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Abstract: Cutting wood with circular saws is a popular machining operation in the woodworking and
furniture industries. In the latter sliding table saws (panel saws) are commonly used for cutting of
medium density fiberboards (MDF), high density fiberboards (HDF), laminate veneer lumber (LVL),
plywood and chipboards of different structures. The most demanded requirements for machine tools
are accuracy and precision, which mainly depend on the static deformation and dynamic behavior
of the machine tool under variable cutting forces. The aim of this study is to present a new holistic
approach in the process of changing the sliding table saw design solutions in order to obtain a better
machine tool that can compete in the contemporary machine tool market. This study presents design
variants of saw spindles, the changes that increase the critical speeds of spindles, the measurement
results of the dynamic properties of the main drive system, as well as the development of the machine
body structure. It was proved that the use of only rational imitation in the spindle design on the basis
of the other sliding table saws produced does not lead to the expected effect in the form of correct
spindle operation.

Keywords: sliding table saw; spindle; critical rotational speed; static stiffness; dynamic properties;
noise; sawing of wood composites

1. Introduction

Cutting wood with circular saws is a popular machining operation in the woodworking and
furniture industries. Its popularity is mainly due to the fact that in this method of cutting relatively
simple and cheap tools are used, usually saws and disc cutters with small dimensions. In the furniture
industry, sliding table saws (panel saws) are commonly used for cutting of medium density fiberboards
(MDF) [1], high density fiberboards (HDF), laminate veneer lumber (LVL) [1], plywood [2] and
chipboards of different structures [3].

The most demanded requirements for machine tools are accuracy and precision, which mainly
depend on the static deformation and dynamic behavior of the machine tool under variable cutting
forces [4]. Sliding table saws (panel saws) should guarantee the user straightness of the kerf in
the longitudinal direction, perpendicularity of the kerf to the sawn board surfaces, a smooth kerf
surface after cutting, as well as lack of washboarding [5] on the sawed surface. In sliding table saws,
the blade of the collared saw is rigidly fixed to the driving spindle [6–9]. The qualitative effects of the
sawing process depend on the static and dynamic properties of the entire structure of the machine
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tool, and the cutting system consists of a machine tool, clamping system, a workpiece and a tool.
Hu Wan-yi et al. [10] presented the results of empirical works devoted to the noise generated by the
sliding table saws during idling. The generated noise has three main sources: air flow around the
saw blade and in the suction system (aeromechanic noise), and the noise depending on the structure
of the machine tool. Noise caused by mechanical vibrations can result from unbalance of the main
saw blade system, eccentricity of the main spindle, incorrect assembly and loosening of the bearing,
which are could be caused by wear of bearings race-ways [10]. Vibrations and noise in machine
tools are always present simultaneously, hence, if the vibrations are at a lower level, the noise is also
lower [11]. For example, self-exciting chatter vibrations have a particularly negative effect on the
cutting process effects, a state of the workpiece (waviness, roughness), a machine tool life and tool
condition, as well as on the efficiency of machining. In addition, they accelerate spindle-bearing wear
and cutting-edge wear (it is not only faster, but even catastrophic). Furthermore, they make it difficult
to obtain the required surface quality and cause excessive noise [12]. The manufacturers of sliding
table saws tend towards improving sawing accuracy by minimizing the vibration level and noise of
their machine tools, and thank to that growing their competitiveness at the market.

Nasir and Cool [13] have done a very thorough review of the literature in which they have shown
that the studies of sawing processes are the subject of numerous studies in many scientific centers.
Kvietková et al. [14] reported on the results of the effect of number of saw blade teeth on noise level
during transverse cutting of beech wood. However, the tests were not conducted on the sawing machine,
but with the use of the power tool. For this reason, the expected noise level when using similar circular
saw blades on a panel saw is likely to be completely different. The same power tool Kminiak et al. [15]
applied in the research on the quality of a machined wood surface while transverse cutting of European
beech (Fagus sylvatica L.). Very often, experiments of cutting with circular saw blades are conducted on
the special laboratory stands, e.g., cross-cutting of green spruce and beech wood [16], or cutting process
with feeding in the longitudinal direction of modified beech wood (Bendywood Candidus Prugger Sas,
Bressanone, Italy), DMDHEU (1.3-dimethylol-4.5-dihydroxyethyleneurea) (Wood Biology and Wood
Products, University of Goettingen, Goettingen, Germany) and Lignamon (a name of ammonia-treated
compressed beech wood) [17]. The publication by Mandic et al. [18] was found among the reports
from the numerous studies on the process of cutting with circular saws conducted on a sliding table
saw. These authors were the few who carried out their empirical research of power consumption and
the acoustic emission (AE) on the panel saw the type Minimax CU410K machine tool (SCM Group,
Rimini, Italy), and the material to be cut was laminated particle board. Surface roughness produced by
rip sawing with circular saw of MDF was evaluated by Aguilera [19] using a stylus technique. In that
research while in climb cutting mode the surface roughness was slightly better if the cutting speed
was higher. The findings of work by Aguilera and Barros [20] lead to the conclusion that the sound
pressure (measured with microphones) generated in the process with circular saw blades is closely
related on satisfactory levels of correlation with the surface roughness. The samples were machined in
a single-spindle shaper machine. However, in both cases described in works [19,20], the research was
carried out on a single-spindle shaper machine, which is much stiffer than a panel saw. Therefore,
it would be difficult to expect similar results when cutting MDF boards on a panel saw.

Since, there is the carcinogenic nature of wood dusts [21], the saw dust extraction systems of
sawing machines have been also examined in terms of their efficiency [22,23] and acoustic emission [23].

Due to its low inherent stiffness, the circular saw is one of the weakest elements of the machine
tool system. Hence, vibrations of the sawblade and any roughness of the cutting surface must be
limited. Cutting vibration can be suppressed by uncoupling the two vibration modes of the same nodal
diameter number by using outer slots in the saw blade [24,25] and creating high saw body damping
using inner slots filled with viscoelastic resin [26]. The behavior of the circular saw blade also depends
on its design [27,28]. Nevertheless, the reduction of the transverse vibrations of the saw blade can be
obtained if it operates below the value of the critical rotational speed [6,29,30].
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Dietrych [31] states that the ability to perform tasks correctly by the new designed machine tool
can be evaluated on the basis of quality indices, which include expected life of the machine, reliability,
precision and low level of emitted interference (vibration and noise). For a panel saw the objective
function should be comparable to the cutting accuracy it achieves. An illustration of the causal
relationship between these mentioned quality indicators and vibrations is shown in Figure 1. Too much
vibration activity of the machine tool (panel saw) will affect durability (expected life), accuracy and
reliability [11,32]. Therefore, at the stage of designing and testing the prototype, it is necessary to find
the sources of vibration and noise. Such activities are called vibroacoustic construction (emission)
diagnostics [11,32].
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Based on the observations, it can be assumed that most manufacturers in the design process use
statistical and comparative methods [33], which rely on rational imitation of practically proven sawmill
drives of similar design, similar size and similar kinematics, taking into account development trends
in a given group of machine tools.

The aim of this study is to present a new holistic approach in the process of changing of the sliding
table saw design solutions in order to obtain a better machine tool that can compete in the modern
machine tool market. This review presents design variants of saw spindles, changes in increasing the
critical speeds of spindles, measurement results of the dynamic properties of the main drive system,
as well as the development of the machine body structure.

2. Spindle and Main Driving System

2.1. Design Variants of Main Spindles

In North America, a system with circular saw blades having a spline in the inner hole working
with a spindle having an external spline is common to circular sawing machines for primary wood
processing, especially [7]. The second way of embedding the saw blades on the spindles of sawing
machine tools, common in Europe, is by fixing them with the fastening collars [29,34]. In this case the
operation of the saw must be at a rotational speed lower than their critical speed, guaranteeing the
stable operation of the tool [29]. However, the clamping of the saw with the help of collars allows
for multi-saws to place saws on the spindles with little distances between them. Moreover, the latter
solution is commonly used in format saws where the cutting torque is most often transmitted by
friction between the mounting collars and the saw blade [8,29,35]. Orlowski and Dudek [35] analyzed
the development of the main spindles of the sliding table saws for the last quarter century.
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In the last decade of the twentieth century, the long spindles with ratio of the supports spacing
L to the inner diameter of the front bearing d of about 12.7, were mounted in the format saws [36].
This type of solution is be still found in the sliding table saw DMMS-40 Classic (REMA S.A., Reszel,
Poland, Figure 2a), in which the traditional V-belt has been displaced by the PK belt (v-ribbed belt).
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In 2006, Altendorf showed at the Drema Fair in Poznan a new generation of sliding table saws F45
Elmo (Altendorf, Minden, Germany) [37], with a short main spindle, with a L/d ratio of about 3 [38].
Since then, the market has been supplying mainly short-wheeled spindles driven mainly with a
rear-wheel transmission. This kind of the design was applied in the sliding table saws types as follows:
Fx3 (after modernization Fx550 [39], f. Rema SA, Reszel, Poland), UNICA 400 (f. Griggio, Cadoneghe,
Italy—company closed in 2018) [40], K 700S (f. Felder Group, Hall in Tirol, Austria) [41] and PF 400S
(f. Rojek, Častolovice, Czech Republic) [42]. Each of the aforementioned saws has a stepped main
drive, in which the change of rotational speed depends on the position of the PK belt in the belt
transmission. There are usually solutions with three pairs of pulleys or less often with four pairs of
pulleys. Nevertheless, the most modern solution seems to be the variant with a continuously variable
drive, such as in one of the design variants of the F45 saw [37].

2.2. Static and Dynamical Properties of Spindles

The use of only rational imitation in the design on the basis of the other table sliding saws
produced does not lead to the expected effect in the form of correct spindle operation, and this mainly
concerns the possible exceeding of the tool’s lateral run out value. Too much lateral runout of the saw
blade can be a source of additional force excitation for the tool, which can cause unwanted machining
errors as a result. Errors of this type are not very visible when cutting individual thin wood composite
panels, however, very often these materials are cut in packages and then the errors on sawn surfaces
can be more observable, especially in case of top boards in the package.

The correctness of the spindle design can be determined based on analytically determined speeds
critical, which seems to be a rational approach, especially for circular sawing machines. In the
literature [8,43], it can find recommendations to calculate the values of spindle critical rotational speeds
ncr from the Equation:

ncr = 300

√
1

fmax
, (1)

where: f max is a maximum deflection of the spindle in cm (determined on the front or rear end of the
spindle). The calculated critical rotational speed should satisfy the inequality:
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ncr ≥ (1.5÷ 2)nwork, (2)

where: nwork is a working rotational speed of the spindle, rpm.
The short spindle of the sliding table saw Fx3 (before modernization) presented at work [34] can

develop working speeds of 3500, 4500 and 6000 min−1, depending on the location of the PK belt in belt
pulley. This type of solution appeared in this machine tool in 2011 [38]. On the spindle, Ø450, Ø350 or
Ø300 mm circular saw blades can be clamped with the Ø125 mm diameter flanges, which defines
the rotation speed. On both sides, the spindle was supported on 6206 2RS1 Explorer (SKF) bearings
and the ratio L/d = 2.6. Deformation calculations were carried out with the use of the Finite Element
Method (FEM) in which the spindle model was loaded on the rear end by a force Fs-d from the shaft
drive, which was determined using the available software of the company SKF (is an acronym for
Svenska Kullagerfabriken, Swedish Ball Bearing Factory, SKF Sweden AB, Göteborg, Sweden) [44].
The circular saw blade at the front end was loaded, with forces which values and location were
determined according to the work [8], assuming that full rated engine power of 7.5 kW is available in
the cutting zone.

Computations of maximum deformations of the Fx3 (Figure 3) and Fx550 (Figure 4) saw spindles
were carried out as static structural linear analyses. In both models linear tetrahedrons type elements
with a fully structured mesh of 1 mm size (the mesh of elements was not refined) were applied.
The model assumed one degree of freedom in the form of the possibility of rotation in relation to the
spindle axis, which in the machine tool’s coordinate system it is the Z axis. Moreover, it was assumed
that both of the bearing supports are cylindrical and do not allow for translational displacement in X
and Y directions, but only allow for rotation in the relation to the axis Z. In computations, the material
properties of spindles were as follows: Young’s modulus 205 GPa, Poisson’s ratio 0.28.
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In Figure 3, the resultant deformation of the spindle in the Fx3 sawing machine caused by
the cutting forces and by the force Fs-d, for the operating speed nwork = 3500 min−1 is presented.
The maximum deflection of the spindle in this case was equal to 0.034756 mm. Based on the obtained
results, it was found that for the two lowest rotational speeds of the saw spindle the condition described
by Equation (2) is not satisfied. For that reason, the model of the spindle was redesign.

The new spindle model was calculated with the support diameters equal to Ø35 mm (under 6207
2RS1 Explorer bearing), increasing the L/d ratio to 3.0, according to SKF recommendations for optimum
spacing of spindle supports [45]. Due to the predominant influence of the forces from the drive,
the diameter of the rear end was also increased. In Figure 4, the resultant deformation of the spindle in
the Fx550 sawing machine caused by the cutting forces and by the force Fs-d, for the operating speed
nwork = 3500 min−1 is presented. The resulting deformation values for the changed spindle turned
out to be smaller [34], which resulted in the higher ncr/nwork ratios for each case of rotational speed
(Figure 5). An improved spindle of the new type (Figure 2b) was implemented in the table sliding saw
Fx550. Moreover, in the latter machine tool to increase the sawing aggregate rigidity of the panel saw,
the stiffness of the motor plate guiding was increased, and simultaneously rolling guides with higher
rigidity were used [38].
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Figure 5. Ratios of critical rotational speeds to working rotational speeds revolutions ncr/nwork of
spindles of table sliding saws Fx3 (an old applied solution) and Fx550 (a currently applied design)
(Rema SA), where vertical bold lines indicate the limits of the recommended values of the ratio ncr/nwork.

While the review of the spindle designs, it was observed that the position of the driving wheel
on the spindle may be different, therefore, numerical calculations were additionally performed to
demonstrate the effect of the pulley position on the spindle with increased rigidity [46] on its critical
rotational speeds. The results of the calculations showed that for this type of rigid spindle, in each of
the analyzed cases of the wheel position, the critical rotational speed was approximately 14,400 min−1

and the ratio of ncr/nwork ≈ 2.4.

3. Dynamic Properties of the Machine Tool

3.1. Dynamic Properties of the Main Driving System

Some selected problems concerning the empirical research of the saw cutting unit of the table
sliding saw were described by Orłowski et al. [34]. Cempel [32] expressed that the diagnosis should
be limited to one definite industrial case with using repeated methodology. This recommendation
was due to the certainty that setting standards of diagnosis is too risky [32]. Before performing of
vibroacoustic empirical tests the researcher should consider which parameter should be measured in a
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given case. The vibration velocity is a common choice, but not always the right one, because the better
option is often measuring of displacements or accelerations [32].

Vibration diagnostic experimental analyzes have been carried out on the saw cutting unit of the
modernized table sliding saw Fx3 (currently Fx550) (f. REMA S.A., Reszel, Poland). The circular saw
blade with main dimensions Ø300 × 3.2 × 30 and number of teeth z = 96 was mounted on the spindle
with collars of Ø125 mm. The measured rotational speed of spindle was nwork = 5128 rpm. The place of
the accelerometer (A in Figure 6) installation was also the measuring point position, and was located
on the top of the main body of the spindle system. The Fluke 810 vibration tester (f. Fluke, Everett,
Washington, DC, USA) was used to measuring of the accelerations in the X, Y, Z axes, which are axes
of the machine tool co-ordination system (Figure 6).
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Figure 6. A view of the saw cutting unit of the modernized table sliding saw Fx3 with a position of the
accelerometer A, where: X, Y, Z—axes of the table sliding saw co-ordination system [47].

The vibration tester Fluke 810 automatically converts the received acceleration signals into a
waveform plot (Figure 7a) and creates vibration velocity spectra (Figure 7b). The latter feature is a
disadvantage, since, the person conducting the tests has practically no influence on the way the test is
performed, and the results are processed.
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Figure 7. Waveform of the acceleration signal (a) and vibrational velocity spectrum of the signal (b) of
the modernized table sliding saw Fx3 in the measurement point (Figure 6) in Z axis [47].

The changes of component velocities vj in function of time t, can be computed on the basis of
vibrational velocity amplitudes (Figure 7b) [47]. The Root-Mean-Square (RMS) values of vibrational
velocities were calculated for each measurement axis of the modernized table sliding saw Fx3. In the
next step, the total vibrational velocity for the measurement point was computed from the equation
as follows:

vΣ(RMS) =
√

vX(RMS)2 + vY(RMS)2 + vZ(RMS)2, (3)
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Figure 8 presents RMS values of vibrational velocities in directions of X, Y and Z axes of the
coordination system. In Figure 8, the value of the resultant RMS of vibrational velocity Sigma was also
shown. The analyzed values in three directions X, Y and Z were measured at the measurement point
(Figure 6).
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Due to the use in literature the different criteria values for making an assessment of the new
machine tool [32] in the analyzed investigation were determined two values: RMS amplitude of the
total vibrational velocity and the peak value (amplitude). Obtained values from experimental test are
presented in Table 1. Both Blake and Łączkowski are guided by the values of the peak amplitude [32].
However, for both standards, the experimental values obtained are evaluated differently (Table 1).
A similar situation can be observed for the other two machine tool evaluation standards: own standards
of the American diagnostic company, (IRD Machanalysis Limited, Maharashtra, India), and the British
company VCI Ltd (Strabane, Great Britain). In this case, both standards base their assessment on
the value of the RMS. Unfortunately, the evaluation of the examined main spindle system of the
modernized table sliding saw Fx3 based on the experimental data received is again divergent for both
standards (Table 1). The presented analysis shows that there are no unequivocal criteria for assessing
the condition of the examined machine tool. Moreover, the choice of assessment criteria can very often
be more or less subjective.

Table 1. Experimental values of vibrational velocities with diagnostic evaluation on basis of a few
diagnosis standards.

RMS of Vibrational Velocities, vΣ

mm·s−1
Peak Value of Vibrational Velocities, vmax

mm·s−1

Experimental Results 2.08 3.27

Standards Diagnosis

Range RMS of vibrational velocities for
diagnosis, mm·s−1

or
*range peak value of vibrational velocities,

mm·s−1

IRD Mechanalysis Admissible 2–4

VCI Ltd. Good 1.27–2.54

Blake Admissible *2.20–6.00

Łączkowski Good *2.50–6.30
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3.2. Dynamic Properties of the Machine Tool Body

In the sliding table saw Fx550, which is the follower of the circular sawing machine Fx3, a new
machine frame body made of steel sections connected with special lockers and welded was applied
(Figure 9). In the previous version of the machine tool body, there was a solution which based on a set
of bent body parts connected (mainly welded) with flat steel plates. The new design of the machine
tool body has much more stiffness of the machine structure in comparison with the panel saw Fx3,
and that kind of the body can be met only in the highest-class panel saws.
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Figure 9. General view of the frame body of the sliding table saw Fx550.

This body solution has given a spectacular reduction of the resultant peak values (amplitudes)
vΣ of the vibrational velocities (Figure 10) measured at the point #4. The measurement point #4 was
situated in each case in the middle on the body wall which was parallel to the main spindle axis.
The value of the vibration velocity for the new solution is significantly below the permissible minimum
value recommended by Łączkowski [32].

Appl. Sci. 2020, 10, 7386 9 of 13 

tool body has much more stiffness of the machine structure in comparison with the panel saw Fx3, 

and that kind of the body can be met only in the highest-class panel saws. 

 

Figure 9. General view of the frame body of the sliding table saw Fx550. 

This body solution has given a spectacular reduction of the resultant peak values (amplitudes) 

vΣ of the vibrational velocities (Figure 10) measured at the point #4. The measurement point #4 was 

situated in each case in the middle on the body wall which was parallel to the main spindle axis. The 

value of the vibration velocity for the new solution is significantly below the permissible minimum 

value recommended by Łączkowski [32]. 

 

Figure 10. Resultant peak values (amplitudes) of the vibrational velocities vΣ measured on the frame 

body at the measurement point #4 of the sliding table saws Fx3 and Fx550. 

Testing the unloaded machine tools of both Fx3 and Fx550, maintaining tool setting, machining 

parameters were carried out in industrial conditions in the frame of the project POIR.01.01.01-00-

05888/15 (in Polish Program Operacyjny Inteligentny Rozwój, Smart Growth Operational 

Programme). Measurements of noise were done with the use of the integrating sound level meter 

(SON-50) (f. Sonopan, Bialystok, Poland) in the points according to the International Organization 

for Standardization (ISO) standard (ISO 7960: 1995) [48]. At the location of the microphone in the 

operator position (about 1.5 m over the hall floor) for the sliding table saw Fx3 the noise on the idling 

was at the level of 77.5 dB whereas in case of Fx550 it was 73.5 dB. The resultant noise determined as 

an average from all measurement points was as follows: for Fx3 equalled to 79 dB and for Fx550 was 

equal 74.6 dB. 

Thanks to: a new body of the sliding table saw Fx550, a modernized stiffer spindle, a stiffer system 

of the electric motor plate guiding [38], and a steady PK belt straining system the described sliding table 

0

0.5

1

1.5

2

2.5

3

3.5

#4

V
ib

ra
ti

o
n

al
 v

el
o

ci
ty

 [
m

m
 

s-1
]

Tytuł wykresu

Fx3 Fx550

Figure 10. Resultant peak values (amplitudes) of the vibrational velocities vΣ measured on the frame
body at the measurement point #4 of the sliding table saws Fx3 and Fx550.

Testing the unloaded machine tools of both Fx3 and Fx550, maintaining tool setting, machining
parameters were carried out in industrial conditions in the frame of the project POIR.01.01.01-00-05888/15
(in Polish Program Operacyjny Inteligentny Rozwój, Smart Growth Operational Programme).
Measurements of noise were done with the use of the integrating sound level meter (SON-50) (f. Sonopan,
Bialystok, Poland) in the points according to the International Organization for Standardization (ISO)
standard (ISO 7960: 1995) [48]. At the location of the microphone in the operator position (about
1.5 m over the hall floor) for the sliding table saw Fx3 the noise on the idling was at the level of
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77.5 dB whereas in case of Fx550 it was 73.5 dB. The resultant noise determined as an average from all
measurement points was as follows: for Fx3 equalled to 79 dB and for Fx550 was equal 74.6 dB.

Thanks to: a new body of the sliding table saw Fx550, a modernized stiffer spindle, a stiffer system
of the electric motor plate guiding [38], and a steady PK belt straining system the described sliding
table saw Fx550 has been a source of the general noise on the idling at the level lower about 5 dB in
comparison to the sliding table saw Fx3.

4. Conclusions

This review’s objective was to present a new holistic approach in the process of changing the
sliding table saw design solutions in order to obtain a better machine tool that can compete in the
contemporary machine tool market. Based on the review, it can be concluded that:

• In modern design solutions of sliding table saws, the main circular saw blades are clamped by
means of collars on spindles with a short support spacing with a ratio of the supports spacing L to
the inner diameter of the front bearing d of about 3. It ought to be emphasized, that excessive
increase in the diameter of the front bearing d and simultaneous striving for the optimum support
spacing is not possible with the sliding table saws, as every manufacturer aims for the smallest
possible dimensions of the cutting unit.

• To evaluate the dynamic properties (behavior) of the spindle it is useful to determine their critical
values of rotational speeds. The maximum deformations determined in static structural linear
analyses showed that in the case of the Fx550 saw spindle they are 10× smaller in comparison
with the spindle of the Fx3 saw, which made it possible to estimate critical speeds, which satisfied
the inequality presented in Equation (2).

• The use of only rational imitation in the spindle design on the basis of the other sliding table saws
produced does not lead to the expected effect in the form of correct spindle operation, and this
mainly concerns the possible exceeding of the tool’s lateral runout value.

• The errors on sawn surfaces caused by the tool’s lateral runout value can be more apparent
especially in case of top wood composite boards (MDF, HDF, LVL, plywood or particle boards)
in the sawn package.

• An application in a new machine frame body of steel sections connected with special lockers
instead of the solution which based on a set of bent body parts between flat steel plates resulted in
lower noise values of around 5 dB during idling.

• If the noise of the machine tool is decreased and simultaneously vibrations are at lower
level, hence, it could be expected higher accuracy of sawing which is especially important
in furniture production.

• Experimental values of vibrational velocities (RMS or peak value of vibrational velocities)
on basis of a few diagnosis standards allowed us to classify the examined main spindle system of
the sliding table saw Fx550 as good or admissible design solution from the point of its dynamics.
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