q = γ (S1) then at least one of the groups CHq−1(M1), 
CHq+1(M3) are nonzero. Similarly, if q ∈ [γ (S), γ (S)] and CHq(S) �= 0 then CHq(M1) �= 0
or CHq(M3) �= 0. Since γ (S1) < γ (S)−1, we have at least �{q ∈ Z: CHq(S) �= 0} +1 nonzero 
groups.

The cases g(S1, S) = 1 and g(S1, S) = 0 follow directly by Lemma 4.14. �
If in above theorem we assume that the gap between S1 and S is equal to 0, � (S1) �= ∅ and 

the only nonzero group CHq(S1) is not isomorphic to CHq(S), q = γ (S1), then one can prove 
that the set S′ contains at least �{q ∈ Z: CHq(S) �= 0} critical points. This simple exercise is left 
to the reader.

Now, we turn to the case M > 2. If � (S1)= ∅ and |� (S)|> M − 1 then by Lemma 4.14 we 
have two (non-exclusive) possibilities: the cohomology groups of M1 and M3 are simultaneously 
nonzero or one of the numbers |� (M1)|, |� (M3)| is greater than M − 1.

In the first case, by the non-triviality of LS-index of M1, M3 and in the latter by Lemma 4.10
we have the existence of at least two critical points in the set S ′.

Theorem 4.16. Assume that M > 2, � (S1) �= ∅, � (S) �= ∅ and |� (S)| ≤ M − 1. The set S ′
contains at least two critical points if one of the following cases occurs:

1. � (S) < � (S1) and |� (S)| + |� (S1)| + g(S, S1) − 2 > M − 1;
2. � (S1) < � (S) and |� (S)| + |� (S1)| + g(S1, S) − 2 > M − 1.

Proof. We only prove the first statement. The latter follows by the similar argument. Since 
� (S1) �= � (S), S′ contains at least one critical point. If for some q1, q2 we have CHq1(M1) �= 0
and CHq2(M3) �= 0 then the proof is finished.

Assume that � (S1) < � (S). Since CHγ(S1)(S1) �= 0 = CHγ(S1)(S), Lemma 4.14 shows that 
CHγ(S1)−1(M1) �= 0 or CHγ(S1)+1(M3) �= 0. Similarly, CHγ(S)(S1) = 0 �= CHγ(S)(S) implies 
that CHγ(S)(M3) �= 0 or CHγ(S)(M1) �= 0.

Suppose that CHq(M3) = 0, q ∈ Z. Then γ (M1)≤ γ (S1)− 1 ≤ γ (S)≤ γ (M1). Hence,

|� (M1)| ≥ γ (M1)− γ (M1)+ 1≥ γ (S)− γ (S1)+ 1+ 1

≥ γ (S)− γ (S)+ 1+ γ (S1)− γ (S1)+ 1+−γ (S1)+ γ (S)

≥ |� (S)| + |� (S1)| + g(S1, S) > M + 1.

Therefore, the set M1 ⊂ S′ contains at least two critical points. Similarly, if CHq(M1) = 0, q ∈ Z

then γ (M3)≤ γ (S1)+ 1 ≤ γ (S)≤ γ (M3). Hence,

|� (M3)| ≥ γ (M3)− γ (M3)+ 1≥ γ (S)− γ (S1)− 1+ 1

≥ γ (S)− γ (S)+ 1+ γ (S1)− γ (S1)+ 1+−γ (S1)+ γ (S)− 2

≥ |� (S)| + |� (S1)| + g(S1, S)− 2 > M − 1.

Therefore the set M3 ⊂ S′ contains at least two critical points. �
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If in above theorem we assume that |� (S)| > M − 1 and the gap between S1 and S is “big 
enough” then one can show that the set S′ contains at least three critical points.

Theorem 4.17. Assume that M > 2, � (S1) �= ∅ and |� (S)|> M−1. The set S ′ contains at least 
three critical points if one of the following cases occurs:

1. � (S) < � (S1) and g(S, S1) > M − 1;
2. � (S1) < � (S) and g(S1, S) > M − 1.

Proof. We give the proof only for the case � (S) < � (S1). Since � (S) �= � (S1), there is at least 
one critical point in the set S ′.

By Lemma 4.14 and the assumption g(S, S1) > M − 1 we obtain that M1 or M3 has nonzero 
cohomology groups at dimensions

q ∈ {γ (S1)− 1, γ (S1)+ 1}, q ∈ {γ (S1)− 1, γ (S1)+ 1}, q = γ (S) and q = γ (S).

If both M1 and M3 have nontrivial cohomology groups then the set S ′ contains at least two critical 
points. If the cohomology groups of M1 (resp. M3) are trivial then |� (M3)| (resp. |� (M1)|) is 
greater than M − 1. Hence, by Lemma 4.10, the set S ′ contains at least two critical points.

Assume that CHq(M3) = 0, for all q ∈ Z. Then we have at least three nonzero cohomology 
groups of M1: CHγ(S)(M1), CHγ(S)(M1) and CHq(M1), for some q ∈ {γ (S1)−1, γ (S1)−1}.

Suppose that M1 contains only two critical points, say P1, P2. Then {P1, P2} is a Morse de-
composition of the set M1 and |� (P1)|, |� (P2)| ≤M − 1. We have the exact sequence:

. . . CHq(P2) CHq(M1) CHq(P1) . . .δq−1 δq

From non-triviality of CHq(M1) it follows that CHq(P1) or CHq(P2) is nontrivial. Moreover, 
|� (P1)| > M − 1 or |� (P2)| > M − 1. Therefore, the set M1 contains at least three critical 
points. The above remains true if we exchange the roles of M1 and M3.

Observe that if � (M1) �= ∅ and � (M3) �= ∅ then |� (M1)| ≥ 2 or |� (M3)| ≥ 2. Suppose 

that for some q1, q2, q3 ∈
[
γ (S1)− 1, γ (S1)+ 1

]
∪

{
γ (S), γ (S)

}
the groups CHq1(M1), 

CHq2(M1) and CHq3(M3) are nonzero. We can assume that q1, q2, q3 are pairwise different and 

any two of them are not simultaneously in 
[
γ (S1)− 1, γ (S1)+ 1

]
. Since |� (M1)|> M−1 and 

LS-index of M3 is nontrivial, the set S′ contains at least three critical points. As before we can 
exchange the roles of M1 and M3. �
4.3. The case K ≥ 2

Now, we turn to the case when more than one critical point is known. By (�6), we have 
S′ = S \ (S1 ∪ . . . ∪ SK) �= ∅. As opposed to the situation K = 1, it is possible that the set S′ do 
not contain any critical points and consists of connecting orbits only.

We first give conditions which ensure the existence of at least one critical point in S ′.

Lemma 4.18. Suppose that for some q ∈ Z the following groups are trivial:

CHq(S), CHq+1(Sk), for k �= 1
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and CHq(S1) �= 0. Then, at least one of the groups:

CHq−1(M1), CHq+1(M2k+1), for k = 0, . . . ,K,

is nonzero.

Proof. On the contrary, assume that all of these groups are trivial. Diagram (1) takes the follow-
ing form:

0 CHq(S1) CHq(X2) CHq(M1) . . .

. . . CHq(Sk) CHq(X2k) CHq(X2k−1) 0

. . . CHq(M2k+1) CHq(X2k+1) CHq(X2k) 0

. . . CHq(SK) CHq(X2K) CHq(X2K−1) 0

. . . CHq(M2K+1) 0 CHq(X2K) 0

δq−1 δq

δq−1 δq

δq−1 δq

δq−1 δq

δq−1 δq

Since in the above diagram all of the groups CHq(Xk) are trivial, CHq(S1) = 0. A contradic-
tion. �
Lemma 4.19. Assume that for some q ∈ Z the following groups are trivial:

CHq+1(S), CHq−1(Sk), for k < k0 and CHq+1(Sk), for k > k0

and CHq(Sk0) �= 0, for k0 �= 1. Then, at least one of the groups:

CHq−1(M2k+1), for k = 0, . . . , k0; CHq+1(M2k+1), for k = k0, . . . ,K,

is nonzero.

Proof. On the contrary, assume that all of these groups are zero. Since CHq−1(S1) and 
CHq−1(M1) are trivial. From diagram (1) we obtain that all groups CHq−1(Xk), k =
2, . . . , 2k0− 1 are trivial. Similarly, since CHq+1(S) and CHq+1(M2K+1) are trivial, all groups 
CHq+1(Xk) are trivial, provided k = 2k0, . . . , 2K + 1. Thus, CHq(Sk0) is trivial. A contradic-
tion. �
Lemma 4.20. Assume that for some q ∈ Z the following groups are trivial:

CHq(Sk)= 0, k = 1, . . . ,K

and CHq(S) �= 0. Then, at least one of the groups:

CHq(M2k+1), k = 0, . . . ,K;
is nonzero.
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Proof. On the contrary, assume that all of these groups are zero. Then, all groups CHq(Xk) = 0, 
k = 0, . . . , 2K are trivial. Hence CHq(X2K)= 0. A contradiction. �
Lemma 4.21. Assume that for some q ∈ Z and n ∈N the following groups are trivial:

CHq−1(Sk), CHq+n+1(Sk+1), k = 1, . . . ,K − 1.

If CHq−1(M2k+1) = 0, k = 0, . . . , K − 1 and all the cohomology groups of the sets M2k+1, k =
0, . . . , K are trivial in dimensions from q − 1 to q + n + 1 then each of the following sequences:

0 CHq(S2) CHq(X4) CHq(S1) . . . CHq+n(S1) 0

0 CHq(Sk) CHq(X2k) CHq(X2k−2) . . . CHq+n(X2k−2) 0

0 CHq(SK) CHq(S) CHq(X2K−2) . . . CHq+n(X2K−2) 0

δq−1 δq δq+n

δq−1 δq δq+n

δq−1 δq δq+n

is exact.

Proof. By exactness of the rows in the diagram (1) we get CHq(S1) � CHq(X2), CHq(X2k+1)

� CHq(X2k) and CHq(S) � CHq(X2K). Hence we can drop the odd rows from the dia-
gram (1), which completes the proof. �

All of the above lemmas guarantee the existence of at least one critical point in the set S′. 
Repeated application of the above lemmas for different q may lead to the situation when some 
set M2k+1 possess more than one nonzero cohomology group. If |� (M2k+1)| is big enough, say 
greater than M − 1, then the set M2k+1 contains more than one critical point by Lemma 4.11.

Now we examine three situations when at least two critical points can be obtained. Set S0 = S. 
Suppose that � (Sk) �= ∅, |� (S)|< M − 1 and

�
(
Sk0

)≺ �
(
Sk1

)≺ . . .≺ �
(
SkK

)
,

where ki = 0, 1, . . . , K and ki �= kj , provided i �= j .

Definition 4.22. We say that spans � (Sk), k = 0, 1, . . .K , satisfy condition (A), if:

g(Ski
, Ski+1)− 2 > M − 1, for all ki = 0, . . . ,K − 1.

Theorem 4.23. Assume that the condition (A) holds. Then the set S′ contains at least K + 1
critical points.

Proof. Fix 0 ≤ ki ≤ K . Let q = γ
(
Ski

)
and n = γ

(
Ski

) − γ
(
Ski

) = ∣∣� (
Ski

)∣∣ − 1. Since the 
cohomology groups of Ski

are trivial in dimensions q − 1 and q + n + 1, the conditions of 
Lemma 4.21 are satisfied. For kj �= ki all the cohomology groups of Skj

are trivial in dimensions 
from q to q + n. The set Sk possess at least one nonzero cohomology group in dimensions from 
i
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q to q+n. It is easy to check that sequences in Lemma 4.21 are not exact. Thus for all 0 ≤ i ≤K

there exist 0 ≤ ki ≤K and γ
(
Ski

)− 1 ≤ qi ≤ γ
(
Ski

)+ 1 such that CHqi (M2ki+1) �= 0.
Note that if i < j then qi < qj . For arbitrary i < K we obtain:

qi+1 − qi > γ
(
Ski+1

)− 1− γ
(
Ski

)− 1= g(Ski
, Ski+1)− 2 > M − 1.

For each k = 1, . . . , K we denote by h2k+1 the number of nonzero groups CHqi (M2ki+1) such 
that k = ki . By Lemma 4.11 each set M2k+1 contains at least h2k+1 critical points. Hence, we 
have at least 

∑K
k=1 h2k+1 =K + 1 critical points in the set S′. �

If in the above theorem we assume that M = 0, 1, 2 and g(Ski−1 , Ski
) > 1 then similar argu-

ment, using Lemmas 4.21 and 4.10, gives us at least K + 1 critical points in the set S ′.

Definition 4.24. We say that spans � (Sk), k = 0, 1, . . .K , satisfy condition (B), if:

1.
∣∣� (

Ski

)∣∣+ g(Ski−1 , Ski
) > 2; g(Ski

, Ski+1) > 1;
2.

∣∣� (
Skj

)∣∣+ g(Skj
, Skj+1) > 2; g(Skj−1, Skj

) > 1;
3. g(Ski

, Skj
) − 2 > M − 1, for some 0 ≤ i < j ≤K .

Note that if the condition (B) holds then there may exist sets Skn such that

. . .≺ �
(
Ski−1

)≺ �
(
Ski

)
< . . .≺ �

(
Skn

)≺ . . . < �
(
Skj

)≺ �
(
Skj+1

)≺ . . .

Theorem 4.25. Assume that the condition (B) holds. Then the set S′ contains at least two critical 
points.

Proof. From (1), we have at least one nonzero cohomology group of some set M2k+1 in di-
mensions from γ

(
Ski

) − 1 to γ
(
Ski

) + 1. Similarly, from (1), we have at least one nonzero 
cohomology group in dimensions from γ

(
Skj

)− 1 to γ
(
Skj

)+ 1.
If these nonzero groups are groups of different sets M2k+1 then there is at least two critical 

points in S′. If there are two nonzero groups of some set M2k+1 then

|� (M2k+1)| = γ (M2k+1)− γ (M2k+1)+ 1

≥ γ
(
Skj

)− 1− γ
(
Ski

)− 1+ 1= g(Ski
, Skj

)− 1 > M − 1.

It follows that M2k+1 consists of at least two critical points. �
Definition 4.26. We say that spans � (Sk), k = 0, 1, . . .K , satisfy condition (C), if:

∣∣� (
Sk1

)∣∣+ g(Sk1 , Sk2) > 2; g(Sk0, Sk1)− 2 > M − 1

or

∣∣� (
SkK−1

)∣∣+ g(SkK−2 , SkK−1) > 2; g(SkK−1 , SkK
)− 2 > M − 1.
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Theorem 4.27. Assume that the condition (C) holds. Then the set S′ contains at least two critical 
points.

We omit the proof, since it follows the similar line. One can find more similar conditions and, 
using above lemmas, prove analogical theorems, but we restrict ourselves to those given above.

Example 4.28. (Cf. Ex. 5.1, [9].) Let N > 2, K = 2 and suppose that

hLS(Sk1)= [S4], hLS(Sk2)= [S2 ∧ (S1 ∨ S1)] and hLS(S)= [Sm].

If m �= 3 then the equality 2t3+ t4 = tm+ (1 + t)Q(t) does not hold for any t and for any Q. 
Thus, there exists a critical point p ∈ S′. If we set P(t, {p}) = t2 + tm and Q(t) = t2 + t3 then 
the equality

t2 + tm + 2t3 + t4 = tm + (1+ t)Q(t)

holds for any t . In this case, if either 2 −m > M − 1 or m − 4 > M − 1 then the set S′ contains 
at least two critical points.

Suppose that m = 3 and �(Sk1) < �(Sk2). Then M2 = Sk1 and M4 = Sk2 . The equality 2t3 +
t4 = t3 + (1 + t)Q(t) holds if we set Q(t) = t3.

Since CH 5(S2), CH 5(S) = 0 and CH 3(S1) �= 0, at least one of the groups: CH 3(M1), 
CH 5(M3), CH 5(M5) is nonzero, by Lemma 4.18. One can show that at least one of the groups: 
CH 2(M1), CH 2(M3), CH 4(M5) is nonzero. Thus, there exists at lest one critical point in the 
set S′.

If we assume that M = 0, 1, 2 instead of M > 2 then the set S′ contains at least two critical 
points.

5. Applications to Hamiltonian systems

In this section we give some examples for which our abstract theorems can be applied. 
Namely, we prove the existence of periodic solution of certain Hamiltonian system. Given a 
Hamiltonian H ∈ C2(R2N ×R) which is 2π -periodic in t . Consider the Hamiltonian system

ż= J∇H(z, t) (4)

where J =
[

0 −I

I 0

]
. Denote by E = H 1/2(S1, R2N) the Sobolev space of 2π -periodic 

R
2N -valued functions. It is well known that z ∈ E is 2π -periodic solution of (4) if and only 

if it is a critical point of the functional � ∈C2(E, R) defined by

�(z)= 1

2
〈Lz, z〉E −

2π∫
H(z, t)dt (5)
0
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where

〈Lz, z〉E =
2π∫

0

〈−J ż, z〉dt.

It is shown in [8,9] that (E, L) is a base pair and ∇� is an LS-field. Functional � is strongly 
indefinite and satisfies assumptions (�1)–(�6). The constant M in (�5) is equal to 2N − 1.

If A is a symmetric 2n ×2n matrix and ż= JAz is a linear Hamiltonian system then the vector 
field ∇�A corresponding to that system is linear. The E-Morse index i− and nullity i0 of ∇�A

defined in Section 3 are equal to the generalized Morse index and nullity for linear Hamiltonian 
systems defined by Amann and Zehnder in [3] (see also [18]). We will use the symbol i−(A)

(resp. i0(A)) to denote E-Morse index (resp. nullity) corresponding to ∇�A.
Throughout the rest of this section we assume that the Hamiltonian H is asymptotically linear 

at infinity, i.e. there is R > 0, ‖z‖E > R implies H(z, t) = 1
2 〈A∞z, z〉 + h∞(z, t), where A∞

is linear, symmetric and ∇h∞(z, t) is bounded. It is clear that if X∞ is a closed ball of a large 
radius then X∞ is an isolating neighborhood.

Proposition 5.1. (See [8].) If i0(A∞) = 0 then

hLS(X∞)=
[
S i−(A∞)

]
.

In [9,13] the existence of additional critical points follows from examining the Morse equa-
tion from Lemma 2.15. Now, we show that in some cases our method gives better results than 
those obtained by only examining the Morse equation.

Proposition 5.2. Let N ≥ 2. Assume that 0 is an isolated critical point of �. If � ({0})= (k+ 1,

k + 2) and

i−(A∞) /∈ [k − (2N − 3), k + 2N ]

then (4) has at least two periodic solutions (in addition to the trivial one).

Proof. Note that

|� ({0})| + |� (X∞)| + g({0},X∞)− 2 > 2N − 1

and

|� (X∞)| + |� ({0})| + g(X∞, {0})− 2 > 2N − 1.

Now, Theorem 4.16 implies that there exist at least two critical points in the set S \ {0}. �
Example 5.3. Let N = 2 and H be such that

H(x1, x2, y1, y2)= k1y
2 + k2(x

2 + y2)+ x3 − 3x1(x
2 + y2)
1 2 2 1 2 2

http://mostwiedzy.pl


J. Maksymiuk / J. Differential Equations 259 (2015) 5640–5666 5665

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

if x2
1 + x2

2 + y2
1 + y2

2 < r , 0 < r < R, where k1, k2 ∈ Z \ {0}. In this example H(z) = 1
2 〈Az, z〉 +

h(z), where A = diag{0, k2, k1, k2}, and h(x1, x2, y1, y2) = x3
1 − 3x1(x

2
2 + y2

2).
It is easy to show that 0 ∈E is a critical point of �. Following the procedure given in [8] one 

can show that

hLS({0},∇�)=
[
S i−(A) ∧ (S1 ∨ S2)

]
.

Assume that

i−(A∞) /∈ [i−(A)− (2N − 3), i−(A)+ 2N ]
In this case the equality P(t, {0}) = P(t, X∞) + (1 + t)Q(t) is not satisfied. Therefore, there 
exists at least one critical point, say p, different to 0. Letting

P(t, {p})= t i
−(A∞) and Q(t)= t i

−(A)+1

we obtain equality P(t, {0}) +P(t, {p}) = P(t, X∞) + (1 + t)Q(t), which is true for all t .
On the other hand, the above proposition implies that (4) has one more solution. This result 

cannot be obtained by examining Morse equation.

Example 5.4. Let N = 2 and assume that there is K ≥ 2 known critical points of � with

hLS(Sk)= [S6k ∧ (S1 ∨ S2)].
Moreover, assume that hLS(S) = [S6(K+1)+1]. Since hLS(S) �= ∨

hLS(Sk), the set S ′ is 
nonempty. The equality

K∑
k=1

(t6k+1 + t6k+2)= t6(K+1)+1 + (1+ t)Q(t)

does not hold, there exists a critical point p ∈ S′. Setting P(t, p) = t6(K+1)+1 and Q(t) = t7 +
. . . t6K+1 we obtain the equality

K∑
k=1

(
t6k+1 + t6k+2

)
+ P(t,p)= t6(K+1)+1 + (1+ t)Q(t)

which holds for all t .
Since � (Sk) = (6k+ 1,6k+ 2) and � (S) = (6(K + 1)+ 1,6(K + 1)+ 1), gaps between 

spans of S1, . . . , SK and S are greater than 2N − 1 = 3. Hence, the condition (A) holds. There-
fore, there are at least K + 1 critical points in the set S ′.
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