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Abstract

The method of derivation of nonlinear equations for interacting modes is explained and
applied to a plasma’s flow affected by a magnetic field. It bases on the linear projecting
of the total perturbation field into specific variations of variables in individual modes
of a flow. The method may be applied in many examples of fluid flows with different
mechanisms of non-adiabaticity. It is of especial importance in the complex flows with
the large number of various modes. A flow of an ionized gas is one of examples of such
flows: it incorporates fast, slow magnetosonic modes, the Alfvén mode and the entropy
mode. In the frames of this study, the wave vector may form an arbitrary angle θ with
the equilibrium straight magnetic field. Thermal conduction, dynamic viscosity and a
generic heating -cooling function which is responsible for an energy inflow and radiative
losses, are taken into account. Variable θ and plasma-β, diversity of the wave modes and
a balance of different mechanisms of non-adiabaticity makes the description of nonlinear
interaction of modes especial. The nonlinear excitation of the magnetosonic mode by the
entropy mode is considered as an example.

Keywords
Nonlinear magnetohydrodynamics, Acoustic activity, Projecting operators

1 Introduction

The nonlinear character of processes in a fluid flow not only results in distortion of waveforms
in the course of propagation, but to the nonlinear effects associated with interaction of various
wave and non-wave modes. In particular, excitation of non-wave modes by an intense wave,
scattering sound by sound or sound by non-wave modes attract special attention. The entropy
mode is the non-wave mode which is responsible for isobaric variations of the medium’s equilib-
rium temperature. If the entropy mode is excited in the field of intense sound, it is associated
with acoustic heating. The induced entropy perturbations are not longer stationary but slowly
vary in time forming a new background for propagation of the waves [1, 2]. The nonlinear
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distortion of an intense mode waveform is also some kind of the nonlinear self-interaction. All
variety of weakly nonlinear interactions may be described by means of projecting. Projecting
in the context of fluid dynamics originates from the system of linear PDEs representing the
conservation laws. Projection operators may be readily evaluated by use of dispersion relations
which determine every mode uniquely along with the linear links of thermodynamic pertur-
bations which specify all modes. The projectors (their number coincides with the number of
modes of the linear flow) distinguish a specific perturbation for some mode from the total vec-
tor of perturbations. The projecting is successfully applied in derivation of systems of coupling
weakly nonlinear equations of the first order with respect to time. Many examples of applica-
tion to various fluid flows may be found in Ref.[3]. These applications are not connected with a
plasma’s flow and refer to flows of newtonian and non-newtonian fluids (such as the Bingham
plastic and this with non-zero yield stress). Nonlinear flows of the non-uniform in equilibrium
media affected by the forces and bubbly liquids have been successfully studied by means of the
method. The important application of the method concerns non-equilibrium flows such as gases
with excited internal degrees of moleules freedom and gases where a chemical reaction occurs.
The nolinear phenomena in these flows may be unusual. This happens to acoustically active
flows. The procedure is represented by algorithmic set of actions and hence is especially useful
in the complex flows with large amount of modes, including flows with different mechanisms
of disturbed adiabaticity. The advantage of the method is individual tracking of the modes in
the course of all possible nonlinear interactions in a flow. In particular, distortion of any wave
mode due to nonlinear interaction with wave and non-wave modes may be described in the
frames of the method. The acoustic streaming and heating (that is, excitation of the vortex
and entropy mode) are covered by the method. The method deals with the instantaneous fields
and does not require averaging perturbations. Thus, it allows to determine detailed temporal
evolution due to impulsive and non-periodic exciters. The only limitation of the method is
weak nonlinearity, that is, comparatively small perturbations of the thermodynamic variables.

Close attention to the wave processes and related nonlinear phenomena in a plasma con-
stantly grows (e.g. [4, 5, 6]). The variety of magnetohydrodynamic (MHD) modes provides
diversity of their nonlinear interactions in a plasma’s flow. In particular, the properties of a
flow depend on plasma-β, geometry of a flow and direction and intensity of the magnetic field.
In view of difficulty in general analytical description, we focus on the planar flow of an ideal
ionized gas affected by the straight equilibrium magnetic field forming constant angle θ with
the wave vector. A deviation from a flow’s adiabaticity plays the key role in MHD dynamics.
We consider three reasons of the non-adiabaticity:
1)some kind of heating-cooling function which describes inflow of energy into a flow and radia-
tive losses;
2)thermal conduction of a medium;
3)dynamic viscosity of a plasma.
While thermal conduction and dynamic viscosity always result in damping of wave perturba-
tions, the heating-cooling function may enhance them, and eventual scenario of a wave process
depends on the balance of these mechanisms. The nonlinear phenomena may occur unusually
due to external inflow of energy. This concerns all fluid flows with disturbed adiabaticity, not
only plasma flows [5, 6, 7, 8, 9]. In particular, a perturbation in temperature specifying the
entropy mode which is induced in the wave field, may take negative value which corresponds
to the cooling of a medium [10]. An accurate description of various nonlinear interactions of
modes, and in particular, of self-interaction of intense wave and the excited secondary modes
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are of especial importance in plasma physics. They may indicate physical processes in a plasma
and its properties in remote observations and point a way to explain and control them. The
projecting yields all variety of coupling nonlinear equations which describe interaction of modes.
The system may be simplified if one mode is dominant. In this case, only this mode contributes
to quadratic ”sources” exciting secondary modes. The text is organized as follows. Sec.2 re-
minds the initial system of PDEs describing a flow of an ideal plasma including contribution
of generic heating-cooling function and mechanical and thermal losses. It considers modes in a
linear flow and conditions of isentropic and thermal instability. Projectors as a tool to obtain
linear and weakly nonlinear dynamic equations are discussed and derived from the linearized
conservation equations in Sec.3. The nonlinear corrections to the modes and some example of
nonlinear excitation (excitation of the magnetosonic mode by the entropy one) are considered
in Sec.4 and 5. Sec.6 represents concluding remarks.

2 Modes in the linear MHD flow

Ideal magnetohydrodynamics is a reasonably good approximation in most cases of astrophysical
plasmas such as neutron star magnetosphere, solar atmosphere and Earth’s magnetosphere. We
make use of a set of ideal MHD equations describing perfectly electrically conducting and fully
ionized gas. It includes the continuity equation, the momentum equation, the energy balance
equation and electrodynamic equations in the differential form [11, 12, 13, 14, 15, 16]:

∂ρ

∂t
+
−→
∇ · (ρv⃗) = 0,

ρ
Dv⃗

Dt
= −

−→
∇p+ 1

µ0

(
−→
∇ × B⃗)× B⃗ + η∆v⃗ +

1

3
η
−→
∇(

−→
∇ · v⃗), (2.1)

Dp

Dt
− γ

p

ρ

Dρ

Dt
= (γ − 1)

[
L(p, ρ) +

−→
∇ · (χ

−→
∇T ) + η

2

∑
i,j=1,2,3

(
∂vi
∂xk

+
∂vk
∂xi

− 2

3
δi,k

−→
∇ · v⃗

)2
]
,

∂B⃗

∂t
=

−→
∇ × (v⃗ × B⃗),

−→
∇ · B⃗ = 0,

where p, ρ, T , v⃗ are thermodynamic pressure, mass density and temperature of a plasma and
its velocity. The irreversible losses due to mechanical friction are described by the terms pro-
portional to the dynamic viscosity η. This coefficient is named as ”compressional viscosity” in
the Braginskii viscous tensor. This term does not reflects the physical nature of losses described
by the traceless stress tensor since they are not connected with compressibility of a fluid but
with the friction between layers of different velocity. It was attributed by ”compressional”

because it contains the term proportional to
−→
∇ · v⃗ (see also explanations by Ruderman et al.

[17] and initial equations in Ref.[14]). Other four terms in the Braginskii’s viscous tensor are
not considered in this study. They are typically strongly dominated by the dynamic viscosity
[14]. The second term is at least five orders of magnitude smaller in the solar corona and at
least two orders of magnitude smaller in the upper chromosphere [17]. Absorption due to finite
electric resistivity and the Hall effect may be also neglected (see, e.g., discussion by Ruderman
et al. [17, 18]). The coefficient of thermal conduction is designated by χ. As it follows from the
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classical Braginskii transport theory, the thermal conduction parallel to the magnetic field is
much larger than the perpendicular one, χ⊥ ≪ χ|| and contribution of only parallel compound
may be usually considered [19]. The generic heating-cooling function L(p, ρ) is responsible for
the radiative cooling and inflow of energy into a system [5, 20]. The magnetic field is denoted

by B⃗, and µ0 is the permeability of the free space. The third equation in the set (2.1) incor-
porates the continuity equation and the energy balance. It is valid for an ideal gas with the
ratio of specific heats under constant pressure and constant density γ, γ = CP/CV . The fourth
equation is the ideal induction equation, and the fifth one is the Maxwell’s equation reflecting
solenoidal character of B⃗.

We follow common conditions in regard to the geometry of a flow: we assume that the
wave vector of a planar flow forms a constant angle θ (0 ≤ θ ≤ π) with the constant straight

equilibrium magnetic field B⃗0 [21, 5, 20, 22, 23] . The direction of the wave vector is pointed

by axis z. The y-component of B⃗0 equals zero, so as

B0,x = B0 sin(θ), B0,z = B0 cos(θ), B0,y = 0.

The ideal induction equation and the Maxwell’s equation ensure zero perturbation of Bz. Hence,
the number of unknowns reduces from eight to seven. The system (2.1) is nonlinear. In the
frames of weakly nonlinear flows, its leading-order form considered, valid with accuracy up to
quadratic nonlinear terms [20, 10, 24]. A flow with infinitely-small perturbations of thermo-
dynamic variables (that is, a linear flow) is described by the linearized version of the system
(2.1). All thermodynamic quantities are expanded around the equilibrium thermodynamic
state (designated by lower index 0) as f(z, t) = f0 + f ′(z, t). The bulk flows are absent, so as
v⃗0 = 0⃗. Seven equations form the leading-order system which includes first partial derivatives
of variables ρ′, vx, vy, vz, p

′, Bx, By with respect to time:

∂ρ′

∂t
+ ρ0

∂vz
∂z

= −ρ′∂vz
∂z

− vz
∂ρ′

∂z
,

∂vx
∂t

− B0,z

ρ0µ0

∂Bx

∂z
− η

ρ0

∂2vx
∂z2

= −vz
∂vx
∂z

− B0,z

ρ20µ0

ρ′
∂Bx

∂z
− η

ρ0

ρ′

ρ20

∂2vx
∂z2

, (2.2)

∂vy
∂t

− B0,z

ρ0µ0

∂By

∂z
− η

ρ0

∂2vy
∂z2

= −vz
∂vy
∂z

− B0,z

ρ20µ0

ρ′
∂By

∂z
− η

ρ0

ρ′

ρ20

∂2vy
∂z2

,

∂vz
∂t

+
1

ρ0

∂p′

∂z
+
B0,x

ρ0µ0

∂Bx

∂z
− 4η

3ρ0

∂2vz
∂z2

=
ρ′

ρ20

∂p′

∂z
+
B0,x

ρ20µ0

ρ′
∂Bx

∂z
− 1

ρ0

∂

∂z

(
B2

x +B2
y

2µ0

)
− vz

∂vz
∂z

−

− 4η

3ρ0

ρ′

ρ20

∂2vz
∂z2

,

∂p′

∂t
+ c2ρ0

∂vz
∂z

− (γ − 1)(Lpp
′ + Lρρ

′)− χ

ρ0CP

∂2γp′

∂z2
+

χc20
ρ0CP

∂2ρ′

∂z2
=

(γ − 1)(0.5Lppp
′2 + 0.5Lρρρ

′2 + Lpρp
′ρ′)− γp′

∂vz
∂z

− vz
∂p′

∂z
+ (γ − 1)

4η

3ρ0

(
∂vz
∂z

)2

+

(γ − 1)
η

ρ0

[(
∂vx
∂z

)2

+

(
∂vy
∂z

)2
]
− χ

ρ20CP

∂2(γp′ρ′ − c20ρ
′2)

∂z2
,
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∂Bx

∂t
+

∂

∂z
(B0,xvz −B0,zvx) = −Bx

∂vz
∂z

− vz
∂Bx

∂z
,

∂By

∂t
− ∂

∂z
(B0,zvy) = −By

∂vz
∂z

− vz
∂By

∂z
,

where

Lp =
∂L

∂p
, Lρ =

∂L

∂ρ
, Lpp =

∂2L

∂p2
, Lρρ =

∂2L

∂ρ2
, Lpρ =

∂2L

∂p∂ρ

designate partial derivatives of the heating-cooling function L(p, ρ) with respect to its variables
evaluated at the equilibrium state (p0,ρ0) (L(p0, ρ0) = 0). The dispersion relations are usual
starting point. We look for solutions to the linearized equations (2.1) in the form of a sum of
planar waves proportional to exp(iω(k)t−ikz) (k designates the wave number). All evaluations
in this study (dispersion relations, links between specific perturbations, dynamic equations) are
leading-order, that is, they contain terms up to the first powers of Lp, Lρ, Lpp, Lρρ, Lpρ, χ,
η. This concerns also quadratic nonlinear terms. Two Alfvén branches (A), four magnetosonic
branches (ms) and one entropy mode are inherent to the flow. They are determined by the
dispersion relations which reflect the solvability of the linearized equations (2.1):

ωA = ±CA,zk + i
η

2ρ0
k2, ωms = Ck − iCD + i

α

2
k2, ωent = i

χ

CPρ0
k2 + i

(γ − 1)

c20
Lρ, (2.3)

where c0 and CA

c0 =

√
γp0
ρ0

, CA =
B0√
µ0ρ0

designate the acoustic speed in non-magnetized gas and the Alfvén speed in equilibrium,

CA,z = CA cos(θ) =
B0,z√
µ0ρ0

,

and C is one from four magnetosonic speeds satisfying the equation [5, 20]

C4 − C2(c20 + C2
A) + c20C

2
A,z = 0. (2.4)

The magnetosonic speeds depend on θ and plasma-β,

β =
2

γ

c20
C2

A

.

They represent two branches (fast and slow) propagating in the positive direction of axis z and
two branches propagating in the negative direction of axis z with the same speeds. D reflects
the linear impact of the heating-cooling function on the magnetosonic waves

D =
C(C2 − C2

A)(γ − 1)

2c20(C
4 − c20C

2
A,z)

(c20Lp + Lρ),

and α is the total damping coefficient due to dynamic viscosity and thermal conduction [5, 25]:

α = αη
4η

3ρ0
+ αχ

χ
(

1
CV

− 1
Cp

)
ρ0

, (2.5)
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where

αη =
C4 + C2(6c20 − C2

A)− 3c20(c
2
0 + C2

A)

4c20(C
4 − c20C

2
A,z)

C2, αχ =
C2(C2 − C2

A)

C4 − c20C
2
A,z

.

The magnetosonic perturbations may enhance if a linear flow is adibatically unstable [26, 27],
that is, if

c20Lp + Lρ > 0 (2.6)

and the total damping is weak:

DC >
α

2
k2. (2.7)

The condition of thermal instability supplemented by weakness of thermal conduction

(γ − 1)

c20
Lρ >

χ

CPρ0
k2

ensures enlargement of perturbations specifying the entropy mode in a linear flow [23]. Links of
perturbations in any individual mode are determined by the corresponding dispersion relation.
In particular, the Alfvén modes are specified by the relations

ψA =



ρ′

vx
vy
vz
p′

Bx

By


A

=



0
0
1
0
0
0

∓ B0

CA
− η B0

2ρ0CACA,z

∂
∂z


vA,y. (2.8)

Four magnetosonic branches are established by the relations:

ψms =



ρ′

vx
vy
vz
p′

Bx

By


ms

= (2.9)
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1

−CA,z(C
2−c20)

CA,xCρ0
+

(γ−1)CA,z(C
2−c20)(C

2−2c20−C2
A)

2c20CA,x(2C2−c20−C2
A)ρ0

[
c20
C2

χ
CP ρ0

∂
∂z

+
(c20Lp+Lρ)

C2

∫
dz

]
∂
∂z
+

η
CA,z(C

2−c20)(C
4+C2(4c20−C2

A)−3c20(c
2
0+C2

A))

6CA,xC2c20(2C
2−c20−C2

A)ρ0

∂
∂z

0

C
ρ0

+ (γ − 1)
[

c20
C2

χ
CP ρ0

∂
∂z

+
(c20Lp+Lρ)

C2

∫
dz

]
− η

ρ0

C4+C2(6c20−C2
A)−3c20(c

2
0+C2

A)

6c20(2C
2−c20−C2

A)ρ0

∂
∂z

c20 − (γ − 1)
[
c20
C

χ
CP ρ0

∂
∂z

+
(c20Lp+Lρ)

C

∫
dz

]

(C2−c20)µ0

B0,x
− C(C2−c20)(C

2−c20−C2
A)µ0

B0,xc20(2C
2−c20−C2

A)

[(
η

3ρ0
− (γ − 1)

c20
C2

χ
CP ρ0

)
∂
∂z

+
(γ−1)(c20Lp+Lρ)

C2

∫
dz

]

0



ρms.

The following relations are inherent to the entropy mode:

ψent =



ρ′

vx
vy
vz
p′

Bx

By


ent

=



1
(γ−1)CA,xLρ

CA,zc
2
0ρ0

∫
dz − χCA,x

CA,zCP ρ20

∂
∂z

0
(γ−1)Lρ

c20ρ0

∫
dz − χ

CP ρ20

∂
∂z

0
0
0


ρent. (2.10)

3 Projecting into the specific perturbations

All perturbations in a linear flow are sums of specific ones. Four magnetosonic operators Pms,
two Alfvén projectors PA and the entropy projector Pent follow immediately from the linear
links for all modes. They are determined by the systems

Pms

(
ρ′ vx vy vz p′ Bx By

)T
= ρms,

PA

(
ρ′ vx vy vz p′ Bx By

)T
= vA,y,

and
Pent

(
ρ′ vx vy vz p′ Bx By

)T
= ρent

(T designates transpose). We use a perturbation of the magnetosonic density ρms as the
referential quantities for the magnetosonic projectors, a perturbation of the entropy density ρent
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for the entropy projector, and y component of Alfvén velocity vA,y for the Alfvén projectors.
The referential quantities must be non-zero. The magnetosonic projectors take the form:

Pms =



− (γ−1)C(C2−C2
A)

2c20(C
4−c20C

2
A,z)

Lρ

∫
dz + χ

C(C3−C3
A)

2(C4−c20C
2
A,z)ρ0CP

∂
∂z

− CA,xCA,zCρ0
2(C4−c20C

2
A,z)

− (c20Lp + Lρ)
(γ−1)CA,xCA,z(2C

6−3C4C2
A,z+c20C

4
A,z)ρ0

2(C4−c20C
2
A,z)

3

∫
dz

−ηC6CA,xCA,z(2C
2
A,z−c20−C2

A)

6(C4−c20C
2
A,z)

3
∂
∂z

− χ
(γ−1)c20CA,xCA,z(2C

6−3C4C2
A,z+c20C

4
A,z)

2CP (C2−c20C
2
A,z)

3
∂
∂z

0

C(C2−C2
A,z)ρ0

2(C4−c20C
2
A,z)

+ (c20Lp + Lρ)
(γ−1)(C2−C2

A,z)(C
6+c20C

2
A,zC

2−3C4C2
A,z+c20C

4
A,z)

2(C4−c20C
2
A,z)

3

∫
dz+

η
C4C2

A,z(C
2−C2

A,z)(C
2−c20)

3(C4−c20C
2
A,z)

3
∂
∂z

+ χ
(γ−1)c20(C

8−4C6C2
A,z−c20C

6
A,z+C4C2

A,z(c
2
0+3C2

A,z))

2CP (C4−c40C
4
A,z)

3
∂
∂z

C2−C2
A,z

2(C4−c20C
2
A,z)

+ Lρ
(γ−1)(C2−C2

A,z)(3C
6+c20C

2C2
A,z−7C4C2

A,z+3c20C
4
A,z)

4C(C4−c20C
2
A,z)

3

∫
dz+

Lp
(γ−1)(C2−C2

A,z)C
3(2c40+2C4−5C2C2

A+C4
A−3c20(C

2−C2
A))

4(C4−c20C
2
A,z)

3

∫
dz+

η
(C2−C2

A,z)(4C
8−3c20C

4C2
A,z−5C6C2

A,z+3c40C
4
A,z+c20C

2C4
A,z)

12ρ0C(C4−c20C
2
A,z)

3
∂
∂z
−

χ
(C2−C2

A,z)(c
4
0C

2
A,z(−C2

A,z(γ−3)−C2(γ−1))+2γC8+c20C
4((3γ−7)C2

A,z−3(γ−1)C2))

4ρ0CpC(C4−c20C
2
A,z)

3
∂
∂z

C2CA,xC
2
Aρ0

2B0CA(C4−c20C
2
A,z)

+ (c20Lp + Lρ)
(γ−1)CCA,xCA(3C6+c20C

2C2
A,z−5C4C2

A,z+c20C
4
A,z)ρ0

4B0(C4−c20C
2
A,z)

3

∫
dz+

η
CCACA,x(4C

8−3c20C
4C2

A,z−3C6C4
A,z+3c40C

4
A,z−c20C

2C4
A,z)

12B0(C4−c20C
2
A,z)

3
∂
∂z
+

χ
(γ−1)c20CCACA,x(3C

6+c20C
2C2

A,z−5C4C2
A,z+c20C

4
A,z)

4CPB0(C4−c20C
2
A,z)

3
∂
∂z

0



T

.

(3.11)
Projectors into the Alfvén specific velocity and perturbation in density in the entropy mode,
are

PA =

(
0 0

1

2
∓ η

4ρ0CA,z

∂

∂z
0 0 0 ∓ CA

2B0

)
,

Pent =

(
1 − (γ − 1)CA,xρ0

CA,zc40

(
(c20Lp + Lρ)

∫
dz + c20

χ

CPρ0

∂

∂z

)
,

0 − (γ − 1)ρ0
c40

(
(c20Lp + Lρ)

∫
dz + c20

χ

CPρ0

∂

∂z

)
− 1

c20
0 0

)
. (3.12)
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In particular,

Pent +
∑

Pms = (1 0 0 0 0 0 0),
∑

PA = (0 0 1 0 0 0 0)

in accordance to usual properties of projectors, since the total perturbation of density ρ′ equals
ρent +

∑
ρms, and the total perturbation of vy equals

∑
vA,y. In the unmagnetized flow, Pms is

converted into two operators (C = ±c0, CA = 0)

Ps =



∓ (γ−1)Lρ

2c30

∫
dz ± χ

2c0CP ρ0
∂
∂z

0

0

± ρ0
2c0

+
(γ−1)ρ0(c20Lp+Lρ)

2c40

∫
dz + (γ−1)χ

2c20CP

∂
∂z

1
2c20

±
(

η
3ρ0c30

+ (γ−3)χ

4ρ0c30Cp

)
∂
∂z

± (γ−1)(c20Lp+3Lρ)

4c50

∫
dz

0

0



T

, (3.13)

and Pent takes the form

Pent =

(
1 0 0 − (γ − 1)ρ0

c40

(
(c20Lp + Lρ)

∫
dz + c20

χ

CPρ0

∂

∂z

)
− 1

c20
0 0

)
. (3.14)

which coincides with the operators derived in Ref.[28] for L = 0.

4 Nonlinear corrections to the linear links

Going to studies of nonlinear interactions of the modes, the linear links should be corrected in
the leading order, that is, by involving quadratic nonlinear terms. This is important for the
mode which is treated as dominative compared to all other modes. The mode is dominative
over spatial and temporal domains where its specific referential perturbations are much larger
than that of the other modes. The corrections to the magnetosonic mode support the leading-
order isentropicity of the wave motion (with accuracy up to quadratic nonlinear terms). The
nonlinear corrections also yield a nonlinear term in the dynamic equation for the dominative

9
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mode which reflects its self-interaction. The nonlinear corrections to the the dominative mode
make possible the proper subdivision of all nonlinear terms between various dynamic equations
when projectors apply at the system (2.2). Links for magnetosonic modes has been derived by
the author in terms of vms,z in Ref.[10] and in terms of ρms in Ref.[29]. They are determined by
the vector ψms,nonl and evidently coincide with the corrections to the isentropic Riemann wave
in an unmagnetized gas [30]. The same algorithm to establish corrections is valid for any other
dominative wave mode.

4.1 Dominative Alfvén and entropy modes

This subsection explains how to evaluate corrections inherent to the Alfén modes (say, the first
branch) and the entropy mode. We seek corrections in the form of quadratic terms containing
unknowns A1, . . . A6 which supplement the linear links for the Alfén mode, so as

ρA = A1v
2
A,y, vA,x = A2v

2
A,y, vA,z = A3v

2
A,y, pA = A4v

2
A,y, BA,x = A5v

2
A,y,

BA,y = −B0

CA

vA,y + A6v
2
A,y

and substitute them in the system (2.2) treating terms belonging to the other modes zero in
view of dominance of the first Alfén mode and disregarding all mechanisms of nonadiabaticity.
We arrive to the system

2vA,y

(
A1
∂vA,y

∂t
+ A3ρ0

∂vA,y

∂z

)
= 0,

2vA,y

(
A2
∂vA,y

∂t
− A5

B0,z

µ0ρ0

∂vA,y

∂z

)
= 0,

∂vA,y

∂t
+ CA,z

∂vA,y

∂z
− 2A6

B0,z

µ0ρ0
vA,y

∂vA,y

∂z
= 0,

2vA,y

(
A3
∂vA,y

∂t
+

(
A4

ρ0
+ A5

B0,x

µ0ρ0
+

B2
0

C2
Aρ0µ0

)
∂vA,y

∂z

)
= 0, (4.15)

2vA,y

(
A4
∂vA,y

∂t
+ A3c

2
0ρ0

∂vA,y

∂z

)
= 0,

2vA,y

(
A5
∂vA,y

∂t
+ (A3B0,x − A2B0,z)

∂vA,y

∂z

)
= 0,

−B0,z

CA,z

(
∂vA,y

∂t
+ CA,z

∂vA,y

∂z

)
+2A6vA,y

∂vA,y

∂t
≈ −B0,z

CA,z

(
∂vA,y

∂t
+ CA,z

∂vA,y

∂z

)
−2A6CA,zvA,y

∂vA,y

∂z
= 0.

In the last equality, the leading-order dynamic equation which corresponds to the first ωA:

∂vA,y

∂t
+ CA,z

∂vA,y

∂z
= 0 (4.16)

is used. Comparing third and seventh equations in (4.15), we obtain A6 = 0 and make conclu-
sion that the dynamic equation for the Alfvén velocity does not include a nonlinear term. We
also arrive at the system making every equation to satisfy Eq.(4.16):

ρ0A3 = CA,zA1,
B0,z

ρ0µ0

A5 = −CA,zA2,
A4

ρ0
+
B0,xA5

ρ0µ0

+
1

ρ0µ0

B2
0

C2
A

= CA,zA3,
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c20ρ0A3 = CA,zA4, A3B0,x − A2B0,z = CA,zA5

The unknows take the forms

A1 = A3 = A4 = 0, A2 =
1

CA,x

, A5 = − B0

CACA,x

,

if CA,x ̸= 0, and

A2 = A5 = 0, A1 =
ρ0

C2
A − c20

, A3 =
CA

C2
A − c20

, A4 = − c20ρ0
C2

A − c20
,

if CA,x = 0, that is, in the case θ = 0 or θ = π. Hence, the dominant Alfvén mode with the
corrected links is specified not only by perturbations in the magnetic field BA,y and transversal
velocity vA,y, but by other perturbations differently in the cases θ = 0, θ = π and other values
of θ. For all θ, the nonlinear corrections do not bring in nonlinear term in the evolutionary
equation which takes the form Eq.(4.16) supplemented by the term proportional to the dynamic
viscosity

∂vA,y

∂t
+ CA,z

∂vA,y

∂z
− η

2ρ0

∂2vA,y

∂z2
= 0. (4.17)

It may be rearranged in the leading order into the diffusion equation which has an exact solution
(e.g. [1]).

The non-wave entropy mode of infinitely-small magnitude is stationary in the flow with
absence of the mechanisms disturbing adiabaticity. This imposes zero quadratic corrections
to the specific perturbations. The dynamic equation does not include the quadratic nonlinear
term and takes the form which follows from the dispersion relation ωent:

∂ρent
∂t

− χ

CPρ0

∂2ρent
∂z2

+
(γ − 1)Lρ

c20
ρent = 0. (4.18)

The conclusion is that there is not leading-order nonlinear self-interaction for the both Alfvén
modes and the entropy mode.

5 Nonlinear excitation of the secondary modes

Perturbations of infinitely-small magnitudes (that is, linear modes), propagate independently
on each other. The linear dynamic equations for different specific perturbations do not couple.
Application of some projector P at the linearized system (2.2) (which is briefly represented by

∂

∂t
Eψlin +Kψlin = 0,

with K being the matrix operator containing spatial derivatives, E denoting the unit matrix)
yields the evolutionary equation for the specific perturbation. In particular, application of Pms

results in the dynamic equation:

Pms

(
∂

∂t
Eψlin +Kψlin

)
=
∂ρms

∂t
+ C

∂ρms

∂z
−DCρms −

α

2

∂2ρms

∂z2
= 0,
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which reflects the dispersion relation for the magnetosonic modes (2.3). Application of Pms at
the system (2.2) with the nonlinear vector ψ̃ on the right

∂

∂t
Eψlin +Kψlin = ψ̃,

distinguishes the dynamic equation for the magnetosonic density on the left and results in the
variety of coupling nonlinear terms on the right. In particular, considering only magnetosonic
perturbations inherent to Pms in ψ̃, one arrives at the nonlinear evolutionary equation

∂ρms

∂t
+ C

∂ρms

∂z
−DCρms +

C

ρ0
ερms

∂ρms

∂z
− α

2

∂2ρms

∂z2
= 0,

where ε is responsible for the nonlinear self-interaction of the magnetosonic wave which is
treated as dominative [5, 20]

ε =
(γ + 4)C2 − 3c20 − (γ + 1)C2

A

2(C4 − c20C
2
A,z)

C2.

The dominance may be broken due to nonlinear interaction of modes and enlargement of
the secondary perturbations. The leading order nonlinear corrections of the dominant mode
should be taken into account in the description of the nonlinear excitation of the secondary
modal fields. The magnetosonic modes do not excite Alfvén ones. This is due to zero third
and seventh elements of Pms (3.11) which only could couple with perturbations in the Alfvén
modes. There is also no coupling between dominant Alfvén mode and the magnetosonic modes
and dominative Alfvén mode and the entropy mode. Excitation of the entropy mode by intense
magnetosonic mode may lead to heating or cooling associating with an isobaric variations in
density of the entropy mode (magnetosonic heating or cooling). It was considered in [10, 24].

Applying Pms at the system (2.2) and treating the entropy mode as dominant, we arrive at
the dynamic equation

∂ρms

∂t
+ C

∂ρms

∂z
−DCρms +

C

ρ0
ερms

∂ρms

∂z
− α

2

∂2ρms

∂z2
=

(C2 − C2
A,z)(γ − 1)

4(C4 − c20C
2
A,z)

Lρρρ
2
ent, (5.19)

or, making use of the leading-order link between ρms and vms,z given by ψms (Eqs(2.9)), to the
equation in terms of vms:

∂vms,z

∂t
+C

∂vms,z

∂z
−DCvms,z+εvms,z

∂vms,z

∂z
− α

2

∂2vms,z

∂z2
=
C(C2 − C2

A,z)(γ − 1)

4ρ0(C4 − c20C
2
A,z)

Lρρρ
2
ent. (5.20)

ρent is dominant, so as |ρent| ≫ max|ρms| in the considered temporal and spatial domains. It
satisfies Eq.(4.18) which may be readily rearranged into the diffusion equation for a function
ρ̃(z, t) by the substitution

ρent(z, t) = ρ̃(z, t) exp

(
−(γ − 1)Lρ

c20
t

)
which has the well-known analytical solution in terms of the Green function. We focus on the
case χ = 0 with a solution

ρent(z, t) = ρent,0 exp

(
−(γ − 1)Lρ

c20
t

)
,
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where ρent,0 = ρent(z, t = 0) is the initial excess density which specifies the entropy mode, some
function of z. Eq.(5.20) is nonlinear and difficult for analytical solution. If D = 0, it may
be rearranged in the leading order into the inhomogeneous Burgers equation which may be
resolved analytically [30, 1]. For a simple analysis, we discard nonlinearity and damping due
to thermal conduction and dynamic viscosity and rearrange Eq.(5.20) into the leading-order
equation

∂V

∂t
+ C

∂V

∂z
= exp

(
−2(γ − 1)Lρ

c20
t−DCt

)
C(C2 − C2

A,z)(γ − 1)

4ρ0(C4 − c20C
2
A,z)

Lρρρ
2
ent,0 = Φ(z, t). (5.21)

by means of substitution
V = vms,z exp(−DCt).

The solution to Eq.(5.21) for zero initial condition vms,z(z, t = 0) = 0, takes the form

vms,z = exp(DCt)

∫ t

0

Φ(Cτ − Ct+ z, τ)dτ =

C(C2 − C2
A,z)(γ − 1)

4ρ0(C4 − c20C
2
A,z)

exp (DCt)Lρρ

∫ t

0

exp

(
−2(γ − 1)Lρ

c20
τ −DCτ

)
ρ2ent,0(Cτ − Ct+ z)dτ.

In the dimensionless variables

Z = kz, T = Ckt, θ = Ckτ, F =
2(γ − 1)Lρ

c20Ck
+
D

k
,

where k designates the characteristic inverse length of an exciting signal, Eq.(5.21) may be
readily rearranged as

vms,z

c0
=

(C2 − C2
A,z)(γ − 1)

4c0ρ0k(C4 − c20C
2
A,z)

exp (DT/k)Lρρ

∫ T

0

exp (−Fθ) ρ2ent,0(θ − T + Z)dθ. (5.22)

For example, let the entropy excess density takes initially the form of a Gaussian impulse

ρent,0 = R0 exp(−Z2). (5.23)

The integral in the right-hand part divided by R2
0, takes the form

4vms,zρ0k(C
4 − c20C

2
A,z)

(γ − 1)R2
0(C

2 − C2
A,z)Lρρ

exp (−DT/k) =
∫ T

0

exp (−Fθ) exp(−2(θ − T + Z)2)dθ ≈ (5.24)

√
π

2
√
2
exp (F (Z − T ))

(
Erf

(
F + 4Z

2
√
2

)
− Erf

(
F − 4T + 4Z

2
√
2

))
.

In view of smallness of attenuation or amplification over the wave period due to deviation from
adiabaticity (for magnetosonic perturbations to be a wave process), |F | ≪ 1, and

∣∣DT
k

∣∣ ≪ 1.

F=-0.1

0

5

10
Z

0

5

10

T

0

1
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0
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10
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T

0.0

0.5

1.0

F=0.1

0

5

10
Z
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Figure 1.
4vms,zρ0k(C4−c20C

2
A,z)

(γ−1)R2
0(C

2−C2
A,z)Lρρ

exp (−DT/k) (Eq.(5.24)) for different F and Gaussian initial

form of excess density of the entropy mode determined by Eq.(5.23).

The analysis undertaken by the author in the context of Newtonian flows has shown that the
excited mode consists basically of parts propagating with the speed of dominant mode and
the own linear speed of the excited mode [3, 31]. The nonlinear interaction breaks proper-
ties of ”directivity” of the excited mode which is still determined by the linear links of spe-
cific perturbations. Fig.1 clearly reveals different speeds of the head and back fronts of an
excited perturbation. The sum of the error functions in the samples leads to formation of
some kind of plateau with variable height. The magnitude of the excited velocity varies as

exp
(
DT
k

+ F (Z − T )
)
= exp

(
2(γ−1)Lρ

c20Ck
(Z − T ) + D

k
Z
)
, hence, it is determined by Lp,Lρ, θ and

plasma-β. The quantity vms,z is proportional to

(C2 − C2
A,z)(γ − 1)

4c0ρ0k(C4 − c20C
2
A,z)

LρρR
2
0.

The sign of the excited velocity coincides with the sign Lρρ, and its magnitude depends also on
the magnitude of perturbation in density in the entropy mode and its characteristic extension,

the equilibrium parameters of a plasma, θ and plasma-β. The dimensionless ratio
c20(C

2−C2
A,z)

C4−c20C
2
A,z

is

positive for any θ and plasma-β and varies from 0 till 1. Fig.2 shows this ratio for the fast and
slow magnetosonic modes. The surfaces are symmetric with respect to the plane θ = π/2.

c0
2 IC2

- CA,z
2 M

C4
- c0

2 CA,z
2

0

1

2

3

Β

0

Π

2

Θ

0.0

0.5

1.0

c0
2 IC2

- CA,z
2 M

C4
- c0

2 CA,z
2

0

1

2

3

Β

0

Π

2

Θ

0.0

0.5

1.0

Figure 2. The ratio
c20(C

2−C2
A,z)

(C4−c20C
2
A,z)

for the fast (left panel) and slow (right panel) magnetosonic

modes. The surfaces are symmetric with respect to the plane θ = π/2. Evaluations for
γ = 5/3.

The maximum absolute value vz,ms

c0
achieves at the plateau,

|Lρρ|R2
0

(C2 − C2
A,z)(γ − 1)

4c0ρ0k(C4 − c20C
2
A,z)

√
π√
2
exp

(
D

k
T + F (Z − T )

)
,

that is less or equal

|Lρρ|R2
0

(γ − 1)
√
π

4c30ρ0k
√
2
exp

(
D

k
T + F (Z − T )

)
for any θ and plasma-β and both slow and fast magnetosonic modes. There is no excitation of
the magnetosonic mode if Lρρ = 0.
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6 Concluding Remarks

This study explains the method which allows to obtain the nonlinear corrections to the specific
modes of a flow and to derive equations describing nonlinear interaction of different modes in
a fluid flow. The method bases on the definition of modes of the linear flow as relations of
specific perturbations. It may be applied to the wide variety of weakly nonlinear fluid flows
(not necessary flows of ionized gases [3]). A planar flow of a fully ionized plasma affected
by a magnetic field, is considered in this study. We corrected the links specifying the Alfvén
perturbations by including quadratic nonlinear terms. The set of corrected variables is different
for θ = 0 or θ = π (ρA, vA,z, pA) and other values of θ (vA,x, BA,x). In spite of nonlinear
corrections in the links, they do not have impact on the dynamic equation for the Alfvén
perturbation, and vA,y is still described by the linear equation (4.17). There is no leading-
order nonlinear term in the dynamic equation for the dominant entropy mode. The conclusion
is that both Alfvén branches are ineffective in the nonlinear excitation of the other modes
(magnetosonic and the entropy mode), at least at the leading order (up to quadratic nonlinear
coupling). The Alfvén wave is not excited by the other modes if they are dominant. This follows
from the form of two Alfvén projectors (3.12) and the nonlinear part of Eqs(2.2) which indicate
that there is no coupling with magnetosonic and entropy modes. The counterpropagating
Alfvén branches also do not interact. The conclusions refer to the planar geometry of a flow.

The links between thermodynamic perturbations in the wave mode may be referred as
polarization relations. Not to mention nonlinear corrections, the linear links between specific
perturbations by themselves are undeservedly underestimated in many studies of fluid flows.
In particular, in the case of mono-polar impulses the integral term in the link between pms and
ρms is responsible for the non-zero perturbation of density after an impulse passes. A Gaussian
exciter

pms = P0 exp(−(ω(t− z/C))2),

gives the residual magnetosonic density in the form

ρms = −P0
2
√
π(γ − 1)(c20Lp + Lρ)

c40ω
. (6.25)

This is a constant quantity associating with the heating-cooling function (but not to the thermal
conduction and dynamic viscosity) which may indicate its properties.

The method of projecting allows to derive coupling nonlinear equations for interacting modes
in a flow with different mechanisms of deviation from adiabaticity. The generic heating-cooling
function L(p, ρ) is considered. It balances with the mechanical damping and thermal conduction
and introduces various scenarios of fluid dynamics and, in particular, in nonlinear interaction
of modes. The dominant entropy mode may excite any magnetosonic mode if Lρρ differs from
zero. There is no excitation if Lρρ = 0. The dynamic equation (5.20) along with (4.18) take into
account mechanical and thermal attenuation, the heating-cooling function and nonlinear dis-
tortions of the excited mode. An analytic example concerns impact of the only heating-cooling
function on the dominative entropy perturbations and the excited wave mode. The sign of Lρρ

coincides with the sign of velocity in the induced magnetosonic mode. The example reflects the
main features of intermode interactions. The excited perturbations basically consist of parts
which propagate with their own linear speed and the speed of the dominant mode. For an
impulsive exciter, the head and back fronts propagate with these different speeds. In general,
the damping due to dynamic viscosity and thermal conduction, the attenuation/amplification
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arising from the heating-cooling function D and the parameter of nonlinearity ε have impact
on the excited perturbations. All these factors depend on the plasma-β and θ. The conclusions
may be useful to specify an exciter, the equilibrium parameters of a plasma and the kind of
heating-cooling function, also in remote observations.

DATA AVAILABILITY STATEMENT
Data sharing is not applicable to this article as no new data were created or analyzed in

this study, which is a purely theoretical one.
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