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Abstract. A proof of the law of the iterated logarithm for random homeo-
morphisms of the interval is given.

In this short note we prove that admissible iterated function systems con-
sidered in [1] satisfy, besides the central limit theorem, the law of the iterated
logarithm. Our argument is based on the criterion from the paper by O. Zhao and
M. Woodroofe [3] and some computations provided in [1].

We start by recalling the definition of an admissible iterated function system.
Let f1, . . . , fN be increasing homeomorphisms of the interval [0, 1] such that for
every x ∈ (0, 1) there exist i, j ∈ {1, . . . , N} with fi(x) < x < fj(x). It is assumed
that all the homeomorphisms are differentiable at 0 and 1 with nonzero derivatives.
Let (p1, . . . , pN ) be a probability vector such that

N∑
i=1

pi log f ′i(0) > 0 and
N∑
i=1

pi log f ′i(1) > 0.

The family (f1, ..., fN ; p1, ..., pN ) is then called an admissible iterated function sys-
tem.

ByM([0, 1]) we denote the set of all finite measures on the σ-algebra B([0, 1]) of
all Borel subsets of [0, 1], and byM1([0, 1]) ⊆M([0, 1]) we denote the subset of all
probability measures on [0, 1]. By B([0, 1]) we denote the family of bounded Borel
functions on [0, 1].

From now on we assume that an admissible iterated function system (f1, ..., fN ;
p1, ..., pN ) is given. It generates a Markov operator P : M([0, 1]) → M([0, 1]) of
the form

(1) Pµ(A) =
N∑
i=1

piµ(f−1
i (A)) for µ ∈M([0, 1]) and A ∈ B([0, 1]).

By continuity of the fi, P is a Feller operator, and its predual operator U :
B([0, 1])→ B([0, 1]) is given by the formula

Uψ(x) =
N∑
i=1

piψ(fi(x)) for ψ ∈ B([0, 1]) and x ∈ [0, 1].
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It has been proved in [1] that P is asymptotically stable on measures supported
in (0, 1). In particular, P has a unique invariant measure µ∗ ∈M1([0, 1]) satisfying
µ∗((0, 1)) = 1, by Theorem 2 in [1].

By (Xn)n≥0 we shall denote the Markov chain on [0, 1]N corresponding to the
transition function π : [0, 1]× B([0, 1])→ [0, 1] of the form

π(x,A) = U1A(x) = Pδx(A) for x ∈ [0, 1] and A ∈ B([0, 1]).

The law of the Markov chain (Xn)n≥0 with initial distribution ν is the probability
measure Pν on ([0, 1]N,B([0, 1])⊗N) such that

Pν [Xn+1 ∈ A|Xn = x] = π(x,A) and Pν [X0 ∈ A] = ν(A),

where x ∈ [0, 1], A ∈ B([0, 1]). The existence of Pν follows from the Kolmogorov
extension theorem. For ν = δx, that is, the Dirac measure at x ∈ [0, 1], we write
just Px. Obviously Pν(·) =

∫
[0,1]

Px(·)ν(dx). When an initial probability ν is equal
to µ∗, the Markov chain (Xn)n≥0 is stationary.

Let Σ = {1, . . . , N}N be equipped with the product topology induced by the
discrete topology on {1, . . . , N}, and let fnω = fωn ◦ · · · ◦ fω1 = f(ω1,...,ωn) for ω =
(ω1, ω2, . . .) ∈ Σ. By P we denote the measure on Σ, which is the product measure
of the probability vector (p1, . . . , pN ). By abuse of notation, we shall also write P
for the product measure of the probability vector (p1, . . . , pN ) on Σn = {1, . . . , N}n
for n ∈ N.

Note that for n ∈ N and A1, . . . , An ∈ B([0, 1]) we have

Px((X1, . . . , Xn) ∈ A1 × · · · ×An))

=
∑

(ω1,...,ωn)∈Σn

1A1×···×An
(fω1

(x), . . . , f(ω1,...,ωn)(x))pω1
· · · pωn

=

∫
Σn

1A1×···×An(fω1(x), . . . , f(ω1,...,ωn)(x))P(dω1 × · · · × dωn)

=

∫
Σ

1A1×···×An(f1
ω(x), . . . , fnω (x))P(dω)

= (δx ⊗ P)({(y, ω) ∈ [0, 1]× Σ : (f1
ω(y), . . . , fnω (y)) ∈ A1 × · · · ×An}).

Since Pν(·) =
∫

[0,1]
Px(·)ν(dx) for ν ∈ M1([0, 1]), for n ∈ N and A1, . . . , An ∈

B([0, 1]) we obtain

(2)
Pν((X1, . . . , Xn) ∈ A1 × · · · ×An))

= (ν ⊗ P)({(y, ω) ∈ [0, 1]× Σ : (f1
ω(y), . . . , fnω (y)) ∈ A1 × · · · ×An}).

This note is aimed at proving the following theorem.

Theorem. If ϕ is a Lipschitz function satisfying the condition
∫

[0,1]
ϕdµ∗ = 0, then

there exists a constant σ ∈ [0,∞) such that for every x ∈ (0, 1) we have

(3) lim sup
n→∞

ϕ(f1
ω(x)) + · · ·+ ϕ(fnω (x))√

2n log log n
= σ P a.e.

We start with the proof of the annealed law of the iterated logarithm.
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Proposition. If ϕ is a Lipschitz function satisfying the condition
∫

[0,1]
ϕdµ∗ = 0,

then there exists a constant σ ∈ [0,∞) such that

(4) lim sup
n→∞

ϕ(X1) + · · ·+ ϕ(Xn)√
2n log logn

= σ Pµ∗ a.e.

Proof. Let ϕ be a Lipschitz function satisfying the condition
∫

[0,1]
ϕdµ∗ = 0, and

let (X̃n)n∈Z be a stationary ergodic Markov chain (with the law µ∗) on some
probability space (Ω̃, F̃ , P̃) that corresponds to the given transition probability U .
The existence of this chain follows from the Kolmogorov extension theorem. Set
Yn = ϕ(X̃n), n ∈ Z, and observe that (Yn)n∈Z is again a stationary ergodic chain.
Set Sn = Yn + · · ·+ Y1 for n ∈ N, and let F0 = σ(. . . , X̃−n, X̃−n+1, . . . , X̃−1, X̃0).

In [1] (see Theorem 4) we have proved that there exists a positive constant C
such that ∥∥ n∑

j=1

U jϕ
∥∥
L2(µ∗)

≤ Cn 3
8 for all n ∈ N.

On the other hand, we have

‖E(Sn|F0)‖2L2(µ∗) =

∫
[0,1]

|E(ϕ(X̃n) + · · ·+ ϕ(X̃1)|X0 = x)|2µ∗(dx)

=

∫
[0,1]

|Unϕ(x) + · · ·+ Uϕ(x))|2µ∗(dx) = ‖
n∑
j=1

U jϕ‖2L2(µ∗),

and consequently
∞∑
n=1

(
log n

n

) 3
2 ∥∥E(Sn|F0)

∥∥
L2(µ∗)

<∞.

Now Corollary 1 in [3] implies that there exists a constant σ ∈ [0,∞) such that

lim sup
n→∞

ϕ(X̃1) + · · ·+ ϕ(X̃n)√
2n log log n

= σ P̃ a.e.

Since the chain (X̃n)n≥0 and the stationary chain (Xn)n≥0 have the same law, we
obtain that

lim sup
n→∞

ϕ(X1) + · · ·+ ϕ(Xn)√
2n log logn

= σ Pµ∗ a.e.

This completes the proof. �

Proof of the Theorem. Choose a ∈ (0, 1/2) such that µ∗((a, 1− a)) > 3/4. From
Lemma 3 in [1] it follows that there exists γ > 0 and Σa ⊂ Σ with P(Σa) ≥ γ such
that

(5)
∞∑
n=1

|fnω ((a, 1− a))| <∞ for ω ∈ Σa.

Set β := γ/2. We are going to show that for any u, v ∈ (0, 1), u < v, we may find
a set Σu,v ⊂ Σ with P(Σu,v) ≥ β such that

(6)
∞∑
n=1

|fnω (u)− fnω (v)| <∞ for ω ∈ Σu,v.

Fix u, v ∈ (0, 1), u < v. Since the system is asymptotically stable on measures
supported in (0, 1) by Theorem 2 in [1], we may find n ∈ N such that Pnδu((a, 1−
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a)) > 3/4 and Pnδv((a, 1 − a)) > 3/4, by the Portmanteau theorem. Hence there
exists Σ̃u,v ⊂ {1, . . . , N}n with P(Σ̃u,v) ≥ 1/2 such that fωn

◦ · · · ◦fω1
(u), fωn

◦ · · · ◦
fω1

(v) ∈ (a, 1 − a) for (ω1, . . . , ωn) ∈ Σ̃u,v. Set Σu,v = Σ̃u,v × Σa, and note that
P(Σu,v) ≥ β. Moreover, from (5) it follows that (6) holds.

The proposition and condition (2) for ν = µ∗ imply that condition (3) holds for
µ∗ almost every x ∈ (0, 1). To complete the proof it is enough to show that for any
x, y ∈ (0, 1) we have

P({ω ∈ Σ :
∞∑
n=1

|fnω (x)− fnω (y)| <∞}) = 1.

To do this fix x, y ∈ (0, 1). Set

A := {ω ∈ Σ :
∞∑
n=1

|fnω (x)− fnω (y)| <∞},

and assume, contrary to our claim, that P(A) < 1. Choose a compact subset
A′ ⊂ Σ\A such that α := P(A′) > 0. Let Σ1, . . . ,ΣM , M ∈ N, be disjoint cylinders
such that A′ ⊂

⋃M
i=1 Σi and P(

⋃M
i=1 Σi \ A′) < βα. Let Σi = (ωi1, . . . , ω

i
ni

)× Σ for
i ∈ {1, . . . ,M}. We set ui := fωi

ni
◦ · · · ◦ fωi

1
(x) and vi := fωi

ni
◦ · · · ◦ fωi

1
(y), and

define Σ̂i = (ωi1, . . . , ω
i
ni

)× Σui,vi ⊂ Σi. Obviously,
∑∞
n=1 |fnω (x)− fnω (y)| <∞ for

ω ∈ Σ̂i. Moreover, P(Σ̂i) ≥ βP(Σi), and consequently

P(

M⋃
i=1

Σ̂i) ≥ βP(

M⋃
i=1

Σi) ≥ βP(A′) ≥ βα.

Since P(
⋃M
i=1 Σ̂i \ A′) ≤ P(

⋃M
i=1 Σi \ A′) < βα, we finally obtain that P(

⋃M
i=1 Σ̂i ∩

A′) > 0, which is impossible due to the fact that
∑∞
n=1 |fnω (x) − fnω (y)| < ∞ for

ω ∈
⋃M
i=1 Σ̂i. Hence P(A) = 1, and the proof is complete. �

Remark. In view of (2) the Theorem is equivalent to (4) holding Px a.e. for every
x ∈ (0, 1).

Finally, let us compare the result in this note with the one provided in [2]. Actu-
ally, the above–mentioned paper is concerned with the law of the iterated logarithm
for Markov chains corresponding to the stochastically perturbed dynamical system
of the form

xn+1 = S(xn, tn+1) +Hn+1 for n ≥ 0,

where S : H× [0, T ]→ H is a continuous function on some separable Banach space
H, and (tn)n≥1, (Hn)n≥1 are independent random variables with values in [0, T ],
H respectively. Such a system may serve to describe some cell cycle models, and it
seems to be more general than our admissible iterated function system. However,
the assumptions made in [2] are far too restrictive. In particular, it is demanded
in [2] that the system is contractive on average. But no contracting condition may
hold in the case when each of the fi has a fixed point at 0 and at 1. For the same
reason the Markov chain corresponding to an admissible iterated function system
may not converge exponentially to equilibrium. Therefore the techniques developed
in [2] are completely useless in the present note.

Acknowledgments. The authors wish to express their gratitude to an anony-
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