# The convex domination subdivision number of a graph 

M. Dettlaff ${ }^{1}$, S. Kosari ${ }^{2}$, M. Lemańska ${ }^{1}$, S.M. Sheikholeslami ${ }^{2}$<br>${ }^{1}$ Faculty of Applied Physics and Mathematics Gdańsk University of Technology, ul. Narutowicza 11/12 80-233, Gdańsk, Poland<br>mdettlaff;magda@mif.pg.gda.pl<br>${ }^{2}$ Department of Mathematics<br>Azarbaijan Shahid Madani University, Tabriz, I.R. Iran<br>s.m.sheikholeslami@azaruniv.edu

Received: 22 June 2016; Accepted: 8 August 2016;
Available Online: 9 August 2016.

Communicated by Peter Dankelmann


#### Abstract

Let $G=(V, E)$ be a simple graph. A set $D \subseteq V$ is a dominating set of $G$ if every vertex in $V \backslash D$ has at least one neighbor in $D$. The distance $d_{G}(u, v)$ between two vertices $u$ and $v$ is the length of a shortest $(u, v)$-path in $G$. An $(u, v)$-path of length $d_{G}(u, v)$ is called an $(u, v)$-geodesic. A set $X \subseteq V$ is convex in $G$ if vertices from all $(a, b)$-geodesics belong to $X$ for any two vertices $a, b \in X$. A set $X$ is a convex dominating set if it is convex and dominating set. The convex domination number $\gamma_{\text {con }}(G)$ of a graph $G$ equals the minimum cardinality of a convex dominating set in $G$. The convex domination subdivision number $\operatorname{sd}_{\gamma_{\text {con }}}(G)$ is the minimum number of edges that must be subdivided (each edge in $G$ can be subdivided at most once) in order to increase the convex domination number. In this paper we initiate the study of convex domination subdivision number and we establish upper bounds for it.


Keywords: convex dominating set, convex domination number, convex domination subdivision number.

2010 Mathematics Subject Classification:05C69

## 1. Introduction

Throughout this paper, $G$ is a simple connected graph with vertex set $V(G)$ and edge set $E(G)$ (briefly $V$ and $E$ ). For every vertex $v \in V(G)$, the open neighborhood of $v$ is the set $N(v)=\{u \in V(G) \mid u v \in E(G)\}$ and the closed
neighborhood of $v$ is the set $N[v]=N(v) \cup\{v\}$. The open neighborhood of a set $S \subseteq V$ is the set $N(S)=\cup_{v \in S} N(v)$, and the closed neighborhood of $S$ is the set $N[S]=N(S) \cup S$. The degree of a vertex $v$ is $\operatorname{deg}_{G}(v)=\left|N_{G}(v)\right|$. A leaf is a vertex of degree one and a universal vertex is a vertex of degree $|V(G)|-1$. We denote the number of leaves in a graph $G$ by $\ell(G)$. The minimum and maximum degree of $G$ are denoted by $\delta(G)$ and $\Delta(G)$, respectively. The private neighborhood of a vertex $u$ with respect to a set $D \subseteq V$, where $u \in D$, is the set $P N_{G}[u, D]=N_{G}[u]-N_{G}[D-\{u\}]$. If $v \in P N_{G}[u, D]$, then we say that $v$ is a private neighbor of $u$ with respect to $D$. For a set $S$ of vertices of $G$ we denote by $G[S]$ the subgraph induced by $S$ in $G$. The distance $d_{G}(u, v)$ between two vertices $u$ and $v$ in a connected graph $G$ is the length of a shortest $(u, v)$-path in $G$. A $(u, v)$-path of length $d_{G}(u, v)$ is called $(u, v)$-geodesic. The greatest distance between any pair of vertices $u, v$ in $G$ is the diameter of $G$, denoted by $\operatorname{diam}(G)$. The girth of a graph $G$, denoted by $g(G)$, is the length of its shortest cycle. The girth of a graph with no cycle is defined $\infty$. The edge-connectivity $\kappa^{\prime}(G)$ of $G$ is the minimum number of edges whose removal results in a disconnected graph. Clearly for every graph $G, \kappa^{\prime}(G) \leq \delta(G)$. Consult [14] for the notation and terminology which are not defined here.
A set $A \subset V(G)$ is a dominating set of $G$ if $N_{G}[A]=V$. The domination number $\gamma(G)$ is the minimum cardinality of a dominating set of $G$, and a dominating set of minimum cardinality is called a $\gamma(G)$-set. A set $X$ is weakly convex in $G$ if for any two vertices $a, b \in X$ there exists an $(a, b)$-geodesic such that all of its vertices belong to $X$. A set $X \subseteq V$ is a weakly convex dominating set if it is weakly convex and dominating. The weakly convex domination number $\gamma_{\text {wcon }}(G)$ of a graph $G$ equals the minimum cardinality of a weakly convex dominating set in $G$.
A set $X \subset V(G)$ is convex in $G$ if vertices from all $(a, b)$-geodesics belong to $X$ for any two vertices $a, b \in X$. A set $X$ is a convex dominating set if it is convex and dominating. The convex domination number of a graph $G$, denoted by $\gamma_{\mathrm{con}}(G)$, equals the minimum cardinality of a convex dominating set in $G$ and a convex dominating set of minimum cardinality is called a $\gamma_{\mathrm{con}}(G)$-set. The (weakly) convex domination number was first investigated in [15], and since then has been studied by several authors [4, 16, 17].
Let us denote by $G_{u v}$ or $G_{e}$ the graph obtained from a graph $G$ by subdividing an edge $e=u v \in E(G)$. The following result was proved in [7].

Proposition 1. The difference between $\gamma_{\mathrm{con}}(G)$ and $\gamma_{\mathrm{con}}\left(G_{u v}\right)$ and between $\gamma_{\text {con }}\left(G_{u v}\right)$ and $\gamma_{\text {con }}(G)$ can be arbitrarily large.

It means that subdividing an edge can arbitrarily increase or decrease the convex domination number.

The (weakly convex, convex) domination subdivision number $\operatorname{sd}_{\gamma}(G)$ $\left(\operatorname{sd}_{\gamma_{\text {woon }}}(G), \operatorname{sd}_{\gamma_{\text {con }}}(G)\right)$ of a graph $G$ is the minimum number of edges that must be subdivided (where each edge in $G$ can be subdivided at most once) in order to increase the (weakly convex, convex) domination number. (An edge $u v \in E(G)$ is subdivided if the edge $u v$ is deleted, but a new vertex $x$ is added, along with two new edges $u x$ and $v x$. The vertex $x$ is called a subdivision ver$t e x$ ). Since the (weakly convex, convex) domination number of the graph $K_{2}$ does not change when its only edge is subdivided, we will always assume that when we discuss $\operatorname{sd}_{\gamma_{\text {con }}}(G)$ all graphs involved are connected with $\Delta(G) \geq 2$. The domination subdivision number, defined in Velammal's thesis [18], has been studied be several authors (see for instance [1, 9, 11, 13]). A similar concept related to connected domination in [10], to Roman domination in [2], to rainbow domination in $[5,8]$, and to 2 -domination in [3].
The purpose of this paper is to initialize the study of the convex domination subdivision number $\operatorname{sd}_{\gamma_{\text {con }}}(G)$. Since subdividing an edge may decrease the convex domination number (Proposition 1), it may not be immediately obvious that the convex domination subdivision number is defined for all connected graphs with $\Delta(G) \geq 2$. We will show this shortly.
We make use of the following results in this paper.

Proposition 2. [15] If $G$ is a connected graph of order $n$, then $\gamma_{\mathrm{wcon}}(G) \leq \gamma_{\mathrm{con}}(G)$.

Proposition 3. [4] If $G \neq K_{n}$ and $D$ is a $\gamma_{\mathrm{con}}(G)$-set, then every cut-vertex belongs to $D$.

## 2. Basic properties of convex domination subdivision number

In this section, we investigate the basic properties of the convex domination subdivision number of a graph.

Theorem 1. Let $G$ be a connected graph on at least three vertices, let $E_{S}$ be a set of edges of $G$, let $H$ be obtained from $G$ by subdividing the edges in $E_{S}$, and let $S$ be the set of subdivision vertices. If $D_{H}$ is a convex dominating set of $H$, but $D:=D_{H}-S$ is not a convex dominating set of $G$, then there exists a cycle of length at most 4 in $G$ through some vertex of $D$.

Proof. We first show that $D$ is a dominating set of $G$. If $v$ is an arbitrary vertex of $G$, then either (i) $v \in D$, or (ii) $v \in N_{H}(w)$ for some vertex $w \in$ $D_{H}-S$, or (iii) $v \in N_{H}(w)$ for some vertex $w \in S$. In case (i) or (ii) it is immediate the $v$ is dominated by $D$, and in case (iii) $w$ is the subdivision vertex
of an edge $e$ of $H$ that is incident with $v$, and that it follows by the convexity of $D_{H}$ that the other end of $e$ is contained in $D_{H}$ and thus is $D$, so $v$ is also dominated by $D$.
Since $D$ is a dominating set of $G$, it follows that $D$ is not convex in $G$. Let $a, b \in D$ be two vertices of $G$ such that there exists an $(a, b)$-geodesic $P$ in $G$ containing vertices of $V(G)-D$. We assume that $a$ and $b$ have been chosen so that $d(a, b)$ is minimal with this property. Then

$$
\begin{equation*}
V(P) \cap D=\{a, b\} . \tag{1}
\end{equation*}
$$

Let $P=a, a_{1}, a_{2}, \ldots, a_{k}$, where $a_{k}=b$. Clearly, $k \geq 2$. Now $P$ corresponds to an $(a, b)$-path $P_{H}$ in $H$. None of the edges of $P$, except possibly $a a_{1}$ and $a_{k-1} b$, are in $E_{S}$, since otherwise $P$ would contain vertices of $D$ in its interior, contradicting (1). Since $D_{H}$ is convex in $H$, it follows that $P_{H}$ is not an $(a, b)$ geodesic in $H$. Hence $P_{H}$ is longer than $P$, so at least one of the edges of $P$, without loss of generality $a a_{1}$, is in $E_{S}$. Let $u$ be the subdivision vertex of $a a_{1}$. Now $a_{1}$ is dominated in $H$ by some vertex $b_{1} \in D_{H}$ (possibly $b_{1}=b$ ). We claim that $b_{1} \neq u$. Suppose, to the contrary, that $b_{1}=u$. Since $D_{H}$ is convex and since $a_{1} \notin D_{H}$, we conclude that every $(u, b)$-geodesic in $H$ passing through $a$. Hence, $u P_{H} b$ is a $(u, b)$-path in $H$ of length at most $k+1$ which is not a $(u, b)$-geodesic. Let $P_{H}^{\prime}$ be a $(u, b)$-geodesic in $H$. Clearly, the length of $P_{H}^{\prime}$ is at most $k$. Now $a P_{H}^{\prime} b$ corresponds to an $(a, b)$-path $P^{\prime}$ in $G$ of length at most $k-1$ which contradicts $d(a, b)=k$. Thus $b_{1} \neq u$. Since $b_{1}, a_{1}, u, a$ is a path joining two vertices in $D_{H}$ that contains vertices not in $D_{H}$, it follows by the convexity of $D_{H}$ that there exists a $\left(b_{1}, a\right)$-path $Q$ in $H$ of length at most two. The paths $a, u, a_{1}, b_{1}$ and $Q$ form a cycle of length at most five in $H$, which corresponds to a cycle of length at most four in $G$ containing $a$, as desired.

A closer look at the proof of Theorem 1 leads to the next result.

Corollary 1. Let $G$ be a connected graph on at least three vertices, let $E_{S}$ be a set of edges of $G$, let $H$ be obtained from $G$ by subdividing the edges in $E_{S}$, and let $S$ be the set of subdivision vertices. If $D_{H}$ is a convex dominating set of $H$, then $D:=D_{H}-S$ is a dominating set of $G$.

Theorem 2. For any connected graph $G$ of order $n \geq 3$ and size $m, \operatorname{sd}_{\gamma_{\text {con }}}(G) \leq m$.

Proof. Let $H$ be the graph obtained from $G$ by subdividing all edges of $G$, let $T$ be the set of all subdivision vertices and let $D_{H}$ be a convex dominating set of $H$. Clearly, $H$ is a bipartite graph with partite sets $V(G)$ and $T$. It follows that $\gamma_{\mathrm{con}}(H) \geq 2$. Since for any two vertices $x, y \in V(G)$, every $(x, y)$-geodesic in $H$ contains at least one subdivision vertex, we conclude that $D_{H} \cap T \neq \emptyset$. By

Corollary $1, D:=D_{H}-T$ is a dominating set of $G$. Now, let $a, b \in D$ be two arbitrary vertices. If $P$ is an $(a, b)$-geodesic in $G$, then clearly $P$ corresponds to an $(a, b)$-geodesic $P_{H}$ in $H$. Since $D_{H}$ is convex in $H$, we deduce that $V(P) \subseteq D$ and so $D$ is convex. Thus $D$ is a convex dominating set of $G$ of size smaller than of $\gamma_{\text {con }}(H)$. This yields $\operatorname{sd}_{\gamma_{\text {con }}}(G) \leq m$ and the proof is completed.

A consequence of Theorem 2 is that $\operatorname{sd}_{\gamma_{\text {con }}}(G)$ is defined for every connected graph $G$ of order $n \geq 3$.
Given $S, T \subseteq V(G)$, we write $[S, T]$ for the set of edges having one end-point in $S$ and the other in $T$. An edge cut is an edge set of the form $[S, \bar{S}]$, where $S$ is a nonempty proper subset of $V(G)$ and $\bar{S}$ denotes $V(G)-S$.

Theorem 3. For any connected triangle-free graph $G$ of order $n \geq 3, \operatorname{sd}_{\gamma_{\text {con }}}(G) \leq$ $\kappa^{\prime}(G)$.

Proof. Assume $E_{T}=[S, \bar{S}]$ is an edge cut of $G$ of size $\kappa^{\prime}(G), G_{1}$ and $G_{2}$ are the components of $G-E_{T}$, and $H$ is the graph obtained from $G$ by subdividing the edges of $E_{T}$. Let $T$ be the set of all subdivision vertices and let $D_{H}$ be a convex dominating set of $H$ and $D_{i}=D_{H} \cap V\left(G_{i}\right)$ for $i=1$, 2. If $D_{H} \cap T=\emptyset$, then $D_{i} \neq \emptyset$ for $i=1,2$, and $D_{H}=D_{1} \cup D_{2}$. Now for vertices $x_{1} \in D_{1}$ and $x_{2} \in D_{2}$, any ( $x_{1}, x_{2}$ )-geodesic path intersect $T$ implying that $D_{H} \cap T \neq \emptyset$ which leads to a contradiction. Therefore $D_{H} \cap T \neq \emptyset$. By Corollary $1, D:=D_{H}-T$ is a dominating set of $G$. Now we show that $D$ is convex in $G$. Assume, to the contrary, that $D$ is not a convex set in $G$. Let $a, b \in D$ be two vertices of $G$ such that there exists an $(a, b)$-geodesic $P$ in $G$ containing vertices of $V(G)-D$. We suppose that $a$ and $b$ have been chosen so that $d(a, b)$ is minimal with this property. Then

$$
\begin{equation*}
V(P) \cap D=\{a, b\} . \tag{2}
\end{equation*}
$$

Let $P=a, a_{1}, a_{2}, \ldots, a_{k}$, where $a_{k}=b$. Clearly, $k \geq 2$. Now $P$ corresponds to an $(a, b)$-path $P_{H}$ in $H$. None of the edges of $P$, except possibly $a a_{1}$ and $a_{k-1} b$, are in $E_{T}$, since otherwise $P$ would contain vertices of $D$ in its interior, contradicting (2). Since $D_{H}$ is convex in $H$, we conclude that $P_{H}$ is not an $(a, b)$-geodesic in $H$. Hence $P_{H}$ is longer than $P$, so at least one of the edges of $P$, without loss of generality $a a_{1}$, is in $E_{T}$. Assume that $a \in V\left(G_{1}\right)$ and $a_{1} \in V\left(G_{2}\right)$. Let $u$ be the subdivision vertex of $a a_{1}$. Now $a_{1}$ is dominated in $H$ by some vertex $b_{1} \in D_{H}$ (possibly $b_{1}=b$ ). As in the proof of Theorem 1 , we have $b_{1} \neq u$. Since $b_{1}, a_{1}, u, a$ is a path joining two vertices in $D_{H}$ that contains vertices not in $D_{H}$, it follows by the convexity of $D_{H}$ that there exists a $\left(b_{1}, a\right)$-path $Q$ in $H$ of length at most two. Since $E_{T}$ is an edge-cut of $G$, we deduce that the $\left(b_{1}, a\right)$-path $Q$ in $H$ has length two. Let $Q=b_{1} y a$. If $b_{1} \in D$, then $b_{1} \in V\left(G_{2}\right)$ and $y$ is the subdivision vertex of the edge $b_{1} a$ and this implies
that $a a_{1} b_{1}$ is a triangle in $G$, a contradiction. If $b_{1} \in T$, then $y \in V\left(G_{1}\right)$ and so $a a_{1} y$ is a triangle in $G$, a contradiction again. Thus $D$ is a convex set in $G$ and hence $D$ is a convex dominating set of $G$ of size smaller than of $\gamma_{\text {con }}(H)$. This yields $\operatorname{sd}_{\gamma_{\text {con }}}(G) \leq \kappa^{\prime}(G)$ and the proof is completed.

A closer look at the proof of Theorem 3 shows that if $E_{T}=[S, \bar{S}]$ is an edgecut of size one, then $b_{1}, a_{1}, u, a$ is the unique $\left(b_{1}, a\right)$-geodesic in $H$ which is impossible. Hence we obtain the next result.

Corollary 2. For any connected graph $G$ of order at least 3 with a cut edge, $\operatorname{sd}_{\gamma_{\text {con }}}(G)=1$.

The next results are immediate consequences of Theorem 3 .

Corollary 3. For any connected triangle-free graph $G$ of order $n \geq 3, \operatorname{sd}_{\gamma_{\text {con }}}(G) \leq$ $\delta(G)$.

Corollary 4. For any connected triangle-free graph $G$ with a cut vertex $v$,

$$
\operatorname{sd}_{\gamma_{\text {con }}}(G) \leq\lfloor\operatorname{deg}(v) / 2\rfloor .
$$

Theorem 4. If $G$ is a connected graph of order $n$ with $g(G) \geq 5$, then $\operatorname{sd}_{\gamma_{\text {con }}}(G)=$ 1. In particular, for every edge $e \in E(G), \gamma_{\mathrm{con}}\left(G_{e}\right)>\gamma_{\mathrm{con}}(G)$.

Proof. Let $e=u_{1} u_{2}$ be an arbitrary edge of $G$. If $e$ is a cut edge, then clearly $\gamma_{\text {con }}\left(G_{e}\right)>\gamma_{\text {con }}(G)$. Let $C=\left(u_{1} u_{2} \ldots u_{k}\right)$ be a cycle containing $e$. Assume $G_{e}$ is obtained from $G$ by subdividing the edge $e$ with subdivision vertex $w$ and let $D$ be a $\gamma_{\text {con }}\left(G_{e}\right)$-set. First let $\left\{u_{1}, u_{2}\right\} \subseteq D$. Then we have $w \in D$. Since $g(G) \geq 5$, we conclude from Theorem 1 that $D-\{w\}$ is a convex dominating set of $G$ of size smaller than of $\gamma_{\text {con }}\left(G_{e}\right)$ as desired. Now, let $\left\{u_{1}, u_{2}\right\} \nsubseteq D$. Assume, without loss of generality, that $u_{2} \notin D$. To dominate $w$, we must have $u_{1} \in D$. If $w \in D$, then as above $D-\{w\}$ is a convex dominating set of $G$ of size smaller than of $\gamma_{\mathrm{con}}\left(G_{e}\right)$, as desired. Suppose that $w \notin D$. To dominate $u_{2}$, we must $D \cap N_{G}\left(u_{2}\right) \neq \emptyset$. Suppose $v \in D \cap N_{G}\left(u_{2}\right)$. Since $g(G) \geq 5$, we deduce that $d_{G_{e}}\left(u_{1}, v\right)=3$. Since $D$ is a convex dominating set for $G_{e}$, we must have $u_{1}, w, u_{2}, v \in D$, a contradiction. It follows that $\gamma_{\mathrm{con}}\left(G_{e}\right)>\gamma_{\mathrm{con}}(G)$ and hence $\operatorname{sd}_{\gamma_{\text {con }}}(G)=1$. This completes the proof.

Corollary 5. For any connected graph $G$ of order $n \geq 6$ with $g(G)=4$,

$$
\operatorname{sd}_{\gamma_{\text {con }}}(G) \leq\lfloor n / 2\rfloor .
$$

Proof. Let $C=\left(v_{1} v_{2} v_{3} v_{4}\right)$ be a cycle of $G$ and let without loss of generality that $\operatorname{deg}\left(v_{1}\right)=\min \left\{\operatorname{deg}\left(v_{i}\right) \mid 1 \leq i \leq 4\right\}$. Since $g(G)=4, N\left(v_{1}\right) \cap N\left(v_{2}\right)=\emptyset$. It follows that $\delta(G) \leq \operatorname{deg}\left(v_{1}\right) \leq \frac{\overline{\operatorname{deg}}\left(v_{1}\right)+\operatorname{deg}\left(v_{2}\right)}{2} \leq \frac{n}{2}$ and the result follows from Corollary 3.

It could be of ample interest if one could find the bound for $\operatorname{sd}_{\gamma_{\text {con }}}(G)$ posed in the following open problems:
Problem 1. Let $G$ be a connected graph of girth four. Is there a constant $c$ such that $\operatorname{sd}_{\gamma_{\text {con }}}(G) \leq c$.
Problem 2. Let $G$ be a connected graph of girth three. Is there a constant $c$ such that $\operatorname{sd}_{\gamma_{\text {con }}}(G) \leq c$.
Let $\alpha^{\prime}(G)$ be the maximum number of edges in a matching in $G$.

Proposition 4. Let $G$ be a connected triangle-free graph of order $n \geq 3$. If $\alpha^{\prime}(G)<\frac{n-1}{2}$, then $\operatorname{sd}_{\gamma_{\text {con }}}(G) \leq \alpha^{\prime}(G)$.

Proof. Let $M=\left\{u_{1} v_{1}, \ldots, u_{\alpha^{\prime}} v_{\alpha^{\prime}}\right\}$ be a maximum matching of $G$ and let $X$ be the independent set of $M$-unsaturated vertices. Since $\alpha^{\prime}(G)<\frac{n-1}{2}$, we have $|X| \geq 2$. Assume $y$ and $z$ are vertices of $X$ such that $\operatorname{deg}(y) \leq \operatorname{deg}(z)$. If $y u_{i} \in E(G)$, then since the matching $M$ is maximum, $z v_{i} \notin E(G)$. Therefore, for all $i \in\left\{1,2, \ldots, \alpha^{\prime}\right\}$ there are at most two edges between the sets $\left\{u_{i}, v_{i}\right\}$ and $\{y, z\}$. So $2 \operatorname{deg}(y) \leq \operatorname{deg}(y)+\operatorname{deg}(z) \leq 2 \alpha^{\prime}$ and the result follows by Corollary 3.

Proposition 5. Let $G$ be a connected graph of order $n \geq 3$. If $\alpha^{\prime}(G)>\gamma_{\operatorname{con}}(G)$, then $\operatorname{sd}_{\gamma_{\text {con }}}(G) \leq \alpha^{\prime}(G)$.

Proof. Let $M=\left\{u_{1} v_{1}, \ldots, u_{\alpha^{\prime}} v_{\alpha^{\prime}}\right\}$ be a maximum matching of $G$ and let $G^{\prime}$ be obtained by subdividing every edge of $M$. Each convex dominating set of $G^{\prime}$ has order at least $|M|$. Hence $\gamma_{\text {con }}\left(G^{\prime}\right)>\gamma_{\text {con }}(G)$ and thus $\operatorname{sd}_{\gamma_{\text {con }}}(G) \leq$ $\alpha^{\prime}(G)$.

## 3. Graphs with small convex domination subdivision number

In this section, we consider graphs with small convex domination subdivision number.

Proposition 6. Let $G$ be a connected graph of order $n \geq 3$. If $G$ satisfies one of the following properties:
(i) $\gamma_{\text {con }}(G)=1$;
(ii) $\gamma_{\text {con }}(G)=2$ and $G$ contains a $\gamma_{\text {con }}(G)$-set $\{a, b\}$ such that $N(a) \cap N(b)=\emptyset$;
then $\operatorname{sd}_{\gamma_{\text {con }}}(G)=1$.

Proof. (i) Since $n \geq 3$, the graph $G_{e}$ obtained by subdividing any edge $e$ of $G$ has no universal vertex. Hence $\gamma_{\text {con }}\left(G_{e}\right)>1=\gamma_{\text {con }}(G)$ and so $\operatorname{sd}_{\gamma_{\text {con }}}(G)=1$. (ii) Let $G^{\prime}$ be the graph obtained from $G$ by subdividing the edge $a b$ with subdivision vertex $x$. Obviously every convex dominating set of $G^{\prime}$ contains at least one of $a, b$, say $a$, and either two vertices in $N(a) \cup N(b)$, or $x$ and $b$. Hence $\gamma_{\text {con }}\left(G^{\prime}\right) \geq 3>\gamma_{\text {con }}(G)$.

Proposition 7. For any connected graph $G$ of order $n \geq 3$ with $\gamma_{\mathrm{con}}(G)=2$,

$$
\operatorname{sd}_{\gamma_{\mathrm{con}}}(G) \leq 2
$$

Proof. Since $\gamma_{\text {con }}(G)=2, \Delta(G) \leq n-2$. Let $S=\{u, v\}$ be a $\gamma_{\text {con }}(G)$-set. Assume $u^{\prime}$ is a private neighbor of $u$ with respect to $S$ and $v^{\prime}$ is a private neighbor of $v$ with respect to $S$. Let $G^{\prime}$ be the graph obtained from $G$ by subdividing the edges $u u^{\prime}, v v^{\prime}$ with subdivision vertices $x$ and $y$, respectively, and let $D$ be a $\gamma_{\text {con }}\left(G^{\prime}\right)$-set. We show that $|D| \geq 3$ which implies $\operatorname{sd}_{\gamma_{\text {con }}}(G) \leq$ 2. Suppose to the contrary that $|D| \leq 2$. To dominate $x, y$, we must have $\left|D \cap\left\{u, u^{\prime}\right\}\right| \geq 1$ and $\left|D \cap\left\{v, v^{\prime}\right\}\right| \geq 1$. Since $|D| \leq 2$, we have $\left|D \cap\left\{u, u^{\prime}\right\}\right|=1$ and $\left|D \cap\left\{v, v^{\prime}\right\}\right|=1$. Since $G[D]$ is connected and since $u v^{\prime} \notin E(G)$ and $v u^{\prime} \notin E(G)$, we deduce that either $D=\{u, v\}$ or $D=\left\{u^{\prime}, v^{\prime}\right\}$. In each case, $D$ is not a dominating set of $G^{\prime}$ which is a contradiction. Hence $\gamma_{\mathrm{con}}\left(G^{\prime}\right)=|D| \geq$ $3>\gamma_{\mathrm{con}}(G)$ and the proof is complete.

Proposition 8. Let $k \geq 2$ be an integer. For the complete $k$-partite graph $G=K_{p_{1}, p_{2}, \ldots p_{k}}$ with $2 \leq p_{1} \leq p_{2} \leq \cdots \leq p_{k}$,

$$
\operatorname{sd}_{\gamma_{\text {con }}}(G)= \begin{cases}1 & \text { if } k=2 \\ 2 & \text { otherwise }\end{cases}
$$

Proof. It is clear that any two adjacent vertices form a minimum convex dominating set of $G$ which implies $\gamma_{\text {con }}(G)=2$. If $k=2$, the result follows from Proposition 6 (ii). Let $k \geq 3$ and let $V_{1}, V_{2}, \ldots, V_{k}$ be the partite sets of $G$. By Proposition 7, $\operatorname{sd}_{\gamma_{\text {con }}}(G) \leq 2$. For any edge $e=a b$, where $a \in V_{i}, b \in V_{j}(i \neq j)$, the set $\{a, v\}$ for each $v \in V_{k}(k \notin\{i, j\})$ forms a minimum convex dominating set of $G$. It follows that $\operatorname{sd}_{\gamma_{\text {con }}}(G) \geq 2$. Thus $\operatorname{sd}_{\gamma_{\text {con }}}(G)=2$ and the proof is complete.

Proposition 8 shows that the bound in Proposition 7 is sharp.

Proposition 9. Let $G$ be a connected graph of order $n \geq 3$ with $\gamma_{\text {con }}(G)=3$ or 4 . If $G$ has a triangle, then $\operatorname{sd}_{\gamma_{\text {con }}}(G) \leq 3$.

Proof. Assume $u v w$ is a triangle in $G$ and let $H$ be the graph obtained from $G$ by subdividing the edges $u v, u w, v w$ by subdivision vertices $x, y, z$, respectively. Let $D_{H}$ be a $\gamma_{\text {con }}(H)$-set. To dominate the subdivision vertices, we must have $\left|D_{H} \cap\{u, v, w\}\right| \geq 2$. Assume without loss of generality that $u, v \in D$. Since $D_{H}$ is convex, we must have $x \in D_{H}$. Hence $\{u, v, x\} \subseteq D_{H}$. We show that $\left|D_{H}\right| \geq 5$ which implies $\operatorname{sd}_{\gamma_{\text {con }}}(G) \leq 3$. Suppose to the contrary that $\left|D_{H}\right| \leq 4$. To dominate $w$, we must have $D_{H} \cap N_{H}[w] \neq \emptyset$. Assume $a \in D_{H} \cap N_{H}[w]$. Then $\{u, v, x, a\} \subseteq D_{H}$. If $\gamma_{\text {con }}(G)=3$, then we deuce that $\operatorname{sd}_{\gamma_{\text {con }}}(G) \leq 3$ as desired. Let $\gamma_{\mathrm{con}}(G)=4$. If $a=y$ (the case $a=z$ is similar), then we deduce from $d_{H}(a, v)=3$ that $w, z \in D_{H}$ which is a contradiction. Assume that $a \notin\{y, z\}$. If $a=w$, then we must have $y, z \in D_{H}$ which leads to a contradiction again. Hence $a \neq w$. It follows from $\left|D_{H}\right|=4$ that $a u, a v \in E(G)$. Hence $u v a$ is a triangle in $G$. It follows that $D:=D_{H}-\{x\}=\{u, v, a\}$ is a convex dominating set of $G$ contradicting $\gamma_{\text {con }}(G)=4$. Thus $\left|D_{H}\right| \geq 5$ and so $\operatorname{sd}_{\gamma_{\text {con }}}(G) \leq 3$. This completes the proof.

Next we show that the bound in Proposition 9 is sharp when $\gamma_{\mathrm{con}}(G)=4$. The following graph was introduced by Haynes et al. in [12].
Let $X=\{1,2, \ldots, 3(k-1)\}$ and let $\mathcal{Y}=\{Y \subset X:|Y|=k\}$. Thus, $\mathcal{Y}$ consists of all $k$-subsets of $X$, and so $|\mathcal{Y}|=\binom{3(k-1)}{k}$. Let $G_{k}$ be the graph with vertex set $X \cup \mathcal{Y}$ and with edge set constructed as follows: add an edge joining every two distinct vertices of $X$ and for each $x \in X$ and $Y \in \mathcal{Y}$, add an edge joining $x$ and $Y$ if and only if $x \in Y$. Then, $G_{k}$ is a connected graph of order $n=\binom{3(k-1)}{k}+3(k-1)$. The set $X$ induces a clique in $G_{k}$, while the set $\mathcal{Y}$ is an independent set and each vertex of $\mathcal{Y}$ has degree $k$ in $G_{k}$. Therefore $\delta\left(G_{k}\right)=k$. Dettlaff et al. [6] proved that $\gamma_{\text {wcon }}\left(G_{k}\right)=2(k-1)$.

Proposition 10. For any integer $k \geq 3, \gamma_{\mathrm{con}}\left(G_{k}\right)=2(k-1)$.

Proof. It is easy to see that any subset of $X$ of cardinality $2(k-1)$ is a convex dominating set of $G$, and so $\gamma_{\text {con }}\left(G_{k}\right) \leq 2(k-1)$. It follows from Proposition 2 that $\gamma_{\mathrm{con}}\left(G_{k}\right)=\gamma_{\mathrm{wcon}}\left(G_{k}\right)=2(k-1)$ and the proof is complete.

Proposition 11. For any integer $k \geq 3, \operatorname{sd}_{\gamma_{\text {con }}}\left(G_{k}\right) \geq 3$.

Proof. Assume $e_{1}, e_{2}$ are two arbitrary edges of $G_{k}$ and let $G_{k}^{\prime}$ be the graph obtained from $G_{k}$ by subdividing the edges $e_{1}, e_{2}$. We show that $\gamma_{\text {con }}\left(G_{k}^{\prime}\right) \leq$ $\gamma_{\text {con }}\left(G_{k}\right)=2(k-1)$. Assume $e_{i}=u_{i} v_{i}$ for $i=1,2$. Since every edge of $G$ is incident with at least one vertex of $X$, we may assume that $u_{i} \in X$ for $i=1,2$. If $v_{i} \in \mathcal{Y}$ for $i=1,2$, then let $w_{i}$ be a neighbor of $v_{i}$ in $X-\left\{u_{1}, u_{2}\right\}$. If $v_{1} \in \mathcal{Y}$ and $v_{2} \in X$ (the case $v_{2} \in \mathcal{Y}$ and $v_{1} \in X$ is similar), then let $w_{2}=v_{2}$ and $w_{1}$ be a neighbor of $v_{1}$ in $X-\left\{u_{1}, u_{2}\right\}$. If $v_{i} \in X$ for $i=1,2$, then let $w_{i}$ be any vertex of $X-\left\{u_{i}, v_{i} \mid i=1,2\right\}$. Assume that $D=\left\{u_{1}, u_{2}, w_{1}, w_{2}\right\}$. Then $|D| \leq 4$. Now extend $D$ to a set $D^{\prime}$ of size $2(k-1)$ by adding $2(k-1)-|D|$ vertices of $X-\left\{u_{i}, v_{i} \mid i=1,2\right\}$. Clearly $D^{\prime}$ is a convex dominating set of $G_{k}^{\prime}$, and so $\gamma_{\text {con }}\left(G_{k}^{\prime}\right) \leq 2(k-1)=\gamma_{\text {con }}\left(G_{k}\right)$. This implies that $\operatorname{sd}_{\gamma_{\text {con }}}\left(G_{k}\right) \geq 3$ and the proof is complete.

In the case $k=3$, Propositions 10 and 11 demonstrate that the bound of Proposition 9 is sharp when $\gamma_{\text {con }}(G)=4$.

Proposition 12. For every connected triangle-free graph $G$ with $\gamma_{\text {con }}(G)=3$, $\operatorname{sd}_{\gamma_{\text {con }}}(G) \leq 2$.

Proof. Let $G$ be triangle-free and let $D=\left\{u_{1}, u_{2}, u\right\}$ be a $\gamma_{\text {con }}(G)$-set. Since $G[D]$ is connected and since $G$ is triangle-free, $G[D]$ is a path. Suppose $G[D]=$ $u_{1} u u_{2}$. It follows from convexity of $D$ that

$$
\begin{equation*}
N_{G}\left(u_{1}\right) \cap N_{G}\left(u_{2}\right)=\{u\} . \tag{3}
\end{equation*}
$$

If $u_{i}$ has no private neighbor with respect to $D$ for some $i$, then clearly $D-\left\{u_{i}\right\}$ is a convex dominating set of $G$ which is a contradiction. Hence, assume $u_{i}$ has a private neighbor, say $v_{i}$, with respect to $D$, for $i=1,2$. It follows that

$$
\begin{equation*}
u \notin N_{G}\left(v_{1}\right) \cup N_{G}\left(v_{2}\right) . \tag{4}
\end{equation*}
$$

Let $G^{\prime}$ be the graph obtained from $G$ by subdividing the edges $u_{1} v_{1}, u_{2} v_{2}$ with vertices $x_{1}, x_{2}$, respectively, and let $D^{\prime}$ be a $\gamma_{\text {con }}\left(G^{\prime}\right)$-set. We show that $\left|D^{\prime}\right| \geq 4$. Suppose to the contrary that $\left|D^{\prime}\right| \leq 3$. To dominate $x_{i}$, we must have $D^{\prime} \cap\left\{u_{i}, v_{i}\right\} \neq \emptyset$ for $i=1,2$. If $\left\{u_{i}, v_{i}\right\} \subseteq D^{\prime}$ for some $i$, then $x_{i} \in D^{\prime}$ implying that $\left|D^{\prime}\right| \geq 4$, a contradiction. Let $\left|\left\{u_{i}, v_{i}\right\} \cap D^{\prime}\right|=1$ for each $i$. If $u_{1}, u_{2} \in D^{\prime}$, then clearly $u \in D^{\prime}$ and so $D^{\prime}=\left\{u, u_{1}, u_{2}\right\}$. But then $v_{1}$ is not dominated by $D^{\prime}$ since $v_{1}$ is a private neighbor of $u_{1}$ with respect to $D$ in $G$, a contradiction. If $u_{1}, v_{2} \in D^{\prime}$ (the case $u_{2}, v_{1} \in D^{\prime}$ is similar), then $u_{1}$ and $v_{2}$ must have a common neighbor, say $w$, such that $D^{\prime}=\left\{u_{1}, v_{2}, w\right\}$. Now to dominate $u_{2}$, we must have $w u_{2} \in E(G)$ which is a contradiction because $G$ is
triangle-free. Let $v_{1}, v_{2} \in D^{\prime}$ and let $D^{\prime}=\left\{v_{1}, v_{2}, w\right\}$. By (4), we have $w \neq u$. On the other hand, $w \neq u_{i}$ for some $i$, say $i=1$. Since $D^{\prime}$ is a dominating set, we must have $w u, w u_{1} \in E(G)$ which leads to a contradiction because $G$ is triangle-free. This completes the proof.

Theorem 5. For every connected graph $G$ with $\gamma_{\text {con }}(G)=4, \operatorname{sd}_{\gamma_{\text {con }}}(G) \leq 3$.

Proof. If $G$ has a triangle, then the result follows by Proposition 9. Henceforth, let $G$ be triangle-free. Let $D=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ be a $\gamma_{\text {con }}(G)$-set such that the size of $G[D]$ is as large as possible. Since the induced subgraph $G[D]$ is connected, we consider three cases.
Case 1. $G[D]=C_{4}=\left(u_{1}, u_{2}, u_{3}, u_{4}\right)$.
Since $D$ is a convex set, we deduce that $N_{G}\left(u_{1}\right) \cap N_{G}\left(u_{3}\right)=\left\{u_{2}, u_{4}\right\}$ and $N_{G}\left(u_{2}\right) \cap N_{G}\left(u_{4}\right)=\left\{u_{1}, u_{3}\right\}$. Let $G^{\prime}$ be the graph obtained from $G$ by subdividing the edges $u_{1} u_{2}, u_{2} u_{3}, u_{3} u_{4}$ with subdivision vertices $x_{1}, x_{2}, x_{3}$, respectively. Suppose $D_{1}$ is a $\gamma_{\text {con }}\left(G^{\prime}\right)$-set. To dominate $x_{1}$, we must have $u_{1} \in D_{1}$ or $u_{2} \in D_{1}$, to dominate $x_{2}, u_{2} \in D_{1}$ or $u_{3} \in D_{1}$, and to dominate $x_{3}, u_{3} \in D_{1}$ or $u_{4} \in D_{1}$. Consider the following subcases.
Subcase 1.1. $u_{1}, u_{3} \in D_{1}$ (the case $u_{2}, u_{4} \in D_{1}$ is similar).
Since $N_{G}\left(u_{1}\right) \cap N_{G}\left(u_{3}\right)=\left\{u_{2}, u_{4}\right\}$ and $P=u_{1} u_{4} x_{3} u_{3}$ is a path of length 3 in $G^{\prime}$, we deduce that $d_{G^{\prime}}\left(u_{1}, u_{3}\right)=3$. This implies that $u_{1}, u_{4}, x_{3}, u_{3} \in D_{1}$. Now to dominate $u_{2}$, we must have $N_{G^{\prime}}\left(u_{2}\right) \cap D_{1} \neq \emptyset$. Since $G$ is triangle-free, we deduce that $\left|D_{1}\right| \geq 5$ as desired.
Subcase 1.2. $u_{2}, u_{3} \in D_{1}$.
Since $D_{1}$ is a convex set, we have $x_{2} \in D_{1}$. If $x_{1}, x_{3} \in D_{1}$, then $\left|D_{1}\right| \geq 5$ as desired. Let without loss of generality that $x_{1} \notin D_{1}$. This implies that $u_{1} \notin D_{1}$. To dominate $u_{1}$, we must have $N_{G^{\prime}}\left(u_{1}\right) \cap D_{1} \neq \emptyset$. Let $w \in N_{G^{\prime}}\left(u_{1}\right) \cap$ $D_{1}$. Since $G$ is triangle-free and since $N_{G}\left(u_{1}\right) \cap N_{G}\left(u_{3}\right)=\left\{u_{2}, u_{4}\right\}$, we have $d_{G^{\prime}}\left(w,\left\{u_{2}, x_{2}, u_{3}\right\}\right) \geq 2$. It follows from the convexity of $D_{1}$ that $\left|D_{1}\right| \geq 5$ and we are done.
Case 2. $G[D]=P_{4}=u_{1} u_{2} u_{3} u_{4}$.
Then $u_{1} u_{4} \notin E(G)$. It follows from the convexity of $D$ that $d_{G}\left(u_{1}, u_{4}\right)=3$, $N_{G}\left(u_{1}\right) \cap N_{G}\left(u_{3}\right)=\left\{u_{2}\right\}$ and $N_{G}\left(u_{2}\right) \cap N_{G}\left(u_{4}\right)=\left\{u_{3}\right\}$. Suppose $G^{\prime}$ is the graph obtained from $G$ by subdividing the edges $u_{1} u_{2}, u_{2} u_{3}, u_{3} u_{4}$ with subdivision vertices $x_{1}, x_{2}, x_{3}$, respectively. Assume $D_{2}$ is a $\gamma_{\text {con }}\left(G^{\prime}\right)$-set. It now will be shown that $\left|D_{2}\right| \geq 5$. To dominate $x_{2}$, we must have $D_{2} \cap\left\{u_{2}, u_{3}\right\} \neq \emptyset$. Assume without loss of generality that $u_{2} \in D_{2}$. Now to dominate $x_{3}$, we must have $D_{2} \cap\left\{u_{3}, u_{4}\right\} \neq \emptyset$. Consider two subcases.
Subcase 2.1. $u_{3} \in D_{2}$.
Since $D_{2}$ is a convex set, $x_{2} \in D_{2}$. If $x_{1}, x_{3} \in D_{2}$, then $\left|D_{2}\right| \geq 5$ and we
are done. Assume without loss of generality that $x_{1} \notin D_{2}$. Now to dominate $u_{1}$, we must have $D_{2} \cap N_{G^{\prime}}\left(u_{1}\right) \neq \emptyset$. Let $w \in D_{2} \cap N_{G^{\prime}}\left(u_{1}\right)$. Therefore $\left\{u_{2}, x_{2}, u_{3}, w\right\} \subseteq D_{2}$. Since $D_{2}$ is a convex set and since $G$ is triangle-free, $u_{4}$ is not dominated by the set $\left\{u_{2}, x_{2}, u_{3}, w\right\}$ implying that $\left|D_{2}\right| \geq 5$ as desired.
Subcase 2.2. $u_{4} \in D_{2}$.
Since $G$ is triangle-free and $N_{G}\left(u_{2}\right) \cap N_{G}\left(u_{4}\right)=\left\{u_{3}\right\}$, we have $d_{G^{\prime}}\left(u_{2}, u_{4}\right) \geq 3$. If $d_{G^{\prime}}\left(u_{2}, u_{4}\right) \geq 4$, then it follows from convexity of $D_{2}$ that $\left|D_{2}\right| \geq 5$ and we are done. Let $d_{G^{\prime}}\left(u_{2}, u_{4}\right)=3$ and let $Q=u_{2} w_{1} w_{2} u_{4}$ is a path with length 3 in $G^{\prime}$. Then $\left\{u_{2}, w_{1}, w_{2}, u_{4}\right\} \subseteq D_{2}$. Since $u_{1} u_{4} \notin E(G), d_{G}\left(u_{1}, u_{4}\right)=3$ and $G$ is triangle-free, we deduce that $u_{1}$ is not dominated by $\left\{u_{2}, w_{1}, w_{2}, u_{4}\right\}$ implying that $\left|D_{2}\right| \geq 5$ as desired.
Case 3. $G[D]=K_{1,3}$.
Assume $u$ is the center of $G[D]=K_{1,3}$ and $u_{1}, u_{2}, u_{3}$ are leaves adjacent to $u$. If $u_{i}$ has no private neighbor with respect to $D$ for some $i$, then clearly $D-\left\{u_{i}\right\}$ is a convex dominating set of $G$ which is a contradiction. Henceforth, assume $u_{i}$ has a private neighbor with respect to $D$, say $v_{i}$, for each $i$. Let $G^{\prime}$ be the graph obtained from $G$ by subdividing the edges $u_{1} v_{1}, u_{2} v_{2}, u_{3} v_{3}$ with vertices $x_{1}, x_{2}, x_{3}$, respectively, and let $D_{3}$ be a $\gamma_{\text {con }}\left(G^{\prime}\right)$-set. We show that $\left|D_{3}\right| \geq 5$. Assume, to the contrary, that $\left|D_{3}\right| \leq 4$. To dominate $x_{i}$, we must have $D_{3} \cap\left\{u_{i}, v_{i}\right\} \neq \emptyset$ for each $i$. If $\left\{u_{i}, v_{i}\right\} \subseteq D_{3}$ for some $i$, then $x_{i} \in D_{3}$ implying that $\left|D_{3}\right| \geq 5$, a contradiction. Let $\left|\left\{u_{i}, v_{i}\right\} \cap D_{3}\right|=1$ for each $i$. Now we consider the following subcases.
Subcase 3.1. $u_{i}, u_{j} \in D_{3}$.
Assume without loss of generality that $u_{1}, u_{2} \in D_{3}$. Since $d\left(u_{1}, u_{2}\right)=2$, we must have $u \in D_{3}$ because $D_{3}$ is a convex set. If $u_{3} \in D_{3}$, then $D_{3}=D=\left\{u, u_{1}, u_{2}, u_{3}\right\}$ and $v_{1}$ is not dominated by $D_{3}$ since $v_{1}$ is a private neighbor of $u_{1}$ with respect to $D$, a contradiction. Let $v_{3} \in D_{3}$. Then $D_{3}=\left\{u, u_{1}, u_{2}, v_{3}\right\}$. Since $v_{3}$ is a private neighbor of $u_{3}$ with respect to $D$, we deduce that $d_{G^{\prime}}\left(v_{3},\left\{u, u_{1}, u_{2}\right\}\right) \geq d_{G}\left(v_{3},\left\{u, u_{1}, u_{2}\right\}\right) \geq 2$. Hence, $v_{3}$ is an isolated vertex in $G^{\prime}\left[D_{3}\right]$ which contradicts the connectedness of $G^{\prime}\left[D_{3}\right]$.
Subcase 3.2. $u_{i}, v_{j}, v_{k} \in D_{3}$ where $\{j, k\}=\{1,2,3\}-\{i\}$.
Assume without loss of generality that $i=1$. Since $v_{2}$ is a private neighbor of $u_{2}$ with respect to $D, d_{G^{\prime}}\left(u_{1}, v_{2}\right) \geq d_{G}\left(u_{1}, v_{2}\right) \geq 2$. First let $d_{G^{\prime}}\left(u_{1}, v_{2}\right)=2$. Assume $w \in N\left(u_{1}\right) \cap N\left(v_{2}\right)$. Then $D_{3}=\left\{u_{1}, w, v_{1}, v_{2}\right\}$ and $w$ must dominate $u_{2}$ which leads to a contradiction because $G$ is triangle-free. Now let $d_{G^{\prime}}\left(u_{1}, v_{2}\right) \geq$ 3. Similarly, we may assume $d_{G^{\prime}}\left(u_{1}, v_{3}\right) \geq 3$. It follows from the convexity of $D_{3}$ that $\left|D_{3}\right| \geq 5$, a contradiction again.
Subcase 3.3. $v_{1}, v_{2}, v_{3} \in D_{3}$.
Let $D_{3}=\left\{v_{1}, v_{2}, v_{3}, w\right\}$. Then $w$ must be adjacent to $u_{i}$ for each $i$. Since $G^{\prime}\left[D_{3}\right]$ is connected, we may assume that $w v_{1} \in E(G)$. This leads to a contradiction because $G$ is triangle-free and the proof is complete.

We conclude this paper with an open problem.
A connected graph $G$ is called convex domination subdivision critical if subdividing every edge of $G$ increases the convex domination number of $G$.

Problem 3. Characterize the convex domination subdivision critical graphs.

## References

[1] H. Aram, S. M. Sheikholeslami, O. Favaron, Domination subdivision numbers of trees, Discrete Math. 309 ( 2009), 622-628.
[2] M. Atapour, S. M. Sheikholeslami, A. Khodkar, Roman domination subdivision number of graphs, Aequationes Math. 78 (2009), 237-245.
[3] M. Atapour, S. M. Sheikholeslami, A. Hansberg, L. Volkmann, A. Khodkar, 2-domination subdivision number of graphs, AKCE J. Graphs. Combin. 5 (2008), 165-173.
[4] J. Cyman, M. Lemańska, J. Raczek, Graphs with convex domination number close to their order, Discuss. Math. Graph Theory 26 (2006), 307316.
[5] N. Dehgardi, S.M. Sheikholeslami, L. Volkmann, The rainbow domination subdivision numbers of graphs, Mat. Vesnik 67 (2015), 102-114.
[6] M. Dettlaff, M. Lemańska, S. Kosary, S. M. Sheikholeslami, Weakly convex domination subdivision number of a graph, Filomat (To appear)
[7] M. Dettlaff, M. Lemańska, Influence of edge subdivision on the convex domination number, Australas. J. Combin. 53 (2012), 19-30.
[8] M. Falahat, S.M. Sheikholeslami, L. Volkmann, New bounds on the rainbow domination subdivision number, Filomat 28 (2014), 615-622.
[9] O. Fvaron, H. Karami, S.M. Sheikholeslami, Disprove of a conjecture the domination subdivision number of a graph, Graphs Combin. 24 (2008), 309-312.
[10] O. Favaron, H. Karami, S. M. Sheikholeslami, Connected domination subdivision numbers of graphs, Util. Math. 77 (2008), 101-111.
[11] O. Favaron, T. W. Haynes, S. T. Hedetniemi, Domination subdivision numbers in graphs, Util. Math. 66 (2004), 195-209.
[12] T. W. Haynes, M. A. Henning, L. S. Hopkins, Total domination subdivision numbers of graphs, Discuss. Math. Graph Theory 24 (2004), 457-467.
[13] T. W. Haynes, S. M. Hedetniemi, S. T. Hedetniemi, J. Knisely, L.C. van der Merwe, Domination subdivision numbers, Discuss. Math. Graph Theory 21 (2001) 239-253.
[14] T. W. Haynes, S. T. Hedetniemi, P. J. Slater. Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York, 1998
[15] M. Lemańska, Weakly convex and convex domination numbers, Opuscula Math. 24 (2004), 181-188.
[16] M. Lemańska, Nordhaus-Gaddum results for weakly convex domination number of graph, Discuss. Math. Graph Theory 30 (2010), 257-263.
[17] J. Raczek, NP-completeness of weakly convex and convex dominating set decision problems, Opuscula Math. 24 (2004), 189-196.
[18] S. Velammal, Studies in Graph Theory: Covering, Independence, Domination and Related Topics, Ph.D. Thesis (Manonmaniam Sundaranar University, Tirunelveli, 1997).

