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Abstract: The application of enhanced biological phosphorus removal (EBPR) in wastewater treat-
ment plants (WWTPs) has commonly been utilized worldwide. However, the optimum efficiency has
not been realized over the past decades, prompting many studies and publications. The limitations,
especially comprehension of the abundance and actual potential of polyphosphate-accumulating
organisms (PAOs), are not fully understood. Recently identified putative PAOs, Tetrasphaera, present a
vast metabolic versatility compared to Candidatus Accumulibacter. The characterisation of Tetrasphaera
unique abilities to utilize various carbon substrates, volatile fatty acids production and consistent
high abundance, presents potential boosts towards the process efficiency improvement. This paper
provides the existing knowledge on the physiology, morphology and genetic description of PAOs
with a special attention to the current state of research on Tetrasphaera and its potential. In addition,
process conditions and their influence on the microbial activities in EBPR systems are discussed.
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1. Introduction

Enhanced biological phosphorus removal (EBPR) has emerged as the most powerful
phosphorus (P) removal process during municipal and industrial wastewater treatment.
For a long time, the EBPR has been considered as one of the most complex processes
involved in the metabolic activity of activated sludge systems and has shown promise
in terms of the cost, reliability and sustainability [1]. Recent years have brought many
research contributions to expand knowledge and improve the process efficiency based on
the recognition of the pathways and microorganisms involved.

The EBPR in biological nutrient removal (BNR) systems is mainly carried out by
a group of microorganisms known as polyphosphate-accumulating organisms (PAOs).
Conventionally, P removal via PAO activity is achieved by triggering anaerobic–aerobic
conditions, which considerably increase operational costs related to energy consumption
by aerators. The focus has recently been on P removal by denitrifying PAOs (DPAOs) under
anaerobic–anoxic conditions to reduce the costs. The DPAOs are capable of using alternative
electron sources (nitrate or nitrite) to metabolize intracellular organic compounds under
anoxic conditions, and P uptake and denitrification is performed simultaneously [2–5].

Due to the growing interest in the implementation of P removal under anaerobic-
anoxic conditions, a special attention has been paid to the microorganisms responsible for
that process. Representatives of the genus Tetrasphaera are among the recently confirmed
putative denitrifying PAO attracting attention of the scientific community. Members of
Tetrasphaera are able to perform either denitrification or aerobic respiration, depending on
the local environmental conditions [6]. All currently characterized Tetrasphaera isolates have
proven the capability of reducing nitrate only to nitrite, whereas some members revealed
the ability to reduce nitric acid to nitrous oxide. Moreover, the Tetrasphaera group is capable
of carrying out the complete physiological EBPR process compared to other known PAOs,
whose activity is more dependent on interspecies relationships [7].
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The key aspects of Tetrasphaera have been studied intensively, including their classifi-
cation and taxonomy, development of methods for detection [8], abundance in wastewater
treatment plants (WWTPs) [9,10], functions in EBPR and biochemistry [6,11,12]. The ubiq-
uitous occurrence of Tetrasphaera in diverse ecological niches, the use of various carbon
sources and the ability to produce volatile fatty acids (VFAs) show their extraordinary
metabolic potential [4,13].

Interactions and competition between DPAOs and other functional microbial groups
in the anaerobic-aerobic cycle enable P removal optimization in activated sludge sys-
tems [14–16]. In addition, the interest in DPAO ecophysiology, in particular in the context
of Tetrasphaera activity related to nitrous oxide emissions, was significant [3]. An emerging
approach to enhance the full-scale EBPR is optimization by the application of mathematical
modelling. The conventional models are thought to favor Ca. Accumulibacter over other
PAOs, such as Ca. Halomonas phosphatis, Tessaracoccus, as well Tetrasphaera [8]. To ensure
the highest prediction accuracy of the model, it is strongly recommended to extend and
develop currently available models for multiple PAO groups, differentiated in terms of the
growth rate and physiology.

This study aims to consolidate the existing knowledge on the role of Tetrasphaera by
reviewing their physiological and metabolic characteristics, the occurrence and abundance
in WWTPs and factors influencing their growth. Additionally, it highlights the knowledge
gaps and research challenges in the field of EBPR microbiology as well as presents scientific
approaches to overcome these limitations, including the meta-analysis and models. Fur-
thermore, this study investigates the abundance of Tetrasphaera and their response to the
local process conditions, such as dissolved oxygen (DO) concentration, pH, temperature
and influent characteristics.

2. Historical Perspective of Microorganisms Involved in EBPR

The first observations of EBPR date back to the mid-20th century and the findings
obtained in laboratory scale experiments [17] and to a minor extent at full scale plants [18].
The principles of EBPR were formulated by Barnard [19,20], whose experiments clarified
the need for anaerobic contact between activated sludge and influent wastewater prior
to aerobic treatment to accomplish P removal. Subsequently, Barnard [21] used the term
Phoredox to represent any process with an anaerobic/aerobic sequence to promote the
EBPR technology concept (Figure 1a).

The performance and start-up process of the first full scale Phoredox system, which
was launched in 1973, was briefly reported by Levin et al. [22]. In parallel, an alternative
side-stream P removal technology, called PhoStrip, [1]. was developed based on the
separation of the enriched side stream liquor treated with lime (Figure 1b).

While the nature of P removal was initially considered as chemical, Fuhs and Chen [23]
found Acinetobacter as the primary microorganisms responsible for EBPR. These organisms
responded to VFA in the influent wastewater under anaerobic conditions by releasing
stored phosphate. Bacteria affiliated to Acinetobacter were considered as the key PAO
responsible for the EBPR, mainly due to the limitations of the cultivation techniques
applied for the microbial characterization at that time [11]. Significant advances in the
microbial research have been achieved over the years and novel bacterial groups involved
in the P metabolism were identified. Those microorganisms were able to store P in their
cells in the form of energy-rich polyphosphates, resulting in the P content as high as 20 to
30 percent by dry weight [1]. The anaerobic zone free of nitrate and DO was found to favour
the PAOs activity over other heterotrophs. In the following years, Betaproteobacteria were
determined as the dominant bacterial group in the P metabolism [24], as well as the presence
of Rhodocyclus-related bacteria was observed and linked with EBPR [25,26]. Subsequently,
modern microbial tools without the cultivation step, established Ca. Accumulibacter as the
most important member of PAOs, with the share ranging from 0.6 to 33.1% [27,28]. Insights
into the biochemical characteristics of the Ca. Accumulibacter were applied to propose
mathematical models of the EBPR within Activated Sludge Model [29]. Basic metabolic
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models are based on the assumption that PAOs exhibit intracellular phosphorus and energy
storage in the form of poly-P and polyhydroxyalkanoates (PHA), respectively [30]. The
stored PHA provide energy for the growth of PAOs when exposed to anoxic condition due
to the capability of simultaneous denitrification and P uptake.
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Figure 1. A typical configuration for P removal in the mainstream the mainstream EBPR (Phoredox
process) (a), sidestream EBPR (PhoStrip process) (b) (abbreviations: EFF—effluent, RAS—recirculated
activated sludge, WAS—waste activated sludge).

The novel microbial tools comprise deoxyribonucleic acid (DNA) and ribonucleic
acid (RNA) polymorphism analyses (e.g., 16S rRNA high-throughput gene sequencing,
metagenomics, fluorescence in situ hybridization (FISH) and their modification) as well as
flow cytometry and Raman spectroscopy. Along with the development of those tool, the
contribution of particular bacterial groups in EBPR could be revised greatly [4,28,31].

The next advance in understanding the microbiology of EBPR was the discovery
of new PAO and capability of simultaneous P and nitrogen (N) removal under anoxic
conditions. Genus Tetrasphaera is the most recently confirmed putative PAO. From the first
characterization of the isolated Tetrasphaera strain [32,33], it was found that representatives
of this genera show a large and often predominant number in full-scale WWTPs [7,34].
Moreover, versatile metabolic capabilities of Tetrasphaera have been recognised, including
the capability of fermenting glucose and amino acids to produce VFA in the anaerobic
zone, thereby enhancing a pool of the available substrates for EBPR. The main difference
with respect to the typical PAO is that Tetrasphaera are capable of storing other (than
PHA) intracellular compounds and use nitrate, but not nitrite, in addition to DO as an
electron acceptor [1]. The characterization of Tetrasphaera and their assignment to PAO
drew attention to this group, especially in terms of the competition and interaction with
Ca. Accumulibacter [3,35].

In the recent years, several new genera have been proposed as potential PAOs, includ-
ing Dechloromonas or Candidatus Microthrix, but only members of the betaproteobacterial
genera Ca. Accumulibacter [7] and the actinobacterial genus Tetrasphaera were consistently
found in high abundances in full-scale EBPR plants [34]. For instance, it was proven that
approximately 24–70% of total P removed in Danish WWTPs was directly attributed to
Ca. Accumulibacter and Tetrasphaera [7]. The relative abundances of other PAO within
activated sludge are usually significantly lower. In the study by Seviour and McIlroy [36],
the relative abundance of Acinetobacter reached 1.2%, whereas the relative abundances
below 1% were reported for Dechloromonas, another newly characterized PAO group [37].
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3. Morphology, Physiology and Phylogeny of Tetrasphaera

Tetrasphaera is a bacterial genus that belongs to the Intrasporangiaceae family within
the Actinomycetia class and initially contained eight proposed species [38]. Zhang and
Kinyua [8] listed the following representatives of the genus Tetrasphaera: Tetrasphaera japonica,
Tetrasphaera australiensis, Tetrasphaera elongata, Tetrasphaera jenkinsii, Tetrasphaera vanveenii,
Tetrasphaera veronensis, Tetrasphaera duodecadis and Tetrasphaera remsis. Based on the distinct
morphological, biochemical characteristics (the capability of PHA storage) and probes
applied for detection via FISH), particular Tetrasphaera representatives were divided into
three clades: clade I including T. elongata and T. duodecadis; clade II including T. jenkinsii,
T. australiensis, T. veronensis and the filamentous Candidatus Nostocoida limicola, clade
III containing uncultured clones [39]. However, the phylogenetic classification of the
genus Tetrasphaera has not been definitively clarified and is subject to continuous revi-
sion. For instance, important updates to representatives of clade III were provided by
Singleton et al. [40], who postulated separation of the two novel genera Ca. Phosphoribac-
ter and Ca. Lutibacillus from the genus Tetrasphaera. Similarly, the whole genome sequence
analyses by Nouioui et al. [41] revealed the need to reclassify T. duodecadis, T. remsis, and
T. elongata into Phycicoccus duodecadis, Knoellia remsis and Phycicoccus elongatus, respectively.

First important insights into the morphology and biochemical characteristics of
Tetrasphaera have been provided by Maszenan et al. [33]. Representatives of Tetrasphaera
were characterized as an aerobic, Gram-positive cocci, mostly clustered in tetrads and less
often in pairs. Due to the lack of flagella, Tetrasphaera were considered as a non-motile.
Despite P removal activity, members of T. japonica and T. australiensis did not reflect the
ability to store PHA granules, which suggested the role of other intracellular compounds
in their EBPR metabolism.

Further cultivation studies by Hanada et al. [32] on biomass from a EBPR system led to
the characterization of new species T. elongata., which showed a versatile morphology (oval
to rod-shaped) and capability to metabolize wide groups of complex organic compounds,
including sugars, alcohols and organic acids. By a positive result of Neisser staining,
intracellular polyphosphate granules occurrence has been confirmed and provide evidence
of the characterized isolate contribution to P metabolism. Further studies focused on pure
cultures of T. elongata have demonstrated archetypical PAO characteristics [8].

A consensus is yet to be built on generally accepted biochemical transformation models
for EBPR by Tetrasphaera, in particular recognition of the storage compounds involved in
EBPR. To date, the capability of intracellular PHA storage has been identified in several
Tetrasphaera species, including T. japonica T. jenkinsii T. vanveenii T. veronensis [14]. However,
the ability of Tetrasphaera species for anaerobic P release, aerobic/anoxic uptake patterns,
and accumulation of intracellular poly-P granules remain inconclusive [12].

Important updates into the characterization of the Tetrasphaera metabolism have been
by Close et al. [42], who conducted their study on an enriched Tetrasphaera culture. In
that study, more complex nature of the intracellular compounds cycling within EBPR has
been highlighted, where PHA storage was accompanied with the complex amino acids’
metabolism, mainly related to aspartic and glutamic acid accumulation within the cell.
Moreover, the authors identified that polyhydroxyvalerate (PHV), rather than polyhy-
droxybutyrate (PHB) (typical for PAO) seems to be more specific feature of Tetrasphaera
metabolism within EBPR. Despite PHA and intracellular amino acids, members of Tetras-
phaera have shown the ability to store glycogen [11,12]. In contrast to the other PAOs,
Tetrasphaera synthesize glycogen and release phosphate under anaerobic conditions, then
metabolize glycogen as an energy source to produce polyphosphate after transition to
the aerobic/anoxic environment [2]. Those metabolic features makes this bacterial group
versatile in terms of ecophysiology [38].

As postulated by Barnard et al. [2], Tetrasphaera exhibits an alternative P depletion
mechanism compared to Ca. Accumulibacter and other “traditional” PAOs with a poten-
tially more effective P removal efficiency. There is scarce evidence concerning the ability
of Tetrasphaera to perform denitrification within EBPR. The existing studies emphasize the
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fact that Tetrasphaera are less capable of removing P under anoxic conditions compared to
Ca. Accumulibacter [6]. On the other hand, Tetrasphaera showed a high performance of N
removal (>80%), indicating the ability of Tetrasphaera to reduce NO3 -N to NO2 -N similar to
their counterpart DPAOs. In the studies by Marques et al. [6], a strong denitrifying activity
by Tetrasphaera was observed in a mixed culture, where Tetrasphaera contributed to 60% of
the general bacterial population. Tetrasphaera had the capability of denitrification, even
though the specific P-uptake rate under anoxic conditions was insignificant compared to
Ca. Accumulibacter [14].

3.1. Carbon Sources

Currently, the research interest has focused on the identification of preferable carbon
sources that can be metabolized by Tetrasphaera to release P. The most frequently tested
substrates were acetate, glucose, glutamate, glycine and lactate [14]. Moreover, Tetrasphaera
exhibit the ability to assimilate a wider range of carbons sources, including amino acids,
sugars, higher VFAs under anaerobic conditions [11,38,43]. Other processes have been
demonstrated to produce an energy source for aerobic P uptake by Tetrasphaera, including
fermentation of amino acids and sugars, the subsequent storage of either amino acids or
glycogen anaerobically, and the use of internally stored substrates [11,12,39]. For instance,
laboratory experiments with an enriched culture of Tetrasphaera, fed with casein hydrolysate
as the sole carbon source, showed that Tetrasphaera can metabolize amino acids and were
the main microorganisms responsible for aerobic P removal [39]. Moreover, P uptake and
release has been detected in addition to the typical substrates (acetate and glucose) with
other organics, including formic acid, propionate, butyric acid, pyruvate, lactate, ethanol,
glucose, oleic acid, aspartic acid, glutamic acid, leucine, glycine, thymidine and mixed
amino acids [43]. In some cases, Tetrasphaera isolates revealed different preferences for
carbon sources in achieving P release. For instance, in the studies by Nguyen et al. [12],
the application of glucose and glutamic acid was performed under anaerobic condition
with Tetrasphaera isolates, despite substrate utilization no P release was observed. Species T.
australiensis, T. japonica and T. elongate responded positively to acetate, whereas propionate
in addition to acetate favored T. jenkinsii, T. vanveenii and T. veronensis [33]. In the studies
by Marques et al., [39], glucose, aspartate, glutamate and glycine were explored with an
enriched Tetrasphaera culture. The results from fluorescence in situ fluorescence in situ
hybridization with microradiography FISH-MAR showed that Tetrasphaera could perform
P-release anaerobically with each of those carbon sources used solely.

In terms of the intracellular compounds, glycogen has been considered an important
energy storage compound in Tetrasphaera [11]. Kong et al. [43] and Nguyen et al. [38]
demonstrated that mixed cultures predominated by Tetrasphaera were able to consume
glucose anaerobically to promote P uptake aerobically. Other experiments with a pure
culture of T. elongate showed the typical PAO phenotype with glucose as a preferable carbon
source [11]. Moreover, glycogen production in the anaerobic phase was also observed in
another study not only with glucose, but also glutamate and aspartate supplied as an
external carbon source [39].

3.2. Metabolic Models of EBPR

In contrary to Ca. Accumulibacter, Tetrasphaera are able to synthesize and store anaero-
bically wider range of the extracellular compounds. Thus, metabolic pathways of P removal
by Tetrasphaera differ from the metabolic models established for the typical PAOs with
acetate as the main substrate. Moreover, due to the capability to decompose complex
organic compounds, Tetrasphaera form substrate dependencies with other PAOs, including
Ca. Accumulibacter.

Initially, EBPR has not been linked with denitrification, e.g., in the Activated Sludge
Model No 2 (ASM2) [29]. Using the theory of Mino et al. [44], Smolders et al. [45] developed
the anaerobic metabolic model of PAO fed with acetate as a single carbon source. According
to that theory, PAO transported acetate across the cell membrane and convert it into acetyl-
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CoA with the process energy of cleaving poly-P and releasing phosphate from the cell. The
parameter represents the ATP required for the transport of 1 C-mmol acetate across the cell
membrane [45,46]. Acetyl-CoA was found to be linearly dependent on pH. The origin of
the reducing power (i.e., nicotinamide adenine dinucleotide (NADH)), required for PHA
synthesis, has been debated by many authors, with Mino et al. [44] supporting its origin
from internal glycolysis.

However, Vlekke et al. [47] had earlier demonstrated the capacity of DPAO which
led to an update of the ASM2 to the ASM2d [29]. The characterization of the Tetrasphaera
metabolism, especially in terms of the capability of complex carbon compounds utilization,
provided further insights into the potential pathways within EBPR (Figure 2).
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Figure 2. Comparison of the metabolic pathways and biochemical transformation of P between
Tetrasphaera and Ca. Accumulibacter in full-scale EBPR. SPO4—external phosphate, XPHA—internal
polyhydroxyalkanoates, XPAO—biomass of the PAO, XSTO?—not yet characterized internal carbon
storage material, XPAO, T—biomass of Tetrasphaera. Adapted from Makinia and Zaborowska [48].

During the anaerobic phase, complex carbon compounds, such as, glucose, are taken
up and either stored as glycogen or fermented to acetate. The energy required for glycogen
synthesis is supplied by fermentation and/or polyphosphate decomposition to orthophos-
phate. In the aerobic/anoxic phase, the stored glycogen is degraded, supplying energy for
the growth and enhanced P uptake, followed by replenishing the polyphosphate storage.

Various experimental studies have highlighted metabolic models regarding P removal
by Tetrasphaera [11,12,39]. The majority of those models have been based on the applied
carbon sources and microbial cultures (mixed or pure culture) [49]. Kristiansen et al. [11]
proposed a model describing the metabolism of T. elongata as a representative in EBPR with
glucose as the substrate. Under anaerobic conditions, Tetrasphaera take up glucose using
poly-P as an energy source and glucose can be stored as glycogen. Under the subsequent
aerobic conditions, the stored glycogen can be used for the growth and replenishing
supplies of poly-P. A model of Nguyen et al. [12] incorporated glycine as a carbon source
with no glycogen. The intracellular glycine was accumulated under anaerobic conditions
along with small amounts of glutamine, serine, and alanine. These intracellular metabolites
could subsequently be used to support the aerobic P uptake. Moreover, Tetrasphaera share
some key metabolic pathways with Ca. Accumulibacter, such as tricarboxylic acid cycle
(TCA) and poly-P degradation/synthesis. Overall, representatives of Tetrasphaera are
extremely versatile, capable of surviving in highly dynamic environments and highly
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abundant in WWTPs. Therefore, a reliable generic model is still missing, and a consensus
has not yet been built on general metabolic models for Tetrasphaera within EBPR.

Metabolic modelling and prediction of bacterial activity can provide useful information
for the process optimization and design purposes [27]. For instance, modelling studies by
Oehmen et al., [50] enabled to distinguish two subgroups of PAOs, PAO I able to denitrify
from nitrate to N2 gas and PAO II performing denitrification with nitrite, as the preferable
N source. In addition, the authors found that despite anaerobic kinetic parameters for all
PAO (PAO I and PAO II) and GAO subgroups are constant, the actual process rates were
strongly dependent on the activity of each specific bacterial group.

With regard to Tetrasphaera, research on their metabolism is still ongoing, particularly
on storage products in the anaerobic phase [49]. Tetrasphaera models are considered directly
relevant to the models of the EBPR incorporated in ASM and metabolic models [51].
However, an update of the currently available models is necessary as the knowledge of
Tetrasphaera biochemical properties and interactions with other bacterial functional groups
is continuously increasing.

4. Occurrence of Tetrasphaera in EBPR Systems

Tetrasphaera abundance has been consistent and demonstrated their predominant role
in various studies. Full-scale EBPR systems had higher abundances of Tetrasphaera represen-
tatives than Ca. Accumulibacter in many previous studies, where their maximum contribu-
tion was estimated at 30% of the total biomass [12,34,38]. Stokholm-Bjerregaard et al. [34]
detected Tetrasphaera in large amounts, i.e., up to 35% of the bacterial population, signifi-
cantly outcompeting Ca. Accumulibacter. Moreover, using 16S rRNA amplicon sequencing
and quantitative FISH, Herbst et al. [52] found that Tetrasphaera the most abundant genus
in a Danish WWTP, accounting for 30% of the activated sludge community. These findings
were confirmed by a survey of 32 full-scale EBPR plants in 12 countries, where higher
abundances of Tetrasphaera were reported in most cases [3] by 16S rRNA high-throughput
gene sequencing. In that study, the Tetrasphaera abundance in EBPR systems was in the
range from 1.3% to 11.9%. According to the recent global survey over the bacterial commu-
nity structure in EBPR systems across 12 countries from 5 continents (MIDAS project), the
highest average abundance of Tetrasphaera was indicated in terms of both DPAOs subpopu-
lation and a general bacterial community. The average Tetrasphaera abundance constituted
4.60%, and prevailed other DPAOs from Dechloromonas (2.84%), Ca. Accumulibacter (1.19%),
Ca. Microthrix 0.85% and Halomonas at 0.01% (Figure 3). The predominance of Tetrasphaera
in EBPR systems was confirmed also with the application of other than next generation
sequencing techniques. For instance, the use of Raman spectroscopy technology for in
situ intracellular compound quantification, detected a higher abundance of Tetrasphaera
than Ca. Accumulibacter in full-scale WWTPs in Denmark [7]. Singleton et al. [40] showed
that representatives of the former Tetrasphaera clade III, in particular the newly established
genus Ca. Phosphoribacter, were the dominant PAOs in EPBR systems in Denmark.

However, as suggested by Close et al. [42], the overall abundance and contribution
of Tetrasphaera within the total bacterial community is not unequivocally related to the
potentially obtained P removal rates. The authors suggested that in case of this issue, the
composition of Tetrasphaera clades played more important role.

An increased scientific interest in Tetrasphaera has been observed in terms of the
number of publications with the key words “Tetrasphaera in wastewater treatment plants”
and “PAO in wastewater treatment plants” based on the Scopus database between 1999
to 2021 (Figure 4).
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5. Implications of Tetrasphaera on EBPR Configuration and Operation

The identification of PAOs/DPAOs as well their relationship is a crucial step in
optimizing P removal efficiency in WWTPs [14]. Maximizing the P removal fraction
achieved in anoxic conditions can significantly reduce the operational costs of EBPR systems.
Currently, several different process configurations are available, in which both P and N
removal are combined [27].

The studies by Meinhold et al. [53] highlighted two different groups of PAO, including
aerobic PAOs (APAOs) and denitrifying PAOs (DPAOs). The APAOs can use only DO
as an electron acceptor, whereas DPAO can use either DO or nitrate as an electron accep-
tor. Oehmen et al. [50] postulated that DPAOs have different denitrification capabilities
and can be classified based on their reduction abilities towards nitrate or nitrite. Type
I Accumulibacter (DPAO I) showed the ability to reduce nitrate, whereas Type II Accu-
mulibacter (DPAO II) had the ability to reduce nitrite only (Table 1). The representatives
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of Tetrasphaera reflect differential preferences for electron donors and acceptors. While
genera T. australiensis, T. japonica, T. elongata show similar metabolic properties to DPAO
I with acetate as the key carbon source, whereas the aerobic pathway and preference of
propionate are specific features for of T. jenkinsii, T. vanveenii and T. veronensis [14].

Table 1. Summary of preferable electron acceptors by the main functional bacterial groups involved
in EBPR.

Bacterial Functional Group Electron Acceptors

APAO DO
DPAO I NO3

−→NO2
−→N2O→N2

DPAO II * NO2
−→N2O→N2

GAO NO3
−→NO2

−→N2O→N2
T. australiensis T. japonica T. elongata NO3

−→NO2
−→N2O→N2

T. jenkinsii, T. vanveenii, T. veronensis DO
Note(s): * Reduction abilities towards nitrate or nitrite of the EBPR microbes.

According to Mino et al. [54], the denitrification ability of PAO is essential for design
of activated sludge system configurations. Two stage anaerobic-anoxic configurations have
been considered with the focus of DPAOs activity with EBPR, and their potential role in the
anoxic P uptake and available carbon source for denitrification. The main idea of the modern
EBPR systems, is to ensure more space to the anoxic zone as compared to the aerobic zone.
However, even with these modifications, the DPAOs contributions to denitrification and the
total P uptake usually vary in the range of 0–25% and 0–62%, respectively.

This suggests that despite DPAOs capability to grow under both anoxic and aerobic
conditions, there is still a lower efficiency in the utilization of stored intracellular com-
pounds, such as PHA or glycogen. It is apparent that DPAOs may have lower performance
than APAO in terms of the usage of readily biodegradable COD [48].

The presence of other microorganisms, such as glycogen accumulating organisms
(GAO) in EBPR systems, is an additional, important issue that can affect the EBPR perfor-
mance [55,56]. With relative abundance of 36.0–42.6% [57,58]. Defluviicoccus and 15.3–24.9%
of Candidatus Competibacter, are considered as the most dominant GAOs in WWTPs. The
predominance of Defluviicoccus is strongly associated with a higher relative ratio of propi-
onate over acetate in the feed. Propionate uptake rates by these bacteria are comparable
to Candidatus Accumulibacter and much higher than Candidatus Competibacter [59]. No-
tably, it remains unclear which factors govern the changes in the known GAO community
composition as well competition with PAOs, including solids retention time (SRT) [11,60],
C/P ratios [61] and available carbon sources [62], which have been evidenced to be associ-
ated with GAO shifts. The challenge of identifying PAO and GAO metabolisms is merely
based on the functional genes associated with phenotypes characteristics, such as the ability
of cycling of phosphorus, polyhydroxyalkanoates (PHA) and/or glycogen, as intracellular
storage materials within bacterial cells [13,63]. On the other hand, investigations by Tu
and Schuler [64] led to the conclusion that the role of GAOs in full scale EBPR systems had
been overestimated. Most of the previous microbial characterizations had been conducted
in laboratory or pilot scale, where a common practice was application of the enormous
concentrations of acetate, which favoured the growth of GAO. Similar suppositions have
been formulated by Nielsen et al. [4]. The occurrence of GAOs was related to the excess of
available carbon, which does not normally occur in typical EBPR system.
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Configurations of the EBPR Systems

In general, EBPR systems can be categorized as main- and side stream configurations.
The common feature of conventional side-stream configurations was sole treatment of
return sludge anaerobically combined with chemical precipitation, whereas in mainstream
configurations all mixed liquors flow through a sequence of anaerobic, anoxic and/or
aerobic conditions for P removal [1].

Modern mainstream EBPR systems by design, are meant to avail conditions that
sustain the parallel processes of N and P removal. Achieving optimal operating condi-
tions for the biological processes, such as phosphorus release and uptake, nitrification
and denitrification, requires consideration of specific environmental conditions within
anaerobic, aerobic and anoxic zones. Due to the limited resources and stricter operational
regulations, continuous modernization and revaluation of the BNR configurations has been
observed [65].

A successful EBPR process is dependent on the presence of readily biodegradable
organic carbon and phosphorus, anaerobic zone prior to aerobic zone and sufficient amount
of nutrients since it relies on growth and selection of PAOs which are capable of storing
orthophosphate in excess.

Earlier configurations achieved P removal with >90% efficiency [19,20,66]. By changing
the sequential steps in the specific configuration, a low P removal efficiency was achieved,
leading to an understanding of necessary conditions of EBPR [2]. The availability of COD
favours heterotrophic activities (PAO, denitrifiers) under anaerobic/anoxic conditions,
whereas nitrification takes place in the aerobic zone. P removal depends on several con-
ditions that are essential for microbial metabolism of PAO [67]. However, simultaneous
N and P removal are not straightforward as the addition of the anaerobic zone, which
favours the PAO growth only [68]. In most systems, nitrification and denitrification may
cause detrimental impact on EBPR due to the presence of nitrite and nitrate in the external
recycle stream which enters the anaerobic zone, leading to a process failure. The presence
of electron acceptors, such as nitrate and nitrite, under anaerobic conditions potentially
sparks heterotrophic denitrifying bacteria growth and outcompete PAO [69]. Moreover, as
indicated by Conidi et al. [70], the most common cause of instability in EBPR systems is
the underestimated size of anaerobic zones, often less than 10% by mass of solids, whereas
15–25% is recommended for a stable operation.

Currently, the main direction towards increasing EBPR stability is the implementation of
the novel sidestream EBPR (S2EBPR) configurations. With respect to the existing bioreactor
configurations, providing a side stream fermentation zone (S2EBPR reactor) of recirculated
activated sludge (RAS) or mixed liquor fermentation have emerged as a perspective solution
to solve this issue. The main potential advantages offered by these solutions are increased
anaerobic mass fraction and potential of the selective GAO suppression [71].

Due to P metabolism combined with the capability of fermenting a wide range of organic
compounds and denitrification with simultaneous P uptake, Tetrasphaera are considered the
key players of the S2EBPR systems. However, it should be noted that currently available data
from the S2EBPR operations are limited, basically due to a narrow range of the operational
conditions studied to date. As mentioned by Dold and Conidi [72], more extensive data are
highly required to develop models specifically dedicated for S2EBPR systems.

The most typical configurations of the novel S2EBPR systems are summarized in
Figure 5. A more comprehensive description of the mainstream systems can be found
elsewhere (e.g., [48]), whereas examples of S2EBPR configurations have been presented by
Dold and Conidi [72] or Gu et al. [73].
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6. Factors Affecting the Occurrence and Activity of Tetrasphaera and Other DPAOs in
EBPR Systems

The recognition of dependencies between activity and occurrence of Tetrasphaera in
relation to the changes of the environmental and operational conditions (pH, temperature,
influent wastewater characteristics and DO or nitrate presence), as well interactions with
other functional bacterial groups (especially GAO) are crucial for the development and
optimization of EBPR [60,74–76]. However, in practice, it is not possible to achieve stable
and fully controlled operational parameters, such as temperature and pH [77]. In general,
other factors, such as the availability of the readily biodegradable organic compounds, P
load, cation (specifically K+ and M2+) concentration, pH, and the food-to-microorganism
ratio should be considered [16].
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6.1. Temperature

Temperature is known to affect the operational efficiency of EBPR systems [78]. A
study on psychrophilic nature of PAOs indicated their functionality at the temperatures
around 20 ◦C or lower [4]. The increasing temperatures between 5 and 24 ◦C, improve the
process efficiency. At elevated temperatures, the mesophilic GAOs seem to outcompete
PAOs in terms of the carbon sources uptake, so the process efficiency becomes problematic
at tropical temperatures of (25–32 ◦C) [4,27,31,57,77].

Other studies also draw attention to the deterioration of the efficiency of the EBPR
process at high temperatures (above 20 ◦C) [51,79–81]. This indicates that the threshold
temperature for tropical EBPR failure ranges from 35 to 40 ◦C, and above a significant
deterioration in the PAO activity is observed. In addition, Panswad et al. [79] found that
under elevated temperature, the competition between GAOs and PAOs is believed to
enhance in terms of uptake of the available VFAs under anaerobic conditions. There is
a substantial effect of temperature on lowering the relative abundance of PAOs with the
increasing operating temperature from 20 to 35 ◦C. According to Whang and Park [81]
and Lopez -Vazquez et al., [51], GAOs had faster VFA uptake rates at higher temperatures,
leading to their excessive proliferation in the system. Ca. Accumulibacter and Tetras-
phaera reflect higher abundances in the systems operated below 20 ◦C [27,51,82], whereas
Ca. Competibacter become more numerous at higher temperatures. However, studies by
Qiu et al. [83] and Wang et al. [84] showed the possibility of achieving highly efficient EBPR
at the temperatures ranging from 28 to 32 ◦C.

The effect of temperature on the occurrence of Tetrasphaera was studied by Liu et al. [14]
with the correlation analysis of experimental data from over 60 references. The results of
the analysis revealed that the highest abundances of Tetrasphaera were mainly recorded in
the temperature range from 10 to 20 ◦C. In contrast, in the countries with the warm climate
and temperatures ranging from 20 to 30 ◦C, such as Australia or Spain, the abundance
of Tetrasphaera was significantly lower. This finding is not fully consistent with the char-
acteristics of pure Tetrasphaera cultures, where the temperature of 25 ◦C was considered
suboptimal [32,33]. The lowered occurrence of Tetrasphaera at elevated temperatures, should
therefore be explained by outcompetition from other microbial groups, in particular GAOs.

6.2. Influent Wastewater Characteristics

Influent wastewater characteristics have the potential to affect the abundance of
Tetrasphaera and alter the metabolic pathways. The availability of preferred carbon sources and
electron acceptors are essential to promote P-removal physiology of Tetrasphaera. As pointed
out by Kong et al. [43], industrial WWTPs reflect usually higher abundances of Tetrasphaera
compared to the systems treating mainly domestic wastewater. Mielczarek et al. [85] studied
the correlation of abundance of Tetrasphaera and wastewater characteristics, process design,
and operation, with the data of over 3 years from 28 Danish WWTPs. Their results showed
weak correlations with the increased amount of industrial wastewater in the influent. As
reported by Lopez-Vazquez et al., [51], the diversity of carbon compounds in the influent (the
ratios of acetate to propionate of 75–25% and 50–50%) provided more favorable conditions
for PAO than GAO, despite the elevated temperature (30 ◦C) in contrary to the experimental
trials when single carbon source was used.

The capability to metabolize and internally store many carbon compounds provides
Tetrasphaera with enormous adaptability to the dynamic conditions of substrate availabil-
ity in WWTPs [52]. Such physiological plasticity may gain Tetrasphaera advantage over
Ca. Accumulibacter, which is highly dependent on the acetate availability under anaerobic
conditions [56].

6.3. pH

It is considered that, pH set point and its control are critical for enhancing typical PAO
and Tetrasphaera activity in P removal [86,87].

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Water 2022, 14, 3428 13 of 18

Experimental results showed that P removal linearly increased with initial pH in-
creasing from 6.6 to 7.8, but slightly decreased when initial pH increased from 7.8 to 8.2.
Initial optimal pH of 7.8 favored P removal offering approximately 1.7 times compared
to the pH at 6.6. Additionally, the modeling studies have showed that the biomass cul-
tured at initial pH 7.8 contained elevated abundances of PAOs [88]. A recent study by
Kang et al. [89] showed that the significant effect of pH control at a pH greater than or
equal to 7.5 improved the P removal efficiency from 90.8% to 99.6%, whereas a pH below
7.0 ensured only about 63.1%.

The results of technological studies cover expectations from the characteristics of
cultivable Tetrasphaera strains, for which the pH range for growth is 6.0–9.0 with the
optimum at 7.0 [32]. Filipe et al. [89] observed the improved phosphate removal in the
studied EBPR system when the pH was allowed to increase to a maximum of 7.5.

Another critical issue related to the pH influence is the competition between PAOs
and GAOs, where pH is considered to affect anaerobic uptake kinetics of organic carbon.
Several studies confirmed that pH in the range of 7–8.5 leads to an increased abundance of
PAOs, whereas GAOs were inhibited or their proliferation rate was reduced under those
conditions [27,51,56]. There is now strong evidence that the stability of EBPR systems can
be improved by increasing the pH in the anaerobic zone. This allows for creating conditions
under which PAOs are able to uptake acetate faster than GAOs, which leads to the positive
shift in the composition of activated sludge biomass.

On the other hand, researchers seek clarity on how alkaline conditions can inhibit
GAO proliferation and induce PAO activity [10]. The main explanation of this observation
is that metabolism of the bacterial cells and enzymes activity is highly dependent on pH,
thus under unfavourable pH more energy is needed for the substrate uptake and P release.
It is postulated that carbon source uptake and phosphorus release/uptake are provided
by proton motive force (PMF), strongly dependent on the extracellular pH and related to
cation release [45,90].

In the study of Schuler and Jenkins [56], it was found that pH significantly affects the
anaerobic phase of EBPR performed by Ca. Accumulibacter. However, different correlations
were observed between pH and acetate uptake rates as well as between pH and anaerobic
P release rates. For acetate uptake rates, a continuous positive correlation was found
with the increasing pH, but the increase in acetate uptake slowed down above pH 7.2.
On the contrary, in the case of P release rate, a plateau was gained at pH 7.2 and above.
This suggests that at elevated pH, the energetic cost of acetate transport could not be
compensated by phosphate lysis. Based on the behaviour of cations, correlated with pH
during anaerobic carbon uptake, Saunders [91] postulated a secondary transport model as
the dominant mechanism of EBPR by PAOs. In that model, acetate was co-transported with
cations (typically H+), which started to accumulate inside the bacterial cell and decrease
PMF, thus slowing down the P release rate.

A recent study by Belka [92] showed that similar patterns were observed for pH-
dependent anaerobic P release by Tetrasphaera as in previous studies with Ca. Accumulibac-
ter. However, the anaerobic carbon uptake by Tetrasphaera was not correlated with pH
and did not slow down at pH higher than 7.2. Due to more versatile metabolic properties
(i.e., capability of accumulation of free organic carbon solutes and anaerobic amino acids
uptake), Tetrasphaera could gain an important advantage over Ca. Accumulibacter under
highly dynamic feeding and pH conditions.

6.4. Presence of DO and Nitrate

The presence of nitrate and DO in the anaerobic zone are considered inhibitors of the
PAO activity. When the anaerobic zone is free of nitrate and DO, the PAO activity is favoured
over any other rapidly growing heterotrophs that may use DO or nitrate as electron acceptors.
The DO concentration of DO has been found to strongly affect EBPR performance and PAO
dominance. Izadi et al. [10] achieved efficient P-removal at low DO concentrations (in the
range of 0.5 or 0.8 mg/L), which was attributed to the favoured growth of PAOs compared to
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GAOs. The presence of nitrate and/or DO reduces the amount of VFAs available for the PAO
activity, while hampering P removal [93]. At low DO levels, PAOs have an advantage over
Ca. Competibacter due to a higher DO affinity. Excessive aeration may induce instable P-
removal as a result of GAO competition. Chen et al. [94] found that maintaining the DO level
at 0.5 mgO2/L promoted a higher efficiency EBPR.

Regardless of the dynamic conditions associated with the transition between anaerobic,
anoxic and aerobic phases, Tetrasphaera representatives were found to be the dominant
genus in most of the European WWTPs [34]. Herbst et al. [52] provided important insights
into the characteristics of metabolic traits, which favored Tetrasphaera over most other func-
tional bacterial groups under such dynamic conditions. By the use of label-free quantitative
proteomics and nuclear magnetic resonance (NMR), the physiology of T. longate str. LP2
isolate was verified under dynamic shifts between anaerobic and aerobic conditions. Un-
like the reference bacterial strain of Escherichia coli, Tetrasphaera reflected a stable proteome
profile during transitions, which suggested that specific metabolic pathways for anaerobic
processes remained induced under aerobic conditions. This metabolic property ensures a
physiological advantage of Tetrasphaera over more specialized microbial groups. Moreover,
it is suggested that by enlarging the anaerobic zone in EBPR systems, with a reduced
oxidation-reduction potential (ORP), Tetrasphaera may gain a completive advantage over
other heterotrophic bacteria [14].

7. Conclusions

The implementation of P-removal technologies based on application of the anaerobic–
anoxic conditions has been recognized as the perspective approach for the energy efficient
wastewater treatment. In such systems, the development of Tetrasphaera population and
control of its activity may become a critical step. On the contrary, EBPR systems dominated
by Ca. Accumulibacter, which are strongly dependent on acetate availability, are considered
more susceptible to failure under dynamic conditions in WWTPs.

The development of Tetrasphaera-based EPBR systems is strongly determined by under-
standing the operational conditions, available carbon source and the presence of electron
acceptors in the anaerobic zone. In addition, interactions with other functional bacte-
rial groups (especially GAOs and other PAOs) have to be understood for further EBPR
development and optimization.

The availability of complex carbon sources in the influent, moderate temperature
(10–20 ◦C), elevated pH (>7.5) and increased sizes of the anaerobic zones are currently
recognized as the possible main factors favouring Tetrasphaera abundance over typical
PAOs (Ca. Accumulibacter). The conclusiveness of operational conditions such as pH
and temperature specifically to promote the growth of Tetrasphaera over Accumulibacter
is not definite at present. The known advantages exhibited by Tetrasphaera therefore,
are attributable to versatile metabolism in line with their denitrification, fermentation
and polyphosphate accumulation ability. Due to these versatile metabolic properties,
Tetrasphaera are considered the key microorganisms for the novel S2EBPR systems.

However, there are still issues that need to be resolved in the future, including a
phylogeny of Tetrasphaera genus, more complex characterization of metabolic traits of
individual Tetrasphaera species, as well as kinetic studies based on Tetrasphaera-enriched
cultures from full-scale systems.
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