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Abstract
This paper presents the results of the discrete-continuous optimisation of an axial flow
blood pump. Differential evolution (DE) is used as a global optimisation method in order
to localise the optimal solution in a relatively short time. The whole optimisation process is
fully automated. This also applies to geometry modelling. Numerical simulations of the flow
inside the pump are performed by means of the Reynolds-Average Navier-Stokes approach.
All equations are discretised by means of the finite volume method, and the corresponding
algebraic equation systems are solved by the open source software for CFD, namely Open-
FOAM. Finally, the optimisation results are presented and discussed. The objective function
to be maximised is simply pressure increase. The higher pressure increase the lower angular
velocities required. This makes it possible to minimise the effect of haemolysis because it is
mainly caused by high shear stresses which are related, among others, to angular velocities.

Keywords CFD · Global optimisation · Blood flow · Axial blood pump

1 Introduction

Since advanced medical treatment is usually not enough to prevent the further decline
of patients with heart failure, two treatments of patients with such a disease can be dis-
tinguished, namely heart transplantation and artificial heart blood pumps. The former is
somewhat difficult because of the relatively high costs and, what is even more important,
lack of donor organs [1], not to mention organ rejection and mortality rates. The latter
approach to the heart failure problem, i.e. artificial heart pumps, have gained popularity due
to constantly improved design and features.

Several designs of artificial hearts are known. The most complicated aim to replace the
ailing heart whereas simpler pumps are designed in order to support it. The supporting
devices fall into three groups: LVAD (the left ventricular assist device), RVAD (the right
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ventricular assist device) and BIVAD (the bi-ventricular assist device) [2]. Despite the fact
that the human heart’s nature is pulsatile, continuous flow pumps are the most popular
solutions. This is because of the simplicity and size of the device. Furthermore, we can dis-
tinguish centrifugal and axial blood pumps. The latter being smaller in comparison to the
former. However, axial blood pumps require significantly higher angular velocities in order
to increase outlet pressure. This may lead to blood damage, i.e. thrombosis and haemolysis
[3–5] in particular. Haemolysis is mainly caused by high shear stress [6]. In order to min-
imise the effect of haemolysis an optimisation process of the axial pump is undertaken. The
optimisation results lead to improvement in the reduction of the wall shear stresses.

According to Behbahani et al. [6] the design optimisation process is a fully automated
iterative improvement process, in which CFD simulation is coupled with an optimisation
algorithm. What is more, this process is in contrast to a design approach. This is because
the latter includes a human expert in the iteration loop.

Most published instances of CFD optimisation involve only regional optimisation, with-
out parameterising the geometry of the whole pump [7]. What is more, in various published
works, part of the optimisation remained a manual process [7]. For instance, Zhu et al. [8]
optimised only the diffuser of an axial flow blood pump, with a fixed-shape straightener
and a rotor by means of commercial CAD, CFD and optimisation solvers. Derakhshan et
al. [9] investigated an optimisation of a centrifugal pump with only six geometry variables
with the help of ANN and an Artificial Bee Colony algorithm. Zhang et al. [10] optimised,
or in fact rationalised, several geometry parameters such as diameters, heights and blade
shapes. However, no optimisation algorithm and method are reported, suggesting a trial and
error approach rather than an optimisation process. Gouskov et al. [11] optimised a circu-
latory support pump with only four geometry variables by means of the little know LP-Tau
sequence generator regarded as a global optimisation algorithm. The whole process was
performed in three stages involving initial pump geometry, meaning that the part of the opti-
misation remains manual. Another method was developed by Hai et al. [7] for Archimedes
screw rotary blood pumps with guide vanes by means of a commercial optimisation tool
and a commercial CFD package. However, several simplifications were introduced such as
a constant shaft diameter. Also, the head and tail of the shaft were missing. The optimisa-
tion problem involved only seven design variables. Frazier et al. [12] modified an existing
axial-flow pump by increasing its inducer-impeller inlet angle hence increasing its pres-
sure responsivity. Korakianitis et al. [13] tested the performance of sixty two axial pump
impellers with varying outlet angles and number of blades, i.e. only two design variables.
Furthermore, the gathered data allowed the estimation of the optimal axial impeller geom-
etry for any desired operating condition. The optimisation (rationalisation) method appears
to be generate-and-test or the so called exhaustive search.

In this paper a fully automated iterative improvement process is discussed, coupling CFD
simulations with an efficient global optimisation algorithm. The optimisation process is
carried out by means of a slightly modified Differential Evolution (DE) algorithm, which is
regarded as one of the current state-of-the-art algorithms [14] and typically forms the basis
of the best performing algorithms. A simple and effective method of geometry modelling is
proposed parameterising the geometry of the whole pump by means of fourteen variables.
There is no need for any intermediate CAD software since the geometry is created directly
by means of freely available GNU Octave and Octave Geometry scripts [15]. The same
concerns the optimisation algorithms [16] available for everyone. A steady state solution is
also compared with transient solutions in terms of pressure increases for various time steps
and two different methods.
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2 Geometry Description

The whole geometry consists of a rotor and stator and is described by fourteen parameters
(design variables) x = {x1, . . . , x14} listed in Table 1. First of all, the rotor blade shape is a
non-linear helix given by

x(t) = R cos t, (1a)

y(t) = R sin t, (1b)

z(t) = f (t) (1c)

where R stands for the radius of rotor blades. Further, the parameter t ∈ [0; 2πx1] is related
to the rotor blade pitch 2πx1. The non-linearity f (t) of the helix Eq. 1a is described by one
parameter x2 shown in Fig. 1.

Two of fourteen design variables are discrete, i.e. the number of rotor and stator blades.
The former is named x3 and the latter x8. Next, the shape of the shaft is described by four
points (x4, x5), (x6, x7) of the spline shown in Fig. 1. Stator blades are given by the so called
camber line and the blade thickness. The former is represented by two variables (one point)
(x11, x12) of the spline whereas the latter by two variables (two points) (0, x13), (1, x14), see
Fig. 2. Finally, the two remaining variables x9 and x10 are the stator blade upper and lower
twist angles, respectively. The considered rotor radius R is 8mm and the length of the shaft
is 4.5R.

The whole optimisation process is fully automated. This also applies to geometry mod-
elling. Several random example geometries are shown in Fig. 3. What is important is that
the proposed method is simple and effective. There is no need for any intermediate CAD
software since the geometry is created directly by means of GNU Octave and Octave
‘Geometry’ script in a semi-discrete form (STL format).

Table 1 Constraints of variables
and optimal values Name Constraints Optimum Description

x1 [0.2; 1] 0.566 rotor blade pitch

x2 [0.1; 0.5] 0.100 non-linearity of the helix

x3 {2, . . . , 4} 4 number of rotor blades

x4 [0; 0.5] 0.251 two points of shaft’s spline

x5 [0.7; 1] 0.700

x6 [0.7; 1] 1.000

x7 [0.7; 1.2] 0.813

x8 {4, . . . , 8} 8 number of stator blades

x9 [0; 45◦] 45.00◦ stator blade upper twist angle

x10 [0; 30◦] 30.00◦ stator blade lower twist angle

x11 [0.2; 0.6] 0.600 point of stator shape blade spline

x12 [0; 0.3] 0.300

x13 [0.05; 0.3] 0.300 point of stator thickness blade spline

x14 [0.05; 0.2] 0.175
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Fig. 1 Shaft and helix splines

Fig. 2 Stator splines

Fig. 3 Examples of randomly generated geometries
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3 Blood FlowModelling

3.1 Governing equations

Although blood is a suspension of blood cells in the plasma [17], the blood flow in large
vessels as well as blood pumps can be regarded as a single-component and single-phase
fluid, i.e. blood may be treated as a Newtonian fluid. This method is suitable for vessels
larger than 0.1mm. If, however, the diameters are in the range of 0.1 to 1 mm, which is not
the case here, then non-Newtonian constitutive equations are required in order to account for
the non-Newtonian phenomena, such as shear thinning, yield stress and constant viscosity
values at high shear rates.

Numerical simulation of the flow inside the pump is performed by means of the
Reynolds-Average Navier-Stokes approach. A closed system of equations [18] for incom-
pressible fluid, involving a mass conservation equation, the Reynolds equation and two
additional transport equations for the two-equation SST model, is solved. An additional
equation for the eddy viscosity νt is also necessary together with two blending functions F1
and F2 [19]

∇ · ū = 0, (2a)
∂ū
∂t

+ ∇ · (ūū) = −∇
(
pρ−1 + 2

3k
)

+ ∇ · (
2 (νt + ν) D̄

)
, (2b)

∂k

∂t
+ ∇ · (kū) = 2νt D̄2 + ∇ ·

((
νtσ

−1
k3 + ν

)
∇k

)
− Cμkω, (2c)

∂ω

∂t
+ ∇ · (ωū) = α3ωk−12νt D̄2 + ∇ ·

((
νtσ

−1
ω3 + ν

)
∇ω

)
(2d)

−β3ω
2 + (1 − F1)2ω

−1σω3∇k · ∇ω,

νt = a1kmax−1
(
a1ω,

√
2D̄2F2

)
. (2e)

In the above equations u is the velocity vector, p – pressure, ρ – density, ν – kinematic
viscosity coefficient and D – strain rate tensor. The two additional transport quantities are
the kinetic energy of velocity fluctuations k and the turbulence frequency ω.

The shear stress transport (SST) model combines the k-ω model near the wall with the
k-ε far from it. Constants marked with the subscript ‘3’, namely σk3, σω3, α3, β3 are linear
combinations of constants from the component models, i.e. C3 = F1C1 + (1F1)C2. The
additional constants are a1 = 0.31, Cμ = 0.09.

3.2 Equation discretisation

All the equations are discretised by means of the finite volume method, and the corre-
sponding algebraic equation systems are solved by the open source software for CFD,
namely OpenFOAM [20]. Since all the transport Eq. 2a–2e have common terms, the general
transport equation for a quantity φ has the form of

∂φ

∂t
+ ∇ · (φu) = ∇ · (Γ ∇φ) + Sφ (3)

where the overall source term Sφ should be linearised first, if necessary Sφ = Su + Spφ.
The diffusivity for φ is denoted as Γ .
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The integral version of the above transport equation over a control volume VP can be
expressed as

dφP

dt
|VP | +

∑
f

φf uf · Sf =
∑
f

Γf (∇φ)f · Sf + Su|VP | + Sp|VP |φP (4)

where |VP | is a measure of VP and Sf is a surface normal vector pointing outward. The
considered convex control volume VP around a centroid P consists of f planar surfaces Sf .

Divergence schemes include both convection terms ∇ · (φu) and other diffusive ∇ ·
(Γ ∇φ) terms and involve Gauss integration. The discretised convection term needs to be
interpolated by means of cell centred values because the values φf are located at the face
centroids. Limited linear interpolation is used (the steady state case) or linear upwind (the
transient case), both being second order accurate. Further, the discretised diffusive terms
involve surface normal gradients (∇φ)f · Sf , and are evaluated at a cell face that connects
two cells. In order to maintain second order accuracy for non-orthogonal meshes, apart from
orthogonal schemes, a non-orthogonal correction is considered.

The SIMPLE algorithm is used in order to solve pressure-velocity coupling, and the
pressure equation is solved by means of the GAMG solver with the DIC smoother for the
steady state version of the system Eq. 2a–2e. For the velocity fields and turbulent quantities
standard solvers using a GS smoother are utilised. Under-relaxation factors are used in
order to improve the stability of a solution. This is particularly important when solving
steady-state flows. The assumed factors are 0.3 for pressure, 0.7 for velocity and 0.5 for the
turbulent quantities k and ω. The transient version of the system is solved by means of the
PISO [21] or PIMPLE (PISO + SIMPLE) algorithm, discussed further in Section 3.3.

The integrand dφP

dt of the left hand side of Eq. 4 is discretised by means of an implicit
multi-level scheme

dφP

dt
= 3φn+1

P − 4φn
P + φn−1

P

2t
. (5)

What is more, this method is known to be second order accurate in time. Additionally, this
approach is the so called three-level method because it requires the values of the unknown
function φP at three different time steps, namely φn+1

P , φn
P and φn−1

P .

3.3 Space and temporal discretisation

The flow domain is divided into three parts, see Fig. 4 (bottom). Apart from the rotating
rotor, two additional steady pipes (cannulae) are considered. The cannula shape optimisation

Fig. 4 Flow domain (bottom) and optimal pump geometry (top)
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Fig. 5 Mesh (left) and y+ distribution (right)

problem is a separate problem discussed elsewhere [14]. Furthermore, all three domains are
discretised separately and merged by the so called arbitrary mesh interface (AMI). The total
number of nodes is 1 689 534 and the total number of volumes is 1 495 877 where 1 381 669
of them are hexahedra. Formally, the mesh used may be classified as Cartesian, see Fig. 5
(left).

In order to make certain that the flow near the walls is properly resolved thin layers
around the physical walls are generated. The quality of the mesh near the walls is inspected
in terms of the maximal y+ values. Maximal values of y+ are below 1 for all the considered
walls including the blades, see Fig. 5 (right). It has to be clarified, however, that the Open-
Foam implementation of the k-ω family models (the SST among them) in the near wall
region allows for a scalable wall function if 1 < y+ < 300 or no wall function if y+ < 6.
Two options are then possible and two were inspected giving negligible differences in terms
of pressure rises. However, the former appears to be more stable which is crucial when it
comes to a fully automated optimisation process.

Figure 6 demonstrates mesh convergence by showing the influence of the number of
nodes on the pressure increase p ρ−1. It is obvious that increasing the number of the mesh
node above 2×106 has negligible effects on the pressure increase. This is because results are
nearly constant above 2×106. Given that the mesh size is crucial from the CFD calculations
perspective and thus optimisation time, the corresponding number of nodes was chosen at
the level of 1.7 × 106.

A steady state solution (MRF) in terms of pressure increase is next compared with
transient solutions for various time steps. Two methods are considered, namely PISO
(Pressure-Implicit with Splitting of Operators) and PIMPLE. Figure 7 presents transient
results in the form of pressure increase p ρ−1 as a function of an angle of revolution (thin
dashed lines). In order to compare the steady state (MRF) with transient solutions a time
averaged has to be introduced first [22]

p

ρ
= 1

t

∫ ti

ti−t

p(t)

ρ
dt (6)
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Fig. 6 Mesh convergence

where t represents the time of averaging (typically one revolution). If the time step of
the transient CFD calculations is constant the integral in Eq. 6 can be approximated by the
arithmetic mean resulting in

p

ρ
≈ 1

N

i+N∑
j=i

pj

ρ
. (7)

The number of time steps corresponding to the CFD time step is N . For instance, if the time
step corresponds to the 4◦ angle of revolution then N = 90 and so on.

A time step convergence for the considered pump for five revolutions and two different
approaches (PISO and PIMPLE) is shown in Fig. 7. As for the PISO algorithm five different

Fig. 7 Temporal convergence
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cases are presented namely 2◦, 1◦, 0.5◦, 0.2◦ and 0.1◦ time-step. Furthermore, the moving
averages (the thick solid lines) of the pressure increase Eq. 7 are super-imposed. It is well
visible that the PISO algorithm over-predicts the pressure rise in comparison to the steady
solution (MRF – the solid black line). Decreasing the angle of the revolution below 0.2◦
has no effects on the pressure increase. In the second case, i.e. PIMPLE, the situation is
completely different. It is evident that decreasing the temporal resolution from 1◦ to 6◦ per
time-step has a negligible effect on the results in terms of pressure increase. What is more,
the PIMPLE algorithm gives results similar to a steady solution (MRF). Thus, it can be con-
cluded that stationary solutions are representative. This is exceptionally important from the
point of view of the optimisation algorithm. This is because such CFD calculations must be
performed repeatedly. Finally, the transient simulations require typically 3 full revolutions
to reach the pseudo-periodic state.

3.4 Boundary conditions

The main boundary conditions are:

– Inlet. The specified constant volumetric flow rate V̇ = 3 dm/min is directed perpen-
dicularly to the inlet surface accompanied by the zero normal gradient pressure. Low
turbulence intensity is also considered. This means that the turbulence intensity is at
the level of 1% and viscosity ratio νt/ν = 1 where ν = 3.3019 × 10−6 m2s−1 and the
reference density ρ = 1060 kg m−3.

– Outlet. The constant pressure distribution is assumed here together with zero gradient
velocity for the flow out of the domain. This is because the outlet surface is located
relatively far from the rotor.

– Walls. The so called no-slip conditions is applied meaning that impermeability and
adhesion requirements are forced. Rotating wall velocity n = 6000 rev/min is consid-
ered in the rotating frame of reference. The flow in the near wall region is modelled by
means of the scalable wall function.

– Interfaces. In order to allow for coupling between stationary pipes and rotating part of
the pump the so called cyclic arbitrary mesh interfaces (AMI) are considered. A steady
state approach is used rather than a full transient rotor-stator interaction as explained
in Section 3.3. This is crucial for time consuming optimisation processes since CFD
calculations need to be repeated hundreds of times. This approach is commonly known
as a multiple reference frame (MRF) simulation.

4 Optimisation

4.1 General remarks

A discrete-continuous optimisation approach is needed to find the optimal shape. This is
because two of fourteen design variables are discrete, namely the number of rotor and stator
blades. The remaining variables such as the shaft, rotor and stator shapes as well as their
thickness are continuous.

Metaheuristic procedures or more precisely Differential Evolution (DE) are used as a
global optimisation method to localise the optimal solution in a relatively short time [16, 23].
Another commonly used term is nature-inspired metaheuristic. DE can be further classified
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as multi-point (population based), derivative free optimisation algorithms. Most impor-
tantly, no additional information about the objective function is required. This is because DE
is not problem-specific, stochastic algorithms with randomisation and local search. Addi-
tionally, randomisation is introduced through the probability of crossover. This makes it
possible to efficiently explore the design space and escape local minima.

4.2 Objective function

The optimisation problem is to find a maximal pressure increase p. Since most optimi-
sation algorithms are designed for the minimisation of the objective function, the pressure
increase is considered with a minus sign

p0 = min
x∈Ω⊆RD

(−p(x)) . (8)

Furthermore, the argument of the global minimum value of the objective function is
expressed as

g = arg min
x∈Ω⊆RD

(−p(x)) (9)

where D = 14 stands for the dimension of constraint space Ω or simply the so called
optimisation domain. Thus, the objective function is subjected to box constraints listed in
Table 1

Ω =
{
x ∈ R

D : Li ≤ xi ≤ Ui

}
(10)

where Li and Ui are lower and upper bounds, respectively. Box constraints are regarded
as a special case of inequality constraints. This type of constraint is commonly met in
optimisation problems and does not need any special treatment.

4.3 Algorithm

Differential Evolution [24] is a simple, fast and effective metaheuristic algorithm. Fur-
thermore, DE is regarded as the next step in evolution of the Genetic Algorithms (GA).
Crossover and mutation are utilised on floating-point vectors. Additionally, selection is also
present in DE. Most importantly, an explicit update equation is provided in contrast with
GA.

Four main features of the algorithm can be distinguished, namely three different individ-
uals selection, mutation, crossover and selection. Once three randomly individuals xa1 , xa2 ,
xa3 are selected, a mutant vector vi is generated according to the so called DE/Rand/1/Bin
variant

vi := xn
a1

+ F(xn
a2

− xn
a3

). (11)

The scale factor F , or the so called differential weight, is used in order to control the rate
of population development and is assumed here to be F = 0.7. Furthermore, the trial vector
yi is created via binomial crossover with probability C = 0.9 (line 10 in Fig. 8). The
crossover probability regulates how much of the mutant vector is copied to the trial vector. It
is possible to combine mutation and binomial crossover in a single vector equation by means
of the Heaviside step (theta) function H. An auxiliary D-dimensional vector K consists of
0 and 1 (line 7 in Fig. 8)

K := H (C − U(0, 1)) (12)

where U(0, 1) stands for the continuous uniform distribution realisations characterised by
its minimum 0 and maximum value 1. This approach is somewhat different in comparison
to the original algorithm [23, 24]. What is more, it is now possible to combine mutation
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Fig. 8 The vectorised differential evolution pseudocode

and crossover, into a single vector formula – line 10 in Fig. 8. Three different and randomly
chosen individuals are indexed on the basis of a random permutation vector a (line 9 in
Fig. 8). Additionally, line 8 corresponds to setting a random index of the vector K to 1
in order to guarantee that the yi �= xni . Here U{0,D − 1} represents the discrete uniform
distribution realisations where 0 and D − 1 are the parameters of the distribution. The
selection step is shown in line 12 in Fig. 8. Simply, the best solution of the trial vector yi

and original individual xni , in terms of the objective function value, is passed onto a next
generation xn+1

i . What is interesting is that this step is fully deterministic in contrast with
mutation and crossover. The algorithm terminates if a given stop criterion is satisfied, i.e. the
maximum number of objective function evaluations. Finally, a uniform random distribution
is generated within the search domain with a random seed based on the clock (line 2 in
Fig. 8). Lower L = {L1, . . . , LD} and upper U = {U1, . . . , UD} domain constraints are
listed in Table 1 (the second column).

The presented algorithm [16] is almost identical in comparison to the original algorithm
[24]. The differences include a vector representation, which is executed faster by mathe-
matical packages such as GNU Octave. Furthermore, the presented version of the algorithm
includes an option to check the range of variables (line 11 in Fig. 8), which allows to avoid
non-physical configurations such as a negative number of blades.

4.4 Results

The DE population size N was set as 15, 20 and 30. The number of generations nmax was
set as 15, 20, 30 for N = 15 and 20, 30, 40 for N = 20. Finally, the number of generations
was set as 20, 30 forN = 30. This results in 225, 300, 450 objective function evaluations for
N = 15 and 400, 600, 800 objective function evaluations for N = 20 and finally 600, 900
objective function evaluations for N = 30. Convergence can be monitored in Fig. 9 display-
ing box-and-whisker diagrams. The height of the error bars (boxes) is proportional to the
interquartile range (IQR). The line inside the box is the second quartile (median). Further,
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Fig. 9 Convergence for population sizes 15 (top), 20 (middle) and 30 (bottom)

the ends of the whiskers represent the data within 1.5 IQR of the lower quartile and upper
quartile. Finally, the circles (outliers) represent data not included between the whiskers, i.e.
the best and worst solutions (objective function values). Additionally, the solid lines denote
the average pressure increase for the entire populations. The results of the calculations for

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Flow, Turbulence and Combustion

Table 2 Best solutions for
different population sizes N and
iteration numbers nmax

N × nmax p ρ−1
[
m2s−2

]

15 × 15 12.819

15 × 20 11.896

15 × 30 12.656

20 × 20 12.820

20 × 30 12.633

20 × 40 12.757

30 × 20 11.797

30 × 30 12.605

different population sizes N and iteration numbers nmax are shown in Table 2. The best
solutions were obtained for the 20 × 20 configuration of DE.

The individual computing time for calculating one objective function, i.e. geometry mod-
elling, discretisation and CFD calculation, is about 15 minutes on a i7-6850K 3.60 GHz
processor (3 out of 6 cores involved). For example, the calculation for the entire optimiza-
tion process with a population size of N = 20 and a number of iterations of nmax = 20, i.e.
400 evaluations, takes about 4 days.

From Fig. 9 and Table 2 it arises that the best results are obtained for medium populations
with the size N of 20 individuals. Furthermore, increasing the number of iterations nmax

above 20 does not bring further improvement. This applies to both population sizes, i.e.
nmax = 20 and nmax = 15. Populations with larger sizes, i.e. N = 30, require more
iterations to obtain results comparable to smaller iteration numbers nmax . This is important
due to the time-consuming CFD calculations. Out of all the optimisation processes, the
best results are obtained for N = 20 and nmax = 20. Due to the stochastic nature of the
DE algorithm, it is obvious that restarting the algorithm may give slightly different results,
which, however, are typically close to the optimal solution.

The optimal values of g are listed in Table 1. The upper part of Fig. 4 presents the optimal
pump shape according to Table 1. It may be observed that the optimal geometry consists
of 4 rotor and 8 stator blades being the upper accessible ranges. As for the remaining vari-
ables, most of them are located on the boundary of the considered box constraints which is
a typical situation during constrained optimisation. It is worth mentioning that some con-
straints in Table 1 allow us to avoid non-physical configurations. Other constraints require
preliminary optimisations or at least geometry creation and check.

The average shape evolution for the selected generations (iterations) for the 20× 20 DE,
reflecting convergence process, is presented in Fig. 10. It is interesting that the first shape
(iteration 1) is simply an arithmetical average of purely random shapes. This is because the
initial population is randomly generated. At the same time, the last shape (iteration 20) is
similar to the optimal shape since the population here is nearly uniform. Finally, since these
shapes are arithmetical averages of individual generations, it should be noted that none of
these has been subject to any CFD calculations.

The upper part of Fig. 11 displays the best shape evolution resulting from the shape
optimisation process (N = 20, nmax = 20). The last shape (iteration 20) is the optimal
solution shown also in Fig. 4. Interestingly, all shapes apart from the second (iteration 2) are
similar in terms of rotor configurations. What distinguishes the second geometry from the
remaining three is the shape of the shaft and stator blades in particular. The lower part of
Fig. 11 presents the corresponding wall shear stresses (WSS) distributions. The higher the
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Fig. 10 The average shape evolution for N = 20 and nmax = 20 (iteration number 1, 6, 12, 17 and 20)

Fig. 11 Best shape evolution and corresponding wall shear stresses distributions for N = 20 and nmax = 20
(iteration number 1, 2, 7 and 20)
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iteration number the smoother the distribution on the shaft and blades. Also, the maximum
values of WSS are lower. One has to keep in mind, however, that high shear stresses are
related primarily to angular velocities.

5 Conclusions and Limits of the Current Study

5.1 Conclusions

– The results of a discrete-continuous global optimisation process of an axial flow blood
pump are presented. The optimal results are achieved by means of DE in a relatively
short time. Since 2 of 14 design variables are discrete (integer) special care of DE is
necessary.

– A simple and effective method of geometry modelling is proposed. This makes it pos-
sible to make the whole optimisation process fully automated. There is no need for any
intermediate CAD software since the geometry is created directly by means of the GNU
Octave and Octave Geometry scripts.

– A steady state solution is compared with transient solutions for various time steps. It
is shown that the PISO algorithm always over-predicts the pressure rise in comparison
to the steady solution. Unlike PISO the second method, i.e. the PIMPLE algorithm
gives results similar to a steady solution which is important from the point of view of
the optimisation algorithm. Typically, three full revolutions are necessary to reach the
pseudo-periodic state.

– Figure 11 presents the wall shear stress distribution which is responsible for haemolysis.
It may be observed that the highest values are localised, among other, on the rotor
and stator blade tips. The higher pressure increase the lower angular velocity required.
Thus the optimisation process leads to improvement in the reduction of the wall shear
stresses and the effect of haemolysis. This is because haemolysis is mainly caused by
high shear stresses which are related, among others, to angular velocities.

5.2 Limits of the current study

It should be mentioned that many ventricular assist devices designs are also equipped with
guide vanes (flow straighteners) not only at the outlet, but also at the inlet of the device.
This kind of flow straightener is missing in the current study. However, taking into account
the presence of a straightener would not change the algorithm itself, but only extend the
calculation time. The same concerns the gap sizes between rotor and housing.

One has to also keep in mind that the current optimisations will, most likely, not be suf-
ficient to develop an efficient and biocompatible blood pump. It is well known that the
wall shear stress is responsible for the phenomenon of haemolysis. In addition to haemoly-
sis, another phenomenon is exposure time. Considering the above criteria, if at all possible,
could lead to other, less effective solutions than those presented in this paper. One possible
solution is multi-objective optimisation that would take into account both pressure increases,
haemolysis and exposure time. The first problem is the much longer multi-objective opti-
misation time in comparison with the single-objective problem. The main problem is the
availability of a CFD model allowing an accurate prediction of haemolysis in such complex
flows (stagnations, recirculations). This problem is constantly being analysed and works
devoted to it are still being published [7, 25, 26]. According to Hai et al. [26] there is no
clear guideline concerning the applicability or the limitations of the studied models. What
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is more, a greater problem is the lack of well documented experimental data, adequate for
a validation of the discussed models [26]. It seems that one of the possible solutions to this
problem is an experimental stand that is currently being prepared. The experiments carried
out together with biologists will most likely answer the above questions. This issue will be
addressed at length in a separate work.
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