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Abstract. In this paper we continue the study of paired-domination in graphs.
A paired–dominating set, abbreviated PDS, of a graph G with no isolated vertex is a
dominating set of vertices whose induced subgraph has a perfect matching. The paired-
-domination number of G, denoted by γp(G), is the minimum cardinality of a PDS of G.
The upper paired–domination number of G, denoted by Γp(G), is the maximum cardinality
of a minimal PDS of G. Let G be a connected graph of order n ≥ 3. Haynes and Slater in
[Paired-domination in graphs, Networks 32 (1998), 199–206], showed that γp(G) ≤ n−1 and
they determine the extremal graphs G achieving this bound. In this paper we obtain analo-
gous results for Γp(G). Dorbec, Henning and McCoy in [Upper total domination versus upper
paired-domination, Questiones Mathematicae 30 (2007), 1–12] determine Γp(Pn), instead in
this paper we determine Γp(Cn). Moreover, we describe some families of graphs G for which
the equality γp(G) = Γp(G) holds.

Keywords: paired-domination, paired-domination number, upper paired-domination
number.
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1. INTRODUCTION

Domination and its variations in graphs are now well studied. The literature on this
subject has been surveyed and detailed in the two books by Haynes et al. [5, 6].
Paired-domination in graphs was introduced by Haynes and Slater [7] as a model for
assigning backups to guard for security purposes. This concept of domination is well
studied (see [1–4,8–10]).

Let G = (V,E) be a graph which is finite, undirected, without loops, multiple
edges and isolated vertices. The number of vertices of G is called the order of G and
is denoted by n(G). When there is no confusion we use the abbreviation n(G) = n.
Let H be a connected graph. Then we denote by mH, m ≥ 1, the graph consisting of
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m components H1, . . . ,Hm, where Hi = H for i = 1, . . . ,m. A matching in a graph
G is a set of independent edges in G. A perfect matching M in G is a matching in
G such that every vertex of G is incident to an edge of M . A paired-dominating set,
abbreviated PDS, of a graph G is a set S = {u1, . . . , ut, v1, . . . , vt} of vertices of G
such that every vertex is adjacent to some vertex in S and the subgraph 〈S〉 induced
by S contains a perfect matching M = {e1, . . . , et}, where ei = uivi for i = 1, . . . , t.
Two vertices ui and vi joined by an edge ofM are said to be paired. Let Sp be the set of
paired vertices in S, that is Sp = {{ui, vi}| where i = 1, . . . , t}. The paired-domination
number of G, denoted by γp(G), is the minimum cardinality of a PDS. A PDS S of
G is minimal if no proper subset of S is a PDS of G. The upper paired-domination
number of G, denoted by Γp(G), is the maximum cardinality of a minimal PDS. A
minimal PDS of G of cardinality Γp(G) we call a Γp(G)–set.

2. GRAPHS WITH EQUAL γp AND Γp

The aim of this section is describing graphs G for which γp(G) = Γp(G) = n − i for
i = 0, 1, 2.

We start from the following statement.

Observation 2.1. For a graph G, Γp(G) = n if and only if G is mK2.

Proof. Obviously, Γp(mK2) = 2m = n, since for G = mK2 the unique PDS of G
is V (G).

Now, suppose that Γp(G) = n and G 6= mK2. Then, n is even and all the vertices
of G are paired in Sp. Since G 6= mK2, without loss of generality we may assume
that vertex uj is adjacent to vertex vk, where j 6= k. But then the vertices of V (G)−
{vj , uk} form a paired-dominating set, which is a contradiction with minimality of
S = V (G).

The subdivided star K∗1,t is the graph obtained from a star K1,t by subdividing
every edge once. In [7] we have the following notation and statements. Let F be the
collection of graphs C3,C5 and the subdivided stars K∗1,t.

Theorem 2.2 ([7]). If G is a connected graph of order n ≥ 3, then γp(G) ≤ n − 1.
Furthermore γp(G) = n− 1 if and only if G ∈ F .

We can reformulate Corollary 8 of [7] and then we obtain the following statement.

Corollary 2.3. Let G be a graph with n ≥ 3. Then γp(G) = n − 1 if and only if
G = H ∪ rK2, where H ∈ F and r ≥ 0.

Let K∗∆1,t be the graph obtained by attaching zero or more triangles to the central
vertex of K∗1,t (see Figure 1). Now let F∆ = {C3, C5,K

∗∆
1,t }.

Now we establish a bound on Γp(G) for connected graphs G. Moreover, we deter-
mine extremal graphs achieving this bound.

Theorem 2.4. If G is a connected graph of order n ≥ 3, then Γp(G) ≤ n − 1.
Furthermore, Γp(G) = n− 1 if and only if G ∈ F∆.
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Fig. 1. The graph K∗∆
1,t .

Proof. Since G is a connected graph with n ≥ 3, by Observation 2.1 we have that
Γp(G) ≤ n− 1. It is easy to see that Γp(C3) = 2, Γp(C5) = 4 and Γp(K∗∆1,t ) = n− 1,
and so Γp(G) = n− 1 for G ∈ F∆.

Now assume that G is a connected graph with n ≥ 3 such that Γp(G) = n−1. Let S
be a Γp(G)-set and let V −S = {x}. Since S dominates G, x has at least one neighbour
in S, say u1. If Γp(G) = 2, then G is ether P3 = K∗1,1 or C3, so G ∈ F ⊆ F∆. Thus we
may assume that Γp(G) ≥ 4. Now we state that S−{u1, v1} induces an independent set
of edges. Let us assume that there is on the contrary. Then without loss of generality
we may suppose that vertex ui is adjacent to vertex vk, where 2 ≤ i < k. It follows
that S − {vi, uk} is a PDS of G with Sp − {{ui, vi}, {uk, vk}} ∪ {{ui, vk}} as a set
of paired vertices, that contradicts the minimality of S. Furthermore, if the pair
{ui, vi} ∈ Sp − {{u1, v1}} has a common neighbour in S, then S − {ui, vi} is a PDS,
contradicting the minimality of S. Suppose that u1 is adjacent to ui, where i ≥ 2.
Then, Sp−{{u1, v1}, {ui, vi}}∪ {{u1, ui}} is a set of paired vertices for a PDS which
is S − {v1, vi}, again contradicting the minimality of S. Hence N(u1) = {x, v1}.
By connectivity, exactly one vertex from each pair {ui, vi} ∈ Sp − {u1, v1} must be
adjacent to v1 or vertices from {ui, vi} must be adjacent to x.

Now assume that v1 is adjacent to ui for i ≥ 2. If N(x) ∩ (S − {u1, vi}) 6= ∅, then
the vertices in the pairs of Sp − {{u1, v1}, {ui, vi}} ∪ {{ui, v1}} form a PDS of G, a
contradiction. Hence, if xvi ∈ E(G) then N(v1) = {u1, ui} and N(x) = {u1, vi} and
G = C5.

Thus we have the remaining cases:
(1) exactly one vertex from each pair {ui, vi} ∈ Sp − {{u1, v1}} is adjacent to v1 and
we obtain G = K∗1,t
and
(2) at least one vertex from {ui, vi} is adjacent to x and then we obtain G = K∗∆1,t .

This completes the proof of the theorem.

Corollary 2.5. Let G be a graph with n ≥ 3. Then Γp(G) = n − 1 if and only if
G = H ∪ rK2, where H ∈ F∆ and r ≥ 0.
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Now, let us consider the following problem: for which graphs G the equality
γp(G) = Γp(G) holds? In this paper we present a solution of the above problem
for large parameters.

By Theorem 6 of [7] and Observation 2.1 we obtain the following statement.

Fact 2.6. Let G be a graph. Then γp(G) = Γp(G) = n if and only if G = mK2.

Since F ⊆ F∆, by Corollary 2.3 and Corollary 2.5, we obtain the following result.

Corollary 2.7. Let G be a graph satisfying n ≥ 3. Then γp(G) = Γp(G) = n − 1 if
and only if G = H ∪ rK2, where H ∈ F and r ≥ 0.

Now we determine graphs G for which γp(G) = Γp(G) = n− 2.
In [10] we showed that only the graphs in family G (see Figure 2) are connected

and satisfy the condition γp(G) = n− 2.

Theorem 2.8. Let G be a connected graph of order n ≥ 4. Then γp(G) = n − 2 if
and only if G ∈ G.

Corollary 2.9. If G is a graph of order n ≥ 4, then γp(G) = n− 2 if and only if:

1) exactly two of the components of G are isomorphic to graphs of the family F given
in Theorem 2.2 and every other component is K2 or

2) exactly one of the components of G is isomorphic to a graph of the family G given
in Theorem 2.8 and every other component is K2.

Next, we describe graphs with the paired-domination and the upper
paired-domination numbers two less than their order.

Corollary 2.10. If G is a graph of order n ≥ 4, then γp(G) = Γp(G) = n− 2 if and
only if G is a graph given in Theorem 2.8 and Corollary 2.9.

Proof. It follows from the former theorems that the condition γp(G) = n − 2 holds
if and only if G ∈ G or G is the graph described in Corollary 2.9. It follows the
necessity. Now let G ∈ G or G be a graph from Corollary 2.9. Since G is a graph
of even order, moreover Γp(G) ≥ γp(G) and G 6= mK2, then by Observation 2.1 we
conclude that Γp(G) = γp(G). But then by Theorem 2.8 and Corollary 2.9 we obtain
the sufficiency.

3. Γp FOR PATHS AND CYCLES

Dorbec et al. [2] established the upper paired-domination number of the path.

Proposition 3.1. For n ≥ 2 an integer,

Γp(Pn) = 8b(n+ 1)/11c+ 2b((n+ 1) mod 11)/3c.

In this paper we determine the upper paired-domination number for the cycle.
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Proposition 3.2. For n ≥ 3 an integer,

Γp(Cn) = 8bn/11c+ 2b(n mod 11)/3c

for n 6= 5 and Γp(C5) = 4.

Proof. For 3 ≤ n ≤ 12 we can detemine the values of Γp(Cn) = 2, 2, 4, 4, 4, 4, 6, 6, 8, 8,
respectively. Thus, the statement holds.

For n ≥ 13, let f(n) = 8b(n+ 1)/11c+ 2b((n+ 1) mod 11)/3c.
Then we proceed with the following statement.

Claim 1. For n ≥ 3 an integer, f(n− 1) ≥ 2bn/3c.
Proof of Claim 1. Let n = 33k + r, where 0 ≤ r < 33. Then f(n − 1) = 24k + r1,
2bn/3c = 22k + r2 and r1 ≥ r2. Hence we can obtain the desired result.

Now, for the path Pn of order n, we costruct a special Γp(Pn) – set.

Claim 2. Let Pn be the path v1, v2, . . . , vn of order n, where n ≥ 2 and n 6= 4. Then
there exists a Γp(Pn)–set S such that v1 ∈ S.
Proof of Claim 2. Assume that v1, v2, . . . , vn are consecutive vertices on the path Pn.
We construct a set S as follows. Let Sp = An be a set of paired vertices in S for the
path Pn. First we define An for 2 ≤ n ≤ 10. Let

A2 = A3 = {{v1, v2}}, A4 = {{v2, v3}},
A5 = {{v1, v2}, {v4, v5}}, A6 = A7 = {{v1, v2}, {v5, v6}},
A8 = A9 = {{v1, v2}, {v3, v4}, {v7, v8}}, A10 = A8 ∪ {{v9, v10}}.

Now, we determine An for n = 11k + r, where k ≥ 1 and 0 ≤ r < 11. At first we
define the sets Bi for i ≥ 0 as follows:

Bi = {{v1+11i, v2+11i}, {v3+11i, v4+11i}, {v7+11i, v8+11i}, {v9+11i, v10+11i}}.

Next, we define An as follows: An =
⋃k−1

i=0 Bi for r = 0, An =
⋃k−1

i=0 Bi ∪Ar for r ≥ 2
and

An =

k−1⋃

i=0

Bi − {{v11k−2, v11k−1}} ∪ {{v11k, v11k+1}} for r = 1.

It is clear that the above set S is a PDS of Pn. Now we show the minimality of
S. For this purpose suppose that S′ ⊆ S and S′ 6= S, next consider two possibilities.
If S′ = S − {vj , vj+1}, where {vj , vj+1} ∈ Sp = An, then S′ is not a PDS of Pn.
Now assume that {vj , vj+1}, {vj+2, vj+3} ∈ Sp. Then S′ = S −{vj , vj+3} with paired
vertices vj+1 and vj+2, is not a PDS of Pn again. Now we calculate the size of S. Let
n = 11k + r, where k ≥ 1 and 0 ≤ r < 11. Then consider the following cases.
Case A. r = 0. Then we have |S| = (8/11)n = 8k, but on the other hand

f(n) = 8b(11k + 1)/11c+ 2b((11k + 1) mod 11)/3c = 8k.
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Fig. 2. Graphs in family G

Case B. r ≥ 2. Now we obtain

|S| = 8k + f(r) = 8k + 8b(r + 1)/11c+ 2b((r + 1) mod 11)/3c.

Case B.1. r < 10. Then

|S| = 8k + 2b((r + 1) mod 11/3c = f(n).

Case B.2. r = 10. Then

|S| = 8k + f(r) = 8k + 8 = 8b(n+ 1)/11c = f(n).

Case C. r = 1. In this case we have |S| = 8k, but on the other hand

f(n) = 8b(11k + 2)/11c+ 2b((11k + 2) mod 11)/3c = 8k.

Thus, in every case we have that |S| = f(n) and S is a Γp(Pn)–set.
Now let v1, . . . , vn are consecutive vertices on the cycle Cn and consider the path

Pn−1 = Cn − vn. By Claim 2, we conclude that there exists a Γp(Pn−1)–set S such
that v1 ∈ S. It is obvious that S is a PDS of Cn. Now suppose that there exists a
proper subset S′ of S such that S′ is a PDS of Cn. Since vn /∈ S′, then S′ would be
a PDS of Pn−1, contradicting the minimality of S. Therefore, S is a minimal PDS
of Cn.

Hence we obtain
Γp(Pn−1) ≤ Γp(Cn).

Now we show that Γp(Cn) ≤ Γp(Pn−1).
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At first assume that there exists a Γp(Cn)–set S′ such that for all vertices vi, vi+1

paired in S′, vi−1 /∈ S′ and vi+2 /∈ S′. Then we have Γp(Cn) ≤ 2bn/3c. Hence and by
Claim 1 we obtain Γp(Pn−1) ≥ Γp(Cn).
So we may assume that for every Γp(Cn)–set S′ there exist vertices vi, vi+1 paired in
S′ and such that at least one vertex vi−1, vi+2 is in S′.
Without loss of generality we may assume that vertices vn−1, vn are paired in S′ and
at least one among vertices vn−2, v1 is in S′. It follows from the minimality of S′ that
exactly one of vn−2, v1 belongs to S′. Let v1 /∈ S′ and vn−2 ∈ S′. Hence vn−3 ∈ S′.
Note that vn−4 /∈ S′, because vertices vn−4, vn−5 would be paired in the opposite
case, which contradicts the minimality of S′.
Now consider the following cases.
Case 1. v2 ∈ S′. Then vn−5 /∈ S′, because the set S′ − {vn−3, vn} would be a PDS of
Cn in the opposite case, which contradicts the minimality of S′. Now S′ is a minimal
PDS of Pn−1 = Cn − v1. Really, suppose that S′′, where S′′ ⊆ S′ and S′′ 6= S′, is a
PDS of Pn−1. Then S′′ must include vertices vn−3, vn−2, vn−1, vn, therefore S′′ would
be a PDS of Cn, a contradiction.
Case 2. v2 /∈ S′. Then v3 ∈ S′.
Case 2.1. vn−5 ∈ S′. Then consider the path Pn−1 = Cn− vn−4. By reasoning similar
to that in Case 1 we conclude that S′ is a minimal PDS of Pn−1.
Case 2.2. vn−5 /∈ S′. Then S′ is a minimal PDS of Pn−1 = Cn − v1. Really, suppose
that S′′, where S′′ ⊆ S′ and S′′ 6= S′, is a PDS of Pn−1. Then S′′ must include vertices
vn−3, vn−2, vn−1, vn and v3, therefore S′′ would be a PDS of Cn, a contradiction.
In all cases we have that S′ is a minimal PDS of Pn−1 and so Γp(Cn) ≤ Γp(Pn−1).

This completes the proof of the statement.

Now let us consider the problem when

γp(G) = Γp(G)

for G = Pn or G = Cn.
Since γp(Pn) = γp(Cn) = 2dn/4e (see [7]), by Proposition 3.1 and by Proposi-

tion 3.2 one can obtain the following statements.

Proposition 3.3. γp(Pn) = Γp(Pn) if and only if n = 2, 3, 4, 5, 6, 7 or 9.

Proposition 3.4. γp(Cn) = Γp(Cn) if and only if n = 3, 4, 5, 6, 7, 8, 9, 10 or 13.
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