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Abstract

In the paper we consider a generalized vertex coloring model, namely T -coloring. For a given
.nite set T of nonnegative integers including 0, a proper vertex coloring is called a T -coloring
if the distance of the colors of adjacent vertices is not an element of T . This problem is a
generalization of the classic vertex coloring and appeared as a model of the frequency assignment
problem. We present new results concerning the complexity of T -coloring with the smallest span
on graphs with small degree �. We distinguish between the cases that appear to be polynomial
or NP-complete. More speci.cally, we show that our problem is polynomial on graphs with
�6 2 and in the case of k-regular graphs it becomes NP-hard even for every .xed T and every
k ¿ 3. Also, the case of graphs with � = 3 is under consideration. Our results are based on the
complexity properties of the homomorphism of graphs.
? 2003 Published by Elsevier B.V.
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1. Introduction

We consider the T -coloring problem, as a generalized classical vertex coloring prob-
lem, which is one of the variants of the channel assignment problem in broadcast net-
works [8,16]. In this problem one wishes to assign to each transmitter xi ∈{x1; : : : ; xn},
located in a region, a frequency f(xi) avoiding interference between transmitters, i.e.
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two interfering transmitters (because of proximity, meteorological or other reasons)
must be assigned frequencies so that the distance between them does not belong to the
forbidden set T of nonnegative integers including 0. The most common objective is to
minimize the span of a frequency band. For more about applications of this problem
the reader is referred to [2,3,14,15].

Let G = (V; E) be a simple loopless graph with vertex set V = V (G) and edge set
E=E(G). By �(G) we mean the maximum degree �(v) over all vertices v of graph G,
by �(G) and !(G) we denote the chromatic number and the clique number of graph
G, respectively. Let G(W ) denote the subgraph of graph G induced by W ⊂ V .

De�nition 1. Let T be a .nite set of nonnegative integers satisfying 0∈T . By a
T -coloring of graph G we mean a vertex coloring c :V → N satisfying |c(v)− c(w)| �∈
T , whenever {v; w}∈E. The T -span is de.ned as spT (G) = minc spT (G; c), where
spT (G; c) = max c(V ) − min c(V ) and c is a proper vertex T -coloring of graph G. A
T -coloring c is said to be optimal if spT (G; c) = spT (G).

Following [13] we introduce the notion of T -graphs.

De�nition 2. For a given set T , we de.ne an in.nite T -graph GT , with vertex set
V (GT ) =N ∪ {0} and edge set E(GT ) = {{x; y}:|x − y| �∈ T}. By Gd+1

T we mean the
subgraph of GT induced by {0; : : : ; d}.

Given a graph G, set T and positive integer k, the problem of verifying the inequality
spT (G)6 k we call the T -SPAN PROBLEM. This diLers from the T -COLORING PROBLEM,
which requires an optimal T -coloring as its output. The notion of a T -coloring was
introduced in [8]. The problem has been studied extensively (see [3,4,12,13–18]). The
majority of results concern lower and upper bounds on spT (G), see [3,11,17]. The
.rst complexity result comes independently from [6,12], where the authors showed
NP-completeness in the strong sense of the T -SPAN PROBLEM on complete graphs (so
even a pseudopolynomial algorithm for the T -SPAN PROBLEM cannot exist unless P=NP).
We call the above problems FIXED T -SPAN PROBLEM and FIXED T -COLORING PROBLEM

if set T is .xed. Furthermore, in [7] the authors have developed a linear algorithm
for solving the FIXED T -COLORING PROBLEM on complete graphs (but exponential with
respect to max T ). So far, the problem on graphs with “small” degree has been still
open. Therefore, in Sections 2 and 3 we deal with some new properties of homomor-
phisms and in Section 5 we show NP-completeness of the FIXED T -SPAN PROBLEM on
subcubic graphs (i.e. with �6 3), and r-regular graphs (i.e. with all vertices of degree
r) with r¿ 3. In Section 4 we show a polynomial time algorithm for the T -COLORING

PROBLEM on graphs with �6 2.

2. Simple properties of graph homomorphisms

The idea of graph homomorphism is a generalization of vertex coloring. Moreover,
it generalizes the T -coloring problem as well.
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De�nition 3. For two simple graphs G and H a graph homomorphism is a func-
tion h :V (G) → V (H) such that {h(v); h(w)}∈E(H), whenever, {v; w}∈E(G) for all
v; w∈V (G).

We write G → H if there exists a homomorphism from G to H . Furthermore, if the
homomorphism is onto, then it is called an epimorphism. In addition, if there exists
h−1 and it is a homomorphism from H to G, then we call it an isomorphism and
graphs G and H are said to be isomorphic, in symbols G 
 H . We write H ⊂̃G if H
is isomorphic to any subgraph of G.

There is a straightforward equivalence between the properties of T -span and the
existence of homomorphism from G to Gd+1

T (see [13]).

Proposition 4. Given a graph G, any set T and a nonnegative integer d we have
spT (G)6d if and only if G → Gd+1

T .

Let us note that if T = {0}, then the T -coloring problem reduces to the well-known
vertex coloring problem, and moreover Gd+1

T 
 Kd+1. Thus we get

Corollary 5. Given a graph G and a positive integer d we have �(G)6d if and only
if G → Kd.

The composition of graph homomorphisms is still a graph homomorphism. Moreover,
an image of a complete graph under a homomorphism is a complete graph with the
same number of vertices so

Corollary 6. If Kn → G then Kn⊂̃G.

And

Proposition 7. If h :V (G) → V (H) is a homomorphism then  (G)6  (H (h(V (G)))),
where  is any of the functions from the list {�; !; spT}.

From the above is easy to see that if G → H and H is bipartite, then graph G is
bipartite. Concluding this section note an important upper bound proved in [17].

Theorem 8 (Tesman [17]). For any given graph G and set T the following inequality
holds

spT (G)6 |T | · (�(G) − 1):

Let us also recall that

Theorem 9 (Brooks). If G is a connected graph that is neither a complete graph nor
an odd cycle, then �(G)6�(G).
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Fig. 1. Graph Ak
v replacing the vertex v.

3. Homomorphisms into odd cycles

The problem of graph homomorphism is considered in [1,5]. Let H be a .xed graph,
the decision problem of the existence of a homomorphism from G to H will be denoted
HOM(H), where G is any graph from the speci.ed family. The most important result
comes from [9].

Theorem 10 (Hell and Nesetril [9]). The problem HOM(H) on arbitrary graphs is poly-
nomial, whenever H is bipartite, otherwise it is NP-complete.

In this section we prove that the problem HOM(C2k+1) on subcubic graphs is NP-
complete for every positive integer k¿ 2, in contrast to the problem HOM(C3), which
is polynomial. Moreover, we prove analogous result for 3-regular graphs and NP-
completeness of the problem HOM(C2k+1) on r-regular graphs, for every r¿ 4 and
k¿ 1.

We start with a general construction. Let G be an arbitrary graph and k be any
positive integer greater than 1. We replace each vertex v∈V (G) of degree �(v) with
the graph Ak

v shown in Fig. 1 (the dotted vertical lines in Fig. 1 mean path Pk). We
replace also every edge {v; w}∈E(G) with the edge {vi; wj} such that no two inserted
edges are incident. Let G′

k be the graph constructed from G as above. It is easy to see
that G′

k is always a subcubic graph.

Theorem 11. The problem HOM(C2k+1); k¿ 2 is NP-complete on subcubic graphs.

Proof. By Theorem 10 it suPces to show G → C2k+1 iL G′
k → C2k+1. First, ob-

serve that Ak
v → C2k+1 and moreover for every homomorphism hv :V (Ak

v) → V (C2k+1)
we have |hv({v1; : : : ; v�(v)})| = 1. Otherwise, we have hv(vi) �= hv(vi+1) for some
i∈{1; : : : ; �(v) − 1}, hence hv(vi) = hv(x), where {vi; s}; {vi+1; s}; {s; x}∈E(Ak

v) and
x �∈ {v1; : : : ; v�(v)}. Thus C2l−1 is subgraph of C2k+1(h(V (Ak

v))) for some l¡k, which
is impossible. So, constructing a homomorphism g :V (G) → V (C2k+1) from a homo-
morphism g′ :V (G′

k) → V (C2k+1) is straightforward.
Conversely, let g :V (G) → V (C2k+1) be a homomorphism, then we let g′(vi) = g(v)

and for w∈V (Ak
v)\{v1; : : : ; v�(v)} g′(w)=$v ◦hv(w), where hv :V (Ak

v) → V (C2k+1) is a
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Fig. 2. A graph G′.

homomorphism and $v is any automorphism of C2k+1 such that $v(hv(vi)) = g(v). One
can check that g′ :V (G′

k) → V (C2k+1) is a homomorphism.

Theorem 12. The problem HOM(C2k+1); k¿ 2 is NP-complete on 3-regular graphs.

Proof. It suPces to show the equivalence G → C2k+1 iL G′ → C2k+1 for any subcubic
connected graph G, where k¿ 2 and G′ is a cubic graph de.ned as follows. Let
%i be an isomorphism from graph G to its ith isomorphic copy Gi, for i = 1; 2; 3,
which are vertex disjoint. Let Vj ⊂ V (G) be the set of vertices of degree j. We
de.ne V (G′) =

⋃3
i=1 V (Gi) ∪ ⋃

v∈V1
{x1

v ; x
2
v} ∪ ⋃

u∈V2
{yu} and E(G′) =

⋃3
i=1 E(Gi) ∪

⋃
v∈V1

⋃3
i=1{{x1

v ; %i(v)}; {x2
v ; %i(v)}} ∪ ⋃

u∈V2

⋃3
i=1{{yu; %i(u)}} (see Fig. 2). Assuming

that xjv and yu are diLerent vertices for j = 1; 2 and v; u∈V (G), it is obvious that G′

is a cubic graph.
Now, suppose g :V (G) → V (C2k+1) is a homomorphism. Let g′ :V (G′) → V (C2k+1)

be de.ned g′(w) = g(v) for w∈{%1(v); %2(v); %3(v)} and v∈V (G); g′(xiv) = g(z) for
{z; v}∈E(G); g′(yv) = g(z) for any z adjacent to v. Thus g′ is a well-de.ned homo-
morphism. Conversely, if g′ is a homomorphism from G′ to C2k+1 then g = g′ ◦ %1 is
a homomorphism from G to C2k+1.

Theorem 13. The problem HOM(C2k+1) is NP-complete on r-regular graphs for every
4xed integer k¿ 1 and r¿ 4.

Proof. By induction on r¿ 4, consider r + 1 isomorphic copies of any r regular
graph. Using the analogous method as that in Theorem 12 we can show that the
problem HOM(C2k+1) is NP-complete for any k¿ 2 and for all r¿ 4. In [10] the
author proved NP-completeness of edge 3-chromaticity of 3-regular graphs. Since line
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graphs of 3-regular graphs are 4-regular, the problem of 3-chromaticity of 4-regular
graphs is NP-complete. The construction from Theorem 12 is carried over to the case
Hom(C3) on r-regular graphs with r¿ 4.

4. Polynomial algorithm for cycles

We show a polynomial-time algorithm for graphs with �6 2.

Theorem 14. The T -COLORING PROBLEM on graphs with degree not exceeding 2 can
be solved in time O(n|T |2 log|T |).

Proof. Bipartite graphs can be optimally colored with 1 and minN \ T + 1, thus all
we need is considering odd cycles. Let T be any set and a be an arbitrary integer.
We ask if spT (C2k+1)6 a− 1. By Theorem 8 we have spT (C2k+1)6 2|T |. Thus using
the standard bisection method we need only check 1 + log2|T | inequalities to .nd
spT (C2k+1).

In the following, we sketch the idea of the algorithm. Let TAB(vi)[1 : : : a] be a table
of logical values associated with vertex vi and de.ned as follows: TAB(vi)[j] = TRUE
if and only if there exists a T -coloring of path v1; : : : ; vi using colors not greater than
a such that v1 is colored with 1 and vi is colored with j. So, TAB(v1) has value
TRUE only on its .rst position and TAB(vi+1)[y] = TRUE if and only if there exists
z ∈{1; : : : ; a} such that |z − y| �∈ T and TAB(vi)[z] = TRUE. We see that there exists
a T -coloring iL TAB(v2k+1)[j] = TRUE for some j − 1 �∈ T , so constructing the
T -coloring is straightforward. It is obvious that the complexity of the above algorithm
is O(k|T |2 log|T |).

5. Main results

Based on Theorem 11 we can prove the main result of this paper. Before doing this,
we introduce the following notion.

De�nition 15. For a given set T , by dT we mean the number such that GdT
T is bipartite

and GdT +1
T is not bipartite.

Lemma 16. For any set T the following inequality holds:

dT 6 spT (K3)

and, moreover, dT can be determined in polynomial time.

Proof. Let us notice that �(GdT +1
T ) = �(GdT

T ) + 1 = 3. Thus from Corollary 5 it fol-
lows GdT +1

T → K3, hence by Proposition 7 spT (GdT +1
T )6 spT (K3). By Proposition

4 spT (GdT +1
T )6dT . Assuming spT (GdT +1

T )6dT − 1 we get at once GdT +1
T → GdT

T

but this contradicts the de.nition of dT . So, we get dT = spT (GdT +1
T )6 spT (K3). By
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Fig. 3. A graph GdT +1
T (left) and a cycle C2k+1 (right).

Theorem 8 spT (K3)6 2|T |, hence using the bisection method we can determine the
greatest dT such that GdT

T is bipartite. This can be done in time O(|T |2 log|T |).

Lemma 17. Given any set T , we have dT = spT (K3) if and only if K3⊂̃GdT +1
T .

Proof. By Corollary 6 K3⊂̃GdT +1
T is equivalent to K3 → GdT +1

T . Assume K3⊂̃GdT +1
T ,

then by Proposition 4 spT (K3)6dT , hence from Lemma 16 it follows that dT =
spT (K3). The converse implication is straightforward by Proposition 4.

Let us denote by CT the shortest odd-length cycle in graph GdT +1
T .

Lemma 18. There exists a homomorphism h :V (GdT +1
T ) → V (CT ).

Proof. We only have to construct a homomorphism on the vertices of the connected
component of GdT +1

T containing vertex dT , because the other components are bipartite.
So let V1 and V2 be a bipartition of a bipartite graph obtained from this compo-
nent by removing dT and let Wj

i ; i = 1; 2 and j¿ 1, be the vertex subset of Vi of
distance j from vertex dT in the graph GdT +1

T . Finally, let W 0
1 =W 0

2 ={dT}. Let C2k+1 =
({d; a1; b1; : : : ; ak ; bk}; {{d; a1}; {d; b1}; {a1; b2}; {b1; a2}; : : : ; {ak−1; bk}; {bk−1; ak};
{ak ; bk}}) be any cycle isomorphic to CT . Let us de.ne h(dT ) = d; h(Wj

1 ) = {aj}
and h(Wj

2 ) = {bj} for j = 1; : : : ; k and h(Wj
i ) = h(Wk

i ) for j¿k; i = 1; 2 (see Fig. 3).
The construction of h is correct because any vertex from Wj

i ; j¿ 0, can have
neighbours only in the sets Wj±1

3−i and Wj
3−i, and the latter case is impossible for

j¡k.

Lemma 19. For any graph G the following equivalence holds: G → GdT +1
T if and only

if G → CT .
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Proof. Let G → GdT +1
T , hence from Lemma 18 it follows G → CT . Conversely, assume

that G → CT . By de.nition CT ⊂̃GdT +1
T , thus we get G → GdT +1

T .

Theorem 20. The T -SPAN PROBLEM can be solved in polynomial time on subcubic
graphs for all sets T satisfying K3⊂̃GdT +1

T . The FIXED T -SPAN PROBLEM is NP-complete
on cubic graphs for all sets T not satisfying K3⊂̃GdT +1

T .

Proof. Let T be a .xed set and k be any positive integer. By Theorem 8 the case
G = K4 is polynomial and can be solved in O(|T |3) time (by Proposition 4 it reduces
to the problem of .nding the smallest d such that K4⊂̃Gd

T ; by Theorem 8 K4⊂̃G3|T |+1
T

and the fact that 0 is a vertex of a maximal clique of Gd
T , it reduces to searching all the

triples of vertices of G3|T |+1
T ). For any subcubic graph G �= K4 we ask if spT (G)6 k.

Suppose that K3⊂̃GdT +1
T . Brooks’ theorem implies G → K3, thus by Lemma 17 and

Proposition 7 spT (G)6dT . According to Proposition 4 we have spT (G)¡dT iL G
is bipartite, hence to solve T -SPAN PROBLEM for graph G we only need to check if G
is bipartite (O(n + m) time) and if it is so then spT (G) equals the smallest positive
integer not belonging to T (which we can .nd in O(|T |) time). Otherwise, spT (G)=dT ,
computable in time O(|T |2 log|T |).

Now assume that K3 is not isomorphic to any subgraph of GdT +1
T and let k=dT . From

Proposition 4 we have spT (G)6 k iL G → GdT +1
T . By Lemma 19 we get spT (G)6 k

iL G → CT and, moreover, CT is an odd cycle of length greater than 4. By Theorem
12 the problem HOM(CT ) on cubic graphs is NP-complete and so is the FIXED T -SPAN

PROBLEM.

Corollary 21. The T -SPAN PROBLEM is NP-complete in the strong sense on 3-regular
graphs.

Proof. By Theorem 20 and Lemma 17 it suPces to verify that for T = {0; 2; 3} we
have dT = 4¡ spT (K3) = 5.

It is worth observing that if for some set T we put k = dT , then by Lemma 19 for
any graph G the question if spT (G)6 k is equivalent to G → CT . So, if for every
k¿ 1 the problem HOM(C2k+1) is NP-complete on a class G, then the FIXED T -SPAN

PROBLEM on the class G is NP-complete as well. Thus from Theorem 13 we have the
following:

Theorem 22. For every set T and integer r¿ 4 the FIXED T -SPAN PROBLEM is NP-
complete on r-regular graphs.

Corollary 23. The T -SPAN PROBLEM is NP-complete in the strong sense on r-regular
graphs for any r¿ 3.

Table 1 Now we sum up all the above results in the following table. Recall that the
numbers appearing in the third column are polynomially computable functions of T .
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Table 1
The complexity of the T -SPAN PROBLEM and T -COLORING PROBLEM on graphs with bounded degree

Graph Problem Property of T Complexity Reference

�6 2 T -COLORING PROBLEM any O(n|T |2 log|T |) Theorem 14
�6 3 T -COLORING PROBLEM !(GdT +1

T )¿ 3 O(n2 + |T |3) Theorem 20
3-regular FIXED T -SPAN PROBLEM !(GdT +1

T )6 2 NPC Theorem 20
r-regular, FIXED T -SPAN PROBLEM any NPC Theorem 22
r¿ 4
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