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We consider a bicriterion generalization of the pathwidth problem: given integers k, l and 
a graph G , does there exist a path decomposition of G of width at most k and length (i.e., 
number of bags) at most l? We provide a complete complexity classification of the problem 
in terms of k and l for general graphs. Contrary to the original pathwidth problem, which 
is fixed-parameter tractable with respect to k, the generalized problem is NP-complete for 
any fixed k ≥ 4, and also for any fixed l ≥ 2. On the other hand, we give a polynomial-
time algorithm that constructs a minimum-length path decomposition of width at most 
k ≤ 3 for any disconnected input graph. As a by-product, we obtain an almost complete 
classification for connected graphs: the problem is NP-complete for any fixed k ≥ 5, and 
polynomial for any k ≤ 3.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The notions of pathwidth and treewidth of graphs have been introduced in a series of graph minor papers by Robertson 
and Seymour, starting with [36]. Since then the pathwidth and treewidth of graphs have been receiving growing interest due 
to their connections to several other combinatorial problems and numerous practical applications. In particular, pathwidth is 
closely related to interval thickness, the gate matrix layout problem, the vertex separation number, the node search number, 
and narrowness; see, e.g., [16,26–28,30,33].

In this paper we focus on computing minimum-length path decompositions of bounded width. More formally, the input 
to the decision version of this problem consists of a graph G and two integers k and l. The question is whether there 
exists a path decomposition P of G such that the width of P is at most k and the length of P is at most l. Clearly, this 
decision problem is NP-complete, because the pathwidth computation problem itself is an NP-hard problem, as shown by 
Arnborg et al. [1]; see also Brandenburg and Herrmann [13]. On the other hand, it can be decided in linear time whether 
the pathwidth of a given graph G is at most k for any fixed k, and if the answer is affirmative, then a path decomposition of 
width at most k can be also computed in linear time; see, e.g., the works of Bodlaender and Kloks [6,9,11]. However, as we 
prove in this paper, finding a minimum-length path decomposition of width k is an NP-hard problem for any fixed value of 
k ≥ 4, which answers one of the open questions stated in [13]. For a detailed analysis of the complexity of the pathwidth 
computation problem, see, e.g., [8,29].
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To the best of our knowledge, no algorithmic results are known for minimum-length path decompositions. However, 
some research has been done on simultaneously bounding the diameter and the width of tree decompositions. In particular, 
Bodlaender [5] gives a (parallel) algorithm that transforms a given tree decomposition of width k for G into a binary tree 
decomposition of width at most 3k + 2 and depth O (log n), where n is the number of vertices of G . A more detailed 
analysis of the trade-off between the width and the diameter of tree decompositions can be found in work of Bodlaender 
and Hagerup [10]. Recently, Li et al. [31] reported on the problem of computing tree decompositions with a minimum 
number of bags. We also note that minimum-length path decompositions of width k can be computed for k-connected 
graphs; see [22,23]. For other optimization criteria studied in the context of path decompositions, see, e.g., [14,17–19,35].

We briefly note that pathwidth has a number of equivalent counterparts with alternative formulations of our generalized 
problem. For example, finding the pathwidth of a graph is equivalent to computing its node search number. Through this 
correspondence, the pathwidth is related to several other search numbers of a graph such as the edge search number, 
the mixed search number or the connected search number; see e.g. [15,26–28,33] for details. The parameter l studied in 
this paper corresponds to the search time equal the number of steps in a node search strategy; see [13]. Our generalized 
problem can also be reformulated as a problem of finding an interval supergraph H of a given graph G such that the 
maximum clique in H is of size at most k (i.e., the interval thickness of G is bounded by k) and H has an interval diagram 
of length at most l, where the length of an interval diagram equals the number of distinct left endpoints of intervals in the 
diagram. The equivalence of interval thickness and pathwidth was shown by Bodlaender [7].

Applications of minimum-length path decompositions include step-wise tile assembly (see Manuch et al. [32]), the part-
ner units problem (see Aschinger et al. [2]), scheduling and register allocation (see [24,34,37]) where the length corresponds 
to schedule completion time, and the above-mentioned graph searching games (see, e.g., [3,20] for surveys).

1.1. Preliminaries

We now formally introduce the graph theoretic notation used, and the problems studied in this paper. Let G =
(V (G), E(G)) be a simple graph and let X ⊆ V (G). We denote by G[X] the subgraph induced by X , i.e., G[X] = (X, {e ∈
E(G) 

∣∣ e ⊆ X}) and by G − X the subgraph obtained by removing the vertices in X (together with the incident edges) 
from G , i.e., G − X = G[V (G) \ X]. Given v ∈ V (G), NG(v) is the neighborhood of v in G , that is, the set of vertices adjacent 
to v in G , and NG (X) = (

⋃
v∈X NG(v)) \ X for any X ⊆ V (G). We say that a vertex v of G is universal if NG(v) = V (G) \ {v}. 

A maximal connected subgraph of G is called a connected component of G . A graph G is connected if it has at most one 
connected component. Given a subgraph H of G we refer to the set of vertices of H that have a neighbor in V (G) \ V (H) as 
the border of H in G , and denote it by δG(H). We define CG(X) to be the set of connected components H of G − X , called 
X-components, such that NG(V (H)) = X . (Note that CG(X) may be empty even if G − X has connected components.) Thus, 
for each H ∈ CG(X), every vertex in X has a neighbor in V (H). Moreover, let C1

G(X) ⊆ CG(X) denote the set of connected 
components of G − X that consist of a single vertex, and let C∗

G (X) = CG(X) \ C1
G(X). We sometimes drop the subscript G

whenever G is clear from the context.
For a positive integer n, we denote by Kn a complete graph on n vertices, and by Pn a path graph on n vertices. For any 

graph G , any of its complete subgraphs is called a clique of G . We now define a path decomposition of a graph.

Definition 1.1. A path decomposition of a simple graph G = (V (G), E(G)) is a sequence P = (X1, . . . , Xl), where Xi ⊆ V (G)

for each i = 1, . . . , l, and

(PD1)
⋃

i=1,...,l Xi = V (G),
(PD2) for each {u, v} ∈ E(G) there exists i ∈ {1, . . . , l} such that u, v ∈ Xi ,
(PD3) for each i, j, k with 1 ≤ i ≤ j ≤ k ≤ l it holds that Xi ∩ Xk ⊆ X j .

The width (respectively the length) of the path decomposition P is width(P) = maxi=1,...,l |Xi | − 1 (len(P) = l, respectively). 
The pathwidth of G , pw(G), is the minimum width over all path decompositions of G . The size of P , denoted by size(P), is 
given by size(P) =∑l

t=1 |Xt |.

We observe that condition (PD3) is equivalent to the following condition:

(PD3′) for each i, k with 1 ≤ i ≤ k ≤ l, if v ∈ Xi and v ∈ Xk , then v ∈ X j for all i ≤ j ≤ k.

We also make the following useful observation:

Observation 1.2. Let P = (X1, . . . , Xl) be a path decomposition of a graph G. If a ∈ Xi and b ∈ X j for some 1 ≤ i ≤ j ≤ l, then any 
path P between a and b in G has a non-empty intersection with each Xk for i ≤ k ≤ j.

Given a simple graph G and an integer k, in the problem PD (Path Decomposition) we ask whether pw(G) ≤ k. In the 
optimization problem MLPD-constr (Minimum-Length Path Decomposition) the goal is to compute, for a given simple graph 
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Table 1
The complexity results for MLPD(k)-constr obtained in this paper. Corollary 2.3 is a direct consequence of a theorem of Gustedt [25]; see the end of 
Section 2.

Connected graphs General graphs

MLPD(k)-constr k ≤ 3 polynomial-time (Theorem 5.11) polynomial-time (Theorem 5.11)
k = 4 ? NP-hard (Theorem 2.1)
k ≥ 5 NP-hard (Theorem 2.2) NP-hard (Theorem 2.2)

MLPD-constr l ≥ 2 NP-hard (Corollary 2.3)

G and an integer k, a minimum-length path decomposition P of G such that width(P) ≤ k. In the corresponding decision 
problem MLPD, a simple graph G and integers k, l are given, and we ask whether there exists a path decomposition P of G
such that width(P) ≤ k and len(P) ≤ l.

Finally, in the optimization problem MLPD(k)-constr the goal is to compute, for a given simple graph G , a minimum-
length path decomposition P of G such that width(P) ≤ k. The corresponding decision problem MLPD(k) the input consists 
of a simple graph G and an integer l and the question is whether there exists a path decomposition P of G such that 
width(P) ≤ k and len(P) ≤ l.

Note that the difference between MLPD-constr and MLPD(k)-constr (and, similarly, MLPD and MLPD(k)) is that in the 
former k is a part of the input while in the latter the value of k is fixed.

1.2. Overview of our results and organization of this paper

In this paper, we investigate the complexity of MLPD(k)-constr for different values of k and we make a remark on 
the complexity of MLPD-constr for a fixed value of l (see the last row in Table 1). We also make a distinction between 
connected and general (i.e., possibly disconnected) graphs. Our results are summarized in Table 1. Note that in all cases 
we fix either k or l (but not both). Observe that the case of l = 1 is trivial. Also, computing a minimum-length path 
decomposition of a graph of pathwidth k = 1 is trivial, since any such a graph G is the disjoint union of caterpillars (i.e., 
paths with pending edges) and isolated vertices; letting i denote the number of isolated vertices of G , the minimum length 
of a path decomposition of G is |E(G)| + 	i/2
. In order to prove these results, we deal with the problem MLPD(k) where k
is fixed. We first show that MLPD(4) is NP-complete for general graph and then we conclude that this implies that MLPD(k)

is NP-complete for all k ≥ 4 for general graphs and for all k ≥ 5 for connected graphs (Section 2).
In the remainder of the paper, we construct a polynomial-time algorithm for MLPD(3)-constr. We begin by showing 

in Section 3 an algorithm for MLPD(k)-constr, k = 1, 2, 3, for connected graphs. The algorithm recursively calls algo-
rithms for MLPD(k′)-constr for each k′ < k for general (possibly disconnected) graphs. We prove that the algorithm for 
MLPD(k)-constr is running in polynomial time provided that the algorithms for MLPD(k′)-constr for each k′ < k are all 
polynomial-time. There is a trivial algorithm for MLPD(0)-constr.

To deal with disconnected graphs we extend this algorithm to the so-called chunk graphs in Section 4. A chunk graph 
has at most one ‘big’ connected component with three or more vertices and all its other connected components are either 
isolated vertices or isolated edges.

Finally, in Section 5 we show that MLPD(k)-constr, k = 1, 2, 3, for disconnected G essentially reduces to MLPD(k)-constr, 
k = 1, 2, 3, for chunk graphs of G . Though each chunk graph of G includes at most one big component of G , the isolated 
vertices and the isolated edges of G can be distributed between these big components to form chunk graphs of G in many 
different ways. We show how to obtain an optimal distribution and thus optimal decomposition of G into chunk graphs. 
Then, we show how to construct a solution to MLPD(k)-constr, k = 1, 2, 3, for G from the solutions of MLPD(k)-constr, 
k = 1, 2, 3, for the chunk graphs of G .

2. MLPD(k)-CONSTR is NP-hard for k ≥ 4

In this section, we prove that the problem of finding a minimum-length path decomposition of width k ≥ 4 is NP-hard. 
To that end, we first show that MLPD(4) is NP-complete, by presenting a pseudopolynomial-time transformation from 
the strongly NP-complete 3-partition problem [21] to MLPD(4). The input to 3-partition is an integer b and a set S =
{w1, . . . , w3m} of positive integers, where b/4 < wi < b/2 for all i. The answer to 3-partition is yes if and only if there 
exists a partition of the set {1, . . . , 3m} into m sets S1, . . . , Sm , each of size 3, such that 

∑
i∈S j

wi = b for each j = 1, . . . , m.
Given an instance of 3-partition, we construct a disconnected graph G(S, b) in a few steps. In what follows, m will 

always denote the number of required parts of the partition, i.e., m = |S|/3.
First, for each i ∈ {1, . . . , 3m}, we construct a connected graph Hi as follows. Take wi copies of K3, denoted by K i,q

3 , 
q = 1, . . . , wi , and wi − 1 copies of K4, denoted by K i,q

4 , q = 1, . . . , wi − 1. (The copies are taken to be mutually disjoint.) 
Then, for each q = 1, . . . , wi − 1, we identify two different vertices of K i,q

4 with a vertex of K i,q
3 and with a vertex of K i,q+1

3 , 
respectively. This is done in such a way that each vertex of each K i,q

3 is identified with at most one vertex from other 
cliques. Thus, in the resulting graph Hi , each clique shares a vertex with at most two other cliques. Informally, the cliques 
form a ‘chain’ in which the cliques of size 3 and 4 alternate. See Fig. 1(a) for an example of Hi where wi = 3.
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Fig. 1. (a) Hi , where wi = 3; (b) H2,4.

Fig. 2. G((1,1,1,2,2,3),5) together with P of width 4 and length 17 (m = 2,b = 5).

Second, we construct a graph Hm,b as follows. Take m + 1 copies of K5, denoted by K 1
5 , . . . , K m+1

5 , and m copies of the 
path Pb of length b (Pb has b edges and b + 1 vertices), denoted by P 1

b , . . . , Pm
b . (Again, the copies are taken to be mutually 

disjoint.) Now, for each j = 1, . . . , m, identify one endpoint of P j
b with a vertex of K j

5, and identify the other endpoint with 
a vertex of K j+1

5 . Moreover, do this in a way that ensures that, for each j, no vertex of K j
5 is identified with the endpoints 

of two different paths. See Fig. 1(b) for an example of H2,4.
Let G(S, b) be the graph obtained by taking the disjoint union of the graphs H1, . . . , H3m and the graph Hm,b . The input 

to the MLPD(4) problem is the graph G(S, b) and the integer l = 1 − 2m + 2mb.
The subgraphs K i,q

3 , K i,q
4 are called the cliques of Hi , and the K j

5 are called the cliques of Hm,b . For brevity, all these 
cliques are called the cliques of G(S, b). Similarly, P 1

b , . . . , Pm
b are called the paths of G(S, b). Observe that the number of 

cliques of G(S, b) is exactly l. If P is a path decomposition of G(S, b) and a bag of P contains all vertices of a clique of 
G(S, b), then we say that the bag contains this clique.

Before we continue, we illustrate the construction of the path decomposition in the proof of Theorem 2.1.

Example. Let S = (1, 1, 1, 2, 2, 3) (so, m = 2), b = 5.2 A solution to this instance of 3-partition is S1 = {1, 2, 6}, and 
S2 = {3, 4, 5} (clearly w1 + w2 + w6 = w3 + w4 + w5 = 5). The graph H S,b , and the corresponding path decomposition 
P constructed by the algorithm from the proof of (i) are given in Fig. 2 (the gray color is used for some bags only to make 
it easier to distinguish the particular bags of this decomposition).

We now state and prove Theorem 2.1.

Theorem 2.1. The problem MLPD(4) is NP-complete.

Proof. We will prove the theorem by proving that the answer to 3-partition is yes for S and b, if and only if the answer to 
MLPD(4) is yes for G(S, b) and l = 1 − 2m + 2mb. First, we prove that if there exists a solution to 3-partition for the given 
S and b, then there exists a path decomposition P of G(S, b) such that width(P) ≤ 4 and len(P) = l.

(i) If the answer to 3-partition is yes for S and b, then the answer to MLPD(4) is yes for G(S, b) and l = 1 − 2m + 2mb.
Let S1, . . . , Sm be a solution to 3-partition. We say that a vertex of P j

b , j = 1, . . . , m, at distance d −1 from the endpoint 
of P j

b identified with a vertex of K j
5 is the d-th vertex of P j

b . We construct a path decomposition P as follows.
� Step 1. Let P be initially the empty list.
� Step 2. For each j = 1, . . . , m do the following:

� Step 2.1. Append V (K j
5) to P , and set p := 0.

� Step 2.2. For each i ∈ S j do the following:

2 Note that we drop the assumption that b/4 < wi < b/2 for all i in this example.
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� Step 2.1(a). For each q = 1, . . . , wi , first append V (K i,q
3 ) ∪{u, v} to P , and if q < wi , then also append V (K i,q

4 ) ∪{v}
to P , where u and v are the (p + q)-th and (p + q + 1)-st vertices of P j

b , respectively.
� Step 2.1(b). Set p := p + wi .

� Step 3. Append V (K m+1
5 ) to P .

See Fig. 2 for an example of this construction. (Informally, the triangles K i,q
3 are placed together with edges of P j

b into 
common bags of P .) It can easily be checked that, at the end of this algorithm, len(P) = m +1 +∑m

j=1
∑

i∈S j
(2wi −1) =

m + 1 + 2mb − 3m = l and, hence, P consists of l bags. Moreover, each bag has size 5. We leave it to the reader to verify 
that P is a path decomposition of G(S, b).

Before proving the reverse implication we need a few additional claims.

(ii) If P is a path decomposition of G(S, b) of width 4 and length l = 1 − 2m + 2mb, then each bag of P contains exactly one clique 
of G(S, b).
Each clique of G(S, b) has size at least 3. Moreover, any two cliques of G(S, b) share at most one vertex, and no two 
cliques of size 3 share a vertex. Thus, each bag of P = (X1, . . . , Xl) contains at most one clique of G(S, b). However, it 
follows immediately from (PD1)–(PD3) that for every clique K of G(S, b), there exists i ∈ {1, . . . , l} such that V (K ) ⊆ Xi . 
Thus, since l equals the number of cliques of G(S, b), each bag of P must contain exactly one clique of G(S, b).

We now show that we may assume without loss of generality that in a path decomposition of width 4 of G(S, b), the 
cliques K 1

5 , . . . , K m+1
5 appear in this order in the bags of the path decomposition.

(iii) Let P = (X1, . . . , Xl) be a path decomposition of width 4 of G(S, b) and let c1, . . . , cm+1 be selected so that Xci contains K i
5 for 

each i = 1, . . . , m + 1. Then, c1 < c2 < · · · < cm+1 or c1 > c2 > · · · > cm+1.
Suppose for a contradiction that the lemma does not hold. Thus, there exist t1, t2, t3, 1 ≤ t1 < t2 < t3 ≤ l, such that Xti

contains K ji
5 , i = 1, 2, 3, where neither j1 < j2 < j3 nor j1 > j2 > j3. Consider the case when j2 < j1 < j3 — the other 

cases are analogous. Take a shortest path P between a vertex of K j1
5 and a vertex of K j3

5 . Since j2 < j1 < j3, V (P ) and 
V (K j2

5 ) are disjoint. By Observation 1.2, there exists v ∈ V (P ) ∩ Xt2 . Thus, Xt2 contains both v and V (K j2
5 ), contrary to 

the fact that |Xt2 | ≤ width(P) + 1 = 5.

Moreover, the bags with the vertices of each Hi form an interval of P that falls between two cliques of Hm,b .

(iv) If P is a path decomposition of width 4 and length l of G(S, b), then for each i ∈ {1, . . . , 3m} there exist s and t (1 ≤ s < t ≤ l) 
such that V (Hi) ⊆ Xs ∪ · · · ∪ Xt , V (Hi) ∩ Xp = ∅ for each p = s, . . . , t, and no clique of Hm,b is contained in any of the bags 
Xs, . . . , Xt .
This follows from Observation 1.2, and width(P) = 4 and V (Hi) ∩ V (Hm,b) = ∅ for each i = 1, . . . , 3m.

We are now ready to prove the reverse of (i).

(v) If the answer to MLPD(4) is yes for G(S, b) and l = 1 − 2m + 2mb, then the answer to 3-partition is yes for S and b.
Let P = (X1, . . . , Xl) be a path decomposition of width 4 and of length l of G(S, b). By (ii), each bag of P contains 
exactly one clique of G(S, b). Since each clique of G(S, b) has size at least 3 and width(P) = 4, no bag of P contains 
the endpoints of two or more edges of a path P j

b , j = 1, . . . , m, and the endpoints of any edge of P j
b can only share a 

bag with some clique K i,q
3 , i ∈ {1, . . . , 3m}, q ∈ {1, . . . , wi}. Moreover, the total number of edges of the paths of G(S, b)

equals mb (mb is also the number of cliques K i,q
3 ), which implies that the endpoints of each edge of each path of 

G(S, b) share a bag with a unique K i,q
3 for some i ∈ {1, . . . , 3m} and q ∈ {1, . . . , wi}.

Let Xc j = V (K j
5) for each j = 1, . . . , m + 1. By (iii), c1 < c2 < · · · < c j+1 or c1 > c2 > · · · > c j+1. Since (Xl, . . . , X1) is a 

path decomposition of G(S, b), we may assume without loss of generality that the former occurs. Then, the endpoints 
of all b edges of a path P j

b , j = 1, . . . , m, must be included in the bags Xc j+1, . . . , Xc j+1−1, because otherwise the con-

nectedness of P j
b and Observation 1.2 would imply a vertex of P j

b in either Xc j or Xc j+1 or both, which results in a path 
decomposition of width at least 5, a contradiction. Therefore, exactly b cliques in {K i,q

3

∣∣ i ∈ {1, . . . , 3m}, q ∈ {1, . . . , wi}}
must be included in the bags Xc j+1, . . . , Xc j+1−1. Moreover, (iv) implies that for each i ∈ {1, . . . , 3m} there exists 
j ∈ {1, . . . , m} such that V (Hi) ⊆ Xc j+1 ∪ · · · ∪ Xc j+1−1. Define for each j = 1, . . . , m S j = {i ∈ {1, . . . , 3m} ∣∣ V (Hi) ⊆
Xc j+1 ∪ · · · ∪ Xc j+1−1}. Due to the above arguments, 

∑
i∈S j

wi = b for each j = 1, . . . , m. Therefore, the answer to 
3-partition is yes.

The theorem now follows from (i) and (v). �
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We have shown so far that MLPD(4) is NP-complete. Let k ≥ 1. Observe that a disconnected graph G has a path decompo-
sition of width k −1 and length l if and only if the connected graph obtained from G by adding a universal vertex has a path 
decomposition of width k and length l. It follows that if MLPD(k − 1) is NP-complete, then MLPD(k) remains NP-complete 
even when the input is restricted to connected graphs. This observation, together with Theorem 2.1, immediately implies 
the following theorem:

Theorem 2.2. The problem MLPD(k) is NP-complete for each k ≥ 4. Moreover, for k ≥ 5, the problem MLPD(k) remains NP-complete 
when the input is restricted to connected graphs. �

We conclude this section with a remark on the complexity of MLPD when the input consists of the graph G and the 
pathwidth k ≥ 1, but the length parameter l is fixed. The following result, Corollary 2.3, is a direct consequence of the 
NP-completeness of the vertex separator problem defined in [25]. The input to this vertex separator problem is a simple 
graph G and an integer k. The problem is to determine whether there exist sets X and Y that satisfy conditions (PD1) and
(PD2) of a path decomposition (i.e., they cover all vertices and edges of the input graph) and max(|X |, |Y |) ≤ k. This can 
be directly reformulated as the problem of finding a path decomposition of length 2 and width at most k. (Note that the 
terminology used in [25] is quite different from the terminology used in this paper.)

Corollary 2.3. The problem MLPD with l ≥ 2 fixed is NP-complete. �
3. MLPD(k)-CONSTR for connected graphs, k ≤ 3

Section 2 dealt with the entries marked with “NP-hard” in Table 1. In the remainder of this paper, we will prove the 
“polynomial-time” entries in the table. Therefore, from now on, all path decompositions that we deal with have width at 
most 3. The main result of this section is the following theorem.3

Theorem 3.1. Let k ∈ {1, 2, 3}.

If: for each k′ ∈ {0, . . . , k − 1}, there exists a polynomial-time algorithm that, for any graph G either constructs a minimum-length 
path decomposition of width k′ of G, or concludes that no such path decomposition exists,

then: there exists a polynomial-time algorithm that, for any connected graph G, either constructs a minimum-length path decompo-
sition of width k of G, or concludes that no such path decomposition exists.

We take several steps to prove this theorem. In Section 3.1 we formulate an algorithm that outlines the main idea of 
our method, but whose running time is not necessarily polynomial. This algorithm constructs a directed graph Gk whose 
directed paths leading from its source s to its sink t correspond to path decompositions of width k of G . Moreover, the 
length of a directed s–t path in Gk equals the length of the corresponding path decomposition of G . Hence, our problem 
reduces to computing a shortest path in Gk . The running time of this algorithm is, in general, not polynomial since the size 
of Gk may be exponential in the size of G . Hence, the remainder of Section 3 is devoted to providing a different construction 
of Gk that preserves the above-mentioned relation between the shortest paths in Gk and the path decompositions of G , and 
ensures that the size of Gk is polynomial in the size of G . To that end we develop some notation and obtain several 
properties of minimum-length path decomposition of width at most 3 of a connected graph (Sections 3.3 and 3.4). Finally, 
Section 3.5 provides the polynomial-time algorithm and proves its correctness. Our proof of Theorem 3.1 is constructive 
provided that the algorithms from the ‘if’ part of this theorem exist. We deal with the latter in Sections 4 and 5.

3.1. A generic (non-polynomial) algorithm

Let G be a graph. We say that P = (X1, . . . , Xl) is a partial path decomposition of G if P is a path decomposition of 
G 
[⋃l

i=1 Xi

]
. Define span(P) =⋃l

i=1 Xi to be the span of P and denote GP = G[span(P)]. GP is called the subgraph of G

covered by P .
It follows that P is a path decomposition of the induced subgraph GP and V (GP ) = span(P). Notice that GP = G

if and only if P is a path decomposition of G . Also note that any prefix of a path decomposition of G is a partial path 
decomposition of G .

We say that a partial path decomposition P = (X1, . . . , Xl) extends to a partial path decomposition P ′ = (X ′
1, . . . , X

′
l′), 

with l′ ≥ l, if Xi = X ′
i for all i ∈ {1, . . . , l}. We define the frontier of P to be δ(P) = {x ∈ V (GP ) 

∣∣ x has a neighbor in V (G) \
V (GP )}.

Consider the following generic and potentially exponential-time algorithm for finding a minimum-length path decompo-
sition of width at most k for a given graph G . We construct an auxiliary directed graph Gk whose vertices are pairs (F , X), 

3 We recall that the case k = 1 can be solved directly.
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where F is an induced subgraph of G , X ⊆ V (F ), and |X | ≤ k +1. Each pair (F , X) represents the (perhaps empty) collection 
P(F , X) of all partial path decompositions P = (X1, . . . , Xlen(P)) of width at most k that have the common property that 
GP = F and Xlen(P) = X (i.e., the subgraph of G covered by P is F and the last bag of P is X). Notice that the partial 
path decompositions within P(F , X) may be of different lengths. There is an arc from (F , X) to (F ′, X ′) in Gk if and only 
if every partial path composition in P(F , X) extends to some partial path decomposition in P(F ′, X ′) by adding exactly one 
bag, namely X ′ . We will also add to Gk a special source vertex s and a sink vertex t . There is an arc from the source vertex 
s to every pair (F , X) with F = G[X], and an arc from every pair (F , X) with F = G to the sink vertex. For convenience, let 
P(s) contain the path decomposition of length 0. We have the following result:

Lemma 3.2. It holds P ∈ P(G, X) for some X ⊆ V (G), where len(P) ≤ l, if and only if there exists a directed s–t path in Gk of length 
at most l + 1.

Proof. We argue by induction on l that there exists a directed s–v path of length l in Gk , where v = (F , X) is a vertex of Gk , 
if and only if a partial path decomposition of length l belongs to P(F , X). In the base case of l = 0 we have that v = s and 
the claim follows directly from the definition of P(s). Suppose now that the induction hypothesis holds for some l ≥ 0.

Let P ′ be an s–v ′ path of length l + 1 in Gk . Let (v, v ′) be the last arc of P ′ . Let P be the path P ′ without (v, v ′). 
Thus, P is an s–v path of length l in Gk . By the induction hypothesis, there exists a partial path decomposition P ∈ P(v)

of length l. Since (v, v ′) ∈ E(Gk), P extends to some partial path decomposition P ′ ∈ P(F , X) by adding exactly one bag, 
namely X . Thus len(P ′) = len(P) + 1 as required.

Suppose now that P ′ ∈ P(F , X) and len(P ′) = l + 1. Let P ′ = (X1, . . . , Xl+1). By definition of Gk , F = GP ′ and Xl+1 = X . 
Thus, v = (GP ′ , Xl+1). Now, let P = (X1, . . . , Xl) and v = (GP , Xl). Since every partial decomposition in P(GP , Xl) extends 
to some partial decomposition in P(GP ′ , Xl+1) by adding Xl+1, (v, v ′) ∈ E(Gk). By the induction hypothesis, there exists an 
s–v path P in Gk of length l. Then, P together with the arc (v, v ′) forms the desired s–v ′ path of length l + 1 in Gk . �

Having constructed Gk , we find a shortest path from s to t in Gk . Let s, (F1, X1), . . . , (Fl, Xl), and t be the consecutive 
vertices of this path. Then, by Lemma 3.2, this path corresponds to a path decomposition (X1, . . . , Xl) of G . This clearly 
gives an exponential-time algorithm for finding a minimum-length path decomposition. In the reminder of this section, 
we redefine the graph Gk to reduce its size for connected G and k ∈ {1, 2, 3}. Note that a series of path decompositions 
that correspond to consecutive vertices of the shortest path resembles the concept of crusades introduced by Bienstock and 
Seymour in [4].

3.2. From generic algorithm to polynomial running time: an informal description

The aim of this section is to introduce some intuition on the construction of Gk whose size is bounded by a polynomial 
in the size of G . The formal definition of Gk is given in Section 3.5.

Our approach is to represent the pairs (F , X) in an alternative way. We encode the graph Gk in such a way that for a 
fixed set X ⊆ V (G) the number of vertices of Gk of the form (F , X) is polynomially bounded. Since |X | ≤ k + 1 and k is 
fixed, this reduces the number of vertices to a number bounded by a polynomial in the size of G . As a result, however, 
some path decompositions of G no longer have corresponding s–t paths in Gk though we prove that minimum-length path 
decompositions of G still have corresponding shortest paths in Gk . The alternative encoding is as follows.

We represent a pair (F , X) by a pair (X, R(X)), where R(X) is a function that maps each non-empty subset S ⊆ X into 
a triple (G, f , l) with the following properties:

(1) G is a set with at least max
{|C∗

G(S)| − 12,0
}

components in C∗
G (S),

(2) f : C∗
G(S) → {0, 1} is a function such that f (H) = f (H ′) for all H, H ′ ∈ G, and f (H) = 1 implies that V (H) ⊆ V (F ),

(3) l =
∣∣∣⋃C∈C1

G (S) V (C) ∩ V (F )

∣∣∣, i.e., l equals the number of single-vertex components in C1
G (S) that are covered by any 

partial path decomposition in P(F , X).

We will show that it is possible to reconstruct (F , X) from (X, R(X)). The vertex set of our final auxiliary graph Gk consists 
of all pairs (X, R(X)). Note that not every pair (F , X) can be represented by a pair (X, R(X)) satisfying properties (1)–(3). 
However, it turns out that it suffices to consider only the pairs (F , X) that can in fact be represented in this way. We will 
see (in the proof of Theorem 3.1) that the number of such pairs (X, R(X)) is bounded by a polynomial in the size of G . 
The arcs of Gk will have weights and, informally speaking, the weight of an arc (v, v ′) equals the number of bags that are 
added while extending any partial path decomposition in P(v) to a partial path decomposition in P(v ′). Hence, unlike in 
the generic construction of Gk , some arcs in the new directed graph introduce several bags of a path decomposition. We 
will show that the vertices that we drop from the generic graph are irrelevant for the length minimization, and that Gk has 
the property that there exists a clean path decomposition P with len(P) ≤ l if and only if there exists an s–t path in Gk of 
length at most l. (See Lemma 3.21 and Lemma 3.22.) The clean path decompositions are defined in Section 3.4 where we 
also observe that among all minimum-length path decompositions of G there always exists one that is clean.
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Fig. 3. Illustration of a bottleneck set S = {x} and the corresponding S-branches.

3.3. Bottleneck sets and bottleneck intervals

In this section we consider a path decomposition P = (X1, . . . , Xl) of a connected graph G , and a fixed set S ⊆ V (G). 
Recall that CG(S) is the collection of connected components H of G − S such that every vertex in S has a neighbor in V (H). 
We call the components in C∗

G (S) S-branches, while the vertices of the graphs in C1
G(S) are called S-leaves. Finally, let 

|C∗
G(S)| = c.

We begin by investigating the relative order in which the vertices of S and S-branches appear in, and disappear from, 
the bags in P = (X1, . . . , Xl). For a (connected or disconnected) subgraph H of G , define

αP (H) = min{i
∣∣ Xi ∩ V (H) = ∅} and βP (H) = max{i

∣∣ Xi ∩ V (H) = ∅}.
For v ∈ V (G), we abbreviate αP (G[{v}]) and βP (G[{v}]) as αP (v) and βP (v), respectively. (Note that these coincide with 
the definitions of first(v) and last(v) in [12].) For convenience we define

α̂P (S) = max
v∈S

{αP (v)} and β̂P (S) = min
v∈S

{βP (v)},

for any non-empty S ⊆ V (H). Hence, S ⊆ Xi if and only if i ∈ {α̂P (S), . . . , ̂βP (S)}. Whenever P is clear from the context, 
we drop it as a subscript. Clearly, we have that

V (H) ⊆ Xα(H) ∪ · · · ∪ Xβ(H). (1)

Informally, Xα(H) can be interpreted as the first bag that contains a vertex of V (H), and α(H) as the start of H . Similarly, 
Xβ(H) is the last bag that contains a vertex of V (H), and the β(H) as the completion of H . By Observation 1.2, if H is 
connected, then any bag between these first and last bags must contain a vertex of V (H). By definition, the converse is also 
true: no bag Xi with i outside the interval [α(H), β(H)] contains a vertex of V (H). The following lemma relates the start 
and the completion of an S-branch H and the start and completion of x ∈ S .

Lemma 3.3. Let G be a graph and let P = (X1, . . . , Xl) be a path decomposition of G. Let S ⊆ V (G), let x ∈ S and let H be an S-branch. 
Then, the following statements hold:

(i) If α(x) ≤ α(H), then x ∈ Xi for all α(x) ≤ i ≤ α(H);
(ii) α(x) ≤ β(H);
(iii) If β(x) ≥ β(H), then x ∈ Xi for all β(H) ≤ i ≤ β(x);
(iv) α(H) ≤ β(x).

Proof. By definition of an S-branch, there exists v ∈ V (H) that is adjacent to x. Since {v, x} ∈ E(G), it follows from (PD2)
that there exists t such that {v, x} ⊆ Xt . Clearly, α(H) ≤ t . To prove (i), note that the assumption α(x) ≤ α(H) implies 
that α(x) ≤ t . Since x ∈ Xα(x) and x ∈ Xt , it follows from (PD3′) that x ∈ Xi for all α(x) ≤ i ≤ t . In particular, x ∈ Xi for all 
α(x) ≤ i ≤ α(H), as required. To prove (ii), observe that x ∈ Xt implies that α(x) ≤ t , and v ∈ Xt implies that t ≤ β(H). Thus, 
α(x) ≤ β(H).

Parts (iii) and (iv) follow from (i) and (ii) applied to P ′ = (Xl, . . . , X1). �
Some S-branches may start even before the whole of S appears in the bags of P ; see X1 in Fig. 3. Also, some S-branches 

may complete even after the whole of S no longer appears in the bags of P ; see X13 in Fig. 3. We now show that, in either 
case, this can only happen for a few S-branches whose number is limited by k. To that end, we adopt the convention 
that H1, . . . , Hc denote the S-branches in C∗

G (S) ‘start-ordered’, i.e., ordered so that α(H1) ≤ α(H2) ≤ · · · ≤ α(Hc), and 
H1, . . . , Hc denote these S-branches ‘completion-ordered’, i.e., ordered so that β(H1) ≤ β(H2) ≤ · · · ≤ β(Hc). We have the 
following lemma.
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Fig. 4. Coloring of S-branches. Note that red and blue branches may or may not overlap.

Lemma 3.4. Let G be a graph, let P = (X1, . . . , Xl) be a path decomposition of width k of G, and let S ⊆ V (G), where c > k. Then, the 
following two statements hold:

(i) α(Hi) ≥ α(x) for all i ≥ k + 1 and all x ∈ S,
(ii) β(Hi) ≤ β(x) for all i ≤ c − k and all x ∈ S.

Proof. For (i), since α(H1) ≤ α(H2) ≤ · · · ≤ α(Hc), it suffices to show that α(Hk+1) ≥ α(x). So suppose for a contradiction 
that α(Hk+1) < α(x). Hence, α(H j) < α(x) for all j = 1, . . . , k +1. It follows from Lemma 3.3(ii) that, for each j = 1, . . . , k +1, 
there exists v j ∈ V (H j) ∩ Xα(x) . In particular, it follows that {v1, . . . , vk+1, x} ⊆ Xα(x) , implying that |Xα(x)| > k + 1, contrary 
to the fact that P has width k. This proves (i). Next, (ii) follows from (i) applied to P ′ = (Xl, . . . , X1). �

We now focus on S-branches H such that α(x) < α(H) ≤ β(H) < β(x) for all x ∈ S , since by Lemma 3.4 there is only 
a constant number of branches that do not meet this condition for fixed k. As we cannot guarantee the existence of these 
S-branches for S with small c = |C∗

G(S)|, we limit ourselves to special sets S referred to as bottlenecks.
A set S ⊆ V (G) is a bottleneck set if S = ∅ and c ≥ 13. We denote by S the collection of all bottleneck sets of G . Note that 

if pw(G) ≤ 1, then G has no bottleneck sets. Also note that, if pw(G) = 2, then for any bottleneck S of size 1, all components 
in CG(S), except possibly two, are paths whose endpoints are adjacent to the vertex in S .

Example. To illustrate this concept, consider the graph G in Fig. 3. The sets X1, . . . , X13 form a path decomposition of G . 
The set S = {x} is a bottleneck set. There are 13 S-branches, namely, the connected components of G − {x}. Notice that 
G − {x} has no components consisting of exactly one vertex, and therefore there are no S-leaves.

The bottleneck sets are a key for a couple more reasons. First, if G has no bottleneck set, then the size of the auxiliary 
generic graph from Section 3.1 can be easily bounded by a polynomial in the size of G since the number of S-branches is 
then bounded by a constant for any S . On the other hand, if G contains even a single bottleneck set S , then the number 
of vertices (F , X) such that S ⊆ X in Gk can be exponential. This follows from an observation that the number of induced 
subgraphs F with S ⊆ δG(F ) is exponential in |C∗

G (S)|. However, we prove that all, except a constant number, S-branches in 
C∗

G(S) are in consecutive bags Xi, . . . , X j such that S ⊆ Xp for each p = i − 1, . . . , j + 1. We refer to the interval between 
i and j as the bottleneck interval of S and formally define it later. Since the S-branches in the bottleneck interval of S
always share bags with the whole S we can recursively reduce the computation of a minimum-length path decomposition 
of width k of G to the computation of a minimum-length path decomposition of width k − |S| for the branches in the 
bottleneck interval of S . This is another key reason behind the bottleneck sets. Also observe that |S| ≤ k. Hence, the number 
of bottlenecks is bounded by a polynomial in the size of G .

For any bottleneck set S and a path decomposition P , we define IP (S) = {t1(S), . . . , t2(S)}, where t1(S), the starting 
time, and t2(S), the ending time, are as follows:

t1(S) = min
{
α(H)

∣∣ H is an S-branch and S ⊆ Xα(H) ∩ Xα(H)−1
}
,

t2(S) = max
{
β(H)

∣∣ H is an S-branch and S ⊆ Xβ(H) ∩ Xβ(H)+1
}
.

We call IP (S) the bottleneck interval associated with the set S . Informally, let Xi , . . . , X j be all bags in P such that each of 
them contains S . Then, t1(S) is the start of the earliest S-branch to start in {i + 1, . . . , j − 1} and t2(S) is the completion 
of the latest S-branch to complete in {i + 1, . . . , j − 1}. For example, in Fig. 3, we have t1(S) = 3 and t2(S) = 11 for the 
bottleneck set S = {x}.

Notice that IP (S) depends on the path decomposition P . Whenever P is clear from the context we write I(S) instead 
of IP (S). We show in Lemma 3.5 that t1(S) and t2(S) are well defined and that t1(S) ≤ t2(S), which implies I(S) = ∅. Given 
the bottleneck interval I(S), we color each S-branch H as follows: (see also Fig. 4)
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• color H green if t1(S) ≤ α(H) ≤ β(H) ≤ t2(S);
• color H red if α(H) < t1(S) ≤ β(H) ≤ t2(S);
• color H blue if t1(S) ≤ α(H) ≤ t2(S) < β(H);
• color H purple if α(H) < t1(S) ≤ t2(S) < β(H);
• color H gray if β(H) < t1(S);
• color H black if α(H) > t2(S).

There are exactly two gray S-branches, exactly two black branches, and the remaining branches are green for the bottleneck 
set S = {x} in the graph G in Fig. 3.

Since t1(S) ≤ t2(S) and α(H) ≤ β(H), each S-branch is assigned exactly one color. Notice also that there exist S-branches 
H and H ′ (possibly equal) such that α(H) = t1(S) and β(H ′) = t2(S).

Lemma 3.5. Let G be a connected graph, let P = (X1, . . . , Xl) be a path decomposition of width k ≤ 3 of G, and S ∈ S a bottleneck 
set. Then, I(S) is well-defined and non-empty, and:

(i) there is at least one green S-branch;
(ii) the number of S-branches colored red, purple or gray is at most 2k;
(iii) the number of S-branches colored blue, purple or black is at most 2k.

Proof. Let H1, H2, . . . , Hc be the S-branches start-ordered. Since S is a bottleneck set, we have c ≥ 13. We first claim that

α(G[S]) ≤ α(Hq) ≤ β(G[S]) for all q ∈ {k + 1, . . . , c}. (2)

Let q ∈ {k + 1, . . . , c} be selected arbitrarily. By Lemma 3.4(i), α(x) ≤ α(Hq) for each x ∈ S . Thus, by Lemma 3.3(i), x ∈ Xα(Hq)

for all x ∈ S . Hence, S ⊆ Xα(Hq) , and (2) follows.
Second, we claim that

α(G[S]) < α(Hq) ≤ β(G[S]) for all q ∈ {2k + 1, . . . , c}. (3)

To prove this, it suffices to show that α(H2k+1) > α(G[S]). Suppose otherwise, i.e., α(H2k+1) ≤ α(G[S]). Since, by (2), 
α(Hk+1) ≥ α(G[S]), we obtain that α(Hk+1) = · · · = α(H2k+1) = α(G[S]). This implies that Xα(G[S]) contains a vertex of 
each S-branch Hq with q ∈ {k + 1, . . . , 2k + 1}. Thus, |Xα(G[S])| ≥ |S| + k + 1, contrary to the fact that |Xα(G[S])| ≤ k + 1. This 
proves (3).

By applying this argument to P ′ = (Xl, . . . , X1), we conclude that

α(G[S]) ≤ β(Hq) < β(G[S]) for all q ∈ {1, . . . , c − 2k}. (4)

Let A = C∗
G(S) \ ({H1, . . . , H2k} ∪ {Hc−2k+1, . . . , Hc}). By (3) and (4), α(G[S]) < α(H) ≤ β(H) < β(G[S]) for all H ∈ A, and 

|A| ≥ c − 4k ≥ 1. Thus, t1(S) and t2(S) are well-defined, and satisfy t1(S) ≤ min{α(H): H ∈ A} and t2(S) ≥ max{β(H): H ∈
A}. It trivially follows that t1(S) ≤ t2(S) and hence I(S) is non-empty. For (i), notice that any H ∈ A receives the color 
green. Finally, (3) implies (ii), while (4) gives (iii). �
Example. Consider the graph G in Fig. 5. G has three bottleneck sets, namely {s1}, {s2} and {s1, s2}. For the bottleneck {s1}, 
we have {s1} ⊆ Xi for each i = 4, . . . , 38. Then, t1({s1}) = 5, because α(H5) = 5, and t2({s1}) = 37, because β(G[{s2} ∪
V (H13) ∪ · · · ∪ V (H37)]) = 37. Thus, all {s1}-branches are green except for H1, . . . , H4, which are either gray (H1, H2, H3) 
or black (H4). For {s1, s2} we have: {s1, s2} ⊆ Xi for each i = 13, . . . , 37, t1({s1, s2}) = 14 and t2({s1, s2}) = 25. The branch 
H13 is gray and the remaining {s1, s2}-branches, namely H14, . . . , H25 are green. Thus, I({s1, s2}) ⊆ I({s1}). Finally, {s2} ⊆ Xi

for each i = 13, . . . , 37, t1({s2}) = 26 and t2({s2}) = 36. Hence, I({s2}) ⊆ I({s1}) and I({s2}) ∩ I({s1, s2}) = ∅. The green 
components in C∗

G ({s2}) are H26, . . . , H36, the component H37 is black, and the {s2}-branch G[{s1} ∪ V (H1) ∪ · · · ∪ V (H25)]
is purple.

By definition, any bottleneck S has at least 13 S-branches. The proof of Lemma 3.5 shows that this number guar-
antees the existence of green S-branches for a bottleneck S . In the next section, we show that we can limit ourselves 
to the a special class of path decompositions, referred to as clean path decompositions, which have no red and no 
blue S-branches for any bottleneck S . However, gray and black S-branches are unavoidable since it may happen that 
I(S) � {α(G[S]), . . . , β(G[S])} as is the case in the example in Fig. 5. We also remark that the restriction to clean path 
decompositions would make it possible to consider bottleneck sets as those having at least 7 (rather than 13) S-branches. 
Though this would improve the complexity of our polynomial-time algorithm, we do not make this attempt to optimize its 
running time.
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Fig. 5. A simple graph G with a path decomposition P , width(P) = 3.

3.4. Well-arranged path decompositions

We showed in the previous section that green S-branches appear only in the bottleneck interval I(S) of S ∈ S . However, 
red, blue and purple S-branches may also appear in I(S). (We say that an S-branch H appears in I(S) if there is t ∈ I(S)

such that Xt ∩ V (H) = ∅.) Our goal in this section is to show that the search for minimum-length path decompositions 
of width k ≤ 3 can be limited to a class of well-arranged path decompositions with no red and blue S-branches for any 
S ∈ S . Moreover, any path decomposition in this class suspends all purple branches in I(S) so that only vertices of pur-
ple S-branches that appear already in {1, . . . , t1(S) − 1} may appear in I(S) for any S ∈ S . We now formally define the 
well-arranged path decompositions.

Let P = (X1, . . . , Xl) be a path decomposition of G . We say that a subgraph H of G waits in step i, 1 ≤ i ≤ l, if Xi ∩
V (H) ⊆ Xi−1 ∩ V (H). (In the latter statement we take X0 = ∅.) If H does not wait in step i, then we say that H makes 
progress in step i. For an interval I ⊆ {1, . . . , l}, we say that a subgraph H of G waits in I if H waits in all steps i ∈ I , and we 
say that H makes progress in I otherwise.

Definition 3.6. For S ∈ S , we say that a path decomposition is well-arranged with respect to S if all components in G − S , 
except possibly S-leaves and green S-branches, wait in the interval I(S). (Recall that not every component of G − S is 
necessarily an S-component.) A path decomposition is called well-arranged if it is well-arranged with respect to every 
bottleneck set.

In this section, we will show that for every graph G it is true that if G has a path decomposition of length l and width 
at most k, then G has a well-arranged path decomposition of length l and width at most k.

To show the existence of well-arranged path decompositions, we will choose our path decomposition to be minimal in 
a certain sense. To make this precise, let us first order, for a given path decomposition P of G , the bottleneck sets of G as 
S1, . . . , S p such that for all i, j ∈ {1, . . . , p} with i ≤ j:

t1(Si) ≤ t1(S j), and if t1(Si) = t1(S j), then t2(Si) ≤ t2(S j). (5)

That is, we order the bottleneck sets by starting time t1(S) and, in case of a tie, by ending time t2(S). We associate with P
the vector α(P) = (|I(S1)|, . . . , |I(S p)|).

Definition 3.7. A path decomposition P of G is called clean if, among all path decompositions of width at most width(P)

and length at most len(P) of G , the following holds:

(C1) size(P) is minimum;
(C2) subject to (C1), the vector α(P) is lexicographically smallest.
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We explicitly note the following:

Observation 3.8. If a graph has a path decomposition of width at most k and length at most l, then it has a clean path decomposition 
of width at most k and length at most l.

3.4.1. Basic characteristics of clean path decompositions
We now prove some characteristics of clean path decompositions. The proofs will require the following lemma that 

strengthens Observation 1.2 for connected H .

Lemma 3.9. Let G be a graph, let P be a path decomposition of G, and let H be any connected subgraph of G. Then, for each t ∈
{α(H), . . . , β(H) − 1}, we have |Xt ∩ Xt+1 ∩ V (H)| ≥ 1.

Proof. Let t ∈ {α(H), . . . , β(H) −1} be given. Define A = (Xα(H) ∪ . . .∪ Xt) ∩ V (H) and B = (Xt+1 ∪ . . .∪ Xβ(H)) ∩ V (H). Since 
Xα(H) ∩ V (H) and Xβ(H) ∩ V (H) are non-empty, it follows that A and B are non-empty. Moreover, A ∪ B = V (H) by (1). If 
A ∩ B = ∅, then (A, B) is a partition of V (H); by (PD2) it then follows that there are no edges between A and B , contrary 
to the fact that H is connected. Thus, there exists v ∈ A ∩ B . By (PD3′), v ∈ Xt ∩ Xt+1 and hence v ∈ (Xt ∩ Xt+1) ∩ V (H). �

We begin by showing that any S-branch, S ∈ S , that starts in I(S) does so with two vertices at a time; similarly, any 
S-branch that completes in I(S) does so with two vertices at a time.

Lemma 3.10. Let G be a connected graph, let P be a clean path decomposition, S ∈ S , and let H be an S-branch. The following 
statements hold:

(i) If α(H) ∈ I(S), then |V (H) ∩ Xα(H)| ≥ 2.
(ii) If β(H) ∈ I(S), then |V (H) ∩ Xβ(H)| ≥ 2.

Proof. (i) By the definition of α(H), we have |V (H) ∩ Xα(H)| ≥ 1. Suppose for a contradiction that V (H) ∩ Xα(H) = {v}. It 
follows from (PD2) that, for every u ∈ NH (v), there exists τ (u) ∈ {α(H), . . . , β(H)} such that {u, v} ⊆ Xτ (u) . By the assump-
tion that Xα(H) ∩ V (H) = {v}, it follows that τ (u) = α(H). Moreover, by Lemma 3.9, we have |Xα(H)+1 ∩ Xα(H) ∩ V (H)| ≥ 1, 
which implies that v ∈ Xα(H)+1. Finally, because α(H) ∈ I(S), we have S ⊆ Xα(H)+1. Now construct a new path decomposi-
tion P ′ from P by replacing bag Xα(H) by Xα(H) \ {v}. Then, (PD1) still holds for P ′ because v ∈ Xα(H)+1. To check (PD2), 
notice that the only edges that might violate this condition are the ones of the form {u, v} where u is a neighbor of v . Any 
neighbor u of v is either in S or in NH (v). For u ∈ S , we have {u, v} ⊆ Xα(H)+1; for u ∈ NH (v), we have {u, v} ⊆ Xτ (u) . Thus,
(PD2) holds for P ′ . Finally, v is the only vertex that might violate (PD3′). However, since v /∈ X j for j < α(H), condition
(PD3′) holds for v . Thus, P ′ is a path decomposition with size(P ′) < size(P), contrary to the fact that P is clean. This 
proves (i). Part (ii) follows from the symmetry, i.e., by applying (i) to the reverse of P . �

For any S ∈ S , by Lemma 3.5, I(S) is well-defined and hence the definition of I(S) implies that there exists some 
S-branch that starts at t1(S), and similarly there exists some S-branch that completes at t2(S). Together with Lemma 3.10
and the fact that k ≤ 3, this gives the following useful corollary:

Corollary 3.11. Let G be a connected graph, let P be a clean path decomposition of width k ≤ 3 of G, and S ∈ S . Then, the following 
statements hold:

(i) there is exactly one green S-branch H such that |Xt1(S) ∩ V (H)| ≥ 2.
(ii) there is exactly one green S-branch H such that |Xt2(S) ∩ V (H)| ≥ 2.

We say that H in (i) determines t1(S), and similarly, H in (ii) determines t2(S).
Moreover, the following lemma shows that if an S-branch H , S ∈ S , makes progress in step t ∈ I(S) of a clean path 

decomposition, then Xt must contain at least two vertices of V (H).

Lemma 3.12. Let G be a connected graph, let P be a clean path decomposition, S ∈ S , and let H be an S-branch. Then, for any t ∈ I(S), 
if H makes progress in step t, then |Xt ∩ V (H)| ≥ 2.

Proof. Clearly, since H makes progress in step t ∈ I(S), we have t ∈ {α(H), . . . , β(H)} ∩ I(S). If t = α(H), then the result 
follows from Lemma 3.10. So we may assume that t ∈ {α(H) + 1, . . . , β(H)} ∩ I(S). Then, there exists a vertex u ∈ (Xt \
Xt−1) ∩ V (H). However, by Lemma 3.9, we have |Xt ∩ Xt−1 ∩ V (H)| ≥ 1. Thus, there is a vertex v ∈ Xt ∩ Xt−1 ∩ V (H) and 
v = u. Therefore, {u, v} ⊆ Xt ∩ V (H), as required. �
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Finally, Corollary 3.11 and k ≤ 3, give the following upper bounds on the numbers of red, blue and purple S-branches for 
S ∈ S .

Lemma 3.13. Let G be a connected graph, let P be a clean path decomposition of width k ≤ 3 of G, and S ∈ S . Then, the following 
statements hold:

(i) there is at most one red or purple S-branch;
(ii) there is at most one blue or purple S-branch;
(iii) if there is a red, purple, or blue S-branch, then k = 3 and |S| = 1.

Proof. By Corollary 3.11, there exist green S-branches H1 and H2 (possibly H1 = H2) such that {ui, vi} ⊆ Xti(S) ∩ V (Hi) for 
each i = 1, 2. Suppose that there exists an S-branch that is red or purple and let H ′

1, . . . , H ′
r be all S-branches that are red 

or purple. By Lemma 3.9, for each i = 1, . . . , r there exists u′
i ∈ V (H ′

i) ∩ Xt1(S) . Hence, S ∪ {u1, v1} ∪ {u′
1, . . . , u

′
r} ⊆ Xt1(S) . By 

the definition of the coloring, u′
i /∈ {u1, v1} for each i ∈ {1, . . . , r}. Thus, r ≤ 1, which proves (i).

For (ii), suppose that there exist q ≥ 1 S-branches that are blue or purple. Denote those S-branches by H ′′
1 , . . . , H ′′

q . By 
Lemma 3.9, for each i = 1, . . . , q there exists u′′

i ∈ V (H ′′
i ) ∩ Xt2(S) . Hence, S ∪{u2, v2} ∪{u′′

1, . . . , u′′
r } ⊆ Xt2(S) . By the definition 

of the coloring, u′′
i /∈ {u2, v2} for each i ∈ {1, . . . , q}. Thus, q ≤ 1 and (ii) follows.

Finally, if r = 1 or q = 1, then S ∪{u1, v1, u′
1} ⊆ Xt1(S) or S ∪{u2, v2, u′′

1} ⊆ Xt2(S) , respectively. Because |Xti(S)| ≤ k +1 ≤ 4, 
i = 1, 2, this implies that k = 3 and |S| = 1, as required in (iii). �
3.4.2. The absence of red and blue S-branches

We now show that clean path decompositions lack red and blue components. We start with the following lemma, 
which provides a convenient way of re-arranging a path decomposition. Notice that this lemma applies to all components 
of G − S (i.e., S-branches, but also S-leaves and other components of G − S that are not S-components). Note also that 
we can always add empty sets to the beginning and/or the end of a path decomposition, so that the condition that the 
path decompositions be of length exactly |I(S)| is less restrictive than one may think at first glance. (Recall that S is the 
collection of all bottleneck sets of G .)

Lemma 3.14. Let G be a connected graph, let P = (X1, . . . , Xl) be a path decomposition of width k ≤ 3 of G, and S ∈ S . Write 
t1 = t1(S) and t2 = t2(S). For each component H of G − S, let QH = (Y H

t1
, . . . , Y H

t2
) be a path decomposition of length |I(S)| for the 

graph

H(S,P) = H

⎡⎣ ⋃
t∈I(S)

Xt ∩ V (H)

⎤⎦ ,

satisfying the following conditions:

(i) if αP (H) < t1 , then Xt1 ∩ V (H) ⊆ Y H
t1

; and

(ii) if βP (H) > t2 , then Xt2 ∩ V (H) ⊆ Y H
t2

.

Define P ′ = (
X1, . . . , Xt1−1, S ∪⋃

H Y H
t1

, . . . , S ∪⋃
H Y H

t2
, Xt2+1, . . . , Xl

)
, where the unions are taken over all components H of 

G − S. Then, P ′ is a path decomposition of G of width at most k.

Proof. For convenience, define P ′
1 = (

X1, . . . , Xt1−1
)
, P ′

2 = (
S ∪⋃

H Y H
t1

, . . . , S ∪⋃
H Y H

t2

)
, and P ′

3 = (
Xt2+1, . . . , Xl

)
. Re-

call from Lemma 3.5 that IP (S) = ∅, and hence P ′
2 is not an empty list. Moreover, define Z = G − ⋃

t∈IP (S) Xt , i.e., 
Z is the subgraph of G induced by all vertices not appearing in any bag Xt with t ∈ IP (S). Notice that V (G) =
V (Z) ∪ S ∪⋃

H V (H(S, P)). Write P ′ = (X ′
1, . . . , X

′
l ).

To check (PD2), let {u, v} ∈ E(G). There are a few possibilities. If v ∈ V (Z), then, by (PD2) for P , there exists some t such 
that {u, v} ∈ Xt ; since v /∈ Xs for all s ∈ IP (S), it follows that t /∈ IP (S), and hence X ′

t = Xt , so that {u, v} ∈ X ′
t . If u, v ∈ S , 

then {u, v} ⊆ X ′
t1

. If u, v ∈ V (H(S, P)) for some component H of G − S , then (PD2) for QH implies that {u, v} ⊆ Y H
t for 

some t ∈ IP (S), and hence {u, v} ⊆ X ′
t . Finally, if u ∈ S, v ∈ V (H(S, P)) for some component H of G − S , then by (PD1)

for QH , v ∈ Y H
t for some t ∈ IP (S), and hence {u, v} ⊆ X ′

t . This establishes (PD2). Note that (PD1) follows from (PD2)
because G is connected.

Finally, in order to verify (PD3′), let v ∈ V (G). If v ∈ S ∪ V (Z), then notice that X ′
t ∩ (S ∪ V (Z)) = Xt ∩ (S ∪ V (Z)) for 

all t ∈ {1, . . . , l}, and hence property (PD3′) for v follows immediately from the fact that (PD3′) holds for P . So we may 
assume that v ∈ V (H(S, P)) for some component H of G − S . Let 1 ≤ i < i′ ≤ l be such that v ∈ X ′

i and v ∈ X ′
i′ . We need to 

show that v ∈ X ′
j for all j ∈ {i, . . . , i′}. Notice that, because v ∈ V (H(S, P)), there exists t∗ ∈ IP (S) such that v ∈ Xt∗ . Let us 

go through the cases:
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Fig. 6. P is not well-arranged with respect to S .

(1) i ≤ i′ < t1 or t2 < i ≤ i′ . Then, X ′
j = X j for all j ∈ {i, . . . , i′}, and hence the fact that v ∈ X ′

j follows directly from (PD3′)
for P .

(2) t1 ≤ i ≤ i′ ≤ t2. Then, v ∈ Y H
i and v ∈ Y H

i′ and hence the fact that v ∈ Y H
j ⊆ X ′

j , j = i, . . . , i′ , follows directly from (PD3′)
for QH .

(3) i < t1 ≤ i′ ≤ t2. Then, v ∈ Xi . Hence, by (PD3′) applied to i, t1 and P , it follows that v ∈ X j for all j ∈ {i, . . . , t1}. In 
particular, also v ∈ Xt1 . Since v ∈ Xi , we have α(H) < t1. Thus, by condition (i) in the statement of the lemma, it 
follows that v ∈ Y H

t1
⊆ X ′

t1
. Now it follows from (2) applied to t1, i′ that v ∈ X ′

j for all j ∈ {t1, . . . , i′}.
(4) t1 ≤ i ≤ t2 < i′ . It follows from (3) and the symmetry (through P ′ = (Xl, . . . , X1)) that v ∈ X ′

j for all j ∈ {i, . . . , i′}.
(5) i < t1 ≤ t2 < i′ . It follows from (3) applied to i, t2 that v ∈ X ′

j for all j ∈ {i, . . . , t2}, and it follows from (4) applied to 
t2, i′ that v ∈ X ′

j for all j ∈ {t2, . . . , i′}, as required.

This proves the lemma. �
We make the following observation about shortening path decompositions.

Observation 3.15. Let G be a connected graph and let P = (X1, . . . , Xl) be a path decomposition of G. Denote X0 = Xl+1 = ∅. Then, 
the deletion of any bag Xt , t ∈ {1, . . . , l}, satisfying Xt ⊆ Xt−1 ∩ Xt+1 results in a path decomposition of width at most width(P) of G.

We now prove the main result of this subsection. This result is the first step towards proving that clean path decompo-
sitions are well-arranged.

Lemma 3.16. Let G be a connected graph and S ∈ S . Let P = (X1, . . . , Xl) be a clean path decomposition of width k ≤ 3 of G. Then, 
there are no blue and no red S-branches.

Proof. First note that by Lemma 3.13(iii), if k ≤ 2, then there are no red and no blue S-branches, and hence there is nothing 
to prove. So we may assume from now on that k = 3. Write t1 = t1(S) and t2 = t2(S). Suppose for a contradiction that there 
is a red or a blue S-branch H . We will construct a new path decomposition P ′ of width k ≤ 3 and length l for G , which 
satisfies size(P ′) < size(P), contrary to the fact that P is clean.

It follows from Lemma 3.13(iii) that there are no purple S-branches and |S| = 1. It also follows from Lemma 3.13 that 
there may exist at most one blue S-branch and at most one red S-branch. Let H be the red S-branch, if any exists; otherwise 
let H be the empty graph. Similarly, let H ′ be the blue S-branch, if any exists; otherwise let H ′ be the empty graph. Notice 
that, by assumption, H and H ′ are not both empty graphs.

Since G is connected, the fact that |S| = 1 implies that every component of G − S is an S-component. Let R ⊆ IP (S)

be the set of steps t such that |Xt ∩ V (H)| ≥ 2, let B ⊆ IP (S) be the set of steps t such that |Xt ∩ V (H ′)| ≥ 2, and let Z =
IP (S) \ (R ∪B). Let r1 < r2 < · · · < rp be the steps in R, let b1 < b2 < · · · < bq be the steps in B, and let z1 < z2 < · · · < zs

be the steps in Z . We show that R ∪B = ∅ first. Suppose for a contradiction that R ∪B = ∅. Corollary 3.11 and k = 3 imply 
t1, t2 ∈Z , so that z1 = t1, zs = t2, and R ∩B = ∅ (see Fig. 6).

For t ∈ IP (S), write Xt = St ∪ Rt ∪ Bt ∪ Zt , where St contains the vertex of S and all S-leaves in Xt , Rt = Xt ∩ V (H), 
Bt = Xt ∩ V (H ′), and Zt = Xt \ (St ∪ V (H) ∪ V (H ′)). Thus, Rt consists of the vertices of the red S-branch H (if any) in Xt , Bt

contains the vertices of the blue S-branch H ′ (if any) in Xt , Zt contains the vertices in Xt that belong to green S-branches 
in Xt . Note that St , Rt , Zt and Bt are pairwise disjoint.

Construct P ′ from P by replacing the bags Xt1 , . . . , Xt2 , of P by the bags

Sr1 ∪ Rr1 , . . . , Srp ∪ Rrp , Sz1 ∪ Zz1 , . . . , Szr ∪ Zzs , Sb ∪ Bb , . . . , Sb ∪ Bb . (6)
1 1 q q
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Let P ′ = (X ′
1, . . . , X

′
l ) be the result of the replacement. Let π : IP (S) → IP (S) be the permutation function that maps 

(t1, . . . , t2) to (r1, . . . , rp, z1, . . . , zs, b1, . . . , bq). We will show that P ′ is a path decomposition of width at most 3 of G
that satisfies size(P ′) < size(P).

We first claim that |X ′
t | ≤ 4 for all t ∈ {1, . . . , l}. To see this, note that X ′

t = Xt for all t /∈ IP (S), and hence |X ′
t | ≤ 4

trivially holds. Also, X ′
t ⊆ Xπ(t) for all t ∈ IP (S), thus again |X ′

t | ≤ 4.
Next, we claim that size(P ′) < size(P). It suffices to show that |X ′

π(t1)
| < |Xt1 | or |X ′

π(t2)
| < |Xt2 |. By assumption, at least 

one of B, R is non-empty. If B = ∅, then since H ′ is a blue S-branch there exists w ∈ Xt2 ∩ V (H ′). By Corollary 3.11(ii), 
|Xt2 ∩ V (H ′)| = 1, thus, π(t2) ∈R ∪Z . Therefore, X ′

π(t2)
⊆ Xt2 , and w /∈ X ′

π(t2)
by (6) which proves |X ′

π(t2)
| < |Xt2 |. Similarly, 

if R = ∅, then since H is a red S-branch there is u ∈ Xt1 ∩ V (H). By Corollary 3.11(i), |Xt1 ∩ V (H)| = 1, thus, π(t1) ∈Z ∪B. 
Therefore, X ′

π(t1) ⊆ Xt1 and, by (6), u /∈ X ′
π(t1) which proves |X ′

π(t1)| < |Xt1 |. Thus, indeed size(P ′) < size(P).
We now argue that P ′ is a path decomposition of G . For every S-component J such that V ( J ) ∩ Xt = ∅ for some 

t ∈ IP (S) define

J (S,P) = J

⎡⎣ ⋃
t∈IP (S)

Xt ∩ V ( J )

⎤⎦ ,

i.e., J (S, P) is the subgraph of J induced by all vertices that appear in bags of P in the interval IP (S). We have, by 
Observation 3.15:

• QH = (Rr1 , . . . , Rrp , ∅, . . . , ∅) is a path decomposition of length |IP (S)| of H(S, P);

• QH ′ = (∅, . . . , ∅, Bb1 , . . . , Bbq ) is a path decomposition of length |IP (S)| of H ′(S, P);

• for any green S-branch H∗ , QH∗ = (∅, . . . , ∅, Zz1 ∩ V (H∗), . . . , Zzs ∩ V (H∗), ∅, . . . , ∅) is a path decomposition of length 
|IP (S)| of H∗(S, P);

• for J being an S-leaf v , αP (v) ∈ I(S), Q J = (Sπ(t1) ∩ {v}, . . . , Sπ(t2) ∩ {v}) is a path decomposition of length |IP (S)| of 
J (S, P).

In order to apply Lemma 3.14, it remains to show that Xt1 ∩ V (H) ⊆ X ′
t1

and Xt2 ∩ V (H ′) ⊆ X ′
t2

. Notice that Xt1 ∩ V (H) =
Rt1 and X ′

t1
= Sr1 ∪ Rr1 . Thus, it suffices to show that Rt1 ⊆ Rr1 . This is trivial if there is no red S-branch. Otherwise, 

because |Rt1 | = 1 and H waits in {t1, . . . , r1 − 1}, it follows that Rt1 = · · · = Rr1−1. By Lemma 3.9, |Rr1−1 ∩ Rr1 | ≥ 1 and 
hence Rt1 ⊆ Rr1 . Similarly, it suffices to show that Bt2 ⊆ Bbq . Again, this is trivial if there is no blue S-branch. Otherwise, 
because |Bbq+1| = 1 and H ′ waits in {bq + 1, . . . , t2}, it follows that Bbq+1 = · · · = Bt2 . By Lemma 3.9, |Bbq ∩ Bbq+1| ≥ 1 and 
hence Bt2 ⊆ Bbq .

Thus, by Lemma 3.14, P ′ is a path decomposition of G , which proves that R ∪ B = ∅. Therefore if H is non-empty, 
then Xt1 ∩ V (H) = · · · = Xβ(H) ∩ V (H) = {v}. (Otherwise, H makes progress in IP , and thus Lemma 3.12 implies R = ∅, 
a contradiction.) Since α(H) < t1, we have Xt1−1 ∩ Xt1 ∩ V (H) = {v} by Lemma 3.9. Moreover, by definition of t1, S ⊆ Xt1−1. 
Therefore, deleting v from the bags Xt1 , . . . , Xβ(H) would result in a path decomposition P ′ of G such that size(P ′) <
size(P), since t1 ≤ β(H), contrary to the fact that P is clean. Thus, no red S-branch exists. The proof that no blue branch 
exists follows by symmetry (take (Xl, . . . , X1) instead of P = (X1, . . . , Xl)). �
3.4.3. Clean path decompositions are well-arranged

We now show that clean path decompositions are well-arranged, and thus, by Observation 3.8, we may limit our search 
for a minimum-length path decomposition to well-arranged path decompositions. Then, we give the third key property of 
clean path decompositions.

Lemma 3.17. Let G be a connected graph and let P = (X1, . . . , Xl) be a clean path decomposition of width k ≤ 3 of G. Then, P is 
well-arranged.

Proof. Let S1, . . . , S p be the bottleneck sets of G ordered as in (5). We will prove by induction on m that P is well-arranged 
with respect to the bottleneck sets S1, . . . , Sm , for each m = 0, . . . , p. Thus, the case m = p is the result of the lemma. The 
base case m = 0 is trivial. For the general case, let 1 ≤ m ≤ p and assume inductively that P is well-arranged with respect 
to S1, . . . , Sm−1. Let αm(P) be the vector with the first m entries of α(P).

Now suppose for a contradiction that P is not well-arranged with respect to Sm . The latter implies that some compo-
nent H of G − Sm , which is neither an Sm-leaf nor a green Sm-branch, makes progress in some step in IP (Sm). It follows 
from Lemma 3.16 that there no red and no blue Sm-branches. Thus, H is either not an Sm-component or a purple Sm-branch. 
We deal with these two cases separately.

Case 1: H is not an Sm-component. If |Sm| = 1, then every component of G − Sm is an Sm-component, so it follows that 
|Sm| ≥ 2. Therefore, by Lemma 3.13(iii), there are no purple Sm-branches. By Corollary 3.11, some green Sm-branches make 
progress in steps t1(Sm) and t2(Sm). Thus, k = 3, |Sm| = 2, and Xt1(Sm) and Xt2(Sm) contain no vertices of H . Denote Sm =
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{s1, s2}. Let r1 = αP (H) and r2 = βP (H). Since H makes progress in some step in IP (Sm), t1(Sm) < r1 ≤ r2 < t2(Sm). We 
may assume that H is selected in such a way that r2 is as large as possible. Define

P ′ = (
X1, . . . , Xr1−1, Xr2+1, . . . , Xt2(Sm), Xr1 , . . . , Xr2 , Xt2(Sm)+1, . . . , Xl

)
.

The proof that P ′ is a path decomposition of G follows from the following key observations. First, only the vertices of Sm , 
green Sm-branches, Sm-leaves, and components of G − Sm that are not Sm-components can appear in Xt1(Sm), . . . Xt2(Sm) . 
Second, no vertex of H appears outside of Xr1 , . . . , Xr2 . Third, |Xt ∩ V (H)| ≥ 1 for each t ∈ {r1, . . . , r2}, |Sm| = 2 and the 
assumption that r2 is as large as possible, imply that no G − Sm component H ′ = H with |V (H)| ≥ 2 (this clearly includes 
Sm-branches) makes progress in steps r1, . . . , r2. Thus, no bag Xt for t ∈ {r1, . . . , r2} contains a vertex of a component 
H ′ = H of G − Sm with |V (H)| ≥ 2, because otherwise we could reduce the size(P) and thus contradict (C1). Indeed, 
|Xt ∩ (Sm ∪ V (H))| ≥ 3 for each t ∈ {r1, . . . , r2} because H is connected, and, by Lemma 3.12, |Xt ∩ (Sm ∪ V (H))| > 3 for some 
t ∈ {r1, . . . , r2}. This implies that H ′ makes no progress in any step in {r1, . . . , r2} and either V (H ′) ∩ (X1 ∪ · · · ∪ Xr1−1) = ∅
or V (H ′) ∩ (Xr2+1 ∪ · · · ∪ Xl) = ∅. The latter implies that removal of the vertices of H ′ from the bags Xr1 , . . . , Xr2 of P
provides a valid path decomposition of G with smaller cost, which gives the required contradiction with (C1). Therefore, 
each vertex in Xt \ (Sm ∪ V (H)), t ∈ {r1, . . . , r2}, belongs to a component H ′ = H of G − Sm with |V (H)| = 1 (this clearly 
includes Sm-leaves). Therefore, Xr1−1 ∩ Xr1 = Sm = Xr2 ∩ Xr2+1. Finally, by Corollary 3.11, some green Sm-branch makes 
progress in step t2(Sm). Therefore, since k = 3 and |Sm| = 2, we have Sm = Xt2(Sm) ∩ Xt2(Sm)+1.

We claim that αm(P ′) <L αm(P), which contradicts (C2). To prove this claim, it suffices to show that

t′
1(Si) = t1(Si) and t′

2(Si) ≤ t2(Si) (7)

for all i = 1, . . . , m, with strict inequality t′
2(Si) < t2(Si) for i = m.

First note that αP ′ (x) = αP (x) and βP ′ (x) = βP (x) for each x ∈ Sm . Thus, α̂P (Sm) = α̂P ′ (Sm) and β̂P (Sm) = β̂P ′ (Sm). 
Let H ′ and H ′′ be the green Sm-branches that determine t1(Sm) and t2(Sm) in P , respectively. We have αP ′(H ′) = αP (H ′)
and βP ′ (H ′′) < βP (H ′′). By definition, there is no Sm-branch J such that α̂P (Sm) < αP ( J ) < t1(Sm) or t2(Sm) < βP ( J ) <
β̂P (Sm). Also, we proved that there are no vertices of Sm-branches in Xr1 , . . . , Xr2 , thus the Sm-branches H ′ and H ′′
determine t′

1(Sm) and t′
2(Sm) in P ′ , respectively. Therefore, t′

1(Sm) = t1(Sm) and t′
2(Sm) < t2(Sm), thus the inequality 

t′
2(Si) < t2(Si) for i = m in (7) is strict.

Now consider Si , with i ∈ {1, . . . , m − 1}. Because i < m, we have that t1(Si) ≤ t1(Sm). By definition of t1(Si),

Si ⊆ Xt for some t < t1(Sm). (8)

Let u1, u2 ∈ V (H ′) ∩ Xt1(Sm) . Since k = 3, we have Xt1(Sm) = {s1, s2, u1, u2}. Let H ′
i and H ′′

i be the green Si -branches that 
determine t1(Si) and t2(Si) in P , respectively. If Si contains a vertex that is not in Xt1(Sm) , then, by (8), t2(Si) < β̂P (Si) <
t1(Sm). Thus, H ′

i and H ′′
i determine t′

1(Si) and t′
2(Si) in P ′ . Therefore, t′

1(Si) = t1(Si) and t′
2(Si) = t2(Si) and (7) holds for 

the i. So we may assume that Si ⊆ Xt1(Sm) . If u j ∈ Si for some j ∈ {1, 2}, then t1(Si) > α̂P (Si) ≥ t1(Sm), a contradiction. 
Thus, Si ⊆ {s1, s2}. By the symmetry and the fact that Si = Sm , we may assume that Si = {s1}.

Since α̂P (Si) ≤ α̂P (Sm) and β̂P (Sm) ≤ β̂P (Si), we have α̂P (Si) = α̂P ′ (Si) and β̂P (Si) = β̂P ′ (Si). Also, since t1(Si) ≤
t1(Sm), H ′

i determines t′
1(Si) in P ′ . Thus, t′

1(Si) = t1(Si). By definition, there is no Si -branch J such that t2(Si) < βP ( J ) <
β̂P (Si). Thus, both for t2(Sm) < βP (H ′′

i ) = t2(Si) and for βP (H ′′
i ) = t2(Si) < r1, H ′′

i determines t′
2(Si) in P ′ . Thus, in both 

cases t′
2(Si) = t2(Si) and (7) holds for the i. Finally, suppose that r1 ≤ βP (H ′′

i ) ≤ t2(Sm). We show that this case leads 
to a contradiction with the inductive assumption that P is well-arranged with respect to Si . Consider the component H∗
in G − Si that contains s2. Since |Si | = 1, all G − Si components are Si -components. Moreover, |V (H∗)| ≥ 2 because H∗
includes also u1 and u2, and hence H∗ is an Si -branch. We have, βP (H∗) ≥ β̂P (Si), because otherwise H∗ is a green 
Si-branch, and βP (H∗) ≥ βP (s2) ≥ β̂P (Sm) > t2(Sm) ≥ βP (H ′′

i ). Therefore, since, by definition of H ′′
i , βP ( J ) ≤ βP (H ′′

i ) for 
any green Si -branch J , we get a contradiction. However, βP (H∗) ≥ β̂P (Si) and Lemma 3.16 imply that H∗ is a purple 
Si-branch (observe that αP (H∗) < t2(Si), since αP (H∗) ≤ αP (s2) ≤ α̂P (Sm) < t1(Sm) < r1 ≤ t2(Si)). Moreover, H∗ makes 
progress in t1(Sm) for Sm-branch H ′ makes progress in t1(Sm) and H ′ is a subgraph of H∗ . This contradicts the fact that P
is well-arranged with respect to Si for t1(Sm) ∈ IP (Si) (observe that t1(Si) ≤ t1(Sm) < r1 ≤ t2(Si)).

Case 2: H is a purple Sm-branch. By Lemma 3.13, |Sm| = 1, and k = 3. Denote Sm = {s}. Every component in G − Sm is 
either an Sm-branch or an Sm-leaf. Because H makes progress in IP (Sm), Lemma 3.12 implies that |Xt ∩ V (H)| ≥ 2 for 
some t ∈ IP (Sm). Let r2 ∈ IP (Sm) be the latest step such that |Xr2 ∩ V (H)| ≥ 2 and let r1 ≤ r2 be the earliest step such that 
|Xt ∩ V (H)| ≥ 2 for all t = r1, . . . , r2. For each t ∈ IP (Sm), write Xt = Zt ∪ Rt ∪ At , where Zt is the set containing Sm and 
all Sm-leaves contained in Xt , Rt = Xt ∩ V (H), and At = Xt \ (Rt ∪ Zt). Notice that At contains precisely the vertices in Xt

that belong to green Sm-branches. By Corollary 3.11, some green Sm-branches make progress in steps t1(Sm) and t2(Sm). 
Thus, Observation 1.2, k = 3, and definition of purple Sm-branch imply |Rt1(Sm)| = |Rt2(Sm)| = 1. Therefore, t1(Sm) < r1 ≤ r2 <

t2(Sm).
By Observation 1.2, definition of purple Sm-branch, and the choice of r1 and r2, we have |Rr1−1| = 1, and |Rt | = 1 for 

all t ∈ {r2 + 1, . . . , t2(Sm)}. The latter also implies that |Zt ∪ At | ≤ 3 for all t ∈ {r2 + 1, . . . , t2(Sm)}. Construct P ′ from P by 
replacing the bags Xr1 , . . . , Xt2(Sm) by
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Zr2+1 ∪ Ar2+1 ∪ Rr1−1, . . . , Zt2(Sm) ∪ At2(Sm) ∪ Rr1−1, Zr1 ∪ Rr1 , . . . , Zr2 ∪ Rr2 . (9)

Clearly, P ′ satisfies width(P ′) ≤ 3. We claim that no green Sm-branch H ′′ makes progress in a step t ∈ {r1, . . . , r2}. Indeed, 
if this were the case, then |Xt ∩ V (H ′′)| ≥ 2 and, by the choice of r1 and r2, we would have |Xt ∩ (Zt ∪ Rt)| ≥ 3, which 
is not possible because width(P) ≤ 3. Thus, if V (H ′′) ∩ Xt = ∅ for some green Sm-branch H ′′ , then V (H ′′) ∩ Xt = {v} for 
some vertex v and each t ∈ {r1, . . . , r2}. Hence, again due to the minimality of size(P), we have that v ∈ Ar2+1. This and 
Lemma 3.14 imply that P ′ is a path decomposition of G . If At = ∅ for some t ∈ {r1, . . . , r2}, then, by (9), size(P ′) < size(P), 
which contradicts (C1). So, At = ∅ for all t ∈ {r1, . . . , r2}.

We claim again that αm(P ′) <L αm(P). As in Case 1, it suffices to show that (7) holds for all i = 1, . . . , m, with strict 
inequality t′

2(Si) < t2(Si) for i = m. First note that αP ′ (s) = αP (s) and βP ′ (s) = βP (s). Thus, α̂P (Sm) = α̂P ′ (Sm) and 
β̂P (Sm) = β̂P ′ (Sm). Let H ′ and H ′′ be the green Sm-branches that determine t1(Sm) and t2(Sm) in P , respectively. We 
have αP ′ (H ′) = αP (H ′) and βP ′ (H ′′) < βP (H ′′). By definition, there is no Sm-branch J such that α̂P (S) < αP ( J ) < t1(Sm)

or t2(Sm) < βP ( J ) < β̂P (S). Moreover, we proved that there are no vertices of green Sm-branches in Xr1 , . . . , Xr2 , and by 
Lemma 3.16 there are no red and blue Sm-branches, thus Sm-branches H ′ and H ′′ determine t′

1(Sm) and t′
2(Sm) in P ′ . 

Therefore, t′
1(Sm) = t1(Sm) and t′

2(Sm) < t2(Sm), thus the inequality for i = m in (7) is strict.
Now consider Si with i ∈ {1, . . . , m − 1}. Because i < m, we have that t1(Si) ≤ t1(Sm). By definition of t1(Si), this 

implies (8). Let u1, u2 ∈ V (H ′) ∩ Xt1(Sm) . Let w be the unique vertex of H in Xt1(Sm) . Since k = 3, we have Xt1(Sm) =
{s, w, u1, u2}. If Si contains a vertex that is not in Xt1(Sm) , then, by (8), t2(Si) < β̂P (Si) < t1(Sm). Thus, t′

1(Si) = t1(Si)

and t′
2(Si) = t2(Si) and (7) holds. So we may assume that Si ⊆ Xt1(Sm) . If u j ∈ Si for some j ∈ {1, 2}, then t1(Si) > α̂P (Si) ≥

t1(Sm), a contradiction. Thus, Si ⊆ {s, w}. Since Si = Sm , this implies that either Si = {s, w} or Si = {w}.
If Si = {s, w}, then, by Corollary 3.11, H ′ makes progress in t1(Sm). However, H ′ is a component in G − Si which is not an 

Si -component. Thus, t1(Sm) ≤ t2(Si) contradicts that P is well-arranged with respect to Si (observe that t1(Sm) ∈ IP (Si)). 
If t1(Sm) > t2(Si), then t′

1(Si) = t1(Si) and t′
2(Si) = t2(Si) and (7) holds.

Consider Si = {w}. Let H ′
i and H ′′

i be the green Si -branches that determine t1(Si) and t2(Si) in P , respectively. Since 
α̂P (Si) ≤ t1(Sm) and t2(Sm) ≤ β̂P (Si), we have α̂P (Si) = α̂P ′ (Si) and β̂P (Si) = β̂P ′ (Si). Since t1(Si) ≤ t1(Sm), H ′

i de-
termines t′

1(Si) in P ′ . Thus, t′
1(Si) = t1(Si). By definition, there is no Si -branch J such that t2(Si) < βP (Si) < β̂P (S). 

Thus, both for t2(Sm) < βP (H ′′
i ) = t2(Si) and for βP (H ′′

i ) = t2(Si) < r1, H ′′
i determines t′

2(Si) in P ′ . Thus, in both cases 
t′

2(Si) = t2(Si) and (7) holds. Now suppose that r1 ≤ βP (H ′′
i ) ≤ t2(Sm). We show that this case leads to a contradic-

tion with the inductive assumption that P is well-arranged with respect to Si . The Si -component H∗ that contains s
is an Si -branch for it includes also u1 and u2. Thus, βP (H∗) ≥ β̂P (Si), because otherwise H∗ is a green Si -branch 
and βP (H∗) ≥ βP (s) > t2(Sm) ≥ βP (H ′′

i ), which contradicts the choice of H ′′
i as the branch that determines t1(Si). 

However βP (H∗) ≥ β̂P (Si) and Lemma 3.16 imply that H∗ is a purple Si -branch (observe that αP (H∗) < t2(Si), since 
αP (H∗) ≤ αP (s) = α̂(Sm) < t1(Sm) < r1 ≤ t2(Si)). Moreover, H∗ makes progress in t1(Sm) for H ′ makes progress in t1(Sm)

and H ′ is a subgraph of H∗ . This contradicts the fact that P is well-arranged with respect to Si for t1(Sm) ∈ IP (Si). �
A collection B of sets is called strictly nested if for all X, X ′ ∈ B, (X = X ′) and (either X ∩ X ′ = ∅, or X ⊆ X ′ , or X ′ ⊆ X).

Lemma 3.18. Let G be a connected graph and let P = (X1, . . . , Xl) be a clean path decomposition of width k ≤ 3 of G. Then, the 
collection {I(S): S ∈ S} is strictly nested.

Proof. Let S and S ′ be two distinct bottleneck sets. We may assume without loss of generality that |S| ≥ |S ′|. Write I(S) =
{t1, . . . , t2} and I(S ′) = {t′

1, . . . , t
′
2}. Suppose for a contradiction that (I(S) = I(S ′)) or (I(S) ∩ I(S ′) = ∅, I(S) � I(S ′) and 

I(S ′) � I(S)). Perhaps by taking (Xl, . . . , X1), we may assume that t1 ≤ t′
1 ≤ t2 ≤ t′

2. By definition of t′
1, there exists a green 

S ′-branch H ′ that determines t′
1. Fix z ∈ Xt′1 ∩ V (H ′). By Lemma 3.16 there are no red or blue S-branches, and by Lemma 3.17

any purple S-branch and any component in G − S that is not an S-component waits in I(S), thus it follows that z is a vertex 
of an S-component H which is either an S-leaf or a green S-branch.

We first show that H is a green S-branch. Let x ∈ S \ S ′ (such x exists because |S| ≥ |S ′| and S = S ′). If x and z are in the 
same connected component (i.e., in H ′) in G − S ′ , then t′

1 = α(H ′) ≤ α(x) ≤ α̂(S) < t1 ≤ t′
1, a contradiction. Thus, x and z

are in different connected components of G − S ′ . This implies that any path between x and z passes through a vertex in S ′ . 
Now suppose for a contradiction that H is an S-leaf. Then V (H) = {z} and the edge (x, z) ∈ E(G) is a path between x and z
that does not pass through a vertex in S ′ since neither x nor s belong to S ′ . Therefore, H is a green S-branch, thus includes 
some vertex w = z.

Now, since we just shown that (x, z) /∈ E(G), we can chose w so that (x, w) ∈ E(G). Therefore, w ∈ S ′ \ S or at least 
one vertex on any path between w and z in H must be in S ′ . Thus, S ′ ∩ V (H) = ∅. This, however, implies that β(H) ≥
β̂(S ′) > t′

2 ≥ t2, contrary to the fact that β(H) ≤ t2 (which follows from the fact that H is a green S-branch). This proves 
the lemma. �
3.5. An algorithm for connected graphs

In this section we turn the generic exponential-time algorithm from Section 3.1 into a polynomial-time algorithm that 
finds a minimum-length path decomposition of width at most k of G for given integer k ≤ 3 and connected graph G . Recall 
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that it can be checked in linear time whether pw(G) ≤ k; see [6,9]. We formulate the algorithm in this section and prove 
its correctness in the next section.

Let k ∈ {1, 2, 3} and let G be a connected graph. For every non-empty set S ⊆ V (G), |S| ≤ k + 1, define

Q(S) = {
(G, f , l)

∣∣ G ⊆ C∗
G(S), |G| ≥ |C∗

G(S)| − 12,

f :C∗
G(S) → {0,1}, f (H) = f (H ′) for all H, H ′ ∈ G,

l ∈ {0, . . . , |C1
G(S)|}} (10)

if S ∈ S (i.e., if S is a bottleneck set), and

Q(S) = {(∅, f , l)
∣∣ f :C∗

G(S) → {0,1}, l ∈ {0, . . . , |C1
G(S)|}} (11)

if S /∈ S . Every triple in Q(S) provides information on which S-components have been covered (completed) by a partial 
path decomposition. Here, f (H) = 1 means that H has been covered.

The first entry, G, represents the collection of green S-branches. By Lemma 3.5, in any path decomposition, every bottle-
neck set S has at most 12 non-green S-branches, thus there are at least |G| ≥ |C∗

G(S)| − 12 green S-branches. Moreover, by 
the definition of a bottleneck, there must be at least one green S-branch. Thus, G is always non-empty for S ∈ S . Since we 
only define the coloring of S-components for bottleneck sets S , G is set to be empty for S /∈ S .

The second entry, f , keeps track of which S-branches have been covered by a partial path decomposition ( f assigns 1
to those S-branches). Notice that we require that either all green S-branches are covered, or none of them are covered. The 
third entry, l, counts the number of S-leaves that are covered by a partial path decomposition.

Note that for |S| > 1, there may exist connected components in G − S that are not S-components, and thus Q(S) does 
not provide any information about whether such components have been covered or not by a partial path decomposition. 
This information, however, is not lost since it is provided by Q(S ′) for some S ′ � S .

Next, for X ⊆ V (G), define R(X) to be the set of all functions R: 2X \ {∅} →⋃
S⊆X Q(S) such that R(S) ∈ Q(S) for each 

S ⊆ X , S = ∅. Thus, each R ∈ R(X) selects a triple from Q(S) for each non-empty set S ⊆ X . Now define the following 
edge-weighted directed graph Gk with weights w: E(Gk) → Z. The vertex set of Gk is

V (Gk) = {(X, R)
∣∣ X ⊆ V (G), |X | ≤ k + 1, R ∈ R(X)} ∪ {s, t}.

In the following we denote s = (∅, ∅) and C1
G (S) = {vi(S) 

∣∣ i = 1, . . . , |C1
G(S)|}. Notice that if S = S ′ , then C1

G(S) and C1
G (S ′)

are disjoint.
Every vertex v ∈ V (Gk) represents a set Vv of the vertices of G covered by any partial path decomposition that cor-

responds v . We first show how to define Vv for any given vertex v = (X, R) ∈ V (Gk). For each non-empty S ⊆ X , write 
R(S) = (GS , f S , lS ). Now, Vv is given by

Vv = X ∪
⋃

S⊆X,S =∅

⎡⎢⎢⎢⎣{v1(S), . . . , vlS (S)} ∪
⋃

H∈C∗
G (S)

f S (H)=1

V (H)

⎤⎥⎥⎥⎦ . (12)

We are now ready to formally define the edge set of Gk and the corresponding edge weights. The informal comments follow 
the definition. Let there be an edge from v to t if and only if Vv = V (G); the weight of such an edge is set to zero. Then, let 
there be an edge from v = (X, R) ∈ V (Gk) to v ′ = (X ′, R ′) ∈ V (Gk) (v = v ′) if and only if Vv ⊆ Vv ′ , (X ′ \ δG(G[Vv ])) ∩Vv = ∅
and one of the two following conditions holds:

(G1) Vv ′ \ Vv ⊆ X ′ and δG(G[Vv ]) = X ′ ∩ Vv . Set w(v, v ′) = 1. We refer to the edge (v, v ′) as a step edge.
(G2) Vv ′ \ Vv � X ′ , and there exists a bottleneck set S ⊆ X ∩ X ′ with R ′(S) = (G′

S , f
′
S , l

′
S ) such that:

(G2a) Vv ′ \ Vv = Y S , where Y S = {vlS +1(S), . . . , vl′S (S)} ∪⋃
H∈G′

S
V (H), and R(S) = (GS , f S , lS ).

(G2b) δG(G[Vv ]) = S̄ , where S̄ = X ∩ X ′ .
(G2c) X ′ = S̄ .
(G2d) there exists a path decomposition P̄ = ( X̄1, . . . , X̄t̄) of width

width(P̄) ≤ k − | S̄| (13)

for a possibly disconnected graph Ḡ = G[Y S ]. Set w(v, v ′) = t̄ , where t̄ is taken as small as possible. (In other 
words, we take P̄ to be of minimum length.)

We refer to the edge (v, v ′) as a jump edge and to S as the bottleneck set associated with (v, v ′). We refer to any path 
decomposition ( X̄1 ∪ S̄, . . . , X̄t̄ ∪ S̄) as a witness of the jump edge.
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We naturally extend the weight function w to the subsets of edges, i.e., w(F ) =∑
e∈F w(e) for any F ⊆ E(Gk).

An s–t path in Gk allows to construct a sequence of bags as follows. We start with an empty sequence in s. Then, 
whenever that path passes through a directed edge (v, v ′) in Gk we append the bag X ′ , if (v, v ′) is a step edge, or a 
sequence of bags (X ′

1, . . . , X
′̄
t
), where X ′

i = S̄ ∪ X̄i for all i = 1, . . . , ̄t , if (v, v ′) is a jump edge, to the sequence. We stop 
reaching t .

In the next section, we prove the following theorem that is analogous to Lemma 3.2 for the generic exponential-time 
algorithm:

Theorem 3.19. Let k ∈ {1, 2, 3} and let G be a connected graph. There exists an s–t path of weighted length l in Gk if and only if there 
exists a path decomposition of width at most k and length l of G.

Before we give a formal proof of the theorem, we provide some informal insights into the definition of Gk and the above 
construction of a path decomposition for an s–t path in Gk , and we show how Theorem 3.19 implies Theorem 3.1.

The conditions (G1), (G2b), and (G2c) guarantee that X ′ includes the border of G[Vv ]. This is intended to guarantee
(PD2) and (PD3) in Definition 1.1 for the partial path decompositions built for step edges and jump edges. For the latter the 
border is added to each bag of the path decomposition P̄ and thus it is carried forward till the last bag of the partial path 
decomposition. This is clearly necessary since, by (G2a) and (G2d), P̄ includes only the vertices of green S-branches and 
S-leaves; however, both S and possibly other vertices (for instance, those of purple S-branches) belong to both the border 
of G[Vv ] and the border of G[Vv ′ ]. Finally, the condition (X ′ \ δG(G[Vv ])) ∩ Vv = ∅ guarantees that vertices in Vv without 
neighbors in V (G) \Vv are not carried forward for it is unnecessary. Assuming the correctness of Theorem 3.19, we can now 
prove Theorem 3.1.

Proof of Theorem 3.1. It follows from Theorem 3.19 that a solution to the problem MLPD(k)-constr can be obtained by 
constructing Gk and finding a shortest s–t path P in Gk . This approach leads to a polynomial-time algorithm, because Gk can 
be constructed in time polynomial in n, where n = |V (G)|, given polynomial-time algorithms that find minimum-length path 
decompositions of widths 0, 1, . . . , k −1 for disconnected graphs. Indeed, consider any non-empty S ⊆ V (G) with |S| ≤ k +1. 
Recall that c = |C∗

G(S)|. If S is a bottleneck set, then, by (10), the number of subsets G of green S-branches, the number of 
functions f , and the number l of leaves do not exceed c12, 213, and n − 2c, respectively; thus, |Q(S)| ≤ (n − 2c) × c12 × 213. 
Similarly, if S is not a bottleneck set, then, by (11), we have that |Q(S)| ≤ (n − 2c) × 213. Since c ≤ (n − |S|)/2, it follows 
that |Q(S)| ≤ 2n13. Thus, the cardinality of codomain and domain of any function R ∈ R(X) do not exceed 2k+2 × n13 and 
2k+1, respectively, for a given X ⊆ V (G). Hence, |R(X)| = O (n13×2k+1

) for any given X ⊆ V (G). Finally, since |X | ≤ k + 1, 
we have that |V (Gk)| ≤ nO (2k) . Therefore, |V (Gk)| is bounded by a polynomial in n. Each jump edge of Gk , k > 0, can be 
constructed in polynomial time by using an algorithm that for any, possibly disconnected, graph finds its path decomposition 
of width not exceeding k − | S̄|, | S̄| > 0, whenever one exists. Finally, note that pw(G) = 0 implies that G = K1. This proves 
Theorem 3.1. �

Our algorithm can be significantly simplified for k < 3. If k = 1, then G1 contains no jump edges, and any path decompo-
sition P = (X1, . . . , Xl) for G such that Xi = Xi+1, i = 1, . . . , l − 1, solves MLPD(1)-constr. If k = 2, then each bottleneck is 
of size 1. However, since our focus is on settling the border between polynomial-time and NP-hard cases in the minimum-
length path decomposition problem, we do not attempt to optimize the running time of the polynomial-time algorithm.

It remains to prove Theorem 3.19. We start with an observation and then we prove (in Lemma 3.21 and Lemma 3.22, 
respectively) both directions of Theorem 3.19.

Observation 3.20. For each v = (X, R) ∈ V (Gk), it holds that δG(G[Vv ]) ⊆ X.

Proof. Suppose for a contradiction that there exists a vertex u ∈ δG(G[Vv ]) \ X . By border definition δG (G[Vv ]) ⊆ Vv , thus 
(12) implies that there exists a non-empty set S ⊆ X such that u is in some S-component H , and V (H) ⊆ Vv . Also by the 
definition, u has a neighbor u′ ∈ V (G) \Vv which, by S ⊆ X ⊆ Vv , implies that u′ /∈ S . Therefore, since each neighbor of u is 
either in S or in V (H), we get u′ ∈ V (H). But, by (12), this implies that u′ ∈ Vv , a contradiction. �
Lemma 3.21. Let k ∈ {1, 2, 3} and let G be a connected graph. Let P = v0–v1–v2– . . . –vm be an s–t path in Gk of weighted length �. 
Then, there exists a path decomposition P of G with width(P) ≤ k and len(P) ≤ �.

Proof. Since P is an s–t path, we have v0 = s and vm = t . For brevity, we will write (Xi, Ri) = vi , Vi = Vvi , and Gi = G[Vi]
for each i = 0, . . . , m − 1. Also, for each i = 0, . . . , m − 1, let Pi = v0–v1– . . . –vi denote the prefix of P formed by the first i
edges, and let �i be the weighted length of Pi .

We prove, by induction on i = 0, . . . , m − 1, that there exists a path decomposition Pi of Gi that satisfies width(Pi) ≤ k, 
len(Pi) = �i , and δG(Gi) is contained in the last bag of Pi . The claim is trivial for i = 0. Indeed, because V0 = ∅, we may 
take P0 to be a path decomposition of length 0. For the generic case, suppose that the claim holds for some i, 0 ≤ i < m −1. 
We now prove that it holds for i + 1. We have two cases, depending on the type of the edge (vi , vi+1).
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Case 1: (vi, vi+1) is a step edge. Recall that, by the definition of the step edge, we have

δG(Gi) = Xi+1 ∩ Vi . (14)

We claim that Pi+1 := (Pi, Xi+1) is a path decomposition of Gi+1 of width at most k and of length len(Pi+1) ≤ �i+1 = �i +1. 
We will verify the conditions (PD1), (PD2), and (PD3).

(i) Since (vi, vi+1) is a step edge, we have Vi+1 \ Vi ⊆ Xi+1. Moreover, by (12), Xi+1 ⊆ Vi+1. Since, by the construction 
of the edge set of Gk , Vi ⊆ Vi+1, it follows that Vi+1 = Vi ∪ Xi+1. Thus, by the induction hypothesis, span(Pi+1) =
Vi ∪ Xi+1 = Vi+1. Hence, (PD1) follows.

(ii) Let {x, y} ∈ E(Gi+1). Note that x, y ∈ V (Gi+1) = Vi+1 = Vi ∪ Xi+1. We claim that some bag of Pi+1 contains both x
and y. If x and y are both in Vi , then this follows from the induction hypothesis. If x and y are both in Vi+1 \ Vi , then 
{x, y} ⊆ Xi+1, as required. So we may assume that x ∈ Vi+1 \ Vi and y ∈ Vi . Thus, y has a neighbor, i.e., x, in G that is 
not in Vi , and it follows that y ∈ δG(Gi). Hence, by (14), y ∈ Xi+1. Thus, since Vi+1 \ Vi ⊆ Xi+1 (by the definition of a 
step edge), we have {x, y} ⊆ Xi+1, as required. This settles condition (PD2).

(iii) By (14), for all j ≤ i we have X j ∩ Xi+1 ⊆ Xi+1 ∩ Vi = δG(Gi). Thus, by Observation 3.20, X j ∩ Xi+1 ⊆ Xi which implies 
X j ∩ Xi+1 ⊆ X j ∩ Xi for j ≤ i. Therefore, since Pi is a path decomposition of Gi , by the induction hypothesis we have 
X j ∩ Xi+1 ⊆ X j ∩ Xi ⊆ Xp for each j ≤ p ≤ i. This proves that (PD3) holds for Pi+1.

Finally, it follows from the induction hypothesis and from the fact that |Xi+1| ≤ k +1 that every bag of Pi+1 has size at most 
k + 1. Moreover, w(vi, vi+1) = 1. Thus, �i+1 = �i + 1. On the other hand, len(Pi+1) = len(Pi) + 1. However, by the induction 
hypothesis, len(Pi) = �i . Thus, len(Pi+1) = �i+1. Therefore, Pi+1 is a path decomposition of Gi+1 with width(Pi+1) ≤ k and 
len(Pi+1) = �i+1. Moreover, by (14), δG(Gi+1) ⊆ Xi+1, which completes the proof of Case 1.

Case 2: (vi, vi+1) is a jump edge. Let S , Y S and P̄ = ( X̄1, . . . , X̄t̄) be as in (G2). Note that, by the definition of P̄ in (G2d), 
span(P̄) = Y S . Let S̄ be defined as in (G2b), i.e., S̄ = Xi ∩ Xi+1. We claim that

Pi+1 := (Pi, S̄ ∪ X̄1, S̄ ∪ X̄2, . . . , S̄ ∪ X̄t̄) (15)

is a path decomposition of Gi+1 of width at most k and of length len(Pi+1) = �i+1 = �i + t̄ . Since S̄ ⊆ Xi ⊆ Vv , (G2a) and
(G2d) imply that S̄ ∩ X̄ j = ∅ for all j = 1, . . . , ̄t . Thus ( S̄ ∪ X̄1, . . . , ̄S ∪ X̄t̄) is a path decomposition of the subgraph G[Y S ∪ S̄]. 
We now verify that Pi+1 satisfies the conditions (PD1), (PD2), and (PD3).

(i) Note that, by (G2c), S̄ = Xi+1. By (15), (G2b), (G2d) and by the induction hypothesis,

span(Pi+1) = span(Pi) ∪ Y S ∪ S̄ = Vi ∪ Y S ∪ Xi+1 = Vi ∪ Y S = Vi+1. (16)

Thus, Pi+1 satisfies (PD1).
(ii) Let {x, y} ∈ E(Gi+1). We claim that some bag of Pi+1 contains both x and y. By (16), x ∈ Vi or x ∈ Y S , and y ∈ Vi or 

y ∈ Y S . Let x ∈ Vi first. If y ∈ Vi , then the claim follows from the induction hypothesis. If y ∈ Y S , then y ∈ X̄ j for some 
j ∈ {1, . . . , ̄t}, because, by (G2d), P̄ is a path decomposition of G[Y S ]. Moreover, if y ∈ Y S , then, by (G2a) x ∈ δG(Gi), 
and, by (G2b), x ∈ S̄ . Hence, by (15), the (�i + j)-th bag of Pi+1 contains both x and y. Let now x ∈ Y S . The case when 
y ∈ Vi follows by the symmetry. Hence, y ∈ Y S and the claim follows from the fact that P̄ is a path decomposition 
of G[Y S ]. This proves condition (PD2) for Pi+1.

(iii) To prove (PD3) for Pi+1, we prove the equivalent (PD3′) instead. Let x ∈ Vi+1. By (16), x ∈ Y S or x ∈ Vi . If x ∈ Y S =
span(P̄), then (PD3′) follows from (15), the fact that P̄ is a path decomposition of G[Y S ] and Y S is disjoint from Vi ∪ S̄ . 
The latter is due to (G2a), (G2b) and (G2c).
Thus, let x ∈ Vi . If x ∈ Vi \ S̄ , then by (15), (PD3′) follows from the induction hypothesis for Pi . It remains to consider 
x ∈ S̄ . Then, by (G2b), S̄ ⊆ Xi . Thus, x ∈ Xi . Now, let j be the smallest index in {1, . . . , len(Pi)} such that x appears 
in the j-th bag of Pi . Then, due to the induction hypothesis, x appears in each bag X j′ , j′ = j, . . . , len(Pi). Moreover, 
by (15), S̄ is included in each bag X j′ , j′ = len(Pi) + 1, . . . , len(Pi) + t̄ , thus so is x ∈ S̄ . Therefore, x appears in each 
bag X j′ , j′ = j, . . . , len(Pi) + t̄ which proves (PD3′).

To complete the proof we need to show that each x ∈ δG(Gi+1) belongs to the last bag of Pi+1. To that end we observe that 
by (15) and by Vi ⊆ Vi+1,

δG(Gi+1) ⊆ δG(Gi) ∪ Y S ∪ S̄. (17)

By (G2b), δG(Gi) = S̄ . We now argue that x /∈ Y S . Suppose for a contradiction that x ∈ Y S . The set Y S contains only the 
vertices of S-components. Therefore, any neighbor of x belongs either to Y S or to S , and thus belongs to Vi+1 (observe that 
by (G2) S ⊆ S̄). Hence, x /∈ δG(Gi+1) which leads to a contradiction. This proves that x ∈ δG(Gi+1) ⊆ S̄ and thus x appears in 
the last bag of Pi+1.
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Finally, it follows from the induction hypothesis and condition (G2d) that every bag of Pi+1 has size at most k +1. More-
over, w(vi, vi+1) = t̄ . Thus, �i+1 = �i + t̄ . On the other hand, by (15), len(Pi+1) = len(Pi) + t̄ . By the induction hypothesis, 
len(Pi) = �i . Thus, len(Pi+1) = �i+1, which completes the proof of Case 2. �
Lemma 3.22. Let k ∈ {1, 2, 3}. Let G be a connected graph and let � > 0. If there exists a path decomposition of width at most k and 
length � for G, then there exists an s–t path P of weighted length at most � in Gk.

Proof. Let P = (X1, . . . , X�) be a path decomposition of G with width(P) ≤ k. By Observation 3.8, we may assume that P
is a clean path decomposition. Let Pi = (X1, . . . , Xi) for each i ∈ {1, . . . , �} and let for brevity P0 be an empty list. For every 
S ∈ S , let GS be the set of green S-branches. Note that all vertices of each S-branch in GS are in Xt1(S) ∪ · · · ∪ Xt2(S) . For 
S ⊆ V (G) such that |S| ≤ 4 and S /∈ S , set GS := ∅. Furthermore, for a non-empty S ⊆ Xi , let li

S be the number of S-leaves 
in span(Pi), i = 1, . . . , �. Finally, for every non-empty S ⊆ Xi , i = 1, . . . , �, and for each H ∈ C2

G(S) define the function f i
S as 

follows:

f i
S(H) =

{
1 if V (H) ⊆ span(Pi);
0 otherwise.

Now, let ≺ be the partial order on S defined by S ≺ S ′ if and only if I(S) ⊆ I(S ′), where S, S ′ ∈ S . Let S1, . . . , S p be all 
maximal elements of ≺. By Lemma 3.18, the sets I(Sq) for q = 1, . . . , p are pairwise disjoint. Thus, without loss of generality, 
we assume that 1 ≤ t1(S1) ≤ t2(S1) < t1(S2) ≤ t2(S2) < . . . < t1(S p) ≤ t2(S p) ≤ �.

Define

I = {0, . . . , �} \
⋃

i=1,...,p

{t1(Si), . . . , t2(Si) − 1}

and denote I = {s1, . . . , sr}, where s1 < s2 < · · · < sr . Observe that, by Lemma 3.18, for each i ∈ I and for each 
S ⊆ Xi , S = ∅, the function f i

S satisfies the condition in (10). Thus, the following is a sequence of vertices of Gk: 
P = s–(Xs1 , Rs1 )–(Xs2 , Rs2 )– . . . –(Xsr , Rsr )–t , where f i

S and li
S are used in each Ri , i ∈ I , i.e., Ri(S) = (GS , f i

S , l
i
S) for each 

non-empty S ⊆ Xi . Denote s = (∅, ∅) = (X0, R0). In the reminder of the proof, we show how to obtain an s–t path of length 
� in Gk from the sequence P .

We first prove that GPi = G[Vvi ] and δ(Pi) = δG(G[Vvi ]), where vi = (Xi, Ri), for each i ∈ I . By definition, G[Vv�
] =

GP = G and V (G[Vs]) = ∅ = V (GP0 ) and hence let 0 < i < � in the following. We have δ(Pi) ⊆ Xi by (PD2) and (PD3). 
Moreover, δ(Pi) = ∅ since G is connected and i < l. Set S = δ(Pi). Then, for each connected component H in G − S , 
either V (H) ⊆ span(Pi) or V (H) ∩ span(Pi) = ∅. Otherwise, V (H) ∩ δ(Pi) = ∅, which is in contradiction with H being a 
component in G − S . Then, if H is a connected component in G − S but not an S-component such that V (H) ⊆ span(Pi), 
then there exists a non-empty S ′ � S such that H is an S ′-component. Again, for this S ′-component either V (H) ⊆ span(Pi)

or V (H) ∩ span(Pi) = ∅. This proves that GPi = G[Vvi ] which implies δ(Pi) = δG(G[Vvi ]) for each i ∈ I .
Let i ∈ I be selected in such a way that i + 1 ∈ I . Now we argue that ((Xi, Ri), (Xi+1, Ri+1)) ∈ E(Gk). Clearly, span(Pi) ⊆

span(Pi+1) and span(Pi+1) \ span(Pi) ⊆ Xi+1. Hence, Vvi ⊆ Vvi+1 and Vvi+1 \ Vvi ⊆ Xi+1. By (PD2) and (PD3), δ(Pi) ⊆
Xi+1 ∩ span(Pi). Thus, since P is a clean path decomposition, δ(Pi) = Xi+1 ∩ span(Pi). This implies that δG (G[Vvi ]) =
δ(Pi) = Xi+1 ∩ Vvi . Therefore, we just proved that there is a step edge from (Xi, Ri) to (Xi+1, Ri+1) in Gk .

We now consider i ∈ I and j ∈ I such that j > i + 1 and {i + 1, . . . , j − 1} ∩ I = ∅. Hence, there exists q ∈ {1, . . . , p} such 
that t1(Sq) = i + 1 and t2(Sq) = j. By Lemma 3.17,

Xi+1 ∪ · · · ∪ X j = (Xi ∩ X j) ∪ V (GSq ) ∪ �, (18)

where � is the set of all Sq-leaves in Xi+1, . . . , X j . Let Y = V (GSq ) ∪� for convenience. We claim that there is a jump edge 
between (Xi, Ri) and (X j \ Y , R j) in Gk . Note that Sq ⊆ Xi ∩ X j . By (18), X j \ Y = Xi ∩ X j thus (G2c) is met. By deleting the 
nodes other than those in Y from each bag Xi+1, . . . , X j we obtain a path decomposition of length j − i for the union of 
Sq-branches in GSq and Sq-leaves in �. The width of this path decomposition is at most k − |Xi ∩ X j | since Xi ∩ X j belongs 
to each bag Xt , for t = i + 1, . . . , j, and no vertex in Xi ∩ X j belongs to Y . This implies condition (G2d).

By Lemma 3.17, condition (G2a) is met. As shown earlier, δ(Pi) = Xi+1 ∩ span(Pi). By (PD3), Xi ∩ X j ⊆ Xi+1, and by (18), 
Xi+1 \ Y ⊆ Xi ∩ X j . Thus, δ(Pi) = Xi ∩ X j ∩ span(Pi) = Xi ∩ X j = X j \ Y = δG(G[Vvi ]) and (G2b) is met.

Finally, clearly Vv j \ Vvi � X j \ Y , because Y = ∅. Moreover, by (G2b), X j \ Y = δG(G[Vvi ]), which implies ((X j \ Y ) \
δG(G[Vvi ])) ∩ Vvi = ∅. Thus, we just proved that there is a jump edge from (Xt1(Sq)−1, Rt1(Sq)−1) to (X j \ Y , Rt2(Sq)) with 
t̄ ≤ j − i in Gk .

By definition of Gk and since � > 0 there is a directed edge (v�, t) in Gk , and its weight is zero. Therefore, we have 
shown how to build an s–t path of weighted length at most � in Gk from the sequence P . �
4. MLPD(k)-CONSTR for graphs with one big component, k ≤ 3

In this section and in Section 5, we apply the results from Section 3 to develop an algorithm for general graphs. We 
will do it in two steps. This section adapts the algorithm from Section 3 so that it can handle graphs that consist of one 
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Fig. 7. (a) A path decomposition of length 11 of G; (b) minimum-length path decomposition of G .

component with more than two vertices and perhaps a number of isolated vertices and isolated edges. We call such a graph 
a chunk graph. Section 5 uses the algorithm for chunk graphs to obtain an algorithm for general graphs.

To be precise, let G be a graph. A connected component of G is called big if it has at least three vertices, and it is called 
small otherwise. Clearly, small components are either isolated vertices or isolated edges; we refer to them as K1-components 
(isolated vertices) and K2-components (isolated edges). A chunk graph is a graph that has exactly one big component.

Our polynomial-time algorithm for chunk graphs needs to meet additional restrictions on the sizes of the first and the 
last bags of the resulting path decompositions. Thus, we need to extend the path decomposition definition as follows. Let 
e1, e2 be integers. We call a path decomposition P = (X1, . . . , Xl) a (e1, e2)-path decomposition if |X1| ≤ e1 and |Xl| ≤ e2. 
The main result of this section is:

Theorem 4.1. Let k ∈ {1, 2, 3}.

If: for each k′ ∈ {0, . . . , k − 1}, there exists a polynomial-time algorithm that, for any graph G either constructs a minimum-length 
path decomposition of width k′ of G, or concludes that no such path decomposition exists,

then: there exists a polynomial-time algorithm that, for any given chunk graph C and for any e1, e2 ∈ {2, . . . , k +1}, either constructs 
a minimum-length (e1, e2)-path decomposition of width at most k of C , or concludes that no such path decomposition exists.

Here, by a minimum-length (e1, e2)-path decomposition of width at most k of C , we mean a path decomposition that is 
shortest among all (e1, e2)-path decompositions of width at most k of C .

We extend the notion of clean path decompositions to (e1, e2)-path decompositions. We say that a (e1, e2)-path decom-
position P of G is clean if, among all (e1, e2)-path decompositions of G , it satisfies conditions (C1) and (C2) in Definition 3.7.

Before continuing with the algorithm, we want to point out that, in general, a minimum-length path decomposition of a 
chunk graph cannot be obtained by simply constructing a minimum-length path decomposition of its big component, filling 
up non-full bags (if any), and adding new bags containing the vertices of the small components. The following example 
illustrates this fact.

Example. Consider the following graph C , which is the disjoint union of the graph G in Fig. 7, two isolated edges, and 
three isolated vertices. Fig. 7(b) shows a minimum-length path decomposition of G (its length is 10). Since all bags are of 
size 4 in this decomposition, the small components must use two additional bags, resulting in a path decomposition of C of 
length 12. The verification that each bag is of size 4 in any minimum-length path decomposition of G is left for the reader. 
Now, consider a path decomposition of G of length 11 in Fig. 7(a). There are two bags of size 2 and three of size 3 in 
this decomposition which readily accommodates all small components resulting in a path decomposition of C of length 11. 
In other words, the addition of three K1-components and two K2-components does not increase the length of the path 
decomposition in Fig. 7(b) if those components are inserted properly, but it increases the length of the one in Fig. 7(b) by 
two.

4.1. An algorithm for chunk graphs

Let 1 ≤ k ≤ 3 be an integer, let 2 ≤ e1, e2 ≤ k + 1 and let C be a chunk graph with a big connected component G , 
K1-components K 1

1 , . . . , K q1
1 and K2-components K 1

2 , . . . , K q2
2 . Let Gk be the auxiliary graph for G defined in Section 3.5. 

For every v ∈ V (Gk) \ {t}, define W (v) = {(v, i, j) 
∣∣ i ∈ {0, . . . , q1}, j ∈ {0, . . . , q2}}. Now define the auxiliary graph Hk =

Hk(e1, e2) corresponding to C as follows. The vertex set of Hk is given by

V (Hk) = {t′} ∪
⋃

v∈V (Gk)\{t}
W (v).

Thus, V (Hk) is constructed from Gk by expanding every vertex v of Gk (except for the sink t) to a set of vertices W (v)

that includes all possible additions of small components to v . Let for brevity s′ = (s, 0, 0). Notice that s′ ∈ V (Hk). For any 
x = (v, i, j) ∈ W (v), where v = (X, R) ∈ V (Gk) \ {t}, define
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V ′
x = Vv ∪

⋃
1≤p≤i

V (K p
1 ) ∪

⋃
1≤p≤ j

V (K p
2 ).

The interpretation of this set is as follows. Every path P in Hk from s′ to x represents partial path decompositions of C . 
These partial decompositions cover i isolated vertices, j isolated edges and the vertices in Vv , and they can be extracted 
from the consecutive vertices and edges of P . The construction of Hk will guarantee that each of these partial path decom-
positions covers exactly those vertices of C that are in V ′

x .
Now, let us define the edge set of Hk . First, for any x ∈ V (Hk), define θ(x) = e1 if x = s′ , and θ(x) = k + 1 otherwise. 

Similarly, for any x ∈ V (Hk), let η(x) = e2 if V ′
x = V (C), and η(x) = k + 1 otherwise. There are four types of directed edges 

in Hk:

(H1) Edges from a vertex in W (v) to a vertex in W (u) where (u, v) is a step edge in Gk .
Let u, v ∈ V (Gk) \ {t} such that (u, v) is a step edge in Gk , and let x ∈ W (u) and y ∈ W (v). Let a = |δG(G[Vu]) ∪
(V ′

y \ V ′
x)|. Then, (x, y) ∈ E(Hk) if and only if V ′

x ⊆ V ′
y , a ≤ θ(x) and a ≤ η(y). The weight of each edge of this type is 

w ′(x, y) = 1.
(H2) Edges from a vertex in W (v) to a vertex in W (u) where (u, v) is a jump edge in Gk .

Let u, v ∈ V (Gk) \ {t} such that (u, v) is a jump edge in Gk , and let x = (u, iu, ju) ∈ W (u) and y = (v, iv , jv) ∈ W (v)

be such that V ′
x ⊆ V ′

y . Denote u = (Xu, Ru) and v = (Xv , R v). Let Q′
xy = (Ȳ1, . . . , Ȳ z̄) be a path decomposition of 

width width(Q′
xy) ≤ k − |Xu ∩ Xv | of the graph C̄ = Ḡ ∪ ⋃

iu<p≤iv
K p

1 ∪ ⋃
ju<p≤ jv

K p
2 , where Ḡ is defined in (G2d). 

Then, (x, y) ∈ E(Hk) and the weight of this edge is w ′(x, y) = z̄, where z̄ is taken as small as possible, i.e., Q′
xy is of 

minimum length. We refer to any path decomposition (Ȳ1 ∪ (Xu ∩ Xv), . . . , Ȳ z̄ ∪ (Xu ∩ Xv)) as a witness of the jump 
edge.

(H3) Edges inside W (v).
Let x, y ∈ W (v) for some v ∈ V (Gk) \{t}, and let a = |δG(G[Vv ]) ∪ (V ′

y \V ′
x)|. Then, (x, y) ∈ E(Hk) if and only if V ′

x � V ′
y , 

a ≤ θ(x) and a ≤ η(y). The weight of each edge of this type is w ′(x, y) = 1.
(H4) Edges from a vertex in W (v) to t′.

For x ∈ V (Hk) \ {t′}, let (x, t′) ∈ E(Hk) if and only if V ′
x = V (C). The weight of such edge is w ′(x, t′) = 0.

The parameter θ(x) guarantees that the first bag of the path decomposition that corresponds to an s′–t′ in Hk path has the 
size at most e1. The restriction imposed by θ(x) is vacuous for x = s′ . Similarly, the parameter η(y) guarantees that the last 
bag of the path decomposition that corresponds to an s′–t′ path has the size at most e2. This restriction imposed by η(y)

is vacuous for V ′
y = V (C).

We also remark that our construction is fairly general, in the sense that one may argue that certain vertices and certain 
edges of Hk can never be a part of a shortest s′–t′ path in Hk . However, we proceed with this construction to avoid tedious 
analysis of special cases.

Before we continue with a formal analysis we give an intuition on the edge set of Hk . We use the step edges (u, v) of 
Gk by adding, whenever possible, some vertices of small components to the bag that corresponds to v . For a jump edge 
of Gk , we recalculate the path decomposition P̄ used in (G2b) in such a way that the new path decomposition Q′

xy in (H2)

covers the vertices in span(P̄) and the vertices of some small components. (If no small component vertices are added, then 
one may take Q′

xy = P̄ .) Then, (H3) allows the vertices of K1- and K2-components only to fill in a bag that corresponds to 
a vertex of Hk . In particular, the edges with v = s introduce bags prior to α(G) and those with Vv = V (G) introduce bags 
after β(G) — see proof of Lemma 4.3.

Before we prove the main result of this section, we start with a useful observation:

Observation 4.2. Let G ′ be a graph and let P = (X1, . . . , Xl) be a clean path decomposition of G ′ . Then, for every small component H
of G ′ , there exists a unique i ∈ {1, . . . , l} such that Xi ∩ V (H) = ∅. �
Lemma 4.3. Let k ∈ {1, 2, 3}. Let e1, e2 ∈ {2, . . . , k +1} and let C be a chunk graph. There exists an s′–t′ path in Hk of weighted length 
at most l′ if and only if there exists a (e1, e2)-path decomposition of C of width at most k and length at most l′.

Proof. Let G be the unique big component of C . First assume that there exists an s′–t′ path P ′ = x0–x1– . . . –xm′ –t′ of 
weighted length l′ in Hk . Denote xi = (vi, ai, a′

i), i = 0, . . . , m′ , and vi = (Xi, Ri). Let Gk be the auxiliary graph for G de-
fined in Section 3.5. Notice that v0 = s, the source of Gk . Let for brevity vm′+1 = t , the sink of Gk . From definition of 
E(Hk) it follows that by replacing any maximal subsequence vr – . . . –vr′ such that vr = · · · = vr′ in v0– . . . –vm′ –vm′+1 (all 
xr, xr+1, · · · , xr′ belong to W (vr)) by the single vertex vr , we obtain an s–t path P = u0– . . . –um–um+1, where u0 = s and 
um+1 = t , in Gk .

Now, construct P = (R1, . . . , Rm) and P ′ = (R′
1, . . . , R′

m′ ) for the paths P ′ and P as follows. For each i = 1, . . . , m′:

(1) If (vi−1, vi) = (u j−1, u j) is a step edge in Gk , then set R′ = (Xi), and R j = (Xi).
i

http://mostwiedzy.pl


1738 D. Dereniowski et al. / Journal of Computer and System Sciences 81 (2015) 1715–1747

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

Algorithm 1 Finding a minimum-length (e1, e2)-path decomposition of a chunk graph C .
Input: A chunk graph C , k ∈ {1, 2, 3} and e1, e2 ∈ {2, 3, 4}.
Output: A minimum-length (e1, e2)-path decomposition of C of width k or ‘failure’ if pw(C) > k.

Let G be the big component of C .
if pw(G) > k (use the algorithm in [6] to calculate pw(G)) then

return ‘failure’.
Construct the auxiliary graph Hk .
Find a shortest s′–t′ path P in Hk .
Use P to construct the corresponding path decomposition P of C of the same length as P .
return P .

(2) If (vi−1, vi) = (u j−1, u j) is a jump edge in Gk , then let (Y ′
1, . . . , Y

′̄
z) be a witness of (vi−1, vi) with w(vi−1, vi) = z̄. 

Set R′
i = (Y ′

1, . . . , Y
′̄
z), and R j = (Y ′

1 ∩ V (G), . . . , Y ′̄
z ∩ V (G)). Observe that R j is a witness of (u j−1, u j), however, not 

necessarily with minimum length.
(3) If vi−1 = vi = u j , then set R′

i = (
δG(Vv j−1) ∪ (V ′

xi
\ V ′

xi−1
)
)
.

It follows from the proof of Lemma 3.21 that P is a path decomposition of G of width at most k. Thus, by the con-
struction of P ′ in (1-3) and the fact that P ′ is an s′–t′ path in Hk it follows that P ′ is a path decomposition of C of width 
at most k and of length l′ . Moreover, by definition of Hk , the edges (x0, x1) and (xm′−1, xm′ ) are not jump edges in Hk . 
Therefore, the functions θ and η in the definition of Hk guarantee that the first bag and the last bag of P ′ have sizes at 
most e1 and e2, respectively. Thus, P ′ is a (e1, e2)-path decomposition of C .

For the converse, assume that P ′ = (X ′
1, . . . , X

′
l′) is a (e1, e2)-path decomposition of C with width(P ′) ≤ k. We may 

assume without loss of generality that P ′ is clean. For i = 1, . . . , l, let ai and bi the numbers of vertices of K1- and 
K2-components respectively in 

⋃i
j=1 X ′

j . By Observation 4.2, all vertices of a small component are either in 
⋃i

j=1 X ′
j or 

in 
⋃l′

j=i+1 X ′
j . Consider P = (X ′

1 ∩ V (G), . . . , X ′
l′ ∩ V (G)). Let Q = {(p, q), 1 ≤ p < q ≤ l′} be the set of all pairs such that the 

sequence X ′
p ∩ V (G) = · · · = X ′

q ∩ V (G) is maximal. Delete all X ′
p+1 ∩ V (G), . . . , X ′

q ∩ V (G) from P for each pair (p, q) ∈ Q . 
The resulting path decomposition P ′′ = (Y1, . . . , Yl) of G , l ≤ l′ , is clean for P ′ is clean. Let h(i), i = 1, . . . , l, be such 
that Yi = X ′

h(i) ∩ V (G). By the proof of Lemma 3.22, there exists an s–t path P = s–v1–· · ·–vr –t of weighted length l in 
the auxiliary graph Gk for G , and there are integers 1 ≤ s1 < · · · < sr ≤ l such that if si+1 − si = 1, then (vi, vi+1) is a 
step edge in Gk , and if si+1 − si > 1, then (vi, vi+1) is a jump edge in Gk with (Ysi+1, . . . , Ysi+1 ) being its witness. De-
fine wi = (vi, ah(i), bh(i)) for i = 1, . . . , r. For each (p, q) ∈ Q , let vi be such that h(i) = p. Replace wi = (vi, ap, bp) by 
wi, w1

i = (vi, ap+1, bp+1), . . . , w
q−p
i = (vi, aq, bq) in P . All these new vertices are in W (vi) and the edges between them in 

E(Hk) by (H3). Let u1–· · ·–ul′′ be the resulting sequence, where ui = (v ′
i, ai, bi) for each i ∈ {1, . . . , l′′}. Clearly, if v ′

i = v ′
i+1, 

then (v ′
i, v

′
i+1) is either a step edge or a jump edge in Gk . Moreover, if (v ′

i, v
′
i+1) is a jump edge, then (v ′

i, v
′
i+1) = (v j, v j+1)

for some j and (X ′
s j+1, . . . , X

′
s j+1

) is a witness of (v j, v j+1). Thus, by definition of V (Hk), (H1), and (H2) the edges (ui, ui+1)

belong to E(Hk). Therefore, P ′ = s′–u1–· · ·–ul′′ –t′ is an s′–t′ path in Hk . The path is not longer than l′ since there is one to 
one correspondence between the jump edges in P and in P ′ and their witnesses are of the same length si+1 − si . �

We conclude this section with a formal statement of the algorithm for computing a minimum-length (e1, e2)-path 
decomposition of a chunk graph C — see Algorithm 1. Note that pw(C) > 0, because C is assumed to contain a big compo-
nent G .

Note that pw(G) ≤ k if and only if pw(C) ≤ k. We have |W (v)| ≤ (1 +q1)(1 +q2) for each v ∈ V (Gk) and hence |V (Hk)| =
O (q1q2|V (Gk)|). Finally, Theorem 3.1 and Lemma 4.3 imply Theorem 4.1.

5. MLPD(k)-CONSTR for general graphs, k ≤ 3

In Section 4 we developed an algorithm that finds a minimum-length (e1, e2)-path decomposition for a chunk graph. We 
use this algorithm as a subroutine to obtain a polynomial-time algorithm for general graphs in this section. The key idea of 
the algorithm for a general graph G with pw(G) ≤ 3 is as follows. We look at a graph G as a disjoint union of chunk graphs 
C1, . . . , Cc . Each C i consists of a big component Gi and possibly some K1- and K2-components. We show in Lemma 5.3
that we can limit ourselves to minimum-length path decompositions of width k ≤ 3 for G where big components are never 
‘processed in parallel’ (see Section 5.1 for formal definitions). It is therefore natural to construct a minimum-length path 
decomposition of G by first constructing minimum-length path decompositions Q1, . . . , Qc of the chunk graphs C1, . . . , Cc , 
respectively, and then by sequencing them one after another in some order, and finally by concatenating consecutive path 
decompositions. Two crucial issues need to be resolved however by this approach. The first consists in how many K1 - and 
K2-components to add to Gi to make up a chunk graph C i , i = 1, . . . , c. This issue is resolved by a dynamic program given in 
Subsection 5.4. The second issue consists in how to sequence and concatenate Q1, . . . , Qc for given chunk graphs C1, . . . , Cc , 
so that the resulting decomposition of G has minimum length for the given Q1, . . . , Qc . The latter is illustrated for a given 
order of Q1, . . . , Qc as follows. For a graph G which breaks up into two chunk graphs C1 and C2 we can concatenate Q1
and Q2 by taking first the bags of Q1 and then the bags of Q2. However, if the last bag of Q1 and the first bag of Q2 both 
have size two, then we can save one bag by replacing the last bag of Q1 and the first bag of Q2 by their union. In general, 
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we can save some bags by placing Q1, . . . , Qc in an appropriate order and by applying an appropriate concatenation. The 
order is dealt with in Subsection 5.3, and the concatenation in Subsection 5.2.

The main result of this section is the following theorem that essentially reduces MLPD(k)-constr for general graphs to 
MLPD(k)-constr for chunk graphs, k = 1, 2, 3.

Theorem 5.1. Let k ∈ {1, 2, 3}.

If: there exists a polynomial-time algorithm that, for any chunk graph C , and for any e1, e2 ∈ {2, . . . , k + 1}, either constructs a 
minimum-length (e1, e2)-path decomposition of width k of C , or concludes that no such path decomposition exists,

then: there exists a polynomial-time algorithm that, for any graph G, either constructs a minimum-length path decomposition of 
width k of G, or concludes that no such path decomposition exists.

Since it is straightforward to obtain a minimum-length path decomposition for graphs with no big components, we 
assume that the input graph has at least one big component.

5.1. Avoiding parallel processing of big components

We start with a definition of parallel processing of big components.

Definition 5.2. Let G be a graph and let P = (X1, . . . , Xl) be a path decomposition of G . We say that two big connected 
components G1 and G2 of G are processed in parallel if

|{αP (G1), . . . , βP (G1)} ∩ {αP (G2), . . . , βP (G2)}| ≥ 2.

The main result of this subsection, Lemma 5.3, shows that when constructing a minimum-length path decomposition 
of width k, k ≤ 3, we may limit ourselves to path decompositions with no two big components processed in parallel. 
Notice that the NP-completeness proof of Section 2 shows that a minimum-length path decomposition of width 4 may 
require parallel processing of big components. Thus, the parallel processing of big components is one of the main features 
distinguishing (in terms of the computational complexity) between the problems MLPD(k)-constr, k ≤ 3, and the problems 
MLPD(k)-constr, k ≥ 4.

Lemma 5.3. Let G be a graph and let k ∈ {1, 2, 3}. If pw(G) ≤ k, then there exists a minimum-length path decomposition of width k of 
G such that no two big connected components of G are processed in parallel.

Proof. For any path decomposition P = (X1, . . . , Xl) of G , let ζ(P) be the smallest t ∈ {1, . . . , l} such that two big compo-
nents are processed in parallel in step t , i.e., both components have a non-empty intersection with Xt and with Xt+1 (set 
ζ(P) = ∞ if no such t exists). Assume without loss of generality that P is a minimum-length path decomposition of width 
k of G with maximum ζ(P). We will show that no two big components are processed in parallel in P , by showing that if 
there are two such components, i.e., if ζ(P) = ∞, then we can increase ζ without increasing the length of the path decom-
position, contrary to our choice of P . This process is done in two stages. First, we construct a longer path decomposition P ′
from P . Next, we show how P ′ can be shortened to a path decomposition P ′′ of length exactly len(P), but with a larger 
value of ζ .

So suppose that there are two big connected components, say G1 and G2, that are processed in parallel in P . Let 
{t1, . . . , t2} = {α(G1), . . . , β(G1)} ∩ {α(G2), . . . , β(G2)}. We may assume that G1 and G2 are chosen so that t1 = ζ(P) and 
β(G1) ≤ β(G2). Let q = t2 − t1 + 1. By Definition 5.2, q ≥ 2. For notational convenience, define for i = 1, . . . , q, Yi = Xt1+i−1 ∩
V (G1) and Zi = Xt1+i−1 \ V (G1). Observe that each of the sets Yi and Zi is non-empty, and |Yi | + |Zi | = |Yi ∪ Zi | ≤ k + 1. 
Now define a sequence (of subsets of V (G)) P ′ and then we prove that P ′ is a path decomposition of G of width k and of 
length l + q. We also introduce the two following partial path decompositions Q1 and Q2:

P ′ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(Y1, . . . , Yq︸ ︷︷ ︸

:=Q1

, X1, . . . , Xt1−1, Z1, . . . , Zq, Xt2+1, . . . , Xl︸ ︷︷ ︸
:=Q2

) if α(G1) ≥ α(G2);

(X1, . . . , Xt1−1, Y1, . . . , Yq︸ ︷︷ ︸
:=Q1

, Z1, . . . , Zq, Xt2+1, . . . , Xl︸ ︷︷ ︸
:=Q2

) if α(G1) < α(G2).

We claim that P ′ is a path decomposition of G . First suppose that α(G1) ≥ α(G2). Then t1 = α(G1) and t2 = β(G1). There-
fore, by Observation 1.2, V (G1) ∩ Xt = ∅ if and only if t1 ≤ t ≤ t2. Thus, Q1 is a path decomposition of G1, and Q2 is a path 
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decomposition of G − G1. Therefore, P is a path decomposition of G . Next, suppose that α(G1) < α(G2). Clearly, P ′ satis-
fies (PD1). Also, since there is no edge between x ∈ Yi and y ∈ Zi in G , and P is a path decomposition of G , it follows that
(PD2) is met by P ′ . Finally, to show that P ′ satisfies (PD3), we argue that A = (X1 ∪· · ·∪ Xt1−1) ∩ (Z1 ∪· · ·∪ Zq ∪ Xt2+1 ∪· · ·
∪ Xl) = ∅.

Suppose for a contradiction that A = ∅ and let x ∈ A be selected arbitrarily. Since x appears in at least two bags of P , 
by Observation 4.2, x belongs to a big component G ′ . However, G2 = G ′ since α(G2) = t1, and G1 = G ′ since β(G1) = t2. 
Therefore, G1 and G ′ are two big components that are processed in parallel starting at t′ < t1, contrary to our choice of G1
and G2. Hence, A = ∅. Moreover, we observe that since β(G1) = t2, it follows that there is no x such that x ∈ Y1 ∪ · · · ∪ Yq

and x ∈ Xt2+1 ∪ · · · ∪ Xl . Thus, (PD3) is met by P ′ . Therefore, P ′ is a path decomposition of G .
We now describe an algorithm that takes the path decomposition P ′ as an input and returns a path decomposition P ′′

of length exactly len(P). We consider the case of k = 3, as the other cases are analogous. The algorithm uses the following 
two length decreasing operations that preserve the property that P ′ is a path decomposition:

• If P ′ has a bag Zi or Yi of cardinality one, then, due to Lemma 3.9, we may delete it.
• If P ′ has s ≥ 2 consecutive non-empty bags Xt+1, . . . , Xt+s such that |Xt+1 ∪ . . . ∪ Xt+s| ≤ 4, then we may replace 

Xt+1, . . . , Xt+s by one bag containing Xt+1 ∪ . . . ∪ Xt+s (i.e., we merge the bags Xt+1, . . . , Xt+s).

We define three types of subintervals of {1, . . . , q}. For a subinterval J = {a, . . . , b}, we say that

• J is of Type A if | J | ≥ 2 and |Y j| = 2 for all j ∈ J ;
• J is of Type B if | J | ≥ 3, |Ya| = |Yb| = 2, and |Y j | ∈ {1, 3} for all j ∈ J \ {a, b};
• J is of Type C if |Y j | = 2 for at most one index j ∈ J .

We now partition the interval {1, . . . , q} in the following way. Let A be the collection of all maximal subintervals J of 
{1, . . . , q} of type A. Next, let B be the collection of all maximal subintervals of {1, . . . , q} \ ⋃A of type B. Finally, let C
be the collection of all maximal subintervals of {1, . . . , q} \ ⋃(A ∪ B). By construction, the intervals in C are of type C. 
Moreover, the intervals in A ∪B ∪ C form a partition of {1, . . . , q}.

The length-reduction subroutine consists of using three different subroutines, one for each type A, B, C. These subroutines 
all work as follows. Given an interval {a, . . . , b}, they take two partial path decompositions (Ya, . . . , Yb) and (Za, . . . , Zb), 
and return two new partial path decompositions (Y ′

1, . . . , Y ′
a′) and (Z ′

1, . . . , Z
′
b′) that satisfy: a′ + b′ = b − a + 1, 

⋃a′
i=1 Y ′

i =⋃b
i=a Yi , 

⋃b′
i=1 Z ′

i =⋃b
i=a Zi , Ya ⊆ Y ′

1, Yb ⊆ Y ′
a′ , Za ⊆ Z ′

1, and Zb ⊆ Z ′
b′ . Thus, we may replace the partial path decompositions 

(Ya, . . . , Yb) and (Za, . . . , Zb) in P ′ by (Y ′
1, . . . , Y

′
a′ ) and (Z ′

1, . . . , Z
′
b′), respectively. After running the appropriate subroutine 

for each of the intervals and performing these replacements, we end up with a path decomposition of G of length exactly 
len(P). Let J = {a, . . . , b} ∈A ∪B ∪ C . We consider the following cases:

Case 1: J is of Type A. We use the following subroutine which decreases the length of P by | J |. Notice that, since |Y j | = 2
for all j ∈ J , it follows that |Z j| ≤ 2 for all j ∈ J .

Set Y =Z = ∅.
if | J | is odd then

Append Ya ∪ Ya+1 ∪ Ya+2 to Y . (Merge Ya , Ya+1, and Ya+2)
Append Za ∪ Za+1 and Za+2 to Z . (Merge Za and Za+1)
a′ = a + 3.

else
a′ = a.

if a′ < b then
for j = a′, a′ + 2, . . . , b − 1 do

Append Y j ∪ Y j+1 to Y . (Merge Y j and Y j+1)
Append Z j ∪ Z j+1 to Z . (Merge Z j and Z j+1)

To see that this subroutine is correct, observe that if Ya, Ya+1, Ya+2 all have cardinality 2, then, since G1 is connected, by 
Lemma 3.9, Ya ∩ Ya+1 = ∅ and Ya+1 ∩ Ya+2 = ∅. Hence |Ya ∪ Ya+1 ∪ Ya+2| ≤ 4.

Case 2: J is of Type B. For each i ∈ {a + 1, . . . , b − 1}, if |Yi | = 1, then set Yi := ∅; if |Yi | = 3, then set Zi := ∅. Next, let 
p > a be the smallest index such that Y p = ∅. Such a p exists because Yb = ∅. Set Ya := Ya ∪ Y p , and Y p := ∅. Since G1 is 
connected, by Lemma 3.9, Ya ∩ Y p = ∅, thus |Ya ∪ Y p| ≤ 4. Finally, let r > a be the smallest index such that Zr = ∅. Such r
exists because Zb = ∅. Set Za := Za ∪ Zr , and Zr := ∅. By Lemma 3.9, |Za ∪ Zr | ≤ 4. The removal of empty bags decreases the 
length of P ′ by exactly | J |.
Case 3: J is of Type C. Then, we use the following subroutine to decrease the length of P by | J |. We may assume without 
loss of generality that |Yb| = 2 because otherwise we can run the subroutine backwards.
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Set i = a and Y =Z = ∅.
while i ≤ b do

if |Yi | = 1 then
Append Zi to Z and set i := i + 1. (Remove Yi)

else if |Yi | = 3 then
Append Yi to Y and set i := i + 1. (Remove Zi )

else if |Yi | = 2 then
if |Yi+1| = 1 then

Append Yi to Y . (Remove Yi+1)
Append Zi ∪ Zi+1 to Z . (Merge Zi and Zi+1)

else if |Yi+1| = 3 then
Append Yi ∪ Yi+1 to Y . (Merge Yi and Yi+1)
Append Zi to Z . (Remove Zi+1)

Set i := i + 2.

To see that this subroutine is correct, notice that if |Yi | = 2, then i < b by the assumption that |Yb| = 2. Thus, Yi+1 and Zi+1
are well-defined. Moreover, because J is an interval of Type C, |Yi+1| ∈ {1, 3}. Also notice that if |Yi | = 2 and |Yi+1| = 1, 
then |Zi | ≤ 2 and |Zi+1| ≤ 3. Since, due to Lemma 3.9, both Zi and Zi+1 contain vertices from the connected component G2, 
it follows that |Zi ∪ Zi+1| ≤ 4.

From cases 1–3 we obtain that len(P ′′) = len(P ′) − q as required. To see that ζ(P ′′) > ζ(P), observe that ζ(P) = t1 and 
ζ(P ′′) ≥ t1 + 1. �

We remark that we obtain a stronger analogue of Lemma 5.3 for k ∈ {1, 2}.

Observation 5.4. Let G be a graph and let k ∈ {1, 2}. If pw(G) ≤ k, then there exists a minimum-length path decomposition P of width 
k of G such that for any two big components G1 and G2 of G it holds {αP (G1), . . . , βP (G1)} ∩ {αP (G2), . . . , βP (G2)} = ∅. �

We end with the following corollary that follows immediately from Lemma 5.3 and Lemma 3.9.

Corollary 5.5. Let G be a graph and let k ∈ {1, 2, 3}. If pw(G) ≤ k, then there exists a minimum-length path decomposition P =
(X1, . . . , Xl) of width k of G such that for every big component G ′ of G, |Xi ∩ V (G ′)| ≥ 2 for i = α(G ′), . . . , β(G ′). �
5.2. Type-optimal path decompositions of chunk graphs

We now deal with two issues alluded to earlier in Section 5. One is the appropriate concatenation of minimum-length 
path decompositions of given chunk graphs. The other is the appropriate selection of a minimum-length path decomposition 
for a given chunk graph. Note that the sizes of the first and the last bag of a minimum-length path decomposition of a chunk 
graph may impact the length of its subsequent concatenation with minimum-length path decompositions of other chunk 
graphs. By Observation 5.4, we obtain the following.

Observation 5.6. Let G be a graph with pw(G) ≤ k, k ∈ {1, 2}, and let c be the number of big connected components of G. There exist 
chunk graphs C1, . . . , Cc such that G = C1 ∪ · · · ∪ Cc and P = (Q1, . . . , Qc) is a minimum-length path decomposition of width at 
most k of G, where Qi is any minimum-length path decomposition of C i, i = 1, . . . , c. �

Hence, we assume k = 3 for the reminder of this subsection. We first distinguish four types of path decompositions of 
chunk graphs. We say that a path decomposition Q = (X1, . . . , Xl) of a chunk graph C is of

• Type A, if |X1| ≤ 2 and |Xl| ≤ 2;
• Type B1, if |X1| ≤ 2 and |Xl| > 2;
• Type B2, if |X1| > 2 and |Xl| ≤ 2; and
• Type C, if |X1| > 2 and |Xl| > 2.

We say that Q is of Type B if P is either of Type B1 or of Type B2. Notice that if Q is of Type B1, then (Xl, . . . , X1) is of 
Type B2, and vice versa. We say that a path decomposition Q of a chunk graph C is type-optimal if Q has minimum length 
and

• Q is of Type C if no minimum-length path decomposition of Type A or B of C exists, or
• Q is of Type B if no minimum-length path decomposition of Type A of C exists, or
• Q is of Type A otherwise.
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Let P1 = (X1
1, . . . , X1

l1
) and P2 = (X2

1, . . . , X2
l2
) be two path decompositions of disjoint graphs G1 and G2, respectively. We 

define the concatenation of P1 and P2, denoted P1 ⊕P2, as follows

P1 ⊕P2 =
{

(X1
1, . . . , X1

l1−1, X1
l1

∪ X2
1, X2

2, . . . , X2
l2
), if |Xl1 | ≤ 2 and |X2

1 | ≤ 2;
(X1

1, . . . , X1
l1
, X2

1, . . . , X2
l2
), otherwise.

Clearly, if width(P1) ≤ 3 and width(P2) ≤ 3, then P1 ⊕P2 is a path decomposition of G1 ∪ G2 of width at most 3. Observe 
that len (P1) + len (P2) − 1 ≤ len (P1 ⊕P2) ≤ len (P1) + len (P2). Then, let

P1 ⊕P2 ⊕ · · · ⊕Pc = (· · · ((P1 ⊕P2) ⊕P3) · · ·) ⊕Pc.

We now show that any minimum-length path decomposition of width k = 3 of any graph G can be expressed as the 
concatenation of type-optimal path decompositions of chunk graphs whose union is G .

Lemma 5.7. Let G be a graph with pw(G) ≤ 3 and let c be the number of big connected components of G. There exist chunk graphs 
C1, . . . , Cc such that G = C1 ∪ · · · ∪ Cc and for each i = 1, . . . , c there exists a type-optimal path decomposition Qi of C i such that 
P =Q1 ⊕ · · · ⊕Qc is a minimum-length path decomposition of width at most 3 of G.

Proof. By Lemma 5.3, there exists a minimum-length path decomposition P = (X1, . . . , Xl) of G , width(P) ≤ 3, in which no 
two big components of G are processed in parallel. Let G1, . . . , Gc be all big components of G , and let L = V (G) \⋃c

i=1 V (Gi). 
We claim that α(Gi) = α(G j) for all distinct i, j ∈ {1, . . . , c}. Suppose α(Gi) = α(G j) = t∗ for some i = j. By Corollary 5.5
and by the fact that |Xt∗ | ≤ 4, we obtain that Xt∗ contains exactly 2 vertices of each of Gi , G j . Since Gi and G j are big 
components, it follows that Xt∗+1 also contains at least one vertex from each of Gi , G j . But this implies that Gi and G j

are processed in parallel, a contradiction. Thus, we may assume without loss of generality that α(Gi) < α(Gi+1) for each 
i = 1, . . . , c − 1. It follows from Lemma 5.3 that β(Gi) ≤ α(Gi+1).

Now, let us define the chunk graphs C1, . . . , Cc and the corresponding path decompositions Q1, . . . , Qc . Define α1 = 1, 
and let αi = α(Gi) for i = 2, . . . , c. Define ω: L → {1, . . . , c} by ω(v) = max{i: α(v) ≥ αi, 1 ≤ i ≤ c}. For i ∈ {1, . . . , c}, let 
C i = G 

[
V (Gi) ∪ ω−1(i)

]
and let

Qi =
(

Xα(C i) ∩ V (C i), . . . , Xβ(C i) ∩ V (C i)
)

.

By this construction, we have α(Gi) = α(C i), and, moreover, if β(Gi−1) < β(C i−1), then β(C i−1) < α(C i) for i = 2, . . . , c. 
Thus, if β(C i−1) = α(C i), then β(Gi−1) = α(Gi). Therefore, by Corollary 5.5, |Xβ(C i−1)| = 2 and |Xα(C i)| = 2 in such case. 
Finally, if β(C i−1) < α(C i) for any i ∈ {2, . . . , c}, then |Xβ(C i−1) ∩ V (C i−1)| ≥ 3 or |Xα(C i) ∩ V (C i)| ≥ 3. Otherwise, |Xβ(C i−1) ∪
Xα(C i)| ≤ 4 and P would not be a minimum-length path decomposition, thus contradiction. Therefore, we just proved that 
P =Q1 ⊕ · · · ⊕Qc . Possibly by choosing P differently, we may assume without loss of generality that P has the maximum 
number of indices i ∈ {1, . . . , c} such that Qi is type-optimal for C i .

We conclude the proof by showing that, for each i ∈ {1, . . . , c}, Qi is a type-optimal path decomposition of C i . Suppose 
for a contradiction that this claim does not hold for some i ∈ {1, . . . , c}. Let Q′

i be a type-optimal path decomposition of C i .
If len(Qi) = len(Q′

i), then by the definition of the types of decompositions,

len(Q1 ⊕ · · · ⊕Qi−1 ⊕Q′
i ⊕Qi+1 ⊕ · · · ⊕Qc) ≤ len(P),

which contradicts our choice of P . Hence, len(Qi) > len(Q′
i). If Qi is not of Type A or Q′

i is not of Type C, then

len(Q1 ⊕ · · · ⊕Qi−1 ⊕Q′
i ⊕Qi+1 ⊕ · · · ⊕Qc) ≤ len(P),

and if Qi is of Type A and Q′
i is of Type C, then

len
(
Q1 ⊕ · · · ⊕Qi−1 ⊕Qi+1 ⊕ · · · ⊕Qc ⊕Q′

i

)≤ len(P),

which again contradicts our choice of P . This completes the proof of this case. �
Lemma 5.7 implies that, we may construct a minimum-length path decomposition of width at most k of graph G by 

constructing a type-optimal path decomposition of each chunk graph of G separately, and then concatenating the result-
ing type-optimal path decompositions. The only two caveats here are: the optimal number of K1- and K2-components in 
each chunk graph and the optimal ordering of the type-optimal path decompositions. We deal with the latter in the next 
subsection.
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5.3. Optimal ordering of path decompositions of chunk graphs

Let us now assume that path decompositions Q1, . . . , Qc of chunk graphs C1, . . . , Cc , respectively, are given and G =
C1 ∪ . . . ∪ Cc . In this subsection, our goal is to find an optimal order, i.e., the one that minimizes the length of the resulting 
path decomposition of G , in which to concatenate Qi ’s. Note that, by Observation 5.6, the Qi ’s can be concatenated in 
any order when k < 3. Thus, we assume that k = 3 in the remainder of this section. To obtain the order we determine the 
permutation of Qi ’s and, if a particular Qi is of type B, then determine whether Qi should be of Type B1 or of Type B2 in 
the concatenation (hence, such a Qi may be reversed before producing the concatenation).

Let a, b1, b2 denote the number of Qi ’s of Type A, B1, B2, respectively, i = 1, . . . , c, and let b = b1 + b2. We say that the 
sequence Q1, . . . , Qc is in normal form if b1 = �b/2�, b2 = 	b/2
, and they are ordered as follows:

(i) If b = 0, then Q1, . . . , Qa are of Type A and Qa+1, . . . , Qc are of Type C. (Informally, using the Kleene star notation, 
the pattern is non-empty and belongs to A∗C∗ .)

(ii) If b = 1, then Q1, . . . , Qc−a−1 are of type C; Qc−a is of Type B2; and Qc−a+1, . . . , Qc are of type A. (Informally: the 
pattern belongs to C∗B2A∗ .)

(iii) If b > 1, then Q1 is of Type B2; Q2, . . . , Qa+1 are Type A; Qa+2 is of Type B1; Qa+3, . . . , Qa+c+2 are of Type C; and 
Qa+c+3, . . . , Qc alternate Type B2 and B1, starting with Type B2. (Informally: the pattern belongs to B2A∗B1C∗(B2B1)

∗
for an even b, and to B2A∗B1C∗B2(B1B2)

∗) for an odd b.)

The following lemma implies that the normal form is an optimal way of ordering and reversing the path decompositions 
Q1, . . . , Qc that results in a minimum-length path decomposition of G . For convenience, define

μ(a,b) =
{

max(0,a − 1) if b = 0,

a + �b/2� if b > 0.

Lemma 5.8. Let G be a graph with pw(G) = 3. Let C1, . . . , Cc be any chunk graphs such that G = C1 ∪ . . . ∪ Cc . Let Qi be a path 
decomposition of width at most 3 of C i , i = 1, . . . , c. Let a and b be the numbers of path decompositions among Q1, . . . , Qc of Type A
and of Type B, respectively. Then,

min
π,f∈{0,1}c

{
len

(
Q f1

π(1) ⊕ . . . ⊕Q fc
π(c)

)}
=

c∑
i=1

len(Qi) − μ(a,b), (19)

where the minimization is over all permutations π : {1, . . . , c} → {1, . . . , c}, Q0
i =Qi , Q1

i is the reverse of Qi and f = ( f1, . . . , fc).

Proof. Consider an arbitrary permutation π : {1, . . . , c} → {1, . . . , c} and a vector f = ( f1, . . . , fc) ∈ {0, 1}c . Let ν = ν(π, f)
denote the number of pairs (i, i + 1), i ∈ {1, . . . , c − 1}, such that len

(
Q f i

π(i) ⊕Q f i+1
π(i+1)

)
= len

(
Q f i

π(i)

)
+ len

(
Q f i+1

π(i+1)

)
− 1. 

We refer to these pairs as matchups. Clearly, since each chunk graph C i has a big connected component,

len
(
Q f1

π(1) ⊕ · · · ⊕Q fc
π(c)

)
=

c∑
i=1

len (Qi) − ν(π, f). (20)

By Corollary 5.5, and by definition of ⊕, each matchup (i, i + 1) requires that Q f i
π(i) is of Type A or of Type B2, and Q f i+1

π(i+1)

is of Type A or of Type B1. We therefore have that if b > 0, then ν(π, f) ≤ a + min{b1, b2} ≤ μ(a, b). Moreover, if b = 0, 
then ν(π, f) ≤ max{0, a − 1} = μ(a, b). Since π and f were chosen arbitrarily, it follows that ν(π, f) ≤ μ(a, b) for every 
permutation π and f ∈ {0, 1}c , which, by (20), proves the “≥” direction of (19).

It remains to prove the “≤” direction of (19). Clearly, there are π and f such that the sequence Q f1
π(1) ⊕ · · · ⊕ Q fc

π(c) is 
in normal form. Now, it is straightforward to check that the number of matchups for Q1, . . . , Qc is exactly μ(a, b), thus 
proving the lemma. �

Note that the proof of Lemma 5.8 together with Lemma 5.7 immediately give an algorithm for graphs G with no K1- and 
K2-components: find a type-optimal path decomposition for each connected component Gi separately, order the resulting 
path decompositions so that the sequence is in normal form, and concatenate them.

Therefore, it remains do show how many K1- and K2-components need to be added to each Gi to make up a chunk 
graph C i . Section 5.4 deals with this question.

5.4. A dynamic programming algorithm for general graphs

We assume that G is a graph with big connected components G1, . . . , Gc , c ≥ 1, K1-components K 1
1 , . . . , K q1

1 , and 
K2-components K 1, . . . , K q2 .
2 2
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Clearly we could find all possible chunk graphs for G by enumerating all distributions of K1- and K2-components of G
among the big components of G . However, the running time of such a procedure is not, in general, polynomial in the size 
of G . We overcome this problem by designing a dynamic programming procedure that eliminates unnecessary distributions 
leaving only those that can possibly lead to minimal length path decomposition of G . The procedure calls Algorithm 1 to 
determine type-optimal path decomposition for each distribution (i.e., for given chunk graphs) it considers worth trying. We 
now give details of the procedure.

For any vector s = (s1, s2) ∈ Z2+ and for any integer i ∈ {1, . . . , c}, construct Hi(s) by taking Gi , s1 isolated vertices and 
s2 isolated edges, and let Qi(s) be a type-optimal path decomposition of Hi(s). Let τ (Qi(s)) be the type of Qi(s). For 
m ∈ {1, . . . , c}, r1 ∈ {0, . . . , q1} and r2 ∈ {0, . . . , q2}, define

Dm(r1, r2) =
{

d: {1, . . . ,m} → Z2+

∣∣∣∣∣
m∑

i=1

d1(i) = r1 and
m∑

i=1

d2(i) = r2

}
,

where d1(i) and d2(i) are the first and second entry of the vector d(i), respectively. The set Dm(r1, r2) represents all 
assignments of r1 K1-components and r2 K2-components to the first m big components G1, . . . , Gm . Thus, d1(i) and d2(i)
are the quantities of K1- and K2-components, respectively, that are assigned to the big component Gi , i = 1, . . . , m. Thus, 
once d is fixed, the chunk graphs are fixed. And with those fixed, Lemma 5.7 and Lemma 5.8 show that by concatenating 
their type-optimal path decompositions in the normal form we obtain a minimum-length path decomposition of G .

Let d ∈ Dm(r1, r2). Let #A(d) and #B(d) be the numbers of path decompositions of Type A and of Type B, respectively, 
among the type-optimal path decompositions Q1(d(1)), . . . , Qm(d(m)). Define

len(d) =
m∑

i=1

len (Qi(d(i))) − μ(d). (21)

Moreover, let

ω(d) =

⎧⎪⎨⎪⎩
1, if #A(d) = #B(d) = 0;
2, if #A(d) > 0 and #B(d) = 0;
3, if #B(d) > 0 and #B(d) is odd;
4, if #B(d) > 0 and #B(d) is even.

We will call ω(d) the configuration of d. It divides all possible normal-form path decompositions for Q1(d(1)), . . ., 
Qm(d(m)) into four different categories, depending on the number of path decompositions of Type A and B among 
Q1(d(1)), . . . , Qm(d(m)). Our dynamic programming algorithm works as follows. It builds a 4-dimensional array φ∗

m , 
m ∈ {1, . . . , c}, with the entries φ∗

m(r1, r2, t) where r1 ∈ {0, . . . , q1}, r2 ∈ {0, . . . , q2} and t ∈ {1, 2, 3, 4}, which satisfy

φ∗
m(r1, r2, t) = min

{
len(d)

∣∣ d ∈ Dm(r1, r2) and ω(d) = t
}
. (22)

We set φ∗
m(r1, r2, t) = ∞ for 

{
d 
∣∣ d ∈ Dm(r1, r2) and ω(d) = t

}= ∅. It follows from Lemma 5.7 and Lemma 5.8 that for each 
t ∈ {1, 2, 3, 4}, φ∗

c (q1, q2, t) < ∞ is the minimum integer such that there exists a path decomposition P of width 3 of G with 
len(P) = φ∗

c (q1, q2, t) and with the corresponding vector d in configuration t , ω(d) = t . Thus, l = mint∈{1,2,3,4}{φ∗
c (q1, q2, t)}

is the minimum integer such that there exists a path decomposition of width 3 and length l of G . Clearly, φ∗
c (q1, q2, t) < ∞

for some t ∈ {1, 2, 3, 4}. It remains to show that the values of φ∗
m(r1, r2, t) can be recursively calculated in polynomial time, 

which is what the next two lemmas show. We start with the following crucial observation:

Lemma 5.9. Let m ∈ {2, . . . , c}. Let d̄ ∈ Dm(r1, r2) and let d ∈ Dm−1
(∑m−1

i=1 d̄1(i), 
∑m−1

i=1 d̄2(i)
)

be such that d(i) = d̄(i) for each 
i = 1, . . . , m − 1. If τ (Qm(d̄(m))) = C, then μ(#A(d̄), #B(d̄)) = μ(#A(d), #B(d)) and δ(d, ̄d) = 0. Otherwise,

δ(d, d̄) = μ(#A(d̄),#B(d̄)) − μ(#A(d),#B(d)) =
{

0, if (ω(d),ω(d̄)) ∈ {(1,2), (1,3), (4,3), (2,3)};
1, otherwise.

In particular, δ(d, ̄d) only depends on ω(d), ω(d̄), and τ (Qm(d̄(m))).

Proof. If Qm(d̄(m)) is of Type C, the result follow from the fact that Qi(d(i)) and Qi(d̄(i)) are of the same type for each 
i = 1, . . . , m − 1. So we may assume that Qm(d̄(m)) is not of Type C. The possible transitions from ω(d) to ω(d̄) when 
Qm(d̄(m)) is of Type A or B are graphically shown in Fig. 8. The nodes represent configurations ω ∈ {1, 2, 3, 4} and the 
edges represent pairs (ω(d), ω(d̄)). Each edge has two labels, one that indicates the value of δ(d, ̄d) and the other that 
indicates the type of Qm(d̄(m)). Notice that #A(d̄) − #A(d) ∈ {0, 1} and #B(d̄) − #B(d) ∈ {0, 1}. It is now straightforward to 
check that the edges depicted in the figure are the only possible pairs (ω(d), ω(d̄)) and that the value of δ(d, ̄d) is exactly 
as given in the figure. �

Let h: {1, 2, 3, 4} × {A, B, C} → {1, 2, 3, 4} be the transition function and g: {1, 2, 3, 4} × {A, B, C} → {0, 1} be transition 
weights δ from Fig. 8. We assume h(t, C) = t and g(t, C) = 0 for any configuration t .
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Fig. 8. Transitions between different configurations.

Lemma 5.10. Let m ∈ {2, . . . , c}. If there exists a polynomial-time algorithm that, for any chunk graph C , and for any e1, e2 ∈
{2, . . . , k + 1}, either constructs a minimum-length (e1, e2)-path decomposition of width k of C , or concludes that no such path 
decomposition exists, and if the array φ∗

m−1 is given, then φ∗
m(r1, r2, t) can be computed in polynomial time for each r1 ∈ {0, . . . , q1}, 

r2 ∈ {0, . . . , q2}, t ∈ {1, 2, 3, 4}.

Proof. Fix r1, r2, t , and m. In order to prove the lemma, we will show that the following recursive dynamic programming 
relation holds:

φ∗
m(r1, r2, t) = min

0≤i≤r1
0≤ j≤r2

1≤t′≤4

[
φ∗

m−1(r1 − i, r2 − j, t′) + len(Qm(i, j)) − g
(
t′, τ (Qm(i, j))

) ∣∣ h(t′, τ (Qm(i, j)) = t
]
, (23)

where the right hand side of (23) equals ∞ if φ∗
m−1(r1 − i, r2 − j, t′) = ∞ or h(t′, τ (Qm(i, j)) = t for each i ∈ {0, . . . , r1}, 

j ∈ {0, . . . , r2} and t′ ∈ {1, 2, 3, 4}.
This suffices because the right hand side of (23) can be calculated in polynomial time. Indeed, the array φ∗

m−1 is given by 
assumption; Qm(i, j), its length, len(Qm(i, j)), and its type, τ (Qm(i, j)), can be calculated in polynomial time by assump-
tion; thus, since the initial configuration t′ is given for each entry φ∗

m−1, both h(t′, τ (Qm(i, j))) and g(t′, τ (Qm(i, j))) can 
be readily calculated.

We now prove (23). First, we observe that if for each i ∈ {0, . . . , r1}, j ∈ {0, . . . , r2} and t′ ∈ {1, 2, 3, 4}, φ∗
m−1(r1 − i, r2 −

j, t′) = ∞ or h(t′, τ (Qm(i, j)) = t , then the right hand side of (23) equals ∞. On the other hand, the definition of φ∗
m−1

then implies that the set 
{

d 
∣∣ d ∈ Dm(r1, r2) and ω(d) = t

}
is empty and thus φ∗

m(r1, r2, t) = ∞ and (23) holds as required. 
Therefore, we assume now that there are i ∈ {0, . . . , r1}, j ∈ {0, . . . , r2} and t′ ∈ {1, 2, 3, 4} such that φ∗

m−1(r1 − i, r2 − j, t′) <
∞ and h(t′, τ (Qm(i, j)) = t . We prove (23) by proving that the inequality holds in both directions.

“≤”: Let di, j,t′ ∈ Dm−1(r1 − i, r2 − j) be a vector such that len(di, j,t′ ) = φ∗
m−1(r1 − i, r2 − j, t′) and ω(di, j,t′ ) = t′ . Let 

d̄i, j,t′ ∈ Dm(r1, r2) be the extension of di, j,t′ to {1, . . . , m} that satisfies d̄i, j,t′
1 (m) = i, d̄i, j,t′

2 (m) = j, and ω(d̄i, j,t′ ) = t . By 
Lemma 5.8,

φ∗
m(r1, r2, t) ≤ len(d̄i, j,t′) =

m∑
l=1

len
(
Ql(d̄i, j,t′(l))

)
− μ(#A(d̄i, j,t′),#B(d̄i, j,t′))

=
[

m−1∑
l=1

len
(
Ql(di, j,t′(l))

)
− μ(#A(di, j,t′),#B(di, j,t′))

]
+ len(Qm(i, j)) − δ(di, j,t′ , d̄i, j,t′)

= φ∗
m−1(r1 − i, r2 − j, t′) + len(Qm(i, j)) − δ(di, j,t′ , d̄i, j,t′)

= φ∗
m−1(r1 − i, r2 − j, t′) + len(Qm(i, j)) − g(t′, τ (Qm(i, j))),

where δ(di, j,t′ d̄i, j,t′ ) = g(t′, τ (Qm(i, j))) in the last equality follows from Lemma 5.9 and ω(di, j,t′ ) = t′ . Finally, ω(d̄i, j,t′ ) =
h(t′, τ (Qm(i, j)) = t as required.

“≥”: Let d̄∗ ∈Dm(r1, r2) be such that len(d̄∗) = φ∗
m(r1, r2, t). Thus, ω(d̄∗) = t . Let i = d̄∗

1(m), j = d̄∗
2(m), let d∗ ∈Dm−1(r1 −

i, r2 − j) be the restriction of d̄∗ to {1, . . . , m − 1}, and let t′ = ω(d∗). By Lemma 5.8,
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φ∗
m(r1, r2, t) = len(d̄∗) =

m∑
l=1

len
(
Ql(d̄∗(l))

)
− μ(#A(d̄∗),#B(d̄∗))

=
[

m−1∑
l=1

len
(
Ql(d∗(l))

)− μ(#A(d∗),#A(d∗))
]

+ len(Qm(i, j)) − δ(d∗, d̄∗)

≥ φ∗
m−1(r1 − i, r2 − j, t′) + len(Qm(i, j)) − δ(d∗, d̄∗)

= φ∗
m−1(r1 − i, r2 − j, t′) + len(Qm(i, j)) − g(t′, τ (Qm(i, j)))

where δ(d∗, ̄d∗) = g(t′, τ (Qm(i, j))) in the last equality follows from Lemma 5.9 and ω(di, j,t′ ) = t′ . Finally, ω(d̄∗) =
h(t′, τ (Qm(i, j)) = t as required. �

We are now ready to prove Theorem 5.1.

Proof of Theorem 5.1. Let k = 3. The array φ∗
1 can be directly computed using Algorithm 1 for chunk graphs. Thus, induction 

on m and Lemma 5.10 (given φ∗
m−1, φ∗

m can be computed with the help of Algorithm 1) imply that Theorem 5.1 follows for 
k = 3.

Let k < 3. By Observation 5.6, finding a minimum-length path decomposition of G reduces to determining of the as-
signment of small components to the big components, i.e., it reduces to partitioning G into chunk graphs and then to 
concatenating (in any order) the minimum-length path decomposition of the chunk graphs. Hence, in the case of k ∈ {1, 2}
we use the dynamic programming algorithm in which all (e1, e2)-path decompositions of chunk graphs are of the same type. 
Thus, each minimum-length path decomposition of a chunk graph is type-optimal. The decomposition can be computed by 
using Algorithm 1. �

We conclude this section by stating the main results of this paper. By the fact that the problem MLPD(0)-constr is 
trivial, and by Theorem 4.1 and Theorem 5.1 we obtain:

Theorem 5.11. Given a graph G and an integer k ≤ 3, there exists a polynomial-time algorithm that computes a minimum-length path 
decomposition of width at most k of G, or concludes that no such path decomposition exists. �
6. Conclusions and open problems

In this paper, we have considered a bicriterion generalization of the pathwidth problem, where, for given integers k, l
and a graph G , we ask the question whether there exists a path decomposition P of G such that the width of P is at most 
k and the length of P , is at most l. We have shown that a minimum-length path decomposition can be found in polynomial 
time provided that k ≤ 3, and that the minimum-length path decomposition problem becomes NP-hard for k ≥ 4. Also, we 
have shown that the minimum-width path decomposition problem becomes NP-hard for l ≥ 2. Though these results provide 
a complete complexity classification of the bicriterion problem for general graphs, we point out some open problems and 
interesting directions for further research:

◦ The most immediate open question is the complexity status of finding a minimum-length path decomposition of width 
k = 4 for connected graphs. Also, given our focus on the structural properties and complexity status of the special cases 
with fixed pathwidth parameter k in this paper, our algorithms, although polynomial in the size of G for k ≤ 3, are not 
very efficient. Hence, an interesting and challenging open question remains: do there exist low-degree polynomial-time 
algorithms for MLPD(k)-constr for connected and disconnected graphs and k ≤ 3?

◦ Another research direction is the study of approximate solutions to MLPD(k)-constr and the trade-offs between the 
width k and the length l. More precisely, whenever an efficient optimization algorithm for a case of MLPD(k)-constr

is unlikely to exist, it is justifiable to design approximation algorithms that find path decompositions whose width and 
length are within some, preferably provable, bounds from the optima.

◦ Since the MLPD(k)-constr problem has appeared in a different context as a combinatorial problem motivated by an 
industrial application [2], one may search for efficient algorithms for special classes of graphs that are particularly 
relevant for this and other real-life applications.
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