The cohomological span of $\mathcal{L S}$-Conley index

Jakub Maksymiuk
Department of Technical Physics and Applied Mathematics, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland

Received 6 August 2014; revised 15 June 2015
Available online 20 July 2015

Abstract

In this paper we introduce a new homotopy invariant - the cohomological span of $\mathcal{L S}$-Conley index. We prove the theorems on the existence of critical points for a class of strongly indefinite functionals with the gradient of the form $L x+K(x)$, where L is bounded linear and K is completely continuous. We give examples of Hamiltonian systems for which our methods give better results than the Morse inequalities. We also give a formula for the $\mathcal{L S}$-index of an isolated critical point, which is an extension of the classical Dancer theorem for the case of $\mathcal{L S}$-index.

© 2015 Elsevier Inc. All rights reserved.

MSC: 37B30; 58E05
Keywords: Conley index in Hilbert spaces; Strongly indefinite operator; Critical point theory

1. Introduction

The purpose of this paper is to present a new homotopy invariant, the cohomological span of $\mathcal{L S}$-Conley index, and to show how this invariant can be applied to obtain existence and multiplicity results for strongly indefinite functionals.

The existence problem for solutions of differential equation can be restated in the terms of existence problems for critical points of functionals defined on Hilbert spaces. This approach leads to consider strongly indefinite functionals, i.e. both stable and unstable manifolds at a

[^0]critical point are of infinite dimension. There are many methods developed to deal with such a functionals including both variational and topological methods (e.g. [1-7]).

In this paper we are going to work with $\mathcal{L S}$-Conley index - the extension of classical Conley index for Hilbert spaces presented by K. Gęba, M. Izydorek and A. Pruszko in [8]. Further development of this theory was given by Izydorek in [9]. He defined the cohomology groups of $\mathcal{L} \mathcal{S}$-index and gave the examples how this theory can be applied for the existence problems for periodic solution of Hamiltonian systems. Applications to PDE were given later by M. Izydorek and K. Rybakowski in [10].

In 1984, E. Dancer proved in [11] that if p is a critical point of $F: \mathbb{R}^{n} \rightarrow \mathbb{R}$ then the classical Conley index of $\{p\}$ has the homotopy type of a k-fold suspension of some space connected with null space of $\nabla^{2} F(p)$. In this paper we prove a similar statement for $\mathcal{L S}$-index (Theorem 3.8). This is a crucial observation for further results when we deal with cohomological span.

Let X be an isolating neighborhood. The cohomological span of $\mathcal{L S}$-index $h_{\mathcal{L} \mathcal{S}}(X)$ is defined to be a pair

$$
\Gamma\left(h_{\mathcal{L S}}(X)\right)=\left(\underline{\gamma}\left(h_{\mathcal{L S}}(X)\right), \bar{\gamma}\left(h_{\mathcal{L S}}(X)\right)\right),
$$

where $\underline{\gamma}\left(h_{\mathcal{L} \mathcal{S}}(X)\right)$ and $\bar{\gamma}\left(h_{\mathcal{L S}}(X)\right)$ stand for the numbers of the first and the last nontrivial cohomology groups of $\mathcal{L S}$-index $h_{\mathcal{L S}}(X)$. In some cases, if $\operatorname{Inv} X$ is an isolated critical point then the difference $|\Gamma(X)|=\bar{\gamma}\left(h_{\mathcal{L S}}(X)\right)-\underline{\gamma}\left(h_{\mathcal{L S}}(X)\right)$ can be globally bounded by some constant M. Hence, if for some set X we have $|\bar{\Gamma}(X)| \geq M$ then X does not contain only critical point (see Corollary 4.8). This observation, combined with examining certain long exact sequences, gives us the existence results. Given examples show that in some situations our theory allows to find more critical points than another widely-applied method, i.e. examining Morse inequalities.

To be more precise, assume that S is an isolated invariant set and $S_{1} \subset S$ is an isolated critical point. Suppose that Morse polynomials of S_{1} and S are $P\left(t, S_{1}\right)=t^{0}+t^{1}$ and $P(t, S)=t^{m}$, $m \geq M$. In this case, the Morse equation

$$
t^{0}+t^{1}=t^{m}+(1+t) Q(t)
$$

is not satisfied. Therefore, there exists at least one critical point in S, say p, different to S_{1}. Letting $P(t,\{p\})=t^{m}$ and $Q(t)=t^{0}$ we obtain equality $t^{0}+t^{1}+t^{m}=t^{m}+(1+t) Q(t)$, which is true for all t.

On the other hand we have $\left|\Gamma\left(S_{1}\right)\right|=2,|\Gamma(S)|=1, \underline{\gamma}(S)-\bar{\gamma}\left(S_{1}\right)=m-1$ and

$$
|\Gamma(S)|+\left|\Gamma\left(S_{1}\right)\right|+\underline{\gamma}(S)-\bar{\gamma}\left(S_{1}\right)-2=m \geq M .
$$

Theorem 4.16 follows that $S \backslash S_{1}$ contains at least two critical points. This result cannot be obtained by examining Morse equation (cf. Section 5).

This paper is organized as follows. In Section 2 we recall basic definitions and facts about the $\mathcal{L S}$-Conley index theory. We refer the reader to [8,9] for more details. In the next section we prove the formula for $\mathcal{L S}$-index of an isolated critical point. In Section 4 we introduce the cohomological span and next we prove the theorems concerning the existence of critical points. Finally, in Section 5 we give simple examples to show how our theory works when asymptotically linear Hamiltonian systems are considered.

2. $\mathcal{L S}$-Conley index

To make this paper self-contained we briefly recall basic facts from $\mathcal{L S}$-Conley index theory. The main references for this section are [8,9].

2.1. The $\mathcal{L S}$-index

Let E be a real Hilbert space and $L: E \rightarrow E$ be a linear bounded operator.
Definition 2.1. We say that a pair (E, L) is a base pair if
(E_{1}) L gives a splitting $E=\bigoplus_{n=0}^{\infty} E_{k}$ onto finite dimensional, mutually orthogonal L-invariant subspaces,
$\left(E_{2}\right) \sigma_{0}(L)=\sigma(L) \cap i \mathbb{R}$ is isolated in $\sigma(L)$,
$\left(E_{3}\right) L\left(E_{0}\right) \subset E_{0}, E_{0}$ is a subspace corresponding to $\sigma_{0}(L)$, and $L\left(E_{k}\right)=E_{k}$ for all $k>0$.
It follows easily that if (E, L) is a base pair then L is a Fredholm map of index 0 . Let $E^{n}=$ $\bigoplus_{k=0}^{n} E_{k}$. We will denote by P^{n} (resp. P_{n}) the orthogonal projection from E onto E^{n} (resp. E_{n}).

Let Λ be a compact space. A continuous map $f: E \times \Lambda \rightarrow E$ is completely continuous if it maps bounded sets to relatively compact sets.

Definition 2.2. A family of flows $\eta: \mathbb{R} \times E \times \Lambda \rightarrow E$ is a family of $\mathcal{L S}$-flows if there exists a completely continuous map $U: \mathbb{R} \times E \times \Lambda \rightarrow E$ such that $\eta(t, x, \lambda)=e^{t L} x+U(t, x \lambda)$.

Definition 2.3. A family of maps $f: E \times \Lambda \rightarrow E$ is a family of $\mathcal{L S}$-fields if there exists a completely continuous and locally Lipschitz continuous map $K: E \times \Lambda \rightarrow E$ such that $f(x, \lambda)=$ $L x+K(x, \lambda)$.

If $\Lambda=\left\{\lambda_{0}\right\}$ then we drop Λ out from notation and we call η an $\mathcal{L S}$-flow and f an $\mathcal{L S}$-field. If $\eta: \mathbb{R} \times E \times \Lambda \rightarrow E$ is a family of $\mathcal{L S}$-flows and $X \subset E$ then we define

$$
\operatorname{Inv}(X \times \Lambda, \eta)=\{(x, \lambda) \in X \times \Lambda: \eta(t, x, \lambda) \in X, t \in \mathbb{R}\}
$$

The set $\operatorname{Inv}(X \times \Lambda, \eta)$ is the maximal η-invariant subset of X.
Theorem 2.4. (See 2.3, [8].) Let η be a family of $\mathcal{L S}$-flows. If $X \subset E$ is closed and bounded then $S=\operatorname{Inv}(X \times \Lambda)$ is a compact subset of $X \times \Lambda$.

Let $f: E \rightarrow E$ be a vector field. We say that f generates a (local) flow η if

$$
\dot{\eta}=-f \circ \eta, \eta(0, x)=x .
$$

We say that an $\mathcal{L S}$-field f is subquadratic if there exist $a, b>0$ such that

$$
|\langle K(x), x\rangle| \leq a\|x\|^{2}+b, \text { for all } x \in E .
$$

Theorem 2.5. (See 2.6, [8].) If f is a subquadratic $\mathcal{L S}$-field then f generates an $\mathcal{L S}$-flow.

Definition 2.6. We say that a closed and bounded subset $X \subset E$ is an isolating neighborhood for η if $\operatorname{Inv}(X, \eta) \subset \operatorname{int}(X)$.

To simplify notation we write $\operatorname{Inv}(X, f)$ or $\operatorname{Inv}(X)$ instead of $\operatorname{Inv}(X, \eta)$. Let $\nu: \mathbb{N} \cup\{0\} \rightarrow$ $\mathbb{N} \cup\{0\}$ be a fixed map and define $\rho: \mathbb{N} \cup\{0\} \rightarrow \mathbb{N} \cup\{0\}$ by setting

$$
\rho(0)=0 \text { and } \rho(n)=\sum_{i=0}^{n-1} v(i), n \geq 1
$$

Let $\left\{\mathcal{E}_{n}\right\}_{n=n(\mathcal{E})}^{\infty}$ be a sequence of compact pointed spaces and let $\left\{\varepsilon_{n}: S^{\nu(n)} \mathcal{E}_{n} \rightarrow \mathcal{E}_{n+1}\right\}_{n=n(\mathcal{E})}^{\infty}$ be a sequence of maps.

Definition 2.7. We say that a pair $\mathcal{E}=\left(\left\{\mathcal{E}_{n}\right\}_{n=n(\mathcal{E})}^{\infty},\left\{\varepsilon_{n}\right\}_{n=n(\mathcal{E})}^{\infty}\right)$ is a spectrum if there exists $n_{0} \geq n(\mathcal{E})$ such that ε_{n} is a homotopy equivalence for all $n \geq n_{0}$.

One can define a notion of maps of spectra, homotopy of spectra, homotopy type of spectra, etc. For fixed v we denote by $\operatorname{Spec}(\nu)$ the category of spectra. We refer the reader to $[8,9]$ for more details. In order to define the homotopy type $[\mathcal{E}]$ of spectra $\mathcal{E} \in \operatorname{Spec}(\nu)$ one only needs a sequence $\left\{\mathcal{E}_{n}\right\}$ such that $S^{\nu(n)} \mathcal{E}_{n} \simeq \mathcal{E}_{n+1}$ for sufficiently large n. The homotopy type [\mathcal{E}] is uniquely determined by $\left\{\mathcal{E}_{n}\right\}$.

Given two spectra $\mathcal{E}, \mathcal{E}^{\prime} \in \operatorname{Spec}(\nu)$ their wedge $\mathcal{E} \vee \mathcal{E}^{\prime}$ is defined to be $\mathcal{E}^{w} \in \operatorname{Spec}(\nu)$ such that $\mathcal{E}_{n}^{w}=\mathcal{E}_{n} \vee \mathcal{E}_{n}^{\prime}$ and

$$
\varepsilon_{n}^{w}: S^{\nu(n)}\left(\mathcal{E}_{n} \vee \mathcal{E}_{n}^{\prime}\right) \rightarrow S^{\nu(n)} \mathcal{E}_{n} \vee S^{\nu(n)} \mathcal{E}_{n}^{\prime} \rightarrow \mathcal{E}_{n+1} \vee \mathcal{E}_{n+1}^{\prime}=\mathcal{E}_{n+1}^{w}
$$

For $\mathcal{E} \in \operatorname{Spec}(\nu)$ and $\mathcal{E}^{\prime} \in \operatorname{Spec}(\mu)$ we define smash product $\mathcal{E} \wedge \mathcal{E}^{\prime}$ to be $\mathcal{E}^{s} \in \operatorname{Spec}(\nu+\mu)$ such that $\mathcal{E}_{n}^{s}=\mathcal{E}_{n} \wedge \mathcal{E}_{n}^{\prime}$ and

$$
\varepsilon_{n}^{s}: S^{\nu(n)+\mu(n)}\left(\mathcal{E}_{n} \wedge \mathcal{E}_{n}^{\prime}\right) \rightarrow S^{\nu(n)} \mathcal{E}_{n} \wedge S^{\mu(n)} \mathcal{E}_{n}^{\prime} \rightarrow \mathcal{E}_{n+1} \wedge \mathcal{E}_{n+1}^{\prime}=\mathcal{E}_{n+1}^{s}
$$

Let $\mathcal{O}=\left(\left\{\mathcal{O}_{n}\right\}_{n=0}^{\infty},\left\{o_{n}\right\}_{n=0}^{\infty}\right)$ be a spectrum such that \mathcal{O}_{n} consists only of the base point, o_{n} maps the base point into the base point. We call \mathcal{O} the trivial spectrum.

The spectrum \mathcal{E} has the homotopy type of \mathcal{O} if \mathcal{E}_{n} is homotopy equivalent to one-point space for n sufficiently large. Obviously, the trivial spectrum is an object of $\operatorname{Spec}(v)$ for arbitrary v.

Definition 2.8. Let $v_{0}(n)=0$. The spectrum \mathcal{E} is an object of $\operatorname{Spec}\left(v_{0}\right)$, if there exists $n_{0} \geq n(\mathcal{E})$ such that $\mathcal{E}_{n+1} \simeq \mathcal{E}_{n}$ provided $n \geq n_{0}$.

Fix $k \in \mathbb{Z}$. Assume that there exists $n \in \mathbb{N} \cup\{0\}$ such that $k+\rho(n) \geq 0$. Let $n\left(\mathcal{S}^{k}\right)$ be the smallest number for which the above inequality holds. Define

$$
\mathcal{S}^{k}=\left(\left\{S^{k+\rho(n)}\right\}_{n=n\left(\mathcal{S}^{k}\right)}^{\infty},\left\{\sigma_{n}^{k}\right\}_{n=n\left(\mathcal{S}^{k}\right)}^{\infty}\right),
$$

where $\sigma_{n}^{k}=i d_{S^{k+\rho(n+1)}}$.

Definition 2.9. We call \mathcal{S}^{k} the k-dimensional sphere in the category $\operatorname{Spec}(\nu)$.
If $k \geq 0$ then $n\left(\mathcal{S}^{k}\right)=0$. Hence, if $k \geq 0$ then \mathcal{S}^{k} is an object of $\operatorname{Spec}(v)$ for arbitrary v. Let $\mathcal{E} \in \operatorname{Spec}(\nu)$. Note that

$$
[\mathcal{E}]=\left[\mathcal{S}^{k}\right] \Longleftrightarrow \exists_{n_{0} \geq \max \left\{n(\mathcal{E}), n\left(\mathcal{S}^{k}\right)\right\}} \forall_{n \geq n_{0}} \mathcal{E}_{n} \simeq S^{k+\rho(n)}
$$

If $\mathcal{E} \in \operatorname{Spec}(\nu)$ and $\mathcal{S}^{1} \in \operatorname{Spec}\left(v_{0}\right)$ then the spectrum $\mathcal{S}^{1} \wedge \mathcal{E} \in \operatorname{Spec}(\nu)$ has a homotopy type of the suspension $S \mathcal{E}$ introduced in [8].

Let $m^{-}(A)$ denote the Morse index of a linear map $A: E \rightarrow E$, i.e. the maximal dimension of a subspace of E on which $\langle A x, x\rangle$ is negative definite.

Set $v(n)=\operatorname{dim} E_{n+1}^{-}=m^{-}\left(L_{\mid E_{n+1}}\right)$. Let $f: E \rightarrow E$ be an $\mathcal{L} \mathcal{S}$-field. For simplicity we assume that f is globally subquadratic. Let η denote the $\mathcal{L S}$-flow generated by f and let $X \subset E$ be an isolating neighborhood for η. Define

$$
f_{n}: E^{n} \rightarrow E^{n}, f_{n}(x)=L x+P^{n} K(x)
$$

Let η_{n} be the flow induced by f_{n}.
Lemma 2.10. (See 4.1, [8].) There exists $n_{0} \in \mathbb{N} \cup\{0\}$ such that if $n \geq n_{0}$ then $X^{n}=X \cap E^{n}$ is an isolating neighborhood for the flow η_{n}.

It follows that there exists an index pair $\left(Y^{n}, Z^{n}\right)$ in X^{n} and the (classical) Conley index of $\operatorname{Inv}\left(X^{n}, \eta_{n}\right)$ is the homotopy type of the pointed space Y^{n} / Z^{n}. The sequence $\left\{\mathcal{E}_{n}\right\}_{n=n_{0}}^{\infty}=$ $\left\{Y^{n} / Z^{n}\right\}_{n=n_{0}}^{\infty}$ uniquely determines the homotopy type of spectrum \mathcal{E}.

Definition 2.11. Let η be an $\mathcal{L S}$-flow generated by an $\mathcal{L S}$-field f and let $X \subset E$ be an isolated neighborhood for η. Define $h_{\mathcal{L S}}(X, \eta)=[\mathcal{E}]$. We call $h_{\mathcal{L}}(X, \eta)$ the $\mathcal{L S}$-Conley index of X with respect to η.

Note that $h\left(X^{n}, \eta_{n}\right)=\left[Y^{n} / Z^{n}\right]$. The following theorem gives the basic properties of the $\mathcal{L S}$-index.

Theorem 2.12. (See 4.4, 4.5, [8].)

1. (nontriviality) Let η be an $\mathcal{L S}$-flow and $X \subset E$ be an isolating neighborhood for η. If $h_{\mathcal{L S}}(X, \eta) \neq[\mathcal{O}]$ then $\operatorname{Inv}(X, \eta) \neq \emptyset$.
2. (continuation) Let Λ be a compact, connected and locally contractible metric space. Assume that $\eta: \mathbb{R} \times E \times \Lambda \rightarrow E$ is a family of $\mathcal{L S}$-flows. Let X be an isolating neighborhood for a flow $\eta_{\lambda}=\eta(\cdot, \cdot, \lambda)$ for some $\lambda \in \Lambda$. Then there is a compact neighborhood $U_{\lambda} \subset \Lambda, \lambda \in U_{\lambda}$ such that

$$
h_{\mathcal{L S}}\left(X, \eta_{\mu}\right)=h_{\mathcal{L S}}\left(X, \eta_{\nu}\right), \text { for all } \mu, \nu \in U_{\lambda} .
$$

If E is finite dimensional and $L \equiv 0$ then (E, L) is a base pair and every locally Lipschitz map $f: E \rightarrow E$ is an $\mathcal{L S}$-field. In this case an $\mathcal{L S}$-index is represented by a spectrum in $\operatorname{Spec}\left(\nu_{0}\right)$ and $h_{\mathcal{L} \mathcal{S}}(X, f)$ is equal to $h(X, f)$, the classical Conley index.

By abuse of notation, we write $h_{\mathcal{L S}}(\operatorname{Inv}(X), f)$ instead of $h_{\mathcal{L S}}(X, \eta)$, provided η is the flow generated by the $\mathcal{L S}$-field f and X is an isolating neighborhood for η.

2.2. Cohomological $\mathcal{L S}$-Conley index

The main reference for this section is [9]. Throughout and subsequently \check{H} denotes the (reduced) Čech cohomology with coefficients in \mathbb{Z}. Let $\mathcal{E}=\left(\left\{\mathcal{E}_{n}\right\}_{n=n(\mathcal{E})}^{\infty},\left\{\varepsilon_{n}\right\}_{n=n(\mathcal{E})}^{\infty}\right)$ be a spectrum in $\operatorname{Spec}(\nu)$. For a fixed $q \in \mathbb{Z}$ consider a sequence of cohomology groups

$$
\check{H}^{q+\rho(n)}\left(\mathcal{E}_{n}\right), n \geq n(\mathcal{E}) .
$$

Define a sequence of homomorphisms h_{n}

$$
h_{n}: \check{H}^{q+\rho(n+1)}\left(\mathcal{E}_{n+1}\right) \xrightarrow{\varepsilon_{n}^{q+\rho(n+1)}} \check{H}^{q+\rho(n+1)}\left(S^{\nu(n)} \mathcal{E}_{n}\right) \xrightarrow{\left(S^{*}\right)^{\nu(n)}} \check{H}^{q+\rho(n)}\left(\mathcal{E}_{n}\right)
$$

where S^{*} denotes the suspension isomorphism.
Definition 2.13. The q-th cohomology group of a spectrum \mathcal{E} is defined to be $H^{q}(\mathcal{E})=$ $\underset{\leftarrow}{\lim }\left\{\check{H}^{q+\rho(n)}\left(\mathcal{E}_{n}\right), h_{n}\right\}$.

Since $\mathcal{E}_{n+1} \simeq S^{\nu(n)} \mathcal{E}_{n}$ for sufficiently large n, we see that $h_{n}: \check{H}^{q+\rho(n+1)}\left(\mathcal{E}_{n+1}\right) \rightarrow \check{H}^{q+\rho(n)}\left(\mathcal{E}_{n}\right)$ is an isomorphism. The sequence of groups $\check{H}^{q+\rho(n)}\left(\mathcal{E}_{n}\right)$ stabilizes and there is $n_{0} \in \mathbb{N}$ such that $H^{q}(\mathcal{E}) \simeq \check{H}^{q+\rho(n)}\left(\mathcal{E}_{n}\right)$ for all $n \geq n_{0}$. Notice that cohomology groups of \mathcal{E} may be nonzero for both positive and negative integers (see [9]).

We say that the spectrum \mathcal{E} is of finite type if $H^{*}(\mathcal{E})$ is finitely generated and almost all groups are trivial.

Clearly, for the trivial spectrum \mathcal{O} we have $H^{q}(\mathcal{O})=0$, for all $q \in \mathbb{Z}$. If \mathcal{S}^{k} is the k-dimensional sphere in $\operatorname{Spec}(v)$ then

$$
H^{q}\left(\mathcal{S}^{k}\right) \simeq \check{H}^{q+\rho(n)}\left(\mathcal{S}_{n}^{k}\right) \simeq \check{H}^{q+\rho(n)}\left(S^{k+\rho(n)}\right)
$$

for all $n \geq n\left(\mathcal{S}^{k}\right)$. Hence, $H^{q}\left(\mathcal{S}^{k}\right)=\mathbb{Z}$ if $q=k$ and $H^{q}\left(\mathcal{S}^{k}\right)=0$ if $q \neq k$.
Proposition 2.14. If $\mathcal{S}^{k} \in \operatorname{Spec}(\nu)$ and $\mathcal{E}_{0} \in \operatorname{Spec}\left(\nu_{0}\right)$ then $H^{q}\left(\mathcal{S}^{k} \wedge \mathcal{E}_{0}\right)=H^{q-k}\left(\mathcal{E}_{0}\right)$.
Proof. Let $\mathcal{E}_{n}=S^{\rho(n)} \wedge \mathcal{E}_{0, n}$. Then $\mathcal{E}=\left\{\mathcal{E}_{n}\right\} \in \operatorname{Spec}(\nu)$. Moreover $H^{q}(\mathcal{E}) \simeq \check{H}^{q+\rho(n)}\left(S^{\rho(n)} \wedge\right.$ $\left.\mathcal{E}_{0, n}\right) \simeq \check{H}^{q}\left(\mathcal{E}_{0, n}\right)$. For n sufficiently large we have

$$
H^{q}\left(\mathcal{S}^{k} \wedge \mathcal{E}_{0}\right) \simeq \check{H}^{q+\rho(n)}\left(S^{k+\rho(n)} \wedge \mathcal{E}_{0, n}\right) \simeq \check{H}^{q+\rho(n)-k}\left(S^{\rho(n)} \wedge \mathcal{E}_{0, n}\right) \simeq \check{H}^{q-k}\left(\mathcal{E}_{0, n}\right)
$$

and $\check{H}^{q-k}\left(\mathcal{E}_{0, n}\right) \simeq H^{q-k}\left(\mathcal{E}_{0}\right)$.
For the pair of spectra $(\mathcal{E}, \mathcal{A})$ we define the q-th cohomology group $H^{q}(\mathcal{E} / \mathcal{A})$ as an inverse limit of the $\left\{\check{H}\left(\mathcal{E}_{n} / \mathcal{A}_{n}\right), \gamma_{n}\right\}$ and the q-th cohomology group of $(\mathcal{E}, \mathcal{A})$ as $H^{q}(\mathcal{E}, \mathcal{A})=H^{q}(\mathcal{E} / \mathcal{A})$.

There is a long exact sequence

$$
\ldots \xrightarrow{\delta^{q-1}} H^{q}(\mathcal{E}, \mathcal{A}) \longrightarrow H^{q}(\mathcal{E}) \longrightarrow H^{q}(\mathcal{A}) \xrightarrow{\delta^{q}} \ldots
$$

Assume that all groups in the above sequence are of finite rank and trivial for all q less than some fixed $q_{0} \in \mathbb{Z}$. Denote by $r^{q}(\mathcal{E})$ the rank of $H^{q}(\mathcal{E})$ and by $d^{q}(\mathcal{E}, \mathcal{A})$ the rank of $\operatorname{im}\left\{\delta^{q}: H^{q}(\mathcal{A}) \rightarrow H^{q+1}(\mathcal{E}, \mathcal{A})\right\}$. Let

$$
\begin{aligned}
P(t, \mathcal{E}) & =\sum_{q \in \mathbb{Z}} r^{q}(\mathcal{E}) t^{q}, \\
Q(t, \mathcal{E}, \mathcal{A}) & =\sum_{q \in \mathbb{Z}} d^{q}(\mathcal{E}, \mathcal{A}) t^{q} .
\end{aligned}
$$

Lemma 2.15. (See 3.5, [9].)

$$
P(t, \mathcal{E} / \mathcal{A})+P(t, \mathcal{A})=P(t, \mathcal{E})+(1+t) Q(t, \mathcal{E}, \mathcal{A})
$$

Since the $P(t, \mathcal{E})$ and $Q(t, \mathcal{E}, \mathcal{A})$ are well defined for the homotopy type of spectra, we can substitute $\mathcal{E}, \mathcal{A}, \mathcal{E} / \mathcal{A}$ by its homotopy type (see [9]).

2.3. Morse inequalities

Let η be an $\mathcal{L S}$-flow generated by an $\mathcal{L S}$-field f and assume that $X \subset E$ is an isolating neighborhood for η. Set $S=\operatorname{Inv}(X, \eta)$.

Definition 2.16. The finite collection $\{M(\pi): \pi \in \Pi\}$ of compact invariant sets in S is said to be a Morse decomposition of S if there exists an ordering π_{1}, \ldots, π_{n} of Π such that for every $x \in S \backslash \bigcup_{\pi \in \Pi} M(\pi)$ there exists indices $1 \leq i<j \leq n$ such that $\omega(x) \in M\left(\pi_{i}\right), \alpha(x) \in M\left(\pi_{j}\right)$. The sets $M\left(\pi_{i}\right)$ are called Morse sets.

We allow the situation that a Morse decomposition consists of finite number of empty sets. The index of $M(\pi)=\emptyset$ can appear in any place in the ordering π_{1}, \ldots, π_{n}. We adopt the convention that the empty set is an isolating neighborhood of the empty set and the $\mathcal{L} \mathcal{S}$-index of the empty set is a homotopy type of the trivial spectrum.

Theorem 2.17. (See 4.2, [9].) Let $\{M(\pi): \pi \in \Pi\}$ be a Morse decomposition of S. There are closed subsets $X_{1}, \ldots, X_{n}=X=X_{0}^{*}, \ldots, X_{n-1}^{*}$ of X such that:

1. X_{i}, X_{j}^{*} are isolating neighborhoods for η,
2. $\operatorname{Inv}\left(X_{i} \cap X_{i-1}^{*}, \eta\right)=M\left(\pi_{i}\right), i=1, \ldots, n$.

If one of the sets $M\left(\pi_{i}\right), M\left(\pi_{i+1}\right)$ is empty, then we can assume that $X_{i}=X_{i+1}, X_{i-1}^{*}=X_{i}^{*}$ and $X_{i} \cap X_{i-1}^{*}=\emptyset$.

Let $\left(A, A^{*}\right)$ be an attractor-repeler pair in S. Since A and A^{*} are isolated and invariant, there are isolating neighborhoods X_{A} and X_{A}^{*} for η such that $A=\operatorname{Inv}\left(X_{A}, \eta\right)$ and $A^{*}=\operatorname{Inv}\left(X_{A}^{*}, \eta\right)$.

Theorem 2.18. (See 4.3, [9].) There exist spectra $\mathcal{E}_{A}, \mathcal{E}_{A^{*}}$ and \mathcal{E}_{S} representing $\mathcal{L S}$-Conley indices of X_{A}, X_{A}^{*} and X_{S} such that the sequence

$$
\ldots \xrightarrow{\delta^{q-1}} H^{q}\left(\mathcal{E}_{A^{*}}\right) \longrightarrow H^{q}\left(\mathcal{E}_{S}\right) \longrightarrow H^{q}\left(\mathcal{E}_{A}\right) \xrightarrow{\delta^{q}} \ldots
$$

is exact.

From the above theorem and Lemma 2.15 we obtain:

$$
P\left(t,\left[\mathcal{E}_{A^{*}}\right]\right)+P\left(t,\left[\mathcal{E}_{A}\right]\right)=P\left(t,\left[\mathcal{E}_{S}\right]\right)+(1+t) Q(t)
$$

Let $\left\{M\left(\pi_{i}\right): \pi=1 \ldots n\right\}$ be a Morse decomposition of S. Denote by $\left[\mathcal{E}_{M\left(\pi_{i}\right)}\right]$ the $\mathcal{L S}$-index of $\operatorname{Inv}\left(X_{i} \cap X_{i-1}^{*}\right)$. From 2.17 we have an attractor-repeler pair

$$
\left(\operatorname{Inv}\left(X_{i-1}, \eta\right), \operatorname{Inv}\left(X_{i} \cap X_{i-1}^{*}, \eta\right)\right)
$$

in $\operatorname{Inv}\left(X_{i}, \eta\right)$ and

$$
P\left(t,\left[\mathcal{E}_{X_{i-1}}\right]\right)+P\left(t,\left[\mathcal{E}_{M\left(\pi_{i}\right)}\right]\right)=P\left(t,\left[\mathcal{E}_{X_{i}}\right]\right)+(1+t) Q_{i}(t) .
$$

Adding these equations we obtain the following theorem.
Theorem 2.19. (See Morse inequalities, 4.7, [9].) Under the above assumptions,

$$
\sum_{i=1}^{n} P\left(t,\left[\mathcal{E}_{M\left(\pi_{i}\right)}\right]\right)=P\left(t,\left[\mathcal{E}_{S}\right]\right)+(1+t) Q(t)
$$

where $Q(t)=\sum_{i=2}^{n} Q_{i}(t)$.
Remark 2.20. Recently, an alternative approach of computing cohomological Conley index was introduced by M. Starostka in [12], where author defines an index pair directly in a Hilbert space.

3. Dancer theorem for $\mathcal{L S}$-index

3.1. E-Morse index

Let (E, L) be a base pair. Set $v(n)=\operatorname{dim} E_{n+1}^{-}$and define $\rho(n)$ as in the previous section. Assume that $A: E \rightarrow E$ is a linear and self-adjoint $\mathcal{L} \mathcal{S}$-field. Set $X_{1}=\operatorname{im} A$ and $X_{2}=\operatorname{ker} A$. We will denote by Q the orthogonal projection from E onto X_{2}, and by T^{n} the orthogonal projection from X_{1} onto $X_{1} \cap E^{n}, n \in \mathbb{N} \cup\{0\}$. Since A is Fredholm, $E=X_{1} \oplus X_{2}$. For $x \in E$ we will write $x=x_{1}+x_{2}$ where $x_{1} \in X_{1}, x_{2} \in X_{2}$.

The following lemma is due to W. Kryszewski and A. Szulkin. For the proof we refer the reader to [13] (pp. 3198-3200).

Lemma 3.1.

1. There exists $n_{B} \in \mathbb{N} \cup\{0\}$ such that for all $n \geq n_{B}, P_{\mid X_{2}}^{n}: X_{2} \rightarrow P^{n} X_{2}$ is a linear isomorphism.
2. For all $n \in \mathbb{N} \cup\{0\}$ the spaces $X_{1} \cap E^{n}$ and $P^{n} X_{2}$ are orthogonal. Moreover, $E^{n}=\left(X_{1} \cap\right.$ $\left.E^{n}\right) \oplus P^{n} X_{2}$.
3. For all $n \in \mathbb{N} \cup\{0\}$ the spaces $X_{1} \cap E_{n}$ and $P_{n} X_{2}$ are orthogonal. Moreover, $E_{n}=\left(X_{1} \cap\right.$ $\left.E_{n}\right) \oplus P_{n} X_{2}$.
4. $P_{\mid X_{1}}^{n}-T^{n} \rightarrow 0$ in $\mathcal{L}\left(X_{1}, E\right)$.
5. There exist $c>0$ and $n_{0}>0$ such that $\left\|T^{n} A x_{1}\right\| \geq c\left\|x_{1}\right\|$, for all $n \geq n_{0}$ and $x_{1} \in X_{1} \cap E^{n}$.

Definition 3.2. Bounded linear operator $A: E \rightarrow E$ is said to be hyperbolic if

$$
\inf \{|x-\lambda|: x \in i \mathbb{R}, \lambda \in \sigma(A)\}>0
$$

The set of all hyperbolic operators is an open subset of the space of linear bounded operators (see [14]).

We denote by $i^{0}(A)$ the nullity of A, i.e. the dimension of $\operatorname{ker} A$.

Definition 3.3. The E-Morse index of linear self-adjoint $\mathcal{L S}$-field A is defined to be

$$
i^{-}(A)=\lim _{n \rightarrow \infty}\left(m^{-}\left(T^{n} A_{\mid X_{1} \cap E^{n}}\right)-\rho(n)\right)
$$

Definitions of $i^{-}(A)$ is similar to definition of the $M_{\mathcal{E}}^{-}$given by Kryszewski and Szulkin. In case of self-adjoint $\mathcal{L S}$-fields these indexes are equal (see formula (5.1) in [13] and following remarks).

Lemma 3.4.

$$
\exists_{n_{A} \in \mathbb{N} \cup\{0\}} \forall_{n \geq n_{A}} m^{-}\left(T^{n+1} A_{\mid X_{1} \cap E^{n+1}}\right)=m^{-}\left(T^{n} A_{\mid X_{1} \cap E^{n}}\right)+\nu(n)
$$

Proof. The idea of the proof is adapted from [13]. Let $K=A-L$. Since A is an $\mathcal{L S}$-field, K is compact. Note that $P^{n+1} X_{2}=P^{n} X_{2} \oplus P_{n+1} X_{2}$. Hence $\operatorname{dim} P_{n+1} X_{2}=\operatorname{dim} P^{n+1} X_{2}-$ $\operatorname{dim} P^{n} X_{2}=0, n \geq n_{B}$ by Lemma 3.1. This gives $E_{n+1}=\left(X_{1} \cap E_{n+1}\right) \oplus P_{n+1} X_{2}=X_{1} \cap E_{n+1}$ and

$$
X_{1} \cap E^{n+1}=\left(X_{1} \cap E^{n}\right) \oplus E_{n+1}
$$

Set $y+z \in\left(X_{1} \cap E^{n}\right) \oplus E_{n+1}$. For $n \geq n_{B}$ define $D^{n}:[0,1] \times X_{1} \cap E^{n+1} \rightarrow X_{1} \cap E^{n+1}$ by:

$$
D_{t}^{n}(y+z)=(1-t) T^{n+1} A(y+z)+t\left(T^{n} A y+L z\right)
$$

For $n \geq n_{B}, t \in[0,1]$ and $y+z \in X_{1} \cap E^{n+1},\|y+z\| \leq 1$, we get:

$$
\begin{aligned}
& D_{0}^{n}(y+z)-D_{t}^{n}(y+z) \\
& \quad=t\left(T^{n+1} A(y+z)-T^{n} A y-L z\right) \\
& \quad=t\left(-\left(P^{n+1}-T^{n+1}\right) A(y+z)+\left(P^{n}-T^{n}\right) A y+P^{n+1} A(y+z)-P^{n} A y-L z\right) .
\end{aligned}
$$

Since $y, z \in E^{n+1}, L\left(E_{n}\right)=E_{n}$ and $z=P_{n+1} z$,

$$
\begin{aligned}
P^{n+1} A(y+z)-P^{n} A y-L z & =P^{n+1} L(y+z)+P^{n+1} K(y+z)-P^{n} L y-P^{n} K y-L z \\
& =P^{n+1} K(y+z)-P^{n} K y=P_{n+1} K y+P^{n+1} K P_{n+1} z .
\end{aligned}
$$

It follows that

$$
\left\|D_{0}^{n}(y+z)-D_{t}^{n}(y+z)\right\| \leq\left\|P^{n+1}-T^{n+1}\right\|\|A\|+\left\|P^{n}-T^{n}\right\|\|A\|+\left\|P_{n+1} K\right\|+\left\|K P_{n+1}\right\| .
$$

Note that $\left\|P_{n+1} K\right\| \rightarrow 0,\left\|K P_{n+1}\right\| \rightarrow 0$ and $P^{n}-T^{n} \rightarrow 0$ uniformly on X_{1}. Finally,

$$
\left\|D_{0}^{n}-D_{t}^{n}\right\| \rightarrow 0, n \rightarrow \infty
$$

From Lemma 3.1 it follows that, for large n, the operator $D_{0}^{n}=T^{n+1} A_{\mid X_{1} \cap E^{n+1}}$ is hyperbolic. Since hyperbolic operators form an open set, there exists $n_{A} \in \mathbb{N} \cup\{0\}$ such that, for all $n \geq n_{A}$ and $t \in[0,1]$ the operator D_{t}^{n} is hyperbolic. This shows that $m^{-}\left(D_{t}^{n}\right)$ is constant. Thus

$$
m^{-}\left(T^{n+1} A_{\mid X_{1} \cap E^{n+1}}\right)=m^{-}\left(T^{n} A_{\mid X_{1} \cap E^{n}}+L_{\mid E_{n+1}}\right)=m^{-}\left(T^{n} A_{\mid X_{1} \cap E^{n}}\right)+v(n),
$$

which completes the proof.
The next theorem follows directly from Lemma 3.4.
Theorem 3.5. The E-Morse index $i^{-}(A)$ is finite. Moreover,

$$
i^{-}(A)=m^{-}\left(T^{n} A_{\mid X_{1} \cap E^{n}}\right)-\rho(n), \text { for all } n \geq n_{A} .
$$

The index $i^{-}(A)$ can take any integer values. Let $\left\{e_{n}\right\}$ be an arbitrary basis of E. Set

$$
L\left(e_{2 n-1}\right)=-e_{2 n-1}, L\left(e_{2 n}\right)=e_{2 n}
$$

and set E_{n} to be the space spanned by $e_{2 n-1}, e_{2 n}$. Note that (E, L) is a base pair and $v(n)=1$, $\rho(n)=n$.

1. If $A_{1}=L$ then $i^{0}\left(A_{1}\right)=0, i^{-}\left(A_{1}\right)=0$.
2. If $A_{2}=L+i d_{E^{n}}$ then $i^{0}\left(A_{2}\right)=\frac{1}{2} \operatorname{dim} E^{n}, i^{-}\left(A_{2}\right)=-n$.
3. If $A_{3}=L \pm 2 i d_{E^{n}}$ then $i^{0}\left(A_{3}\right)=0, i^{-}\left(A_{3}\right)=\mp n$.

Observe that $\{0\} \subset E$ is an isolated invariant set for the flows generated by $A_{j}, j=1,2,3$. Moreover $h_{\mathcal{L} \mathcal{S}}\left(\{0\}, A_{j}\right)$ has the homotopy type of $i^{-}\left(A_{j}\right)$-dimensional sphere in the category $\operatorname{Spec}(v)$.

3.2. $\mathcal{L S}$-index of an isolated critical point

Let $\Phi: E \rightarrow \mathbb{R}$. We assume that
$\left(D_{1}\right) \Phi \in C^{2}(E, \mathbb{R})$,
$\left(D_{2}\right) \nabla \Phi(x)=L x+K(x)$, where $K \in C^{1}(E, E)$ is a completely continuous function, $\left(D_{3}\right) p \in E$ is an isolated critical point of Φ.

Without loss of generality, we can assume $p=0$. The Hessian $A=\nabla^{2} \Phi(0)=L+D K(0)$ is a self-adjoint and Fredholm map as a sum of Fredholm and compact map. Since A is Fredholm, $E=X_{1} \oplus X_{2}$.

Suppose $i^{0}(A) \neq 0$. According to the splitting lemma (Theorem 8.3, [15]), there exist $r>0$, a local homeomorphism $h: B(0, r) \rightarrow E$ and a map $u: B(0, r) \cap X_{2} \rightarrow X_{1}, u \in C^{1}$ such that $h(0)=0, u(0)=0, D u(0)=0$ and

$$
\Phi(h(x))=\frac{1}{2}\left\langle A x_{1}, x_{1}\right\rangle+\Phi\left(x_{2}+u\left(x_{2}\right)\right)
$$

where $x=x_{1}+x_{2} \in B(0, r)$. Moreover, $(I-Q) \nabla \Phi\left(x_{2}+u\left(x_{2}\right)\right)=0$, provided $\left\|x_{2}\right\|<r$.
Set $B\left(x_{2}\right)=\Phi\left(x_{2}+u\left(x_{2}\right)\right)$. The map B is C^{2} and $0 \in X_{2}$ is an isolated critical point of B. Define $\Psi: B(0, r) \rightarrow \mathbb{R}$ by $\Psi\left(x_{1}+x_{2}\right)=\frac{1}{2}\left\langle A x_{1}, x_{1}\right\rangle+B\left(x_{2}\right)$. Then

$$
\nabla \Psi(x)=A x_{1}+\nabla B\left(x_{2}\right)=L x+\left(-L x_{2}+D K(0) x_{1}+\nabla B\left(x_{2}\right)\right),
$$

where $-L x_{2}+D K(0) x_{1}+\nabla B\left(x_{2}\right)$ is compact. It follows easily that 0 is an isolated critical point of Ψ. Chose $r_{0}<r$ such that $X=B\left(0, r_{0}\right)$ is an isolating neighborhood for the flows generated by $\nabla \Phi$ and $\nabla \Psi$ with $\{0\}=\operatorname{Inv}(X, \nabla \Phi)=\operatorname{Inv}(X, \nabla \Psi)$. We can extend the field $\nabla \Psi$ to E by setting

$$
\nabla \Psi(x)=L x+\mu(x)\left(-L x_{2}+D K(0) x_{1}+\nabla B\left(x_{2}\right)\right),
$$

where $\mu: E \rightarrow \mathbb{R}$ is a smooth function, equals 1 on X and vanishing outside $B(0, r)$. Obviously, $\nabla \Psi$ is a subquadratic $\mathcal{L S}$-vector field.

Lemma 3.6.

$$
h_{\mathcal{L S}}(X, \nabla \Psi)=h_{\mathcal{L S}}(X, \nabla \Phi)
$$

Proof. Define $H: X \times[0,1] \rightarrow \mathbb{R}$ by

$$
\begin{aligned}
H(x, \lambda)= & \frac{1}{2}\left\langle A x_{1}, x_{1}\right\rangle+\frac{1}{2} \lambda(2-\lambda)\left\langle A u\left(x_{2}\right), u\left(x_{2}\right)\right\rangle \\
& +\lambda G\left(x_{2}+u\left(x_{2}\right)\right)+(1-\lambda) G\left(x_{1}+x_{2}+\lambda u\left(x_{2}\right)\right),
\end{aligned}
$$

where $G(v)=\Phi(v)-\frac{1}{2}\langle A v, v\rangle$. This family has been introduced by Dancer in [11]. One can prove that

1. $\nabla H(x, 0)=\nabla \Phi(x)$ and $\nabla H(x, 1)=\nabla \Psi(x)$,
2. ∇H is a continuous family of $\mathcal{L S}$-fields,
3. $\operatorname{Inv}(X \times[0,1], \nabla H)=\{0\} \times[0,1]$.

For more details we refer the reader to [13]. Now the conclusion follows from Theorem 2.12.
Set $Y=X \cap X_{2} \subset X_{2}$. The set Y is an isolating neighborhood for the flow η_{B} generated by ∇B. Choose an index pair $\left(N_{B}, L_{B}\right)$ in Y.

Definition 3.7. We will denote by \mathcal{B} the spectrum in the category $\operatorname{Spec}\left(v_{0}\right)$ such that $n(\mathcal{B})=0$ and $\mathcal{B}_{0}=N_{B} / L_{B}$.

The homotopy type of \mathcal{B} is independent of the choice of an index pair (N_{B}, L_{B}). Let $\left(P_{\mid X_{2}}^{n}\right)_{*} \nabla B(z)=P_{\mid X_{2}}^{n} \nabla B\left(\left(P_{\mid X_{2}}^{n}\right)^{-1} z\right)$ and let $\left(P_{\mid X_{2}}^{n}\right)_{*} \eta_{B}$ denote the flow induced by $\left(P_{\mid X_{2}}^{n}\right)_{*} \nabla B(z)$ on $P^{n} X_{2}$. Then $P_{\mid X_{2}}^{n}(Y) \subset P^{n} X_{2}$ is an isolated neighborhood for $\left(P_{\mid X_{2}}^{n}\right)_{*} \eta_{B}$ and

$$
h\left(P_{\mid X_{2}}^{n}(Y),\left(P_{\mid X_{2}}^{n}\right)_{*} \eta_{B}\right)=h\left(Y, \eta_{B}\right)
$$

provided $n \geq n_{B}$. If $i^{0}(A)=0$ then $X_{2}=\{0\}$ and A is an isomorphism. We can set $B=0$ and $\mathcal{B}=\mathcal{O}$. Now, we can formulate the main theorem of this section.

Theorem 3.8. If $\Phi: E \rightarrow \mathbb{R}$ satisfies assumptions $\left(D_{1}\right)-\left(D_{3}\right)$ then

$$
h_{\mathcal{L S}}(\{p\}, \nabla \Phi)=\left[\mathcal{S}^{i^{-(A)}} \wedge \mathcal{B}\right]
$$

Proof. It is sufficient to prove that $h_{\mathcal{L S}}(X, \nabla \Psi)=\left[\mathcal{S}^{i^{-(}(A)} \wedge \mathcal{B}\right]$. Let $[\mathcal{E}]=h_{\mathcal{L S}}(X, \nabla \Psi), \mathcal{E} \in$ $\operatorname{Spec}(v)$. We can assume that $X \cap E^{n}$ is an isolated neighborhood for the flow generated by $\nabla \Psi$, provided $n \geq n(\mathcal{E})$. Assume that $n \geq \max \left\{n_{A}, n_{B}, n(\mathcal{E})\right\}$.

If $i^{0}(A)=0$ then $X_{1}=E, X_{2}=0, B=0$ and $T^{n}=P^{n}$. From Lemmas 3.1 and 3.4 we get

$$
\mathcal{E}_{n} \simeq S^{m^{-}\left(P^{n} A_{\mid E^{n}}\right)}=S^{i^{-}(A)+\rho(n)}
$$

Thus $[\mathcal{E}]=\left[\mathcal{S}^{i^{-}(A)}\right]$. Let $i^{0}(A) \neq 0$. It follows from Lemma 3.1 that $E^{n}=\left(X_{1} \cap E^{n}\right) \oplus P^{n} X_{2}$ and $P^{n} X_{2} \simeq X_{2}$. For $x_{1}+P^{n} x_{2} \in X^{n}=X \cap\left(\left(X_{1} \cap E^{n}\right) \oplus P^{n} X_{2}\right)$ we obtain

$$
\begin{aligned}
\nabla \Psi_{n}\left(x_{1}+P^{n} x_{2}\right)= & P^{n} A\left(x_{1}+P^{n} x_{2}\right)+P^{n} \nabla B\left(Q\left(x_{1}+P^{n} x_{2}\right)\right) \\
= & T^{n} A x_{1}+\left(P_{\mid X_{2}}^{n}\right)_{*} \nabla B\left(P^{n} x_{2}\right) \\
& +\left(P^{n}-T^{n}\right) A x_{1}+P^{n} A P^{n} x_{2}+P^{n}\left(\nabla B\left(Q P^{n} x_{2}\right)-\nabla B\left(x_{2}\right)\right) .
\end{aligned}
$$

Again, by Lemma $3.1 \sup \left\{\left\|\left(P^{n}-T^{n}\right) A x_{1}\right\|: x_{1} \in X^{n}\right\} \rightarrow 0$.
Note that $\left(P_{\mid X_{2}}^{n}\right)^{-1}\left(X \cap P^{n} X_{2}\right) \subset X_{2}$ is compact. Since $P^{n} \rightarrow I$ uniformly on compact subsets of X_{2},

$$
\sup \left\{\left\|P^{n} A P^{n} x_{2}\right\|: P^{n} x_{2} \in X^{n}\right\} \rightarrow 0
$$

and

$$
\begin{aligned}
& \sup \left\{\left\|P^{n}\left(\nabla B\left(Q P^{n} x_{2}\right)-\nabla B\left(x_{2}\right)\right)\right\|: P^{n} x_{2} \in X^{n}\right\} \\
& \quad \leq L_{B} \sup \left\{\left\|Q P^{n} x_{2}-x_{2}\right\|: P^{n} x_{2} \in X^{n}\right\} \rightarrow 0,
\end{aligned}
$$

where L_{B} is the Lipschitz constant for ∇B. It follows that

$$
\sup \left\{\left\|\nabla \Phi_{n}\left(x_{1}+P^{n} x_{2}\right)-T^{n} A_{\mid X_{1} \cap E^{n}} x_{1}-\left(P_{\mid X_{2}}^{n}\right)_{*} \nabla B\left(P^{n} x_{2}\right)\right\|: x_{1}+P^{n} x_{2} \in X^{n}\right\} \rightarrow 0
$$

For n sufficiently large, $X \cap E^{n}$ is an isolated neighborhood for the flow generated by $T^{n} A_{\mid X_{1} \cap E^{n}}+\left(P_{\mid X_{2}}^{n}\right)_{*} \nabla B$ and

$$
\mathcal{E}_{n} \simeq h\left(X^{n}, \nabla \Psi_{n}\right)=h\left(X^{n}, T^{n} A_{\mid X_{1} \cap E^{n}}+\left(P_{\mid X_{2}}^{n}\right)_{*} \nabla B\right) .
$$

By Lemma 3.1, for sufficiently large $n, X \cap X_{1} \cap E^{n}$ is an isolated neighborhood for the flow generated by $T^{n} A_{\mid X_{1} \cap E^{n}}$. Furthermore,

$$
h\left(X \cap X_{1} \cap E^{n}, T^{n} A_{\mid X_{1} \cap E^{n}}\right)=\left[S^{m^{-}\left(T^{n} A_{\left.\mid X_{1} \cap E^{n}\right)}\right]}\right]
$$

From Lemma 3.4 it follows that the sequence $\left\{S^{m^{-}\left(T^{n} A_{\mid X_{1} \cap E^{n}}\right)}\right\}$ defines a spectrum in $\operatorname{Spec}(v)$ and its homotopy type is equal to $\left[\mathcal{S}^{i^{-(A)}}\right]$. Note that

$$
h\left(X \cap P^{n} X_{2},\left(P_{\mid X_{2}}^{n}\right)_{*} \nabla B\right) \simeq \mathcal{B}_{0} .
$$

Since $X_{1} \cap E^{n}$ and $P^{n} X_{2}$ are orthogonal,

$$
h\left(X^{n}, T^{n} A_{\mid X_{1} \cap E^{n}}+\left(P_{\mid X_{2}}^{n}\right)_{*} \nabla B\right) \simeq S^{i^{-}(A)+\rho(n)} \wedge \mathcal{B}_{0}
$$

Hence $h_{\mathcal{L S}}(X, \nabla \Psi)=\left[\mathcal{S}^{i^{-}(A)} \wedge \mathcal{B}\right]$.

4. The cohomological span

Let $\mathcal{E} \in \operatorname{Spec}(\nu)$ be a spectrum of finite type.
Definition 4.1. The cohomological span of spectrum \mathcal{E} is defined to be a pair

$$
\Gamma(\mathcal{E})=(\underline{\gamma}(\mathcal{E}), \bar{\gamma}(\mathcal{E})),
$$

where

$$
\underline{\gamma}(\mathcal{E})=\min \left\{q \in \mathbb{Z}: H^{q}(\mathcal{E}) \neq 0\right\} \text { and } \bar{\gamma}(\mathcal{E})=\max \left\{q \in \mathbb{Z}: H^{q}(\mathcal{E}) \neq 0\right\} .
$$

If all groups $H^{q}(\mathcal{E})$ are trivial then we set $\Gamma(\mathcal{E})=\emptyset$.

Definition 4.2. The length of $\Gamma(\mathcal{E}) \neq \emptyset$ is defined to be $|\Gamma(\mathcal{E})|=\bar{\gamma}(\mathcal{E})-\underline{\gamma}(\mathcal{E})+1$. For $\Gamma(\mathcal{E})=\emptyset$ we set $|\Gamma(\mathcal{E})|=0$.

Given two spectra $\mathcal{E}_{1}, \mathcal{E}_{1} \in \operatorname{Spec}(v)$ such that $\Gamma\left(\mathcal{E}_{1}\right), \Gamma\left(\mathcal{E}_{2}\right) \neq \emptyset$.

Definition 4.3.

$$
\Gamma\left(\mathcal{E}_{1}\right) \prec \Gamma\left(\mathcal{E}_{2}\right) \Longleftrightarrow \underline{\gamma}\left(\mathcal{E}_{1}\right) \leq \underline{\gamma}\left(\mathcal{E}_{2}\right) \wedge \bar{\gamma}\left(\mathcal{E}_{1}\right) \leq \bar{\gamma}\left(\mathcal{E}_{2}\right) .
$$

As a special case of the above, we define:

$$
\Gamma\left(\mathcal{E}_{1}\right)<\Gamma\left(\mathcal{E}_{2}\right) \Longleftrightarrow \bar{\gamma}\left(\mathcal{E}_{1}\right) \leq \underline{\gamma}\left(\mathcal{E}_{2}\right)
$$

Definition 4.4. The gap between spans $\Gamma\left(\mathcal{E}_{1}\right) \prec \Gamma\left(\mathcal{E}_{2}\right)$ is defined to be $g\left(\mathcal{E}_{1}, \mathcal{E}_{2}\right)=\underline{\gamma}\left(\mathcal{E}_{2}\right)-$ $\bar{\gamma}\left(\mathcal{E}_{1}\right)$.

Suppose that $\Phi: E \rightarrow \mathbb{R}$ satisfies $\left(D_{1}\right)-\left(D_{3}\right)$ and let the notation be as in the preceding section. Recall from Theorem 3.8 that $h_{\mathcal{L} \mathcal{S}}(X, \nabla \Phi)=\left[\mathcal{S}^{i^{-}(A)} \wedge \mathcal{B}\right]$, where $\mathcal{B} \in \operatorname{Spec}\left(\nu_{0}\right)$. It follows easily that

$$
\Gamma\left(h_{\mathcal{L S}}(X, \nabla \Phi)\right)= \begin{cases}\left(i^{-}(A), i^{-}(A)\right) & \text { if } i^{0}(A)=0 \\ \text { either }\left(i^{-}(A)+\underline{\gamma}(\mathcal{B}), i^{-}(A)+\bar{\gamma}(\mathcal{B})\right) \text { or } \emptyset & \text { if } i^{0}(A)>0\end{cases}
$$

Moreover, if $i^{0}(A)>0$ then $\left|\Gamma\left(h_{\mathcal{L S}}(X, \nabla \Phi)\right)\right|=|\Gamma(\mathcal{B})|$ and $H^{q+i^{-}(A)}\left(h_{\mathcal{L S}}(X, \nabla \Phi)\right)=$ $H^{q}(\mathcal{B})$, for all $q \in \mathbb{Z}$. Note that $q \notin\left[0, i^{0}(A)\right]$ implies $H^{q}(\mathcal{B})=0$. Next proposition is analogous to Theorem 4 in [11].

Proposition 4.5. Assume that p is a degenerate critical point of Φ and $p_{2}=Q p$. Then

$$
\Gamma\left(h_{\mathcal{L S}}(X, \nabla \Phi)\right)= \begin{cases}\left(i^{-}(A), i^{-}(A)\right) & \text { if } p_{2} \text { is a local minimum of } B, \\ \left(i^{-}(A)+i^{0}(A), i^{-}(A)+i^{0}(A)\right) & \text { if } p_{2} \text { is a local maximum of } B .\end{cases}
$$

If p_{2} is neither a maximum nor minimum of B then either $\Gamma\left(h_{\mathcal{L S}}(X, \nabla \Phi)\right)=\emptyset$ or

$$
i^{-}(A)+1 \leq \underline{\gamma}\left(h_{\mathcal{L} \mathcal{S}}(X, \nabla \Phi)\right) \leq \bar{\gamma}\left(h_{\mathcal{L S}}(X, \nabla \Phi)\right) \leq i^{-}(A)+i^{0}(A)-1
$$

Corollary 4.6.

1. If $i^{0}(A)=0,1,2$ then $0 \leq\left|\Gamma\left(h_{\mathcal{L S}}(X, \nabla \Phi)\right)\right| \leq 1$.
2. If $i^{0}(A)>2$ then $0 \leq\left|\Gamma\left(h_{\mathcal{L S}}(X, \nabla \Phi)\right)\right| \leq i^{0}(A)-1$.

Remark 4.7. M. Styborski proved in [14] (with a slightly different assumptions on L) the following formula relating $\mathcal{L S}$-index to the Leray-Schauder degree:

$$
\chi\left(h_{\mathcal{L S}}(X, \nabla \Phi)\right)=\operatorname{deg}_{\mathcal{L S}}(\nabla \Phi, X, 0),
$$

where $\chi\left(h_{\mathcal{L S}}(X, \nabla \Phi)\right)=\sum_{q \in \mathbb{Z}}(-1)^{q} \operatorname{rank}\left(H^{q}\left(h_{\mathcal{L S}}(X, \nabla \Phi)\right)\right)$. Clearly, if $i^{0}(A)=0,1,2$ and $\Gamma\left(h_{\mathcal{L} \mathcal{S}}(X, \nabla \Phi)\right) \neq \emptyset$ then

$$
\operatorname{rank} H^{q}\left(h_{\mathcal{L S}}(X, \nabla \Phi)\right)=(-1)^{q} \operatorname{deg}_{\mathcal{L S}}(\nabla \Phi, \text { int } X, 0)
$$

where $q=\underline{\gamma}\left(h_{\mathcal{L S}}(X, \nabla \Phi)\right)$ (see also [11]).
Set $S=\operatorname{Inv}(X, \nabla \Phi)$. In what follows, to simplify the notation, we will write $C H^{q}(S)$ or $C H^{q}(X)$ instead of $H^{q}\left(h_{\mathcal{L} \mathcal{S}}(X, \nabla \Phi)\right)$ and $\Gamma(S)$ or $\Gamma(X)$ instead of $\Gamma\left(h_{\mathcal{L} \mathcal{S}}(X, \nabla \Phi)\right)$.

4.1. Existence of the critical points

Suppose that $\Phi: E \rightarrow \mathbb{R}$ satisfies the following assumptions:
$\left(\Phi_{1}\right) \Phi \in C^{2}(E, \mathbb{R})$,
$\left(\Phi_{2}\right) \nabla \Phi(x)=L x+K(x), K \in C^{1}(E, E)$ is completely continuous,
$\left(\Phi_{3}\right) X$ is an isolating neighborhood for the flow generated by $\nabla \Phi, S=\operatorname{Inv}(X)$,
$\left(\Phi_{4}\right) \operatorname{Crit}(\Phi) \cap S$ is finite,
$\left(\Phi_{5}\right)$ there exists a constant $M=M(\Phi, S) \geq 0$ such that

$$
M \geq \operatorname{dim} \operatorname{ker} \nabla^{2} \Phi(p), \text { for all } p \in \operatorname{Crit}(\Phi) \cap S,
$$

(Φ_{6}) there are $K \geq 1$ critical points $S_{1}, \ldots, S_{K} \subset S$ of Φ and

$$
h_{\mathcal{L S}}(S, \nabla \Phi) \neq \bigvee_{K} h_{\mathcal{L S}}\left(S_{k}, \nabla \Phi\right)
$$

By $\left(\Phi_{4}\right)$ every critical point of Φ is isolated. It follows from $\left(\Phi_{5}\right)$ that for every critical point $p \in \operatorname{Crit}(\Phi)$ dimension of $\operatorname{ker} \nabla^{2} \Phi(p)$ is finite. Assumption (Φ_{6}) implies that the set $S^{\prime}=$ $S \backslash\left(S_{1} \cup \ldots \cup S_{K}\right)$ is nonempty. Since we deal with the gradient flow, the set S^{\prime} contains only critical points and connecting orbits. In particular, if S^{\prime} is not a one point set and $S^{\prime} \cap \operatorname{Crit}(\Phi) \neq \emptyset$ then S^{\prime} contains at least two critical points.

Let \tilde{X} be an isolating neighborhood for the flow generated by $\nabla \Phi$. Directly from Corollary 4.6 we get

Lemma 4.8. If $\operatorname{Inv}(\tilde{X})$ is one point set then $|\Gamma(\tilde{X})| \leq 1$, provided $M=0,1,2$, and $|\Gamma(\tilde{X})| \leq$ $M-1$, provided $M>2$.

Assume that $\operatorname{Crit}(\Phi) \cap S=\left\{p_{1}, \ldots, p_{N}\right\}$. Clearly, there exists $1 \leq i_{k} \leq N$ such that $S_{k}=$ $\left\{p_{i_{k}}\right\}$. Without loss of generality we can assume that $\Phi\left(p_{i}\right) \leq \Phi\left(p_{j}\right)$ for $i<j$. Note that the family $\left\{\left\{p_{i}\right\}: i=1 \ldots N\right\}$ is a Morse decomposition of S. Define a new family $\left\{M_{k}: k=\right.$ $1, \ldots 2 K+1\}$ of Morse sets as follows

$$
\begin{aligned}
M_{1} & =\bigcup_{i=1}^{i_{1}-1}\left\{p_{i}\right\} \cup \bigcup_{0<i<j}^{i_{1}-1} C\left(\left\{p_{j}\right\},\left\{p_{i}\right\}\right), \\
M_{2 k} & =\left\{p_{i_{k}}\right\}=S_{k},
\end{aligned}
$$

$$
\begin{aligned}
M_{2 k+1} & =\bigcup_{i=i_{k}+1}^{i_{k+1}-1}\left\{p_{i}\right\} \cup \bigcup_{i_{k}<i<j}^{i_{k+1}-1} C\left(\left\{p_{j}\right\},\left\{p_{i}\right\}\right), \\
M_{2 K+1} & =\bigcup_{i=i_{K}+1}^{N}\left\{p_{i}\right\} \cup \bigcup_{i_{K}<i<j}^{N} C\left(\left\{p_{j}\right\},\left\{p_{i}\right\}\right) .
\end{aligned}
$$

Here $C(\{p\},\{q\})$ stands for the set of connecting orbits between $\{p\}$ and $\{q\}$. It is possible that all of the sets $M_{1}, M_{3}, \ldots, M_{2 K+1}$ are empty. In this case, the only critical points in S are S_{1}, \ldots, S_{K}. However, if $M_{2 k+1} \neq \emptyset$ then $M_{2 k+1}$ contains at least one critical point and this point is different from known critical points S_{1}, \ldots, S_{K}.

It is clear that the family $\left\{M_{k}: k=1, \ldots, 2 K+1\right\}$ is a Morse decomposition of S. Note that if $p \in M_{2 k+1}$ then $\Phi\left(M_{2 k}\right) \leq \Phi(p) \leq \Phi\left(M_{2 k+2}\right)$.

Remark 4.9. The above construction is a special case of more general procedure described in Section 2.2 of [16].

Applying Theorem 2.17 to $\left\{M_{k}: k=1, \ldots, 2 K+1\right\}$ we get isolating neighborhoods $X_{1}, \ldots, X_{2 K+1}=X$ such that for each $k=1, \ldots, 2 K$, pair $\left(\operatorname{Inv}\left(X_{k}\right), M_{k+1}\right)$ is an attractorrepeler pair in X_{k+1}. Note that $M_{1}=\operatorname{Inv}\left(X_{1}\right)$ and $S=\operatorname{Inv}\left(X_{2 K+1}\right)$.

If for some k the set $M_{2 k+1}$ is empty then we have $C H^{q}\left(M_{2 k+1}\right)=0$ and $C H^{q}\left(X_{2 k+1}\right)$ $\simeq C H^{q}\left(X_{2 k}\right)$, for all $q \in \mathbb{Z}$. We obtain the long exact sequence

$$
\cdots \xrightarrow{\delta^{q-1}} 0 \longrightarrow C^{q}\left(X_{2 k+1}\right) \rightarrow C H^{q}\left(X_{2 k}\right) \longrightarrow 0 \longrightarrow \delta^{q-1} \longrightarrow \cdots
$$

If the set $M_{2 k+1}$ is non-empty then Theorem 2.18 gives us the long exact sequence for $\left(\operatorname{Inv}\left(X_{k}\right), M_{k+1}\right)$. Combining the above we get the following diagram of long exact sequences:

$$
\begin{gather*}
\cdots \xrightarrow{\delta^{q-1}} C^{q}\left(S_{1}\right) \longrightarrow C H^{q}\left(X_{2}\right) \longrightarrow C H^{q}\left(M_{1}\right) \xrightarrow{\delta^{q}} \cdots \\
\cdots \xrightarrow{\delta^{q-1}} C H^{q}\left(S_{k}\right) \longrightarrow C H^{q}\left(X_{2 k}\right) \longrightarrow C H^{q}\left(X_{2 k-1}\right) \xrightarrow{\delta^{q}} \cdots \\
\cdots \xrightarrow{\delta^{q-1}} C H^{q}\left(M_{2 k+1}\right) \rightarrow C H^{q}\left(X_{2 k+1}\right) \longrightarrow C H^{q}\left(X_{2 k}\right) \longrightarrow \delta^{\delta^{q}} \cdots \tag{1}\\
\cdots \xrightarrow{\delta^{q-1}} C H^{q}\left(M_{2 K+1}\right) \longrightarrow C H^{q}(S) \longrightarrow C H^{q}\left(X_{2 K}\right) \xrightarrow{\delta^{q}} \cdots
\end{gather*}
$$

If for some $k=0, \ldots, K$ we have $\Gamma\left(M_{2 k+1}\right) \neq \emptyset$ then there is $q \in \mathbb{Z}$ such that $C H^{q}\left(M_{2 k+1}\right)$ is nontrivial. Then, the set $M_{2 k+1}$ is non-empty and contains at least one critical point.

Lemma 4.10. Assume that $\Gamma\left(M_{2 k+1}\right) \neq \emptyset$ for some $0 \leq k \leq K$.

1. If $M=0,1,2$ then the set $M_{2 k+1}$ contains at least $\sharp\left\{q \in \mathbb{Z}: C H^{q}\left(M_{2 k+1}\right) \neq 0\right\}$ critical points.
2. If $M>2$ and $\left|\Gamma\left(M_{2 k+1}\right)\right|>M-1$ then the set $M_{2 k+1}$ contains at least two critical points.

Proof. In the case $M>2$ conclusion follows directly from Lemma 4.8. Let $M=0,1,2$ and let $C_{M}=\sharp M_{2 k+1} \cap \operatorname{Crit}(\Phi)$ and $C_{H}=\sharp\left\{q \in \mathbb{Z}: C H^{q}\left(M_{2 k+1}\right) \neq 0\right\}$. Suppose that $C_{M}<C_{H}$.

As before, the family $\left\{Q_{1}, \ldots, Q_{C_{M}}\right\}=M_{2 k+1} \cap \operatorname{Crit}(\Phi)$ is a Morse decomposition of $M_{2 k+1}$. By 2.17 and 2.18 , renumbering the points if necessary, we have:

$$
\begin{align*}
& \cdots \xrightarrow{\delta^{q-1}} C H^{q}\left(Q_{2}\right) \longrightarrow C H^{q}\left(X_{2}\right) \longrightarrow C H^{q}\left(Q_{1}\right) \xrightarrow{\delta^{q}} \cdots \\
& \cdots \xrightarrow{\delta^{q-1}} C H^{q}\left(Q_{n}\right) \longrightarrow C H^{q}\left(X_{n}\right) \longrightarrow C H^{q}\left(X_{n-1}\right) \xrightarrow[\delta^{q}]{\delta^{q}} \cdots \\
& \cdots \xrightarrow{\delta^{q-1}} C H^{q}\left(Q_{n+1}\right) \longrightarrow C H^{q}\left(X_{n+1}\right) \longrightarrow C H^{q}\left(X_{n}\right) \xrightarrow{\delta^{q}} \cdots \tag{2}\\
& \cdots \xrightarrow{\delta^{q-1}} C H^{q}\left(Q_{C_{M}}\right) \longrightarrow C H^{q}\left(M_{2 k+1}\right) \longrightarrow C H^{q}\left(X_{C_{M}-1}\right) \xrightarrow[\delta^{q}]{\longrightarrow} \cdots
\end{align*}
$$

If $C H^{q}\left(M_{2 k+1}\right) \neq 0$ then at least one of the groups $C H^{q}\left(Q_{n}\right)$ is nonzero. Otherwise, $C H^{q}\left(X_{n}\right)=0$, for all n, and

$$
\cdots \xrightarrow{\delta^{q-1}} 0 \rightarrow C H^{q}\left(M_{2 k+1}\right) \rightarrow 0 \xrightarrow{\delta^{q}} \cdots
$$

This contradicts the exactness of (2). Therefore, we have at least C_{H} nonzero groups

$$
C H^{q_{1}}\left(Q_{n_{1}}\right), \ldots, C H^{q_{C_{H}}}\left(Q_{n_{C_{H}}}\right) .
$$

Since $\left|\Gamma\left(Q_{n}\right)\right| \leq 1, C_{M} \geq C_{H}$. A contradiction.

In the case $M>2$, when nontrivial cohomology groups of $M_{2 k+1}$ are "far enough", we can obtain better estimations for the number of critical points in $M_{2 k+1}$.

Lemma 4.11. Let $M>2$ and $1 \leq k \leq K$. Suppose that there exists $q_{1}<\ldots<q_{N}$ such that $q_{i+1}-q_{i}>M-1$ and $C^{q_{i}}\left(M_{2 k+1}\right) \neq 0$. Then the set $M_{2 k+1}$ contains at least N critical points.

Proof. If $N=1$ then the conclusion follows from the nontriviality of the $\mathcal{L S}$-index of $M_{2 k+1}$. Let $C_{M}=\sharp M_{2 k+1} \cap \operatorname{Crit}(\Phi)$. Suppose that $N>1$ and $C_{M}<N$. As before, we have a Morse decomposition $\left\{P_{1}, \ldots, P_{C_{M}}\right\}=M_{2 k+1} \cap \operatorname{Crit}(\Phi)$ of $M_{2 k+1}$. Now, one can obtain a diagram similar to (2). From the exactness of the rows, every nontrivial group $C H^{q_{i}}\left(M_{2 k+1}\right)$ gives at least one nontrivial group $C H^{q_{i}}\left(P_{j_{i}}\right)$. Since $C_{M}<N$ and $q_{i+1}-q_{i}>M-1$, at least one of the lengths $\left|\Gamma\left(P_{i}\right)\right|$ is greater than $M-1$. A contradiction.

Example 4.12. (Cf. p. 230, [17].) Suppose that $S_{1}, \ldots, S_{K} \subset S$ are all critical points of Φ such that $h_{\mathcal{L S}}\left(S_{k}\right)=\left[\bigvee_{a_{k}} S^{\gamma_{k}}\right]$ and $h_{\mathcal{L S}}(S)=\left[S^{m}\right]$. Theorem 2.19 implies $\sum_{k=1}^{K} a_{k} t^{\gamma_{k}}=t^{m}+(1+$ t) $Q(t)$. Setting $t=1$ we get $\sum_{k=1}^{K} a_{k}=1+2 Q(1)$. Hence, $\sum_{k=1}^{K} a_{k}$ is odd.

In particular, if K is even and all of the S_{k} are nondegenerate (in this case $a_{k}=1$) then Φ has additionally at least one critical point. Similar result for the classical Conley index was obtained in [17] under the assumption that all critical points of Φ are nondegenerate.

Remark 4.13. Note that our theory do not require any nondegeneracy conditions. The only assumption on known critical point is to be isolated.

4.2. The case $K=1$

We first consider the case $K=1$, i.e. there is exactly one known critical point. Since (Φ_{6}) reduces to

$$
h_{\mathcal{L S}}(S, \nabla \Phi) \neq h_{\mathcal{L} \mathcal{S}}\left(S_{1}, \nabla \Phi\right),
$$

it follows from properties of $\mathcal{L S}$-index that the set $S^{\prime}=S \backslash S_{1}$ contains at least one critical point.
Since $K=1$, we have three-element Morse decomposition $\left\{M_{1}, S_{1}, M_{3}\right\}$ of S. Thus, the diagram (1) reduces to the two-row diagram below

$$
\begin{align*}
& \cdots \xrightarrow{\delta^{q-1}} \text { CH }^{q}\left(S_{1}\right) \longrightarrow \text { CH }^{q}\left(X_{2}\right) \rightarrow \text { CH }^{q}\left(M_{1}\right) \stackrel{\delta^{q}}{\longrightarrow} \cdots \tag{3}\\
& H^{q}\left(M_{3}\right) \longrightarrow C H^{q}(S) \longrightarrow C H^{q}\left(X_{2}\right) \xrightarrow{\delta^{q}} \cdots
\end{align*}
$$

Lemma 4.14. If for some $q \in \mathbb{Z}, C H^{q}(S) \nsucceq C H^{q}\left(S_{1}\right)$, then at least one of the groups $C H^{q-1}\left(M_{1}\right), C H^{q}\left(M_{1}\right), C H^{q}\left(M_{3}\right), C H^{q+1}\left(M_{3}\right)$ is nontrivial. In particular:

1. if $C H^{q}\left(S_{1}\right)=0$ then $C H^{q}\left(M_{1}\right) \neq 0$ or $C H^{q}\left(M_{3}\right) \neq 0$,
2. if $\mathrm{CH}^{q}(S)=0$ then $\mathrm{CH}^{q-1}\left(M_{1}\right) \neq 0$ or $\mathrm{CH}^{q+1}\left(M_{3}\right) \neq 0$.

Proof. If $C H^{q-1}\left(M_{1}\right)=C H^{q}\left(M_{1}\right)=C H^{q}\left(M_{3}\right)=C H^{q+1}\left(M_{1}\right)=0$ then from exactness of the rows in (3) we get $C H^{q}\left(S_{1}\right) \simeq C H^{q}\left(X_{2}\right)$ and $C H^{q}(S) \simeq C H^{q}\left(X_{2}\right)$. A contradiction.

Assume that $C H^{q}\left(S_{1}\right)=0$. Then $C H^{q}(S) \neq 0$ and $C H^{q}\left(M_{3}\right) \neq 0$ or $C H^{q}\left(X_{2}\right) \neq 0$. It follows that $C H^{q}\left(X_{2}\right) \longrightarrow C H^{q}\left(M_{1}\right)$ is a monomorphism. Hence $C H^{q}\left(M_{1}\right) \neq 0$. Similar arguments apply in the case $\mathrm{CH}^{q}(S)=0$.

Now we give conditions under which the set S^{\prime} contains at least two critical points. We first consider $M=0,1,2$, i.e. $\left|\Gamma\left(S_{1}\right)\right| \leq 1$.

Theorem 4.15. Assume that $M=0,1,2$ and $\Gamma(S) \neq \emptyset$.

1. If $\Gamma\left(S_{1}\right)=\emptyset$ then the set S^{\prime} contains at least $\sharp\left\{q \in \mathbb{Z}: C H^{q}(S) \neq 0\right\}$ critical points.
2. If $\Gamma\left(S_{1}\right) \neq \emptyset$ then the minimal number of critical points in the set S^{\prime} is equal to:

$$
\begin{cases}\sharp\left\{q \in \mathbb{Z}: C H^{q}(S) \neq 0\right\}+1 & \text { if } g\left(S_{1}, S\right)>1 \text { or } g\left(S, S_{1}\right)>1, \\ \sharp\left\{q \in \mathbb{Z}: C H^{q}(S) \neq 0\right\} & \text { if } g\left(S_{1}, S\right)=1 \text { or } g\left(S, S_{1}\right)=1, \\ \sharp\left\{q \in \mathbb{Z}: C H^{q}(S) \neq 0\right\}-1 & \text { if } g\left(S_{1}, S\right)=0 \text { or } g\left(S, S_{1}\right)=0 .\end{cases}
$$

Proof. Lemma 4.10 shows that the minimal number of critical points in the set S^{\prime} is greater than or equal to the number of nonzero groups $C H^{q}\left(M_{1}\right)$ and $C H^{q}\left(M_{3}\right)$.

If $\Gamma\left(S_{1}\right)=\emptyset$ then our statement follows from Lemma 4.14, since each nonzero cohomology group of S gives at least one nonzero cohomology group of M_{1} or M_{3}.

Suppose that $\Gamma\left(S_{1}\right) \neq \emptyset$. Since $M=0,1,2,\left|\Gamma\left(S_{1}\right)\right|=1$ and $\underline{\gamma}\left(S_{1}\right)=\bar{\gamma}\left(S_{1}\right)$. We prove only the case $\Gamma\left(S_{1}\right) \prec \Gamma(S)$. The other case is similar and the details are left to the reader.

Let $g\left(S_{1}, S\right)>1$. By Lemma 4.14, if $q=\gamma\left(S_{1}\right)$ then at least one of the groups $\mathrm{CH}^{q-1}\left(M_{1}\right)$, $C H^{q+1}\left(M_{3}\right)$ are nonzero. Similarly, if $q \in[\underline{\gamma}(S), \bar{\gamma}(S)]$ and $C H^{q}(S) \neq 0$ then $C H^{q}\left(M_{1}\right) \neq 0$ or $C H^{q}\left(M_{3}\right) \neq 0$. Since $\bar{\gamma}\left(S_{1}\right)<\underline{\gamma}(S)-1$, we have at least $\sharp\left\{q \in \mathbb{Z}: C H^{q}(S) \neq 0\right\}+1$ nonzero groups.

The cases $g\left(S_{1}, S\right)=1$ and $g\left(S_{1}, S\right)=0$ follow directly by Lemma 4.14.

If in above theorem we assume that the gap between S_{1} and S is equal to $0, \Gamma\left(S_{1}\right) \neq \emptyset$ and the only nonzero group $C H^{q}\left(S_{1}\right)$ is not isomorphic to $C H^{q}(S), q=\gamma\left(S_{1}\right)$, then one can prove that the set S^{\prime} contains at least $\sharp\left\{q \in \mathbb{Z}: C H^{q}(S) \neq 0\right\}$ critical points. This simple exercise is left to the reader.

Now, we turn to the case $M>2$. If $\Gamma\left(S_{1}\right)=\emptyset$ and $|\Gamma(S)|>M-1$ then by Lemma 4.14 we have two (non-exclusive) possibilities: the cohomology groups of M_{1} and M_{3} are simultaneously nonzero or one of the numbers $\left|\Gamma\left(M_{1}\right)\right|,\left|\Gamma\left(M_{3}\right)\right|$ is greater than $M-1$.

In the first case, by the non-triviality of $\mathcal{L S}$-index of M_{1}, M_{3} and in the latter by Lemma 4.10 we have the existence of at least two critical points in the set S^{\prime}.

Theorem 4.16. Assume that $M>2, \Gamma\left(S_{1}\right) \neq \emptyset, \Gamma(S) \neq \emptyset$ and $|\Gamma(S)| \leq M-1$. The set S^{\prime} contains at least two critical points if one of the following cases occurs:

1. $\Gamma(S)<\Gamma\left(S_{1}\right)$ and $|\Gamma(S)|+\left|\Gamma\left(S_{1}\right)\right|+g\left(S, S_{1}\right)-2>M-1$;
2. $\Gamma\left(S_{1}\right)<\Gamma(S)$ and $|\Gamma(S)|+\left|\Gamma\left(S_{1}\right)\right|+g\left(S_{1}, S\right)-2>M-1$.

Proof. We only prove the first statement. The latter follows by the similar argument. Since $\Gamma\left(S_{1}\right) \neq \Gamma(S), S^{\prime}$ contains at least one critical point. If for some q_{1}, q_{2} we have $C H^{q_{1}}\left(M_{1}\right) \neq 0$ and $C^{q_{2}}\left(M_{3}\right) \neq 0$ then the proof is finished.

Assume that $\Gamma\left(S_{1}\right)<\Gamma(S)$. Since $C H^{\underline{\gamma}\left(S_{1}\right)}\left(S_{1}\right) \neq 0=C H^{\underline{\gamma}}{ }^{\left(S_{1}\right)}(S)$, Lemma 4.14 shows that $C H^{\underline{\gamma}\left(S_{1}\right)-1}\left(M_{1}\right) \neq 0$ or $C H^{\underline{\gamma}\left(S_{1}\right)+1}\left(M_{3}\right) \neq 0$. Similarly, $C H^{\bar{\gamma}(S)}\left(S_{1}\right)=0 \neq C H^{\bar{\gamma}(S)}(S)$ implies that $C H^{\bar{\gamma}(S)}\left(M_{3}\right) \neq 0$ or $C H^{\bar{\gamma}(S)}\left(M_{1}\right) \neq 0$.

Suppose that $C H^{q}\left(M_{3}\right)=0, q \in \mathbb{Z}$. Then $\underline{\gamma}\left(M_{1}\right) \leq \underline{\gamma}\left(S_{1}\right)-1 \leq \bar{\gamma}(S) \leq \bar{\gamma}\left(M_{1}\right)$. Hence,

$$
\begin{aligned}
\left|\Gamma\left(M_{1}\right)\right| & \geq \bar{\gamma}\left(M_{1}\right)-\underline{\gamma}\left(M_{1}\right)+1 \geq \bar{\gamma}(S)-\underline{\gamma}\left(S_{1}\right)+1+1 \\
& \geq \bar{\gamma}(S)-\underline{\gamma}(S)+1+\bar{\gamma}\left(S_{1}\right)-\underline{\gamma}\left(S_{1}\right)+1+-\bar{\gamma}\left(S_{1}\right)+\underline{\gamma}(S) \\
& \geq|\Gamma(S)|+\left|\Gamma\left(S_{1}\right)\right|+g\left(S_{1}, S\right)>M+1 .
\end{aligned}
$$

Therefore, the set $M_{1} \subset S^{\prime}$ contains at least two critical points. Similarly, if $C H^{q}\left(M_{1}\right)=0, q \in \mathbb{Z}$ then $\underline{\gamma}\left(M_{3}\right) \leq \underline{\gamma}\left(S_{1}\right)+1 \leq \bar{\gamma}(S) \leq \bar{\gamma}\left(M_{3}\right)$. Hence,

$$
\begin{aligned}
\left|\Gamma\left(M_{3}\right)\right| & \geq \bar{\gamma}\left(M_{3}\right)-\underline{\gamma}\left(M_{3}\right)+1 \geq \bar{\gamma}(S)-\underline{\gamma}\left(S_{1}\right)-1+1 \\
& \geq \bar{\gamma}(S)-\underline{\gamma}(S)+1+\bar{\gamma}\left(S_{1}\right)-\underline{\gamma}\left(S_{1}\right)+1+-\bar{\gamma}\left(S_{1}\right)+\underline{\gamma}(S)-2 \\
& \geq|\Gamma(S)|+\left|\Gamma\left(S_{1}\right)\right|+g\left(S_{1}, S\right)-2>M-1 .
\end{aligned}
$$

Therefore the set $M_{3} \subset S^{\prime}$ contains at least two critical points.

If in above theorem we assume that $|\Gamma(S)|>M-1$ and the gap between S_{1} and S is "big enough" then one can show that the set S^{\prime} contains at least three critical points.

Theorem 4.17. Assume that $M>2, \Gamma\left(S_{1}\right) \neq \emptyset$ and $|\Gamma(S)|>M-1$. The set S^{\prime} contains at least three critical points if one of the following cases occurs:

1. $\Gamma(S)<\Gamma\left(S_{1}\right)$ and $g\left(S, S_{1}\right)>M-1$;
2. $\Gamma\left(S_{1}\right)<\Gamma(S)$ and $g\left(S_{1}, S\right)>M-1$.

Proof. We give the proof only for the case $\Gamma(S)<\Gamma\left(S_{1}\right)$. Since $\Gamma(S) \neq \Gamma\left(S_{1}\right)$, there is at least one critical point in the set S^{\prime}.

By Lemma 4.14 and the assumption $g\left(S, S_{1}\right)>M-1$ we obtain that M_{1} or M_{3} has nonzero cohomology groups at dimensions

$$
q \in\left\{\underline{\gamma}\left(S_{1}\right)-1, \underline{\gamma}\left(S_{1}\right)+1\right\}, q \in\left\{\bar{\gamma}\left(S_{1}\right)-1, \bar{\gamma}\left(S_{1}\right)+1\right\}, q=\underline{\gamma}(S) \text { and } q=\bar{\gamma}(S) .
$$

If both M_{1} and M_{3} have nontrivial cohomology groups then the set S^{\prime} contains at least two critical points. If the cohomology groups of $M_{1}\left(\right.$ resp. $\left.M_{3}\right)$ are trivial then $\left|\Gamma\left(M_{3}\right)\right|\left(\right.$ resp. $\left.\left|\Gamma\left(M_{1}\right)\right|\right)$ is greater than $M-1$. Hence, by Lemma 4.10, the set S^{\prime} contains at least two critical points.

Assume that $C H^{q}\left(M_{3}\right)=0$, for all $q \in \mathbb{Z}$. Then we have at least three nonzero cohomology groups of $M_{1}: C H^{\underline{\gamma}(S)}\left(M_{1}\right), C H^{\bar{\gamma}(S)}\left(M_{1}\right)$ and $C H^{q}\left(M_{1}\right)$, for some $q \in\left\{\gamma\left(S_{1}\right)-1, \bar{\gamma}\left(S_{1}\right)-1\right\}$.

Suppose that M_{1} contains only two critical points, say P_{1}, P_{2}. Then $\left\{\bar{P}_{1}, P_{2}\right\}$ is a Morse decomposition of the set M_{1} and $\left|\Gamma\left(P_{1}\right)\right|,\left|\Gamma\left(P_{2}\right)\right| \leq M-1$. We have the exact sequence:

$$
\cdots \xrightarrow{\delta^{q-1}} C H^{q}\left(P_{2}\right) \rightarrow C^{q}\left(M_{1}\right) \rightarrow C H^{q}\left(P_{1}\right) \xrightarrow{\delta^{q}} \cdots
$$

From non-triviality of $C H^{q}\left(M_{1}\right)$ it follows that $C H^{q}\left(P_{1}\right)$ or $C H^{q}\left(P_{2}\right)$ is nontrivial. Moreover, $\left|\Gamma\left(P_{1}\right)\right|>M-1$ or $\left|\Gamma\left(P_{2}\right)\right|>M-1$. Therefore, the set M_{1} contains at least three critical points. The above remains true if we exchange the roles of M_{1} and M_{3}.

Observe that if $\Gamma\left(M_{1}\right) \neq \emptyset$ and $\Gamma\left(M_{3}\right) \neq \emptyset$ then $\left|\Gamma\left(M_{1}\right)\right| \geq 2$ or $\left|\Gamma\left(M_{3}\right)\right| \geq 2$. Suppose that for some $q_{1}, q_{2}, q_{3} \in\left[\underline{\gamma}\left(S_{1}\right)-1, \bar{\gamma}\left(S_{1}\right)+1\right] \cup\{\underline{\gamma}(S), \bar{\gamma}(S)\}$ the groups $C H^{q_{1}}\left(M_{1}\right)$, $C H^{q_{2}}\left(M_{1}\right)$ and $C H^{q_{3}}\left(M_{3}\right)$ are nonzero. We can assume that q_{1}, q_{2}, q_{3} are pairwise different and any two of them are not simultaneously in $\left[\underline{\gamma}\left(S_{1}\right)-1, \bar{\gamma}\left(S_{1}\right)+1\right]$. Since $\left|\Gamma\left(M_{1}\right)\right|>M-1$ and $\mathcal{L S}$-index of M_{3} is nontrivial, the set S^{\prime} contains at least three critical points. As before we can exchange the roles of M_{1} and M_{3}.

4.3. The case $K \geq 2$

Now, we turn to the case when more than one critical point is known. By $\left(\Phi_{6}\right)$, we have $S^{\prime}=S \backslash\left(S_{1} \cup \ldots \cup S_{K}\right) \neq \emptyset$. As opposed to the situation $K=1$, it is possible that the set S^{\prime} do not contain any critical points and consists of connecting orbits only.

We first give conditions which ensure the existence of at least one critical point in S^{\prime}.
Lemma 4.18. Suppose that for some $q \in \mathbb{Z}$ the following groups are trivial:

$$
C H^{q}(S), C H^{q+1}\left(S_{k}\right), \text { for } k \neq 1
$$

and $C H^{q}\left(S_{1}\right) \neq 0$. Then, at least one of the groups:

$$
C H^{q-1}\left(M_{1}\right), C H^{q+1}\left(M_{2 k+1}\right), \text { for } k=0, \ldots, K,
$$

is nonzero.
Proof. On the contrary, assume that all of these groups are trivial. Diagram (1) takes the following form:

Since in the above diagram all of the groups $C H^{q}\left(X_{k}\right)$ are trivial, $C H^{q}\left(S_{1}\right)=0$. A contradiction.

Lemma 4.19. Assume that for some $q \in \mathbb{Z}$ the following groups are trivial:

$$
\text { CH }^{q+1}(S), C H^{q-1}\left(S_{k}\right), \text { for } k<k_{0} \text { and } C H^{q+1}\left(S_{k}\right), \text { for } k>k_{0}
$$

and $C H^{q}\left(S_{k_{0}}\right) \neq 0$, for $k_{0} \neq 1$. Then, at least one of the groups:

$$
C H^{q-1}\left(M_{2 k+1}\right), \text { for } k=0, \ldots, k_{0} ; C H^{q+1}\left(M_{2 k+1}\right), \text { for } k=k_{0}, \ldots, K,
$$

is nonzero.
Proof. On the contrary, assume that all of these groups are zero. Since $\mathrm{CH}^{q-1}\left(S_{1}\right)$ and $C H^{q-1}\left(M_{1}\right)$ are trivial. From diagram (1) we obtain that all groups $C H^{q-1}\left(X_{k}\right), k=$ $2, \ldots, 2 k_{0}-1$ are trivial. Similarly, since $C H^{q+1}(S)$ and $C H^{q+1}\left(M_{2 K+1}\right)$ are trivial, all groups $C H^{q+1}\left(X_{k}\right)$ are trivial, provided $k=2 k_{0}, \ldots, 2 K+1$. Thus, $C H^{q}\left(S_{k_{0}}\right)$ is trivial. A contradiction.

Lemma 4.20. Assume that for some $q \in \mathbb{Z}$ the following groups are trivial:

$$
C H^{q}\left(S_{k}\right)=0, k=1, \ldots, K
$$

and $C H^{q}(S) \neq 0$. Then, at least one of the groups:

$$
C H^{q}\left(M_{2 k+1}\right), k=0, \ldots, K ;
$$

is nonzero.

Proof. On the contrary, assume that all of these groups are zero. Then, all groups $C H^{q}\left(X_{k}\right)=0$, $k=0, \ldots, 2 K$ are trivial. Hence $C H^{q}\left(X_{2 K}\right)=0$. A contradiction.

Lemma 4.21. Assume that for some $q \in \mathbb{Z}$ and $n \in \mathbb{N}$ the following groups are trivial:

$$
C H^{q-1}\left(S_{k}\right), C H^{q+n+1}\left(S_{k+1}\right), k=1, \ldots, K-1 .
$$

If $C H^{q-1}\left(M_{2 k+1}\right)=0, k=0, \ldots, K-1$ and all the cohomology groups of the sets $M_{2 k+1}, k=$ $0, \ldots, K$ are trivial in dimensions from $q-1$ to $q+n+1$ then each of the following sequences:

$$
\begin{aligned}
& 0 \xrightarrow{\delta^{q-1}} C H^{q}\left(S_{2}\right) \longrightarrow C H^{q}\left(X_{4}\right) \longrightarrow C H^{q}\left(S_{1}\right) \xrightarrow{\delta^{q}} \cdots \longrightarrow C H^{q+n}\left(S_{1}\right) \xrightarrow{\delta^{q+n}} 0 \\
& 0 \xrightarrow{\delta^{q-1}} C H^{q}\left(S_{k}\right) \longrightarrow C H^{q}\left(X_{2 k}\right) \rightarrow C H^{q}\left(X_{2 k-2}\right) \xrightarrow{\delta^{q}} \cdots \longrightarrow C H^{q+n}\left(X_{2 k-2}\right) \xrightarrow{\delta^{q+n}} 0 \\
& 0 \xrightarrow{\delta^{q-1}} C H^{q}\left(S_{K}\right) \longrightarrow C H^{q}(S) \longrightarrow C H^{q}\left(X_{2 K-2}\right) \xrightarrow{\delta^{q}} \cdots \longrightarrow C H^{q+n}\left(X_{2 K-2}\right) \xrightarrow{\delta^{q+n}} 0
\end{aligned}
$$

is exact.

Proof. By exactness of the rows in the diagram (1) we get CH $^{q}\left(S_{1}\right) \simeq$ CH $^{q}\left(X_{2}\right)$, CH $^{q}\left(X_{2 k+1}\right)$ $\simeq C H^{q}\left(X_{2 k}\right)$ and $C H^{q}(S) \simeq C H^{q}\left(X_{2 K}\right)$. Hence we can drop the odd rows from the diagram (1), which completes the proof.

All of the above lemmas guarantee the existence of at least one critical point in the set S^{\prime}. Repeated application of the above lemmas for different q may lead to the situation when some set $M_{2 k+1}$ possess more than one nonzero cohomology group. If $\left|\Gamma\left(M_{2 k+1}\right)\right|$ is big enough, say greater than $M-1$, then the set $M_{2 k+1}$ contains more than one critical point by Lemma 4.11.

Now we examine three situations when at least two critical points can be obtained. Set $S_{0}=S$. Suppose that $\Gamma\left(S_{k}\right) \neq \emptyset,|\Gamma(S)|<M-1$ and

$$
\Gamma\left(S_{k_{0}}\right) \prec \Gamma\left(S_{k_{1}}\right) \prec \ldots \prec \Gamma\left(S_{k_{K}}\right),
$$

where $k_{i}=0,1, \ldots, K$ and $k_{i} \neq k_{j}$, provided $i \neq j$.
Definition 4.22. We say that spans $\Gamma\left(S_{k}\right), k=0,1, \ldots K$, satisfy condition (A), if:

$$
g\left(S_{k_{i}}, S_{k_{i+1}}\right)-2>M-1, \text { for all } k_{i}=0, \ldots, K-1
$$

Theorem 4.23. Assume that the condition (A) holds. Then the set S^{\prime} contains at least $K+1$ critical points.

Proof. Fix $0 \leq k_{i} \leq K$. Let $q=\underline{\gamma}\left(S_{k_{i}}\right)$ and $n=\bar{\gamma}\left(S_{k_{i}}\right)-\underline{\gamma}\left(S_{k_{i}}\right)=\left|\Gamma\left(S_{k_{i}}\right)\right|-1$. Since the cohomology groups of $S_{k_{i}}$ are trivial in dimensions $q-1$ and $q+n+1$, the conditions of Lemma 4.21 are satisfied. For $k_{j} \neq k_{i}$ all the cohomology groups of $S_{k_{j}}$ are trivial in dimensions from q to $q+n$. The set $S_{k_{i}}$ possess at least one nonzero cohomology group in dimensions from
q to $q+n$. It is easy to check that sequences in Lemma 4.21 are not exact. Thus for all $0 \leq i \leq K$ there exist $0 \leq k_{i} \leq K$ and $\underline{\gamma}\left(S_{k_{i}}\right)-1 \leq q_{i} \leq \bar{\gamma}\left(S_{k_{i}}\right)+1$ such that $C H^{q_{i}}\left(M_{2 k_{i}+1}\right) \neq 0$.

Note that if $i<j$ then $q_{i}<q_{j}$. For arbitrary $i<K$ we obtain:

$$
q_{i+1}-q_{i}>\underline{\gamma}\left(S_{k_{i+1}}\right)-1-\bar{\gamma}\left(S_{k_{i}}\right)-1=g\left(S_{k_{i}}, S_{k_{i+1}}\right)-2>M-1 .
$$

For each $k=1, \ldots, K$ we denote by $h_{2 k+1}$ the number of nonzero groups $C H^{q_{i}}\left(M_{2 k_{i}+1}\right)$ such that $k=k_{i}$. By Lemma 4.11 each set $M_{2 k+1}$ contains at least $h_{2 k+1}$ critical points. Hence, we have at least $\sum_{k=1}^{K} h_{2 k+1}=K+1$ critical points in the set S^{\prime}.

If in the above theorem we assume that $M=0,1,2$ and $g\left(S_{k_{i-1}}, S_{k_{i}}\right)>1$ then similar argument, using Lemmas 4.21 and 4.10, gives us at least $K+1$ critical points in the set S^{\prime}.

Definition 4.24. We say that spans $\Gamma\left(S_{k}\right), k=0,1, \ldots K$, satisfy condition (B), if:

1. $\left|\Gamma\left(S_{k_{i}}\right)\right|+g\left(S_{k_{i-1}}, S_{k_{i}}\right)>2 ; g\left(S_{k_{i}}, S_{k_{i+1}}\right)>1$;
2. $\left|\Gamma\left(S_{k_{j}}\right)\right|+g\left(S_{k_{j}}, S_{k_{j+1}}\right)>2 ; g\left(S_{k_{j-1}}, S_{k_{j}}\right)>1$;
3. $g\left(S_{k_{i}}, S_{k_{j}}\right)-2>M-1$, for some $0 \leq i<j \leq K$.

Note that if the condition (B) holds then there may exist sets $S_{k_{n}}$ such that

$$
\ldots \prec \Gamma\left(S_{k_{i-1}}\right) \prec \Gamma\left(S_{k_{i}}\right)<\ldots \prec \Gamma\left(S_{k_{n}}\right) \prec \ldots<\Gamma\left(S_{k_{j}}\right) \prec \Gamma\left(S_{k_{j+1}}\right) \prec \ldots
$$

Theorem 4.25. Assume that the condition (B) holds. Then the set S^{\prime} contains at least two critical points.

Proof. From (1), we have at least one nonzero cohomology group of some set $M_{2 k+1}$ in dimensions from $\bar{\gamma}\left(S_{k_{i}}\right)-1$ to $\bar{\gamma}\left(S_{k_{i}}\right)+1$. Similarly, from (1), we have at least one nonzero cohomology group in dimensions from $\underline{\gamma}\left(S_{k_{j}}\right)-1$ to $\underline{\gamma}\left(S_{k_{j}}\right)+1$.

If these nonzero groups are groups of different sets $M_{2 k+1}$ then there is at least two critical points in S^{\prime}. If there are two nonzero groups of some set $M_{2 k+1}$ then

$$
\begin{aligned}
\left|\Gamma\left(M_{2 k+1}\right)\right| & =\bar{\gamma}\left(M_{2 k+1}\right)-\underline{\gamma}\left(M_{2 k+1}\right)+1 \\
& \geq \underline{\gamma}\left(S_{k_{j}}\right)-1-\bar{\gamma}\left(S_{k_{i}}\right)-1+1=g\left(S_{k_{i}}, S_{k_{j}}\right)-1>M-1 .
\end{aligned}
$$

It follows that $M_{2 k+1}$ consists of at least two critical points.
Definition 4.26. We say that spans $\Gamma\left(S_{k}\right), k=0,1, \ldots K$, satisfy condition (C), if:

$$
\left|\Gamma\left(S_{k_{1}}\right)\right|+g\left(S_{k_{1}}, S_{k_{2}}\right)>2 ; g\left(S_{k_{0}}, S_{k_{1}}\right)-2>M-1
$$

or

$$
\left|\Gamma\left(S_{k_{K-1}}\right)\right|+g\left(S_{k_{K-2}}, S_{k_{K-1}}\right)>2 ; g\left(S_{k_{K-1}}, S_{k_{K}}\right)-2>M-1 .
$$

Theorem 4.27. Assume that the condition (C) holds. Then the set S^{\prime} contains at least two critical points.

We omit the proof, since it follows the similar line. One can find more similar conditions and, using above lemmas, prove analogical theorems, but we restrict ourselves to those given above.

Example 4.28. (Cf. Ex. 5.1, [9].) Let $N>2, K=2$ and suppose that

$$
h_{\mathcal{L S}}\left(S_{k_{1}}\right)=\left[\mathcal{S}^{4}\right], h_{\mathcal{L S}}\left(S_{k_{2}}\right)=\left[\mathcal{S}^{2} \wedge\left(S^{1} \vee S^{1}\right)\right] \text { and } h_{\mathcal{L S}}(S)=\left[\mathcal{S}^{m}\right] .
$$

If $m \neq 3$ then the equality $2 t^{3}+t^{4}=t^{m}+(1+t) Q(t)$ does not hold for any t and for any Q. Thus, there exists a critical point $p \in S^{\prime}$. If we set $P(t,\{p\})=t^{2}+t^{m}$ and $Q(t)=t^{2}+t^{3}$ then the equality

$$
t^{2}+t^{m}+2 t^{3}+t^{4}=t^{m}+(1+t) Q(t)
$$

holds for any t. In this case, if either $2-m>M-1$ or $m-4>M-1$ then the set S^{\prime} contains at least two critical points.

Suppose that $m=3$ and $\Phi\left(S_{k_{1}}\right)<\Phi\left(S_{k_{2}}\right)$. Then $M_{2}=S_{k_{1}}$ and $M_{4}=S_{k_{2}}$. The equality $2 t^{3}+$ $t^{4}=t^{3}+(1+t) Q(t)$ holds if we set $Q(t)=t^{3}$.

Since $C H^{5}\left(S_{2}\right), C H^{5}(S)=0$ and $C H^{3}\left(S_{1}\right) \neq 0$, at least one of the groups: $C H^{3}\left(M_{1}\right)$, $C H^{5}\left(M_{3}\right), C H^{5}\left(M_{5}\right)$ is nonzero, by Lemma 4.18. One can show that at least one of the groups: $C H^{2}\left(M_{1}\right), C H^{2}\left(M_{3}\right), C H^{4}\left(M_{5}\right)$ is nonzero. Thus, there exists at lest one critical point in the set S^{\prime}.

If we assume that $M=0,1,2$ instead of $M>2$ then the set S^{\prime} contains at least two critical points.

5. Applications to Hamiltonian systems

In this section we give some examples for which our abstract theorems can be applied. Namely, we prove the existence of periodic solution of certain Hamiltonian system. Given a Hamiltonian $H \in C^{2}\left(\mathbb{R}^{2 N} \times \mathbb{R}\right)$ which is 2π-periodic in t. Consider the Hamiltonian system

$$
\begin{equation*}
\dot{z}=J \nabla H(z, t) \tag{4}
\end{equation*}
$$

where $J=\left[\begin{array}{cc}0 & -I \\ I & 0\end{array}\right]$. Denote by $E=H^{1 / 2}\left(S^{1}, R^{2 N}\right)$ the Sobolev space of 2π-periodic $\mathbb{R}^{2 N}$-valued functions. It is well known that $z \in E$ is 2π-periodic solution of (4) if and only if it is a critical point of the functional $\Phi \in C^{2}(E, \mathbb{R})$ defined by

$$
\begin{equation*}
\Phi(z)=\frac{1}{2}\langle L z, z\rangle_{E}-\int_{0}^{2 \pi} H(z, t) d t \tag{5}
\end{equation*}
$$

where

$$
\langle L z, z\rangle_{E}=\int_{0}^{2 \pi}\langle-J \dot{z}, z\rangle d t
$$

It is shown in [8,9] that (E, L) is a base pair and $\nabla \Phi$ is an $\mathcal{L S}$-field. Functional Φ is strongly indefinite and satisfies assumptions $\left(\Phi_{1}\right)-\left(\Phi_{6}\right)$. The constant M in $\left(\Phi_{5}\right)$ is equal to $2 N-1$.

If A is a symmetric $2 n \times 2 n$ matrix and $\dot{z}=J A z$ is a linear Hamiltonian system then the vector field $\nabla \Phi_{A}$ corresponding to that system is linear. The E-Morse index i^{-}and nullity i^{0} of $\nabla \Phi_{A}$ defined in Section 3 are equal to the generalized Morse index and nullity for linear Hamiltonian systems defined by Amann and Zehnder in [3] (see also [18]). We will use the symbol $i^{-}(A)$ (resp. $i^{0}(A)$) to denote E-Morse index (resp. nullity) corresponding to $\nabla \Phi_{A}$.

Throughout the rest of this section we assume that the Hamiltonian H is asymptotically linear at infinity, i.e. there is $R>0,\|z\|_{E}>R$ implies $H(z, t)=\frac{1}{2}\left\langle A_{\infty} z, z\right\rangle+h_{\infty}(z, t)$, where A_{∞} is linear, symmetric and $\nabla h_{\infty}(z, t)$ is bounded. It is clear that if X_{∞} is a closed ball of a large radius then X_{∞} is an isolating neighborhood.

Proposition 5.1. (See [8].) If $i^{0}\left(A_{\infty}\right)=0$ then

$$
h_{\mathcal{L S}}\left(X_{\infty}\right)=\left[\mathcal{S}^{i^{-}\left(A_{\infty}\right)}\right]
$$

In $[9,13]$ the existence of additional critical points follows from examining the Morse equation from Lemma 2.15. Now, we show that in some cases our method gives better results than those obtained by only examining the Morse equation.

Proposition 5.2. Let $N \geq 2$. Assume that 0 is an isolated critical point of Φ. If $\Gamma(\{0\})=(k+1$, $k+2)$ and

$$
i^{-}\left(A_{\infty}\right) \notin[k-(2 N-3), k+2 N]
$$

then (4) has at least two periodic solutions (in addition to the trivial one).
Proof. Note that

$$
|\Gamma(\{0\})|+\left|\Gamma\left(X_{\infty}\right)\right|+g\left(\{0\}, X_{\infty}\right)-2>2 N-1
$$

and

$$
\left|\Gamma\left(X_{\infty}\right)\right|+|\Gamma(\{0\})|+g\left(X_{\infty},\{0\}\right)-2>2 N-1 .
$$

Now, Theorem 4.16 implies that there exist at least two critical points in the set $S \backslash\{0\}$.
Example 5.3. Let $N=2$ and H be such that

$$
H\left(x_{1}, x_{2}, y_{1}, y_{2}\right)=k_{1} y_{1}^{2}+k_{2}\left(x_{2}^{2}+y_{2}^{2}\right)+x_{1}^{3}-3 x_{1}\left(x_{2}^{2}+y_{2}^{2}\right)
$$

if $x_{1}^{2}+x_{2}^{2}+y_{1}^{2}+y_{2}^{2}<r, 0<r<R$, where $k_{1}, k_{2} \in \mathbb{Z} \backslash\{0\}$. In this example $H(z)=\frac{1}{2}\langle A z, z\rangle+$ $h(z)$, where $A=\operatorname{diag}\left\{0, k_{2}, k_{1}, k_{2}\right\}$, and $h\left(x_{1}, x_{2}, y_{1}, y_{2}\right)=x_{1}^{3}-3 x_{1}\left(x_{2}^{2}+y_{2}^{2}\right)$.

It is easy to show that $0 \in E$ is a critical point of Φ. Following the procedure given in [8] one can show that

$$
h_{\mathcal{L} \mathcal{S}}(\{0\}, \nabla \Phi)=\left[\mathcal{S}^{i^{-}(A)} \wedge\left(S^{1} \vee S^{2}\right)\right]
$$

Assume that

$$
i^{-}\left(A_{\infty}\right) \notin\left[i^{-}(A)-(2 N-3), i^{-}(A)+2 N\right]
$$

In this case the equality $P(t,\{0\})=P\left(t, X_{\infty}\right)+(1+t) Q(t)$ is not satisfied. Therefore, there exists at least one critical point, say p, different to 0 . Letting

$$
P(t,\{p\})=t^{i^{-}\left(A_{\infty}\right)} \text { and } Q(t)=t^{i^{-}(A)+1}
$$

we obtain equality $P(t,\{0\})+P(t,\{p\})=P\left(t, X_{\infty}\right)+(1+t) Q(t)$, which is true for all t.
On the other hand, the above proposition implies that (4) has one more solution. This result cannot be obtained by examining Morse equation.

Example 5.4. Let $N=2$ and assume that there is $K \geq 2$ known critical points of Φ with

$$
h_{\mathcal{L S}}\left(S_{k}\right)=\left[\mathcal{S}^{6 k} \wedge\left(S^{1} \vee S^{2}\right)\right] .
$$

Moreover, assume that $h_{\mathcal{L} \mathcal{S}}(S)=\left[\mathcal{S}^{6(K+1)+1}\right]$. Since $h_{\mathcal{L} \mathcal{S}}(S) \neq \bigvee h_{\mathcal{L S}}\left(S_{k}\right)$, the set S^{\prime} is nonempty. The equality

$$
\sum_{k=1}^{K}\left(t^{6 k+1}+t^{6 k+2}\right)=t^{6(K+1)+1}+(1+t) Q(t)
$$

does not hold, there exists a critical point $p \in S^{\prime}$. Setting $P(t, p)=t^{6(K+1)+1}$ and $Q(t)=t^{7}+$ $\ldots t^{6 K+1}$ we obtain the equality

$$
\sum_{k=1}^{K}\left(t^{6 k+1}+t^{6 k+2}\right)+P(t, p)=t^{6(K+1)+1}+(1+t) Q(t)
$$

which holds for all t.
Since $\Gamma\left(S_{k}\right)=(6 k+1,6 k+2)$ and $\Gamma(S)=(6(K+1)+1,6(K+1)+1)$, gaps between spans of S_{1}, \ldots, S_{K} and S are greater than $2 N-1=3$. Hence, the condition (A) holds. Therefore, there are at least $K+1$ critical points in the set S^{\prime}.

Acknowledgments

The author would like to thank Marek Izydorek for comments and suggesting the subject. The author would like to thank the referee for careful reading of the manuscript and valuable suggestions for revision.

References

[1] A. Abbondandolo, Morse Theory for Hamiltonian Systems, Chapman \& Hall/CRC, 2001.
[2] H. Amann, E. Zehnder, Nontrivial solutions for a class of nonresonance problems and applications to nonlinear differential equations, Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 7 (1980) 539-603.
[3] H. Amann, E. Zehnder, Periodic solutions of asymptotically linear Hamiltonian systems, Manuscripta Math. 32 (1980) 149-189.
[4] T. Bartsch, A. Szulkin, Hamiltonian Systems: Periodic and Homoclinic Solutions by Variational Methods, Elsevier, 2005.
[5] K.-C. Chang, Methods of Nonlinear Analysis, Springer-Verlag, 2005.
[6] P.H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, Reg. Conf. Ser. Math., vol. 65, 1986.
[7] W. Zou, M. Schechter, Critical Point Theory and Its Applications, Springer-Verlag, 2006.
[8] K. Gęba, M. Izydorek, A. Pruszko, The Conley index in Hilbert spaces and its applications, Studia Math. 134 (1999) 217-233.
[9] M. Izydorek, A cohomological Conley index in Hilbert spaces and applications to strongly indefinite problems, J. Differential Equations 170 (2001) 22-50.
[10] M. Izydorek, K. Rybakowski, On the Conley index in Hilbert spaces in the absence of uniqueness, Fund. Math. 171 (2002) 31-52.
[11] E.N. Dancer, Degenerate critical points, homotopy indices and Morse inequalities, J. Reine Angew. Math. 350 (1983) 1-22.
[12] M. Starostka, Morse cohomology in a Hilbert space via the Conley index, J. Fixed Point Theory Appl. (2015) 1-14.
[13] W. Kryszewski, A. Szulkin, An infinite dimensional Morse theory with applications, Trans. Amer. Math. Soc. 349 (1997) 3181-3234.
[14] M. Styborski, Conley index and the Leray-Schauder degree, Topol. Methods Nonlinear Anal. 33 (2009) 131-148.
[15] J. Mawhin, M. Willem, Critical Point Theory and Hamiltonian Systems, Springer-Verlag, 1999.
[16] K. Mischaikow, M. Mrozek, Conley index, in: Handbook of Dynamical Systems, vol. 2, North-Holland, 2002, pp. 393-460.
[17] C. Conley, E. Zehnder, Morse-type index theory for flows and periodic solutions for Hamiltonian equations, Comm. Pure Appl. Math. 37 (1984) 207-253.
[18] S. Li, J. Liu, Morse theory and asymptotic linear Hamiltonian system, J. Differential Equations 78 (1989) 53-73.

[^0]: E-mail address: jmaksymiuk @ mif.pg.gda.pl.

