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We consider the zero-visibility cops & robber game restricted to trees. We produce a 
characterisation of trees of copnumber k and We consider the computational complexity 
of the zero-visibility Cops and Robber game. We present a heavily modified version of an 
already-existing algorithm that computes the zero-visibility copnumber of a tree in linear 
time and we show that the corresponding decision problem is NP-complete on a nontrivial 
class of graphs.
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1. Introduction

There are many pursuit-evasion models in graph theory where a collection of agents, known as cops, move through a 
graph attempting to capture an evader, known as the robber. In the classic cops and robber model of Nowakowski/Win-
kler/Quillot [15,17], the cops and robber have full information about each other’s location and the structure of the graph, 
then alternate turns moving from a vertex to an adjacent vertex. In this model, the cops win if a strategy exists whereby 
they can guarantee they occupy that same vertex as the robber in a finite number of moves. Otherwise, the robber wins. 
For a thorough survey of this model, see [2].

The zero-visibility cops and robber game is a variant of this game in which the robber is invisible; that is, the cops have no 
information at any time about the location of the robber. The game for the cops becomes to guarantee that after some finite 
time they must have occupied the same position as the robber. Moreover, the goal becomes to do so with the fewest cops 
possible. This model was introduced by Tošić [19], who characterised those graphs with copnumber one, and computed the 
copnumber of paths, cycles, complete graphs and complete bipartite graphs.

Due to the invisibility of the robber, this pursuit-evasion game bears similarities to the edge-searching model of Parsons 
[16], which employs an “arbitrarily fast” invisible robber. Here, the minimum number of cops needed to capture a robber 
is essentially the pathwidth of the graph [5,9], and allowing recontamination (a robber being allowed to return to an edge 
that has previously been cleared) does not reduce the number of cops needed [1]. The authors have similarly bounded 
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the zero-visibility case involving pathwidth, but have shown the surprising result that recontamination does help; that is, 
zero-visibility cops and robber is not monotonic [4].

Determining if the number of cops needed to catch the robber in the edge-searching model is less than k is NP-complete 
for arbitrary graphs and linear-time solvable for trees [13]. In the classic cops and robber model, since one cop is sufficient to 
catch a robber on any tree, the decision problem is trivial. However, it is a much more recent result that the corresponding 
decision problem for arbitrary graphs is actually EXPTIME-complete [10]. For zero-visibility cops and robber, a quadratic 
time algorithm for trees is known [18]. We improve on this result by finding a linear time algorithm.

The results presented herein are a sequel to those found in [4]. None of the proofs found in [4] are presented here; the 
reader is encouraged to refer the previous paper for further results on the subject of zero-visibility cops & robbers and for 
a much more extensive introduction. In Section 2 we introduce the notation used in this work. Our algorithmic result is 
divided into two parts. The first part, given in Section 3, is a constructive characterisation of trees having a given copnumber. 
This characterisation is then directly used in Section 4 to obtain our algorithm for computing the zero-visibility copnumber 
of a tree. In Section 5 we analyse a computationally hard case by proving that computing a zero-visibility copnumber of a 
starlike graph is NP-hard in general. The proofs in Section 5 are based on those found in [7].

2. Preliminaries

2.1. Graph-theoretic notation

The vertex and edge sets of a graph G are denoted V G and EG , respectively. We consider only simple graphs – graphs 
which contain no loops or multiple edges.

Let G be a graph. We use xy to denote the edge with endpoints x and y; when xy ∈ EG we say that x and y are adjacent.
We use x ∼ y (x ∼G y if G needs to be specified) to denote the fact that x and y are distinct adjacent vertices and x � y to 
denote the fact that either x ∼ y or x = y. If x ∼ y, then the vertices x and y are referred to as neighbours. The degree of a 
vertex is the number of neighbours it possesses. A leaf is a vertex that has degree equal to one; that is, a leaf has a single 
unique neighbour. For W ⊆ V G , the closed neighbourhood of W in G , denoted NG [W ], is the collection of vertices that are 
either contained in W or have a neighbour contained in W :

NG [W ] =
{

x ∈ V G

∣∣∣∃y ∈ W such that y � x
}

.

A walk of length r in G is a sequence of vertices ω = (ω(0), . . . , ω(r)) such that ω(s) ∼ ω(s + 1) for s = 0, . . . , r − 1; we 
refer to such a walk as a walk from ω(0) to ω(r), and we refer to ω(0) and ω(r) as the endpoints of ω. For any two vertices 
x, y ∈ V G , the distance between x and y in G , denoted dG (x, y), is the smallest length of a walk from x to y; if there are no 
walks from x to y, then dG(x, y) = ∞. A path is a walk which repeats no vertices, a closed walk is a walk whose endpoints 
are identical and a cycle is a closed walk which repeats no vertices other than its endpoints.

A subgraph of a graph G is a graph H whose vertex and edge sets are subsets of the vertex and edge sets of G . Evidently, 
if H is a subgraph of G , then for all x, y ∈ V H , dH (x, y) ≥ dG (x, y). If H is a subgraph of G such that for all x, y ∈ V H , 
dH (x, y) = dG(x, y), we refer to H as an isometric subgraph of G . Let x ∈ V G \ V H . We say that x is adjacent to a subgraph H
if x is adjacent to at least one vertex y ∈ V H . The distance from a vertex x to a subgraph H in G is the minimum distance 
from x to a vertex in H :

dG(x, H) = min
{

dG(x, y)

∣∣∣y ∈ V H

}
.

For a nonempty subset W ⊆ V G , the induced subgraph on W , denoted G(W ), is the subgraph of G whose vertex set is 
W and which contains every edge of G with both endpoints in W :

EG(W ) =
{

xy ∈ EG

∣∣∣x, y ∈ W
}

.

Given a set of vertices and/or edges X , the subgraph of G obtained by deleting X from G is the graph with vertex set 
V G \ X and edge set EG \ X and is labelled G − X . When X contains a single vertex or edge, say X = {v} or X = {e}, we use 
G − v or G − e in place of G − X .

2.2. Zero-visibility cops & robber

We consider the pursuit game referred to as zero-visibility cops & robber previously examined in [4,18,19].
The game is played by two players, the cop and the robber, on a graph G; we refer to both players and their respective 

pieces as cops and robbers. The game begins with the cop player placing one or more cop pieces on vertices of G followed 
by the robber placing a single robber piece on a vertex of G unknown to the cop player. Beginning with the cop, the players 
then alternate turns; on a player’s turn, he may move each of his pieces along an edge to a vertex adjacent to its current 
position, or leave any pieces where they are. The game ends with victory of the cop player if the robber piece and a cop 
piece ever simultaneously occupy the same vertex; the robber’s goal is to avoid this situation indefinitely. The position of 
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the robber piece is kept secret from the cop player until the game ends, although the cop may at times be able to deduce 
(by examining the history of the movements of cop pieces) the possible locations of the robber.

We use the following terminology, much of which was introduced in [4], to analyse the game. By a copwalk we mean a 
sequence of vertices (ω(0), . . . , ω(r)) that describes a movement of a piece in the cops and robber game; i.e., ω(s) is the 
position of the piece after its controller has taken s turns, and so for s = 0, . . . , r − 1, ω(s + 1) � ω(s). Let G be a connected 
graph. A strategy on G of length T and order k is a collection L = {ωi}k

i=1 of k copwalks of length T . We also denote

Ls = {ω1(s), . . . ,ωk(s)} for s ≥ 0.

A strategy of order k and length T gives us a sequence of prescribed moves for a cop player utilising k cops; we might 
imagine that the cop player following such a strategy forfeits if he has not won after T turns. We refer to a strategy as 
successful if it guarantees victory for the cop player.

Evidently, a strategy L is successful if and only if for every copwalk α of length T − 1 in G , there is ωi ∈L and s ≤ T − 1
such that α(s) ∈ {ωi(s), ωi(s + 1)} (the robber that follows α may be caught by either moving onto a cop, which occurs 
when α(s) = ωi(s), or by having a cop move onto it, which occurs when α(s) = ωi(s + 1)).

Rather than tracking individual moves by a robber piece, we will view this game as an exercise in graph cleaning, played 
by a single player:

1. At the beginning of the game, a number of cop pieces are placed on vertices in the graph. Every occupied vertex is 
marked as “clean” and every unoccupied vertex is marked as “dirty”.

2. The cop player makes a series of turns. During each turn, the player may move each piece along an edge to an adjacent 
vertex or leave it where it is.

3. Every time a dirty vertex is occupied by a cop it becomes clean.
4. In between each of the cop player’s turns, every clean vertex that is unoccupied and is adjacent to a dirty vertex 

becomes dirty.

At each point during the game, the dirty vertices are those vertices that could contain the robber, given that he has not yet 
been caught. We refer to the point in between the cop’s turns where clean vertices may become dirty as recontamination. 
We note Proposition 2.1, which follows directly from the relevant definitions.

Proposition 2.1. For any graph G, a strategy L on G of length T is successful if and only if following L results in every vertex being 
clean after T turns. �

Let G be a graph and let L = {ωi}k
i=1 be a strategy on G of length T . We define two sequences of sets of vertices that 

track the dirty vertices in G throughout the game: for each s ∈ {1, . . . , T },

1. let Rs be the set of vertices of G that are dirty at the beginning of the cop’s s-th turn (before he makes any moves), 
and

2. let Ss be the set of vertices of G that are dirty immediately after the cop takes his s-th turn (before possible recontam-
ination).

It is clear that R1 = V G \L0. The relevant rules of the game imply that for 1 ≤ s ≤ T ,

Ss = Rs \Ls and Rs+1 = NG [Ss] \Ls.

Evidently, a strategy of length T is successful if and only if ST is empty. We will further assume that the strategies we 
consider contain no superfluous moves; thus, if L is a successful strategy of length T , we assume that ST is empty and that 
RT is nonempty.

The zero-visibility copnumber of a graph G , denoted by c0(G), is the minimum number of cops required to guarantee 
capture of the robber in a finite number of turns. Thus, c0(G) = k if there is a successful strategy of order k on G and there 
are no successful strategies of order k − 1 on G .

In [4], the problem of allowing infinite strategies was considered – strategies made up of copwalks of infinite length. It 
was also shown in [4] that allowing such strategies does not change the zero-visibility copnumber of a graph; that is, if 
there is a successful strategy of order k and infinite length on G then there is a successful strategy of order k and finite 
length on G . For this reason, each strategy we consider in this work is finite.

3. A constructive characterisation of the zero-visibility copnumber of a tree

We start by recalling the following result:

Lemma 3.1. (See [18].) Let G be a graph and let H be an isometric subgraph of G; then c0(H) ≤ c0(G).
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Fig. 1. The tree T derived from T1, T2, T3.

We provide a brief sketch of a proof. A strategy is deterministic, rather than dynamic – the cop player makes no decisions 
or observations, he simply follows a collection of walks. We imagine that H is an isometric subgraph of G and we modify 
a successful strategy on G in the following manner. Any cops which never enter H during the strategy on G are simply 
discarded. Whenever a cop leaves H , we simply replace the copwalk he follows in G − H with one in H of equal length. At 
the point that the successful strategy on G catches the robber who has not left H , it has been with a cop currently in H , 
which is still there under this modified strategy.

Let G be a connected graph. If G − e is disconnected, where e ∈ EG , then e is called a cut edge in G . Not every graph 
contains cut edges. Let G be a connected graph that contains a cut edge e and let H1 and H2 be the two connected 
components of G − e. It is straightforward to show that H1 and H2 are isometric subgraphs of G and so Lemma 3.1 implies 
that both c0(H1) and c0(H2) are less than or equal to c0(G). Lemma 3.2, proved in [4], further examines this situation.

Lemma 3.2. (See [4].) Let G be a connected graph with a cut edge e and let H be one of the two connected components of G − e. Let 
L be a successful strategy of length T on G. Then, at some point in the strategy, at least c0(H) cops are simultaneously present in H; 
that is, there is s ≤ T such that

|Ls ∩ V H | ≥ c0(H).

In Lemma 3.3, we show that the robber territory can never get too far distant from vertices occupied by cops.

Lemma 3.3. Let G be a connected graph and let L be a strategy on G. Let X be the set of vertices containing cop pieces and let Y be the 
set of dirty vertices after any number of moves by the cop player. Then, for every connected component H of G(Y ) there is a vertex in 
x ∈ X at distance at most 2 from H.

Proof. At the start of the cop player’s s-th turn, we have X = Ls−1 and Y = Rs; at the end of the cop’s s-th turn we have 
X =Ls and Y = Ss . We will show, via induction on s, that if the set of dirty vertices in question is nonempty,

1. for every connected component H of G(Rs), there is x ∈Ls−1 adjacent to H ; and
2. for every connected component H of G(Ss), there is x ∈Ls at distance at most 2 from H .

For s = 1 the first statement is clear, as R1 = V G \L0 implies that V G is the disjoint union of R1 and L0.
So, suppose that s ≥ 1, that Ss is nonempty and that the first statement holds. Let H be a connected component of 

G(Ss). Since Ss = Rs \ Ls , H is an induced subgraph of a connected component H ′ of G(Rs). If one or more cops moved 
onto H ′ during the s-th turn, then H is adjacent to at least one of these cops. If not, we in fact have H = H ′ and, via the 
first statement, some cop piece was adjacent to H before the cop’s s-th turn. This cop piece must be at a distance of at 
most 2 from H after the cop’s s-th turn.

Thus, for each value of s ≥ 1, if the first statement is true so is the second.
Now, suppose that the second statement holds true for s ≥ 1 and that Rs+1 is nonempty. Let H be a connected compo-

nent of G(Rs+1). Since Ss ⊆Rs+1 = N
[
Ss

] \Ls , there is a connected component H ′ of G(Ss) such that H ′ and N
[
V H ′

] \Ls
are both subgraphs of H . Let x ∈ Ls have minimal distance from H ′ . Via the inductive hypothesis, d(x, H ′) ≤ 2. If x is adja-
cent to H ′ it is also adjacent to H . If x is at distance 2 from H ′ , let x′ be adjacent to both x and H ′ . We then have x′ /∈ Ls
and x′ ∈ N

[
V H ′

]
, so x′ ∈ N

[
V H ′

] \Ls ⊆ V H . Thus, x is adjacent to H (since x ∼ x′).
Therefore, when the second statement holds true for some value of s ≥ 1, the first statement holds true for s′ = s +1. �
Let L be a strategy on G and let xy ∈ EG . We say that a cop vibrates on xy in steps s1, . . . , s2, where 0 ≤ s1 < s2, if 

ω(i) ∈ {x, y} for each i ∈ {s1, . . . , s2} and ω(i) = ω(i + 1) for each i ∈ {s1, . . . , s2 − 1}, where ω is the copwalk of the cop. 
Informally speaking, the cop moves back and forth between x and y in steps s1, . . . , s2.

We now define a tree construction that plays a crucial role in our arguments. Let k ≥ 1 and let T1, T2, T3 be trees such 
that c0(Ti) = k for each i ∈ {1, 2, 3}. A tree T is obtained in the manner shown in Fig. 1, where the edge that joins each Ti
to the remainder of T can be incident to any vertex in Ti . The vertex x will be called the central vertex of T and each of the 
new vertices yi is the connecting vertex of Ti , i ∈ {1, 2, 3}. We then say that T is derived from T1, T2 and T3.

Let T be a tree and let x ∈ V T . We define F T (x) = T − NT [x] to be the forest obtained by deleting x and each of its 
neighbours from T . We note that every connected component of F T (x) is a subtree of T that is adjacent to a unique 
neighbour of x.

We now describe a cleaning procedure, given in Algorithm 1, that we often use. The input to the procedure is a tree T , 
a vertex v of T and the number of cops k. We refer to the procedure as a standard cleaning of T from v .
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Algorithm 1 Standard cleaning of T from v with k cops.
Initially place all k cops on v .
Label the neighbours of v as v1, . . . , v� .
for i := 1, . . . , � do

Let the k-th cop start vibrating on v vi .
for each tree H in F T (v) having a vertex adjacent to vi do

Clean H using the first k − 1 cops.
end for
Let the first k − 1 cops return to v .
Wait (at most one turn) so that all cops are on v .

end for

Note that the procedure does not prescribe how the subtrees H are cleaned. We will refer to this procedure usually to 
obtain some upper bounds on the number of cops some trees require.

We have the following observation.

Observation 3.4. Let T be a tree, let v ∈ V T and let k ≥ 1. If c0(H) ≤ k −1 for each connected component H of F T (v), then a standard 
cleaning of T from v with k cops produces a successful strategy on T . Moreover, this strategy is such that v is visited at least every 
second turn and the strategy ends with every cop on v. �
Lemma 3.5. Let k ≥ 1. If T is derived from T1, T2, T3 , where c0(Ti) = k for each i ∈ {1, 2, 3}, then c0(T ) = k + 1.

Proof. Let x be the central vertex of T and let yi be the connecting vertex of Ti for each i ∈ {1, 2, 3}. Observation 3.4
immediately implies that c0(T ) ≤ k + 1.

So, we need to show that T cannot be cleaned using only k cops. We proceed by contradiction; suppose that L is a 
successful strategy of order less than or equal to k on T . By Lemma 3.2, a subtree Ti , i ∈ {1, 2, 3}, can be cleaned only when 
k cops are simultaneously present in Ti in some step s, i.e., Ls ⊆ V Ti . Take s to be the last step after which all k cops are 
present in the same subtree Ti1 and a vertex of some other subtree Ti2 is dirty; by Lemma 3.2, such an s must exist.

By Lemma 3.3, there is a (connected) subtree T ′ of T such that immediately after the cop’s s-th turn,

(i) V Ti2
∩ V T ′ (i2 = i1) is nonempty;

(ii) every vertex in V T ′ is dirty; and
(iii) there is a cop at distance at most 2 from T ′ .

The subtree T ′ contains a path joining a vertex in Ti2 to a vertex of distance at most 2 from Ti1 ; any such path contains 
the central vertex x and so x ∈ V T ′ . Therefore, after the cop’s s-th turn, the central vertex x is dirty and every cop is in Ti1 . 
It is clear that every vertex v in the two subtrees T j with j = i1 will be recontaminated (or, is already dirty) before a cop 
can visit v . In order to clean T , all k cops must enter each of the two subtrees T j with j = i1, after the s-th step, and 
clean them each anew. The first time they do so, there will be dirty vertices in the other such subtree. This contradicts the 
assumption that step s was the last step at which this occurred. �
Theorem 3.6. Let T be a tree and let k ≥ 1. Then, c0(T ) ≥ k + 1 if and only if there is x ∈ V T with at least three distinct neighbours 
that are each adjacent to a connected component H of F T (x) with c0(H) ≥ k.

Proof. In effect, we claim that c0(T ) ≥ k + 1 if and only if T has an induced subgraph that is derived from T1, T2 and T3
(that is, of the form shown in Fig. 1), where each Ti has c0(Ti) ≥ k.

First, suppose that there is x ∈ V T with three distinct neighbours y1, y2 and y3 that are each adjacent to a connected 
component of F T (x) with zero-visibility copnumber greater than or equal to k. Let T1, T2 and T3 be connected components 
of F T (x) such that for each i ∈ {1, 2, 3}, yi is adjacent to Ti and c0(Ti) ≥ k.

It is simple to show that for any tree H with c0(H) ≥ k + 1, we can obtain a subtree H ′ with c0(H ′) = k by deleting 
leaves, one at a time, from H . Any tree with copnumber greater than or equal to k + 1 ≥ 2 must contain at least two leaves. 
Thus, for each i ∈ {1, 2, 3}, we can form a subtree T ′

i of Ti that has c0(T ′
i ) = k by successively deleting leaves and we can 

do so without deleting the vertex adjacent to yi . (If the neighbour of yi in Ti is a leaf in Ti , we simply delete one of the 
other leaves.) Let

T ′ = T
(
{x, y1, y2, y3} ∪ V T ′

1
∪ V T ′

2
∪ V T ′

3

)
.

The subtree T ′ is derived from T ′
1, T ′

2 and T ′
3; by Lemma 3.5, c0(T ′) = k +1. As T ′ is an isometric subgraph of T , Lemma 3.1

implies c0(T ) ≥ k + 1.
We now prove the converse statement via contraposition. Suppose that k ≥ 1 and that T is a tree such that every x ∈ V T

has at most two distinct neighbours that are adjacent to connected components H of F T (x) with c0(H) ≥ k. We describe a 
successful strategy on T that utilises k cops.
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If there exists x ∈ V T such that every connected component H of F T (x) has c0(H) ≤ k − 1, then Observation 3.4 implies 
that T can be cleaned using k cops, i.e., c0(T ) ≤ k.

Otherwise, suppose that there is x ∈ V T and a connected component H of F T (x) with c0(H) ≥ k. Let x1 and x2 be 
neighbouring vertices in T such that

(a) there is at least one connected component H of F T (x2) that has c0(H) ≥ k and x1 is the neighbour of x2 that is adjacent 
to H ; and

(b) over all ordered pairs of neighbours (x1, x2) which satisfy (a), the number of vertices in the connected component of 
T − x2 which contains x1 is minimal.

We first claim that every connected component H ′ of F T (x1) that is not adjacent to x2 has c0(H ′) ≤ k − 1. Suppose we 
can find a connected component H ′ of F T (x1) that is not adjacent to x2 and has c0(H ′) ≥ k; let x0 be the neighbour of 
x1 that is adjacent to H ′ . Then, (x′

1, x
′
2) = (x0, x1) satisfies (a), above. However, the connected component of T − x′

2 which 
contains x′

1 is a subtree of the connected component of T − x2 which contains x1; this contradicts the fact that x1 and x2
satisfy (b), above.

So, let y be a neighbour of x1 that is not equal to x2. The connected components H of T − y which do not contain x1
are connected components of F T (x1) that are not adjacent to x2 and so each such connected component has c0(H) ≤ k − 1. 
Thus, our strategy begins in the following way: we let T ′ be a connected component of T − x2 that contains x1 and we 
apply Algorithm 1 with input T ′ and v = x1. When Algorithm 1 terminates, T ′ is clean and all k cops are on x1; we then 
move all k cops from x1 to x2.

So, at this point, we have a path x1 · · · xr (initially r = 2) such that

(i) all k cops are on xr ;
(ii) there is at least one connected component H of F T (xr) which is adjacent to xr−1 and has c0(H) ≥ k; and

(iii) the subtree of T − xr which contains xr−1 is clean.

We will now show that either it is straightforward to clean the remainder of the graph T , or that we can extend our path 
by one vertex while maintaining conditions (i) through (iii) above. The vertex set of T being finite, such a process must 
eventually clean all of T .

Let Y be the set of neighbours of xr that are not adjacent to a connected component H of F T (xr) with c0(H) ≥ k. Let T ′′
be the subtree of T containing xr , Y and every subtree of F T (xr) that is adjacent to a member of Y . We apply Algorithm 1
with inputs T ′′ and xr .

By assumption, every vertex x ∈ V T has at most two neighbours that are adjacent to connected components H of F T (x)
with c0(H) ≥ k. We have already identified one such neighbour of xr , namely, xr−1. If xr has no other such neighbours, then 
we have Y ∪ {xr−1} = N[xr] and we can see that the graph is now clean. If there is a second such neighbour of xr , we label 
it xr+1 and then move all k cops from xr to xr+1. After this move, we have extended the length of the path above by one 
while maintaining conditions (i) through (iii).

This completes the proof of the theorem. �
3.1. Tree minors and critically k-copwin trees

Let G be a graph. An edge contraction is a manner in which a new graph is constructed from G . By contracting an edge 
xy of G , we form a new graph H by removing x and y and adding a new vertex x′ adjacent to every neighbour of x or y:

V H = {x′} ∪ (V G \ {x, y}) and E H = {
x′v

∣∣ xv ∈ EG or yv ∈ EG
} ∪ (EG \ {xy}) .

In other words, an edge contraction of the edge xy is obtained by equating the vertices x and y.
A minor of a graph G is a graph H that can be obtained from G via some sequence of edge contractions, edge deletions 

and/or vertex deletions. Minors are a generalisation of the concept of a subgraph that preserve certain topological properties 
of a given graph.

When G is a tree, any connected minor of G is, itself, a tree and can be obtained by a sequence of edge contractions (if 
the end result is to be connected, any edge or vertex deletions can be replaced with appropriate subsequences of contrac-
tions).

Theorem 3.7. Let T be a tree and let H be a connected minor of T. Then, c0(H) ≤ c0(T ).

Proof. We will prove, by induction on n = |V T |, that if H is formed by at most one edge contraction from T , then c0(H) ≤
c0(T ); this, together with Lemma 3.1, is sufficient to show the claim.

It can be shown that trees on 6 or fewer vertices have c0(T ) = 1 implying that the statement holds for T with |V T | ∈
{1, . . . , 6}. So, suppose that n ≥ 6 and that the claim holds for trees on n or fewer vertices. Let T be a tree on n + 1 vertices 
and let H be formed from T by a single edge contraction.
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Fig. 2. The single tree contained in T2 (left) together with one of the 10 trees contained in T3 (right). In the tree on the right, the 3 copies of the tree in 
T2 are shown with dots; the root and its children are shown with circles.

If c0(H) = 1, we have c0(T ) ≥ c0(H); so, suppose that c0(H) = k + 1, where k ≥ 1. Then, via the discussion in the 
third paragraph of the proof of Theorem 3.6, there exists a subtree H ′ of H , with the following form, where each Hi has 
c0(Hi) = k.

H ′ =
•

• • •
H1 H2 H3

It must be that either H ′ is a subtree of T , or that there is a subtree T ′ of T such that H ′ is formed from T ′ via a single 
edge contraction.

If H ′ is a subtree of T , then, due to Lemma 3.1, c0(T ) ≥ c0(H ′) = k + 1 = c0(H).
If H ′ is not a subtree of T , then, possibly by relabelling the subtrees Hi , T contains a subtree T ′ of the following form, 

where the subtree H ′
1 has H1 as a minor:

T ′ =
•

• • •
H ′

1 H2 H3

By the inductive hypothesis, c0(H ′
1) ≥ c0(H1) = k. Theorem 3.6, together with Lemma 3.1, then implies that

c0(T ) ≥ c0(T ′) ≥ k + 1 = c0(H).

This completes the proof. �
Let T be tree. We say that T is copwin-critical if the only connected minor of T that has zero-visibility copnumber equal 

c0(T ) is T itself.
We define a sequence of families of trees that will characterise copwin-critical trees. The family T1 consists of the tree 

on one vertex. For k ≥ 1, the family Tk+1 consists of all trees T derived from T1, T2, T3 ∈ Tk (not necessarily distinct).
The family T2 consists of a single tree, given in Fig. 2.
There are three distinct (nonisomorphic) ways in which the tree in T2 could be connected to another tree by a single 

edge – this edge could be joined to one of the 3 leaves, to one of the 3 vertices adjacent to the leaves, or to the central 
vertex. Thus, there are 10 distinct trees contained in T3. We show one of the members of T3 in Fig. 2; in this tree, we see 
each of the 3 possible ways of joining the tree in T2.

The number of trees in Tk grows very rapidly with k – it is clear that

∣∣Tk+1
∣∣ >

(|Tk| + 2

3

)
.

(The number of ways of choosing s elements, with repetition allowed, from a collection of r elements is 
(r+s−1

s

)
.) This is, in 

fact, a very weak lower bound, as it ignores the distinct manners in which three trees from Tk can form a tree from Tk+1. 
A somewhat involved counting argument shows that T4 consists of 204156 distinct trees.

Theorem 3.8 says that the zero-visibility number of a tree T is the largest k such that Tk contains a minor of T . The 
proof is a simple induction utilising Theorems 3.6 and 3.7, and is omitted.

Theorem 3.8. Let T be a tree; then, c0(T ) ≥ k if and only if there is T ′ ∈ Tk such that T ′ is a minor of T . �
4. An algorithm for calculating the zero-visibility copnumber of a tree

We give a modified version of the algorithm first presented in [5]. There, a graph parameter referred to as vertex sepa-
ration is investigated. The vertex separation of a graph is equal to its pathwidth; see [5,9].
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It is shown in [5] that for k ≥ 1, the vertex separation of a tree T is greater than or equal to k + 1 if and only if there is 
a vertex v ∈ V T such that at least three connected components of T − v have vertex separation greater than or equal to k. 
Our Theorem 3.6 closely mirrors this result. The similarity of our result allows us to utilise a very similar methodology in 
calculating the zero-visibility copnumber of a tree.

The first classification of pursuit parameters on trees appears in [16]. The characterisation there is, again, very similar to 
our own and that found in [5].

We will utilise, extensively, the concept of a rooted tree in this section. A rooted tree is a tree T where some vertex 
u ∈ V T has been marked as the root of T . The root of a tree T is denoted by r(T ). For every vertex v ∈ V T \ {r(T )}, there 
is a unique path joining v and u; the parent of v is the sole neighbour of v in this unique path. If v ′ is the parent of v , we 
refer to v as a child of v ′ .

Let T be a rooted tree. For x, y ∈ V T , we say that x ≺ y if there is a path in T

x = x0 ∼ x1 ∼ . . . ∼ xl = y

where xk is a child of xk+1 for each k ∈ {0, . . . , l − 1}. We say that x � y if x ≺ y or x = y. The relation � is clearly a partial 
order.

For each v ∈ V T , T [v] is the rooted subtree of T with root v on the vertex set {x 
∣∣ x � v}; we refer to T [v] as the 

descendant subtree at v . If X ⊆ V T for a rooted tree T , then each connected component T ′ of T − X is treated as a rooted 
tree with the root v ∈ V T ′ such that x � v for each x ∈ V T ′ , where � is the relation on the vertex set in T . We denote for 
brevity T = T − r(T ) for a rooted tree T . Thus, each tree in T is rooted at the vertex adjacent to r(T ) in T .

A vertex v in a rooted tree T is k-pre-branching if c0(T [v]) = k and v has a child u with c0(T [u]) = k. We refer to a 
vertex v as weakly k-branching if c0(T [v]) = k and v has at least two children that are k-pre-branching. We refer to a vertex 
v as k-branching if c0(T [v]) = k and v has a weakly k-branching child.

u

v

w x

y z

T1 T2

In the diagram above, if c0(T [u]) = c0(T [y]) = c0(T [z]) = k, then w and x (and also u and v) are k-pre-branching, v is 
weakly k-branching and u is k-branching.

Let T ′ be a graph whose each connected component is a rooted tree. If T ′ has a k-branching vertex, then we define 
bk(T ′) to be one of its k-branching vertices; otherwise we write bk(T ′) = ⊥ for brevity. We define the following counters 
for k-branching and k-pre-branching vertices of T ′:

#k
b(T ′) = ∣∣{T

∣∣ T is a connected component of T ′ and bk(T ) = ⊥}∣∣
and

#k
pb(T ′) = ∣∣{T

∣∣ T is a connected component of T ′ and T contains a k-pre-branching vertex
}∣∣.

Thus, #k
b(T ′) and #k

pb(T ′) count the number of connected components of T ′ having k-branchings and k-pre-branching ver-
tices, respectively. Also, we define

1k
wb(T ′) =

{
1, if T ′ has a weakly k-branching vertex,

0, otherwise

and

#k
c0

(T ′) = ∣∣{T
∣∣ T is a connected component of T ′ and c0(T ) = k

}∣∣ .
Note that all four above functions give 0 or 1, i.e., they act as ‘indicator functions’, if T ′ is a tree. For an integer p ≥ 0, we 
define 1(p) = 0 if p = 0 and 1(p) = 1 if p > 0.

Lemma 4.1 given below follows in a very direct manner from Theorems 3.6 and 3.7, together with the relevant definitions 
– we omit its proof. This lemma is crucial for our algorithm because it provides a constructive method for the computation 
of the label of a rooted tree T , assuming that:

• the labels of the children of the root of T are given, and
• if r(T ) has exactly one child u such that T [u] has k-branching v , then the label of T − V T [u] is given.
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In the algorithm stated later, this scheme is used in a bottom-up fashion, which allows us to compute the labels of all ver-
tices of the input tree, starting at the leaves and ending at the root. The label of the root gives us the desired zero-visibility 
copnumber.

Lemma 4.1. Let T be a rooted tree on two or more vertices. Let k = max{c0(T ′) 
∣∣ T ′ is a connected component of T } and v = bk(T ). 

Then:

(i) If #k
b(T ) > 1, then c0(T ) = k + 1 and #k+1

b (T ) = 1k+1
wb (T ) = #k+1

pb (T ) = 0.

(ii) If #k
b(T ) = 1 and c0(T − V T [v]) ≥ k, then c0(T ) = k + 1 and #k+1

pb (T ) = 1k+1
wb (T ) = #k+1

b (T ) = 0.

(iii) If #k
b(T ) = 1 and c0(T − V T [v]) < k, then c0(T ) = k, bk(T ) = v and #k

b(T ) = 1k
wb(T ) = #k

pb(T ) = 1.

(iv) If #k
b(T ) = 0, then:

(1) If 1k
wb(T ) = 1 and #k

c0
(T ) > 1, then c0(T ) = k + 1 and #k+1

b (T ) = 1k+1
wb (T ) = #k+1

pb (T ) = 0.

(2) If 1k
wb(T ) = 1 and #k

c0
(T ) ≤ 1, then c0(T ) = k, bk(T ) = r(T ) and #k

b(T ) = 1k
wb(T ) = #k

pb(T ) = 1.

(3) If 1k
wb(T ) = 0, then:

(3a) If #k
pb(T ) > 2, then c0(T ) = k + 1 and #k+1

b (T ) = 1k+1
wb (T ) = #k+1

pb (T ) = 0.

(3b) If #k
pb(T ) = 2, then c0(T ) = k, #k

b(T ) = 0 and 1k
wb(T ) = #k

pb(T ) = 1. (r(T ) is a weakly k-branching vertex.)

(3c) If #k
pb(T ) < 2, then c0(T ) = k, #k

b(T ) = 1k
wb(T ) = 0 and #k

pb(T ) = 1 (r(T ) is k-pre-branching).

We will use Lemma 4.1 to directly obtain a dynamic programming algorithm that computes the zero-visibility copnumber 
of a given tree T . Roughly speaking, the algorithm roots T at any vertex (we refer by T to the rooted tree in the following), 
and then T is ‘processed’ in a bottom-up fashion. In particular, for each vertex v , a label of T [v] (and possibly a label of 
some subtree of T [v]) is computed. (See below for the definition of a label.) The label of T [v] gives the zero-visibility cop 
number of T [v], and it can be computed based on the labels of the children of v . For this reason the label contains also 
some other entries besides c0(T [v]). Once the labels of all vertices are computed, the label of r(T ) gives us the desired 
c0(T ).

Formally, we define a label of any rooted tree T , as

L(T ) = (
k,#k

b(T ),1k
wb(T ),#k

pb(T ), v
)

where k = c0(T ), and v is a k-branching vertex if T has one, or v is undefined otherwise. We use for brevity the symbol 
⊥ in the last entry when v is undefined. Then, for any k ≥ c0(T ), a k-label of T is Lk(T ) = L(T ) if k = c0(T ), and Lk(T ) =
(k, 0, 0, 0, ⊥) otherwise.

We start with a claim that allows us to determine a k-label of a tree T in case when #k
b(T ) = 1.

Claim 4.2. Let T be a rooted tree. Denote the trees in T by T1, . . . , Tl . Let k = max{c0(T j) 
∣∣ j ∈ {1, . . . , l}}. If the k-labels of T1, . . . , Tl

are given and #k
b(T ) = 1, then the k′-label of T can be computed in time O (l), where k′ ≥ c0(T ).

Proof. We use Lemma 4.1 to state the formulæ for the particular entries of the label of T ,

L(T ) = (
m,#m

b (T ),1m
wb(T ),#m

pb(T ), v
)
.

Since #k
b(T ) = 1, we have:

m = c0(T ) =
{

k + 1, if #k
b(T ) > 1 ∨ (

1k
wb(T ) = 1 ∧ #k

c0
(T ) > 1

) ∨ (
1k

wb(T ) = 0 ∧ #k
pb(T ) > 2

)
,

k, otherwise.

Note that the following formulas allow us to find #k
b(T ), #k

pb(T ), 1k
wb(T ) and #k

c0
(T ):

#k
b(T ) =

l∑
j=1

#k
b(T j), #k

pb(T ) =
l∑

j=1

#k
pb(T j),

#k
c0

(T ) = ∣∣{ j
∣∣ c0(T j) = k

}∣∣ , 1k
wb(T ) = 1(

l∑
j=1

1k
wb(T j)).

The values of #k
b(T j), #k

pb(T j), c0(T j) and 1k
wb(T j) are taken directly from the k-label of T j for each j ∈ {1, . . . , l}.

If m = k + 1, then the label of T is (m, 0, 0, 0, ⊥). Thus, the k′-label of T is Lk′(T ) = (k′, 0, 0, 0, ⊥) and the proof is 
completed. Hence, let m = k in the following.
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Algorithm 2 Computing the zero-visibility copnumber of an input tree T .
1: Root T at any vertex.
2: Take a permutation u1, . . . , un of vertices of T such that ui ≺ u j implies i < j for all i = j.
3: for i := 1 to n do
4: Let v1, . . . , v� be the children of ui in T .
5: k := max{c0(T [v j ]) 

∣∣ j ∈ {1, . . . , �}}
6: Compute #k

b(T [ui ]).

7: if #k
b(T [ui ]) = 1 then

8: Find the index s ∈ {1, . . . , �} such that #k
b(T [vs]) = 1.

9: Compute the k-label of T [ui] − V T [xi ] , where xi = bk(T [vs]).
10: Compute the label of T [ui].
11: else
12: Compute the label of T [ui].
13: end if
14: end for
15: return c0(T ) that is stored in its label.

We have #k
b(T ) = 1(q +#k

b(T )), where q = 1 if r(T ) is k-branching and q = 0 otherwise. Lemma 4.1, m = k and #k
b(T ) = 1

imply that q = 1 if and only if: #k
b(T ) = 0, 1k

wb(T ) = 1 and #k
c0

(T ) ≤ 1.

Then, 1k
wb(T ) = 1(q′ + 1k

wb(T )), where q′ = 1 if r(T ) is weakly k-branching and q = 0 otherwise. Lemma 4.1, m = k and 
#k

b(T ) = 1 imply that q′ = 1 if and only if: #k
b(T ) = 0, 1k

wb(T ) = 0 and #k
pb(T ) = 2.

Similarly, #m
pb(T ) = 1(q′′ + #k

pb(T )), where q′′ = 1 if r(T ) is k-pre-branching and q = 0 otherwise. This follows from the 
fact that if the root of T is k-branching or weakly k-branching, then one of the subtrees T j ’s contains a k-pre-branching 
vertex. Again, Lemma 4.1, m = k and #k

b(T ) = 1 imply that q′′ = 1 if and only if: #k
b(T ) = 0, 1k

wb(T ) = 0 and #k
pb(T ) < 2.

It remains to determine the vertex v in L(T ) in case when m = k. Thus, #k
b(T ) = 0 and hence v = r(T ) if q = 1 and 

v = ⊥ otherwise. Finally, we obtain that Lk′ (T ) = L(T ) when k′ = k and Lk′ (T ) = (k′, 0, 0, 0, ⊥) otherwise. �
Theorem 4.3. There exists a linear time algorithm that computes the zero-visibility cop number of any tree.

Proof. Our proof is constructive, i.e., we describe an algorithm computing the zero-visibility copnumber of an input tree 
T . We start with its informal description that points out the main ideas. First, T is rooted at any vertex. The vertices of 
T are ordered as v1, . . . , vn so that each vertex appears in it prior to its parent. The vertices are then processed accord-
ing to this order. The processing of a vertex u leads to finding the label of the subtree T [v] and, if this subtree has a 
c0(T [u])-branching v , then the c0(T )-label of the subtree T [u] − V T [v] . Denote by k the maximum zero-visibility copnum-
ber among the subtrees descendant from the children of u, and denote by v1, . . . , vl the children of u. Note that the number 
of k-branching vertices in the subtrees T [v1], . . . , T [vl], i.e., #k

b(T [u]), can be computed on the basis of the labels of those 
subtrees. Then, two cases are considered. In the first case #k

b(T [u]) = 1 where in order to compute the label of T [u] we need 
to know the zero-visibility copnumber of the subtree T [u] − V T [v] , where v = bk(T [u]). (See Lemma 4.1(ii) and 4.1(iii).) In 
order to compute the desired c0(T [u] − V T [v]), we compute the k-label of this subtree. Note that, for the computation of 
the latter label, we do not use 4.1(ii) and 4.1(iii) since, by assumption, there is no k-branching vertex in T [u] − V T [v] . In the 
second case #k

b(T [u]) = 1 where we use Lemma 4.1(i) and 4.1(iv) for the label computation.
We now give a sketch of the algorithm in the form of a pseudo-code. This sketch gives the order of computations of 

labels of selected subtrees. The details on how the instruction from lines 6, 9, 10 and 12, can be implemented are given 
below.

We now give the details of Algorithm 2 by arguing that its subsequent calculations can be performed. To that end we 
argue by induction on i ∈ {1, . . . , n} that at the end of the i-th iteration of the ‘for’ loop the following invariant is satisfied:

(i1) for each j ∈ {1, . . . , i}, the k j-label Lk j (T [u j]) is computed, where k j = c0(T [u j]), and

(i2) for each j ∈ {1, . . . , i}, if #k j

b (T [u j]) = 1, then the k j -label Lk j (T [u j] − V T [x j ]) is computed, where x j = bk j (T [u j]).

Note that when ui has no children, then in the i-th iteration we have: k = 0, #k
b(T [ui]) = 0. Hence, in such case the label 

L(T [ui]) = (1, 0, 0, 0, ⊥) can be computed in line 12. Thus, in particular, the claim holds for i = 1.
Suppose that (i1) and (i2) hold for some i − 1 ≥ 1 and we consider the i-th iteration of the ‘for’ loop of Algorithm 2.
First note that the integer k, computed in line 5, can be obtained directly from the labels of the subtrees T [vi ], i ∈

{1, . . . , l}; each of those labels holds the zero-visibility number of the corresponding subtree. By the inductive hypothesis 
(i1), the latter labels are computed. Moreover, in line 6, we can use the following formula:

#k
b(T [ui]) = 1(

l∑
#k

b(T [vi])).

j=1
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Denote T ′ = T [ui] − V T [xi ] and we now consider the computation of the k-label Lk(T ′) in line 9. Denote T j = T [v j] for 
j ∈ {1, . . . , l} \ {s} and Ts = T [vs] − V T [xs] . By (i1), the label of T j is computed at the end of the (i − 1)-th iteration of 
Algorithm 2 for each j ∈ {1, . . . , l} \ {s}. By (i2), the label of Ts is also computed. Note that #k

b(T [ui]) = 1 implies #k
b(T ′) = 0. 

Thus, by Claim 4.2, the k-label of T ′ can be indeed computed in line 9.
We now consider the computation of L(T [ui]) in line 10. Note that #k

b(T [ui]) = 1. Thus, by Lemma 4.1, if c0(T ′) ≥ k, 
then L(T [ui]) = (k + 1, 0, 0, 0, ⊥); and if c0(T ′) < k, then L(T [ui]) = (k, 1, 1, 1, xs). Note that c0(T ′) can be derived from its 
label computed in line 9.

Finally, Claim 4.2 implies that the label of T [ui ] can be computed in line 12. This completes the proof of (i1) and (i2).
We finish by estimating the running time of Algorithm 2. By Claim 4.2, computations in lines 9 and 12 can be done in 

time O (l). Lines 5, 6 and 8 clearly require linear time in l. By the arguments above, the computation of label in line 10 can 
be done in time O (1). Thus, the running time of the i-th iteration of the ‘for’ loop is linear in the number of children of ui . 
This implies that the running time of Algorithm 2 is O (n). �
5. NP-hardness of zero-visibility cops and robber

Let G be an n-vertex graph with vertex set V G = {v1, . . . , vn}. Let C be a set and let VG = {V ij
∣∣ vi v j ∈ EG } be a collection 

of sets where VG together with C form a pairwise disjoint collection of sets of order n. Define ξ(G) to be the graph obtained 
as follows. The vertex set of ξ(G) is

V ξ(G) = C ∪
⋃

vi v j∈EG

V ij,

where C , and V ij is of size n for each i j such that vi v j ∈ EG . Moreover, C and all V 1, . . . , Vm are pairwise disjoint. Then, 
the edge set of ξ(G) is defined so that C induces a clique and V ij ∪ {ci, c j} induces a clique of order n + 2 for each edge 
vi v j of G .

For any n > 0 define Gn = {ξ(G) 
∣∣ G is an n-vertex graph} and let G = ⋃

n>0 Gn . The above construction appears in [7], 
where it has been proved that the problem of deciding whether pw(G) ≤ k is NP-complete for G ∈ Gn and n < k < 2n − 3. 
Here, pw(G) denotes the pathwidth of G . One can prove that the result holds when we assume that G ∈ Gn when both n
and k are even. To summarise, we have the following.

Theorem 5.1. (See [7].) Given G ∈ Gn, where n is even, and an even integer k∗, 2 ≤ k∗ ≤ n − 4, the problem of deciding whether 
pw(G) ≤ n + k∗ − 1 is NP-complete.

In the remaining part of this section we assume that the integers n and k∗ are even and k∗ ≤ n − 4.
We recall the following definition from [7].

Definition 5.2. (See [7].) A path decomposition (X1, . . . , Xl) of a graph G is normalised if for each maximal clique Y of G
there exists exactly one j ∈ {1, . . . , l} such that Y ⊆ X j .

Theorem 5.3. (See [7].) For each graph G there exists an optimal normalised path decomposition.

Now we recall the node search problem that we will use in our reduction. Given any graph G that contains a fugitive, a 
node k-search for G is a sequence of moves such that each move is composed of the following two actions:

1. Place a number of searchers on the vertices of G , which results in at most k vertices being occupied by the searchers.
2. Remove from G a subset of searchers that are present on the vertices of G .

A vertex is contaminated if it may contain the fugitive. Initially, all vertices are contaminated. The fugitive is invisible and 
fast, i.e., it can traverse at any moment along an arbitrary path that is free of searchers. A node search is successful if there 
are no contaminated vertices after the last move of a node search N . The minimum number of searchers k such that there 
exists a successful node k-search strategy for G is called the node search number of G and is denoted by ns(G).

We will prove that for each G ∈ Gn , c0(G) ≤ n/2 + k∗/2 if and only if ns(G) ≤ n + k∗ . First we focus on proving that 
ns(G) ≤ n + k∗ implies c0(G) ≤ n/2 + k∗/2 and then we prove the reverse implication.

We have the following [9,11,12,14]:

Theorem 5.4. For any graph G, pw(G) = ns(G) − 1.

By Theorem 5.1 and by Theorem 5.4,

Theorem 5.5. Given G ∈ Gn and k∗ , the problem of deciding whether ns(G) ≤ n + k∗ is NP-complete.
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Let P = (X1, . . . , Xl) be a path decomposition of a graph G . We say that a node search N is derived from P if the j-th 
move of N places the searchers on the unoccupied vertices in X j and then removes the searchers from the vertices in 
X j \ X j+1. Note that the node search strategy derived from a path decomposition is monotonic.

Lemma 5.6. Let G ∈ Gn and let k∗ be given. If ns(G) ≤ n + k∗ , then c0(G) ≤ n/2 + k∗/2.

Proof. Suppose that ns(G) ≤ n + k∗ . By Theorem 5.3 and by Theorem 5.4, there exists a normalised path decomposition 
P = (X1, . . . , Xl) of G of width n + k∗ − 1. From Definition 5.2 we know that for each i ∈ {1, . . . , l} and for each V ′ ∈ VG ,

V ′ ⊆ Xi or V ′ ∩ Xi = ∅. (1)

Similarly as in [4], we obtain a cops’ successful strategy L that uses at most �maxi |Xi |/2� cops. Since n and k∗ are even 
and maxi |Xi | ≤ n + k∗ , L uses at most (n + k∗)/2 cops, which completes the proof. �

In the following we prove the reverse implication, that is, c0(G) ≤ n/2 + k∗/2 implies ns(G) ≤ n + k∗ . The key idea that 
we use is an observation that, due to the small diameter and the clique structure of the graphs in Gn , the recontamination 
spreads, informally speaking, ‘as quickly’ in the cops and robber game as in the node search. We start with the following 
lemma.

Lemma 5.7. Let G ∈ Gn. If c0(G) ≤ k < n − 3, then there exists a successful strategy L = {li}k
i=1 of length t in G such that:

(i) for each j ∈ {1, . . . , t} there exists V ′ ∈ VG such that L j ⊆ C ∪ V ′ , and
(ii) if S j−1 ∩ V ′ = ∅ and S j ∩ V ′ = ∅ for some j ∈ {1, . . . , t} and V ′ ∈ VG , then |L j−1 ∩ V ′| ≥ n/2 and |L j ∩ V ′| ≥ n/2.

Proof. Since c0(G) ≤ k, there exists a successful strategy L′ = {l′i}k
i=1 of length t on G . We may without loss of generality 

assume that, in L′ , no cop enters a V ′ ∈ VG if all vertices of V ′ are clean, i.e., for each i ∈ {1, . . . , k}, if all vertices of V ′ are 
clean in some turn j − 1, then l′i( j) /∈ V ′ . This follows from the structure of the graphs in Gn .

We start by modifying L′ , if necessary. We describe a modification that is applied iteratively as long as a time point 
j defined below exists. Informally speaking, we find a time point j such that some cops are on a V ′ ∈ VG during at least 
three consecutive turns starting with turn j. Then, we can ‘postpone’ the cops so that they enter in turn j + 1. Formally, 
suppose that there exists a minimum integer j ∈ {1, . . . , t} and V ′ ∈ VG such that V ′ ∩L′

j−1 = ∅, V ′ ∩L′
j = ∅, V ′ ∩L′

j+1 = ∅
and V ′ ∩ L′

j+2 = ∅, (If no such j and V ′ exist, then no modification to L′ is made.) Let I = {i ∈ {1, . . . , k} ∣∣ l′i( j) ∈ V ′}, 
i.e., I is the set of cops that are present on the vertices of V ′ in turn j. By assumption, I = ∅. Modify L′ as follows. If 
i ∈ {1, . . . , k} \ I , then l′i does not change. If i ∈ I , then change l′i( j) to be an arbitrarily selected vertex v ∈ NG(V ′). Note that, 
after this modification, l′i is still a walk because NG [V ′] induces a clique in G . If L′′ is the modified strategy, then we have 
L′′

j+1 ∩ NG [V ′] = L′
j+1 ∩ NG [V ′] and L′′

j+2 ∩ NG [V ′] = L′
j+2 ∩ NG [V ′]. Thus, at the end of turn j + 2, the vertices of V ′ are 

clean in L′′ if and only if the vertices of V ′ are clean in L′ .
Denote by L the strategy obtained by iteratively applying to L′ the transformation given above. We write L′ to refer to 

the initial strategy. Note that the set of vertices in C occupied by the cops in L′ in any turn j ∈ {1, . . . , t} is contained in 
the set of vertices in C occupied by the cops in L in turn j, i.e., L′

j ∩ C ⊆L j ∩ C . Moreover, we obtain that for each V ′ ∈ VG

and for each j ∈ {1, . . . , t}, V ′ ⊆ V G \ S j if and only if V ′ ⊆ V G \ S ′
j . This implies that L is successful.

We argue that L satisfies (i). Suppose for a contradiction that (i) does not hold, i.e., that there exists j ∈ {1, . . . , t}
such that V ′ ∩ L j = ∅ and V ′′ ∩ L j = ∅ for some V ′, V ′′ ∈ VG . Select j to be the minimum index with this property. By 
construction of L, we have two cases: either all vertices in V ′ ∪ V ′′ become clear in turn j + 1, or the vertices of V ′ become 
clear in turn j + 1 and the vertices of V ′′ become clear in turn j. In both cases there are at least n/2 cops on both V ′ and 
V ′′ in turn j + 1. Hence, k ≥ n, a contradiction.

To conclude the second part of the lemma observe that k < n − 3 implies that if all vertices of some clique V ′ ∈ VG are 
dirty in some turn j, then V ′ �L j+1, i.e., all vertices of V ′ cannot be cleaned in turn j + 1. �

We say that a finite successful strategy L = {li}k
i=1 of length t for G is normal if there exist 1 < s1 < s2 < · · · < sp ≤ t

such that

(N1) s j+1 − s j ≥ 3 for each j ∈ {1, . . . , p − 1},
(N2) for each j ∈ {1, . . . , p}, there exists a unique V ′ ∈ VG such that Lq ⊆ C ∪ V ′ and at least n/2 cops are on the vertices 

in NG [V ′] in turn q for each q ∈ {s j − 2, . . . , s j + 1}.
(N3) L j ⊆ C for each j ∈ ⋃p

j′=1{s j′−1 + 1, . . . , s j′ − 2}, where s0 = 1.

We call s1, . . . , sp the clearing sequence of L. If Lq ∩ V ′ = ∅ for some s j−1 < q ≤ s j , then we say that V ′ is the clique 
corresponding to s j .
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Before we prove that normal strategies exist, let us give an intuition on the structure of such a strategy. Condition (N1) 
requires that two turns in which two cliques in VG become clear are separated by at least two other turns. If k < n, then 
(informally speaking) n/2 cops need to be on the vertices of V ′ in two consecutive turns s j − 1 and s j to clear V ′ and 
therefore those cops are on NG [V ′] in the four moves to which we refer in (N2). Finally, (N3) says that the cops are on the 
vertices on C between the moves that clear the cliques corresponding to s1, . . . , sp . Note that s j+1 − s j = 3 is possible only 
if the two cliques that correspond to s j and s j+1 have a common neighbour in C .

Lemma 5.8. Let G ∈ Gn. If c0(G) ≤ k < n, then there exists a normal strategy that uses k cops for G.

Proof. Let L = {li}k
i=1 be a strategy that satisfies the conditions in Lemma 5.7. Select s1, . . . , sp as an increasing sequence 

of integers in {1, . . . , t} such that V ′ ∩ Ss j−1 = ∅ and V ′ ∩ Ss j = ∅ for some V ′ ∈ VG if and only if j ∈ {1, . . . , p}. Note that 
s1 > 1 because k < n. By Lemma 5.7(ii), for each j ∈ {1, . . . , p} at least n/2 cops are on the vertices of some V ′ ∈ VG in 
turns s j and s j − 1. Hence, by construction of G and Lemma 5.7(i), Ls j−2 ∪ Ls j+1 ⊆ C . This proves (N1) and (N2) for L. 
Condition (N3) follows directly from the fact that one may always assume that if all vertices of a V ′ ∈ VG are clear at the 
beginning of some step j, then no cop enters V ′ in step j. �

Let G ∈ Gn . Let L = {li}k
i=1 be a normal strategy of length t for G and let s1, . . . , sp be its clearing sequence. Define a 

node search N for G that consists of p stages, where the j-th stage is the following sequence of moves:

(S1) Place the searchers on all unoccupied vertices of C . Remove the searchers from all vertices in C \ (Ls j ∪Ls j−1). (Note 
that this may cause recontamination for some vertices in C .)

(S2) Place the searchers on all vertices of the clique V ′ corresponding to s j . Remove all searchers from the vertices in V ′ .

We say that N is the node search derived from L. Below we prove that the definition of N is correct, i.e., N is indeed a 
node 2k-search for G .

Lemma 5.9. Let G ∈ Gn. The node search N derived from a normal strategy L that uses k cops is successful and uses at most 2k
searchers.

Proof. First observe that k ≥ n/2, because L is successful and G contains a clique on n vertices as a subgraph. Hence, n ≤ 2k. 
Note that at the end of each stage of N the set of vertices that are occupied is a subset of C . In (S1) at most |C | searchers 
are on the vertices of G , and |C | = n ≤ 2k. Step (S2) uses n + j searchers, where j is the number of searchers on the vertices 
of C . By construction, j ≤ 2k − n, which proves that N uses at most 2k searchers.

Now we prove that N is successful. Denote by U j the set of contaminated vertices in V G \ C at the end of j-th stage of 
N for each j ∈ {0, . . . , p}. We argue, by induction on j, that

U j ⊆ Rs j+1. (2)

In other words, we argue that after each move (S2) of N the set of vertices that are contaminated is contained in the set 
of vertices contaminated in L immediately after the robber’s s j -th turn (i.e., immediately before the cops’ (s j + 1)-st turn).

For j = 0 we take s0 = −1 and U0 =R0 = V G , which reflects the initial states in both strategies.
Let j ∈ {0, . . . , p − 1}. Suppose that (2) holds and we prove that it is satisfied for j + 1. Since L is normal, we obtain 

that, for each V ′ ∈ VG , V ′ ∩Rs j+1 = ∅ if and only if V ′ ⊆Rs j+1. Let V 1, . . . , Vq be all cliques in VG such that each of them 
is contained in Rs j+1, and let

X =
q⋃

i=1

NG(V i).

If X ⊆ Ls j+1 ∪Ls j+1−1, then by (S1) and (S2) the vertices in NG(Vq′) are guarded in all moves of the j-stage of N for each 
q′ ∈ {1, . . . , q}. Hence, by (S1), no recontamination occurs in any of the moves in the j-th stage of N , and the claim follows 
for j + 1 in such case.

Thus, assume that X �Ls j+1 ∪Ls j+1−1. Then, there exists v ′ ∈ C such that

v ′ ∈ Rs j+1−1 and v ′ /∈ Ls j+1 ∪Ls j+1−1.

Since C induces a clique in G , we have

u ∈ Rs j+1 for each u ∈ C \ (Ls j+1 ∪Ls j+1−1). (3)

Finally, each clique V ′ corresponding to any such vertex u becomes contaminated after robber’s s j+1-th turn, i.e., V ′ ⊆
Rs j+1+1. Thus, (3) and the definition of N in (S1) and (S2) complete the proof of (2).
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Note that no clique in VG is contaminated at the end of turn sp because L is successful. Also, if there exists v ∈ C ∩Ssp , 
then some clique corresponding to v would be contaminated at the end of sp -turn — a contradiction. Hence, Rsp+1 = ∅
and it follows from (2) that N clears all vertices of G as required. �
Lemma 5.10. Let G ∈ Gn and let k∗ be given. If c0(G) ≤ n/2 + k∗/2, then ns(G) ≤ n + k∗ .

Proof. Let L = {li}k
i=1 be a normal successful strategy for G . By Lemma 5.8 such a strategy exists. By Lemma 5.9, there exists 

a node 2k-search for G . �
Lemmas 5.6 and 5.10 give the following.

Theorem 5.11. Given G ∈ Gn and an integer k > 0, the problem of deciding whether c0(G) ≤ k is NP-complete. �
Since Gn consists of starlike graphs for each n > 0, we have the following corollary.

Corollary 5.12. The problem of computing the zero-visibility copnumber of a given starlike graph is NP-hard. �
6. Conclusions and future directions

Having shown that the zero-visibility cops and robber game has a linear time algorithm for trees (and is NP-complete for 
starlike graphs), it is natural to consider other special classes of graphs for which similar complexity results are known for 
edge and node searching. Particularly, interval graphs (which can be essentially searched from left to right) and cycle-disjoint 
graphs (which are ‘tree-like’) are good candidates [6,20].

Outside of complexity, it also remains open to characterise those graphs with c0(G) ≤ 2 [19,8]. This is a natural question, 
as characterisations exist for graphs whose edge search number is at most 3 [13]. As well, graphs with copnumber one have 
long been characterised [15], and there is a recent characterisation for larger copnumbers [3].
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