EL SEVIER

Available online at www.sciencedirect.com

Discrete Applied Mathematics 129 (2003) 361-369

www.elsevier.com/locate/dam

The complexity of the *T*-coloring problem for graphs with small degree

Krzysztof Giaro, Robert Janczewski*,1, Michał Małafiejski

Foundations of Informatics Department, Faculty of Electronics, Telecommunications and Informatics, Technical University of Gdańsk, ul. Narutowicza 11/12, Gdańsk, Poland

Received 18 September 2000; received in revised form 10 July 2002; accepted 29 July 2002

Abstract

In the paper we consider a generalized vertex coloring model, namely *T*-coloring. For a given finite set *T* of nonnegative integers including 0, a proper vertex coloring is called a *T*-coloring if the distance of the colors of adjacent vertices is not an element of *T*. This problem is a generalization of the classic vertex coloring and appeared as a model of the frequency assignment problem. We present new results concerning the complexity of *T*-coloring with the smallest span on graphs with small degree Δ . We distinguish between the cases that appear to be polynomial or NP-complete. More specifically, we show that our problem is polynomial on graphs with $\Delta \leq 2$ and in the case of *k*-regular graphs it becomes NP-hard even for every fixed *T* and every k > 3. Also, the case of graphs with $\Delta = 3$ is under consideration. Our results are based on the complexity properties of the homomorphism of graphs. © 2003 Published by Elsevier B.V.

Keywords: Vertex coloring; T-coloring; T-span; Homomorphism; NP-completeness

1. Introduction

We consider the *T*-coloring problem, as a generalized classical vertex coloring problem, which is one of the variants of the channel assignment problem in broadcast networks [8,16]. In this problem one wishes to assign to each transmitter $x_i \in \{x_1, \ldots, x_n\}$, located in a region, a frequency $f(x_i)$ avoiding interference between transmitters, i.e.

0166-218X/03/\$ - see front matter © 2003 Published by Elsevier B.V. PII: S0166-218X(02)00576-0

^{*} Corresponding author.

E-mail addresses: giaro@eti.pg.gda.pl (K. Giaro), skalar@eti.pg.gda.pl (R. Janczewski), mima@eti.pg.gda.pl (M. Małafiejski).

¹ Supported by FNP.

two interfering transmitters (because of proximity, meteorological or other reasons) must be assigned frequencies so that the distance between them does not belong to the forbidden set T of nonnegative integers including 0. The most common objective is to minimize the span of a frequency band. For more about applications of this problem the reader is referred to [2,3,14,15].

Let G = (V, E) be a simple loopless graph with vertex set V = V(G) and edge set E = E(G). By $\Delta(G)$ we mean the maximum degree $\rho(v)$ over all vertices v of graph G, by $\chi(G)$ and $\omega(G)$ we denote the chromatic number and the clique number of graph G, respectively. Let G(W) denote the subgraph of graph G induced by $W \subset V$.

Definition 1. Let *T* be a finite set of nonnegative integers satisfying $0 \in T$. By a *T*-coloring of graph *G* we mean a vertex coloring $c: V \to \mathbb{N}$ satisfying $|c(v) - c(w)| \notin T$, whenever $\{v, w\} \in E$. The *T*-span is defined as $\operatorname{sp}_T(G) = \min_c \operatorname{sp}_T(G, c)$, where $\operatorname{sp}_T(G, c) = \max c(V) - \min c(V)$ and *c* is a proper vertex *T*-coloring of graph *G*. A *T*-coloring *c* is said to be optimal if $\operatorname{sp}_T(G, c) = \operatorname{sp}_T(G)$.

Following [13] we introduce the notion of T-graphs.

Definition 2. For a given set T, we define an infinite T-graph G_T , with vertex set $V(G_T) = \mathbb{N} \cup \{0\}$ and edge set $E(G_T) = \{\{x, y\} : |x - y| \notin T\}$. By G_T^{d+1} we mean the subgraph of G_T induced by $\{0, \ldots, d\}$.

Given a graph G, set T and positive integer k, the problem of verifying the inequality $\operatorname{sp}_{T}(G) \leq k$ we call the T-Span Problem. This differs from the T-Coloring Problem, which requires an optimal T-coloring as its output. The notion of a T-coloring was introduced in [8]. The problem has been studied extensively (see [3,4,12,13-18]). The majority of results concern lower and upper bounds on $sp_{\tau}(G)$, see [3,11,17]. The first complexity result comes independently from [6,12], where the authors showed NP-completeness in the strong sense of the T-Span Problem on complete graphs (so even a pseudopolynomial algorithm for the T-Span Problem cannot exist unless P=NP). We call the above problems FIXED T-SPAN PROBLEM and FIXED T-COLORING PROBLEM if set T is fixed. Furthermore, in [7] the authors have developed a linear algorithm for solving the FIXED T-COLORING PROBLEM on complete graphs (but exponential with respect to $\max T$). So far, the problem on graphs with "small" degree has been still open. Therefore, in Sections 2 and 3 we deal with some new properties of homomorphisms and in Section 5 we show NP-completeness of the FIXED T-SPAN PROBLEM on subcubic graphs (i.e. with $\Delta \leq 3$), and r-regular graphs (i.e. with all vertices of degree r) with $r \ge 3$. In Section 4 we show a polynomial time algorithm for the T-COLORING PROBLEM on graphs with $\Delta \leq 2$.

2. Simple properties of graph homomorphisms

The idea of graph homomorphism is a generalization of vertex coloring. Moreover, it generalizes the T-coloring problem as well.

Definition 3. For two simple graphs G and H a graph homomorphism is a function $h: V(G) \to V(H)$ such that $\{h(v), h(w)\} \in E(H)$, whenever, $\{v, w\} \in E(G)$ for all $v, w \in V(G)$.

We write $G \to H$ if there exists a homomorphism from G to H. Furthermore, if the homomorphism is onto, then it is called an *epimorphism*. In addition, if there exists h^{-1} and it is a homomorphism from H to G, then we call it an *isomorphism* and graphs G and H are said to be isomorphic, in symbols $G \simeq H$. We write $H \subset G$ if H is isomorphic to any subgraph of G.

There is a straightforward equivalence between the properties of *T*-span and the existence of homomorphism from *G* to G_T^{d+1} (see [13]).

Proposition 4. Given a graph G, any set T and a nonnegative integer d we have $sp_T(G) \leq d$ if and only if $G \to G_T^{d+1}$.

Let us note that if $T = \{0\}$, then the *T*-coloring problem reduces to the well-known vertex coloring problem, and moreover $G_T^{d+1} \simeq K_{d+1}$. Thus we get

Corollary 5. Given a graph G and a positive integer d we have $\chi(G) \leq d$ if and only if $G \to K_d$.

The composition of graph homomorphisms is still a graph homomorphism. Moreover, an image of a complete graph under a homomorphism is a complete graph with the same number of vertices so

Corollary 6. If $K_n \to G$ then $K_n \in G$.

And

Proposition 7. If $h: V(G) \to V(H)$ is a homomorphism then $\psi(G) \leq \psi(H(h(V(G))))$, where ψ is any of the functions from the list $\{\chi, \omega, \operatorname{sp}_T\}$.

From the above is easy to see that if $G \to H$ and H is bipartite, then graph G is bipartite. Concluding this section note an important upper bound proved in [17].

Theorem 8 (Tesman [17]). For any given graph G and set T the following inequality holds

 $\operatorname{sp}_T(G) \leq |T| \cdot (\chi(G) - 1).$

Let us also recall that

Theorem 9 (Brooks). If G is a connected graph that is neither a complete graph nor an odd cycle, then $\chi(G) \leq \Delta(G)$.

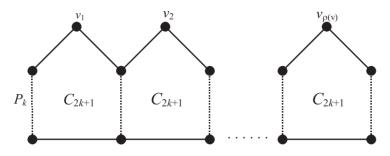


Fig. 1. Graph A_v^k replacing the vertex v.

3. Homomorphisms into odd cycles

The problem of graph homomorphism is considered in [1,5]. Let H be a fixed graph, the decision problem of the existence of a homomorphism from G to H will be denoted Hom(H), where G is any graph from the specified family. The most important result comes from [9].

Theorem 10 (Hell and Nesetril [9]). The problem Hom(H) on arbitrary graphs is polynomial, whenever H is bipartite, otherwise it is NP-complete.

In this section we prove that the problem $\text{Hom}(C_{2k+1})$ on subcubic graphs is NPcomplete for every positive integer $k \ge 2$, in contrast to the problem $\text{Hom}(C_3)$, which is polynomial. Moreover, we prove analogous result for 3-regular graphs and NPcompleteness of the problem $\text{Hom}(C_{2k+1})$ on *r*-regular graphs, for every $r \ge 4$ and $k \ge 1$.

We start with a general construction. Let G be an arbitrary graph and k be any positive integer greater than 1. We replace each vertex $v \in V(G)$ of degree $\rho(v)$ with the graph A_v^k shown in Fig. 1 (the dotted vertical lines in Fig. 1 mean path P_k). We replace also every edge $\{v, w\} \in E(G)$ with the edge $\{v_i, w_j\}$ such that no two inserted edges are incident. Let G'_k be the graph constructed from G as above. It is easy to see that G'_k is always a subcubic graph.

Theorem 11. The problem Hom(C_{2k+1}), $k \ge 2$ is NP-complete on subcubic graphs.

Proof. By Theorem 10 it suffices to show $G \to C_{2k+1}$ iff $G'_k \to C_{2k+1}$. First, observe that $A_v^k \to C_{2k+1}$ and moreover for every homomorphism $h_v: V(A_v^k) \to V(C_{2k+1})$ we have $|h_v(\{v_1, \ldots, v_{\rho(v)}\})| = 1$. Otherwise, we have $h_v(v_i) \neq h_v(v_{i+1})$ for some $i \in \{1, \ldots, \rho(v) - 1\}$, hence $h_v(v_i) = h_v(x)$, where $\{v_i, s\}, \{v_{i+1}, s\}, \{s, x\} \in E(A_v^k)$ and $x \notin \{v_1, \ldots, v_{\rho(v)}\}$. Thus C_{2l-1} is subgraph of $C_{2k+1}(h(V(A_v^k)))$ for some l < k, which is impossible. So, constructing a homomorphism $g: V(G) \to V(C_{2k+1})$ from a homomorphism $g': V(G'_k) \to V(C_{2k+1})$ is straightforward.

Conversely, let $g: V(G) \to V(C_{2k+1})$ be a homomorphism, then we let $g'(v_i) = g(v)$ and for $w \in V(A_v^k) \setminus \{v_1, \dots, v_{\rho(v)}\}$ $g'(w) = \tau_v \circ h_v(w)$, where $h_v: V(A_v^k) \to V(C_{2k+1})$ is a

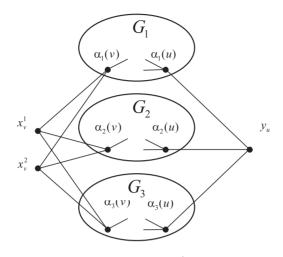


Fig. 2. A graph G'.

homomorphism and τ_v is any automorphism of C_{2k+1} such that $\tau_v(h_v(v_i)) = g(v)$. One can check that $g': V(G'_k) \to V(C_{2k+1})$ is a homomorphism. \Box

Theorem 12. The problem Hom (C_{2k+1}) , $k \ge 2$ is NP-complete on 3-regular graphs.

Proof. It suffices to show the equivalence $G \to C_{2k+1}$ iff $G' \to C_{2k+1}$ for any subcubic connected graph G, where $k \ge 2$ and G' is a cubic graph defined as follows. Let α_i be an isomorphism from graph G to its *i*th isomorphic copy G_i , for i = 1, 2, 3, which are vertex disjoint. Let $V_j \subset V(G)$ be the set of vertices of degree j. We define $V(G') = \bigcup_{i=1}^3 V(G_i) \cup \bigcup_{v \in V_1} \{x_v^1, x_v^2\} \cup \bigcup_{u \in V_2} \{y_u\}$ and $E(G') = \bigcup_{i=1}^3 E(G_i) \cup$ $\bigcup_{v \in V_1} \bigcup_{i=1}^3 \{\{x_v^1, \alpha_i(v)\}, \{x_v^2, \alpha_i(v)\}\} \cup \bigcup_{u \in V_2} \bigcup_{i=1}^3 \{\{y_u, \alpha_i(u)\}\}$ (see Fig. 2). Assuming that x_v^j and y_u are different vertices for j = 1, 2 and $v, u \in V(G)$, it is obvious that G'is a cubic graph.

Now, suppose $g: V(G) \to V(C_{2k+1})$ is a homomorphism. Let $g': V(G') \to V(C_{2k+1})$ be defined g'(w) = g(v) for $w \in \{\alpha_1(v), \alpha_2(v), \alpha_3(v)\}$ and $v \in V(G)$, $g'(x_v^i) = g(z)$ for $\{z, v\} \in E(G), g'(y_v) = g(z)$ for any z adjacent to v. Thus g' is a well-defined homomorphism. Conversely, if g' is a homomorphism from G' to C_{2k+1} then $g = g' \circ \alpha_1$ is a homomorphism from G to C_{2k+1} . \Box

Theorem 13. The problem $Hom(C_{2k+1})$ is NP-complete on r-regular graphs for every fixed integer $k \ge 1$ and $r \ge 4$.

Proof. By induction on $r \ge 4$, consider r + 1 isomorphic copies of any r regular graph. Using the analogous method as that in Theorem 12 we can show that the problem Hom (C_{2k+1}) is NP-complete for any $k \ge 2$ and for all $r \ge 4$. In [10] the author proved NP-completeness of edge 3-chromaticity of 3-regular graphs. Since line

365

graphs of 3-regular graphs are 4-regular, the problem of 3-chromaticity of 4-regular graphs is NP-complete. The construction from Theorem 12 is carried over to the case $H_{Om}(C_3)$ on *r*-regular graphs with $r \ge 4$. \Box

4. Polynomial algorithm for cycles

We show a polynomial-time algorithm for graphs with $\Delta \leq 2$.

Theorem 14. The T-COLORING PROBLEM on graphs with degree not exceeding 2 can be solved in time $O(n|T|^2 \log |T|)$.

Proof. Bipartite graphs can be optimally colored with 1 and min $\mathbb{N} \setminus T + 1$, thus all we need is considering odd cycles. Let *T* be any set and *a* be an arbitrary integer. We ask if $\operatorname{sp}_T(C_{2k+1}) \leq a-1$. By Theorem 8 we have $\operatorname{sp}_T(C_{2k+1}) \leq 2|T|$. Thus using the standard bisection method we need only check $1 + \log_2|T|$ inequalities to find $\operatorname{sp}_T(C_{2k+1})$.

In the following, we sketch the idea of the algorithm. Let $TAB(v_i)[1...a]$ be a table of logical values associated with vertex v_i and defined as follows: $TAB(v_i)[j] = TRUE$ if and only if there exists a *T*-coloring of path $v_1, ..., v_i$ using colors not greater than *a* such that v_1 is colored with 1 and v_i is colored with *j*. So, $TAB(v_1)$ has value TRUE only on its first position and $TAB(v_{i+1})[y] = TRUE$ if and only if there exists $z \in \{1, ..., a\}$ such that $|z - y| \notin T$ and $TAB(v_i)[z] = TRUE$. We see that there exists a *T*-coloring iff $TAB(v_{2k+1})[j] = TRUE$ for some $j - 1 \notin T$, so constructing the *T*-coloring is straightforward. It is obvious that the complexity of the above algorithm is $O(k|T|^2 \log|T|)$. \Box

5. Main results

Based on Theorem 11 we can prove the main result of this paper. Before doing this, we introduce the following notion.

Definition 15. For a given set T, by d_T we mean the number such that $G_T^{d_T}$ is bipartite and $G_T^{d_T+1}$ is not bipartite.

Lemma 16. For any set T the following inequality holds:

 $d_T \leq \operatorname{sp}_T(K_3)$

and, moreover, d_T can be determined in polynomial time.

Proof. Let us notice that $\chi(G_T^{d_T+1}) = \chi(G_T^{d_T}) + 1 = 3$. Thus from Corollary 5 it follows $G_T^{d_T+1} \to K_3$, hence by Proposition 7 $\operatorname{sp}_T(G_T^{d_T+1}) \leq \operatorname{sp}_T(K_3)$. By Proposition 4 $\operatorname{sp}_T(G_T^{d_T+1}) \leq d_T$. Assuming $\operatorname{sp}_T(G_T^{d_T+1}) \leq d_T - 1$ we get at once $G_T^{d_T+1} \to G_T^{d_T}$ but this contradicts the definition of d_T . So, we get $d_T = \operatorname{sp}_T(G_T^{d_T+1}) \leq \operatorname{sp}_T(K_3)$. By

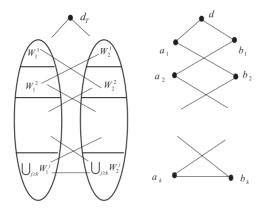


Fig. 3. A graph $G_T^{d_T+1}$ (left) and a cycle C_{2k+1} (right).

Theorem 8 sp_T(K₃) $\leq 2|T|$, hence using the bisection method we can determine the greatest d_T such that $G_T^{d_T}$ is bipartite. This can be done in time O($|T|^2 \log |T|$). \Box

Lemma 17. Given any set T, we have $d_T = \operatorname{sp}_T(K_3)$ if and only if $K_3 \subset G_T^{d_T+1}$.

Proof. By Corollary 6 $K_3 \in G_T^{d_T+1}$ is equivalent to $K_3 \to G_T^{d_T+1}$. Assume $K_3 \in G_T^{d_T+1}$, then by Proposition 4 sp_T(K_3) $\leq d_T$, hence from Lemma 16 it follows that $d_T = \text{sp}_T(K_3)$. The converse implication is straightforward by Proposition 4. \Box

Let us denote by C_T the shortest odd-length cycle in graph $G_T^{d_T+1}$.

Lemma 18. There exists a homomorphism $h: V(G_T^{d_T+1}) \to V(C_T)$.

Proof. We only have to construct a homomorphism on the vertices of the connected component of $G_T^{d_T+1}$ containing vertex d_T , because the other components are bipartite. So let V_1 and V_2 be a bipartition of a bipartite graph obtained from this component by removing d_T and let W_i^j , i = 1, 2 and $j \ge 1$, be the vertex subset of V_i of distance j from vertex d_T in the graph $G_T^{d_T+1}$. Finally, let $W_1^0 = W_2^0 = \{d_T\}$. Let $C_{2k+1} = (\{d, a_1, b_1, \dots, a_k, b_k\}, \{\{d, a_1\}, \{d, b_1\}, \{a_1, b_2\}, \{b_1, a_2\}, \dots, \{a_{k-1}, b_k\}, \{b_{k-1}, a_k\}, \{a_k, b_k\}\})$ be any cycle isomorphic to C_T . Let us define $h(d_T) = d$, $h(W_1^j) = \{a_j\}$ and $h(W_2^j) = \{b_j\}$ for $j = 1, \dots, k$ and $h(W_i^j) = h(W_i^k)$ for j > k, i = 1, 2 (see Fig. 3).

The construction of *h* is correct because any vertex from W_i^j , j > 0, can have neighbours only in the sets $W_{3-i}^{j\pm 1}$ and W_{3-i}^j , and the latter case is impossible for j < k. \Box

Lemma 19. For any graph G the following equivalence holds: $G \to G_T^{d_T+1}$ if and only if $G \to C_T$.

Proof. Let $G \to G_T^{d_T+1}$, hence from Lemma 18 it follows $G \to C_T$. Conversely, assume that $G \to C_T$. By definition $C_T \tilde{\subset} G_T^{d_T+1}$, thus we get $G \to G_T^{d_T+1}$. \Box

Theorem 20. The T-SPAN PROBLEM can be solved in polynomial time on subcubic graphs for all sets T satisfying $K_3 \tilde{\subset} G_T^{d_T+1}$. The FIXED T-SPAN PROBLEM is NP-complete on cubic graphs for all sets T not satisfying $K_3 \tilde{\subset} G_T^{d_T+1}$.

Proof. Let *T* be a fixed set and *k* be any positive integer. By Theorem 8 the case $G = K_4$ is polynomial and can be solved in $O(|T|^3)$ time (by Proposition 4 it reduces to the problem of finding the smallest *d* such that $K_4 \tilde{\subset} G_T^d$; by Theorem 8 $K_4 \tilde{\subset} G_T^{3|T|+1}$ and the fact that 0 is a vertex of a maximal clique of G_T^d , it reduces to searching all the triples of vertices of $G_T^{3|T|+1}$). For any subcubic graph $G \neq K_4$ we ask if $\operatorname{sp}_T(G) \leq k$. Suppose that $K_3 \tilde{\subset} G_T^{d_T+1}$. Brooks' theorem implies $G \to K_3$, thus by Lemma 17 and

Suppose that $K_3 \subset G_T^{d_T+1}$. Brooks' theorem implies $G \to K_3$, thus by Lemma 17 and Proposition 7 sp_T(G) $\leq d_T$. According to Proposition 4 we have sp_T(G) $< d_T$ iff G is bipartite, hence to solve T-SPAN PROBLEM for graph G we only need to check if G is bipartite (O(n + m) time) and if it is so then sp_T(G) equals the smallest positive integer not belonging to T (which we can find in O(|T|) time). Otherwise, sp_T(G)= d_T , computable in time O($|T|^2 \log |T|$).

Now assume that K_3 is not isomorphic to any subgraph of $G_T^{d_T+1}$ and let $k=d_T$. From Proposition 4 we have $\operatorname{sp}_T(G) \leq k$ iff $G \to G_T^{d_T+1}$. By Lemma 19 we get $\operatorname{sp}_T(G) \leq k$ iff $G \to C_T$ and, moreover, C_T is an odd cycle of length greater than 4. By Theorem 12 the problem Hom (C_T) on cubic graphs is NP-complete and so is the FIXED *T*-SPAN PROBLEM. \Box

Corollary 21. The T-SPAN PROBLEM is NP-complete in the strong sense on 3-regular graphs.

Proof. By Theorem 20 and Lemma 17 it suffices to verify that for $T = \{0, 2, 3\}$ we have $d_T = 4 < \operatorname{sp}_T(K_3) = 5$. \Box

It is worth observing that if for some set T we put $k = d_T$, then by Lemma 19 for any graph G the question if $\operatorname{sp}_T(G) \leq k$ is equivalent to $G \to C_T$. So, if for every $k \geq 1$ the problem $\operatorname{Hom}(C_{2k+1})$ is NP-complete on a class \mathscr{G} , then the FIXED T-SPAN PROBLEM on the class \mathscr{G} is NP-complete as well. Thus from Theorem 13 we have the following:

Theorem 22. For every set T and integer $r \ge 4$ the FIXED T-SPAN PROBLEM is NPcomplete on r-regular graphs.

Corollary 23. The T-SPAN PROBLEM is NP-complete in the strong sense on r-regular graphs for any $r \ge 3$.

Table 1 Now we sum up all the above results in the following table. Recall that the numbers appearing in the third column are polynomially computable functions of T.

Table 1

The complexity of the T-SPAN PROBLEM and T-COLORING PROBLEM on graphs with bounded degree

Graph	Problem	Property of T	Complexity	Reference
$ \frac{\Delta \leq 2}{\Delta \leq 3} $ 3-regular <i>r</i> -regular, $r \geq 4$	T-COLORING PROBLEM T-COLORING PROBLEM FIXED T-SPAN PROBLEM FIXED T-SPAN PROBLEM	any $\omega(G_T^{d_T+1}) \ge 3$ $\omega(G_T^{d_T+1}) \le 2$ any	$O(n T ^2 \log T)$ $O(n^2 + T ^3)$ NPC NPC	Theorem 14 Theorem 20 Theorem 20 Theorem 22

Acknowledgements

The authors are grateful to the two anonymous referees and prof. Kubale for valuable comments.

References

- [1] M.O. Albertson, Generalized Colorings, Academic Press, New York, 1987, pp. 35-49.
- [2] M. Bellare, O. Goldreich, M. Sudan, Free bits, PCP and non-approximability towards tight results, Proceedings of the 36th IEEE Symposium on Foundations of Computer Science, Los Alamos, 1995, pp. 422–431.
- [3] M.B. Cozzens, F.S. Roberts, *T*-colorings of graphs and the channel assignment problem, Congr. Numer. 35 (1982) 191–208.
- [4] M.B. Cozzens, F.S. Roberts, Greedy algorithms for *T*-colorings of complete graphs and the meaningfulness of conclusions about them, J. Combin. Inform. System Sci. 16 (1991) 286–299.
- [5] A.M.H. Gerards, Homomorphisms of graphs into odd cycles, J. Graph Theory 12 (1988) 73-83.
- [6] A. Gräf, Distance graphs and the T-coloring problem, Discrete Math. 196 (1999) 153-166.
- [7] J.R. Griggs, D.D.-F. Liu, The channel assignment problem for mutually adjacent sites, J. Combin. Theory Ser. A 68 (1994) 169–183.
- [8] W.K. Hale, Frequency assignment: theory and applications, Proceedings IEEE 68 (1980) 1497–1514.
- [9] P. Hell, J. Nesetril, On the complexity of *H*-coloring, J. Combin. Theory Ser. B 48 (1990) 92–110.
- [10] I. Holyer, The NP-completeness of edge-coloring, SIAM J. Comput. 10 (1981) 718-720.
- [11] R. Janczewski, A note on divisibility and T-span of graphs, Discrete Math. 234 (2001) 171–179.
- [12] K. Jansen, A rainbow about T-colorings for complete graphs, Discrete Math. 154 (1996) 129-139.
- [13] D.D.-F. Liu, T-colorings of graphs, Discrete Math. 101 (1992) 202-212.
- [14] D.D.-F. Liu, T-graphs and the channel assignment problem, Discrete Math. 161 (1996) 197–205.
- [15] A. Raychaudhuri, Further results on *T*-colorings and frequency assignment problem, Discrete Math. 7 (1994) 605–613.
- [16] F.S. Roberts, *T*-coloring of graphs: recent results and open problems, Discrete Math. 93 (1991) 229-245.
- [17] B. Tesman, T-colorings, list T-colorings and set T-colorings of graphs, Ph.D. Thesis, Department of Math. Rutgers University, New Brunswick, NJ, 1989.
- [18] B. Tesman, Applications of forbidden difference graphs to *T*-colorings, Congressus Numerautium 74 (1990), 15–24.

MOST WIEDZY Downloaded from mostwiedzy.pl