THE PAIRED-DOMINATION AND THE UPPER PAIRED-DOMINATION NUMBERS OF GRAPHS

Włodzimierz Ulatowski
Communicated by Dalibor Fronček

Abstract

In this paper we continue the study of paired-domination in graphs. A paired-dominating set, abbreviated PDS, of a graph G with no isolated vertex is a dominating set of vertices whose induced subgraph has a perfect matching. The paired--domination number of G, denoted by $\gamma_{p}(G)$, is the minimum cardinality of a PDS of G. The upper paired-domination number of G, denoted by $\Gamma_{p}(G)$, is the maximum cardinality of a minimal PDS of G. Let G be a connected graph of order $n \geq 3$. Haynes and Slater in [Paired-domination in graphs, Networks 32 (1998), 199-206], showed that $\gamma_{p}(G) \leq n-1$ and they determine the extremal graphs G achieving this bound. In this paper we obtain analogous results for $\Gamma_{p}(G)$. Dorbec, Henning and McCoy in [Upper total domination versus upper paired-domination, Questiones Mathematicae 30 (2007), 1-12] determine $\Gamma_{p}\left(P_{n}\right)$, instead in this paper we determine $\Gamma_{p}\left(C_{n}\right)$. Moreover, we describe some families of graphs G for which the equality $\gamma_{p}(G)=\Gamma_{p}(G)$ holds.

Keywords: paired-domination, paired-domination number, upper paired-domination number.

Mathematics Subject Classification: 05C69.

1. INTRODUCTION

Domination and its variations in graphs are now well studied. The literature on this subject has been surveyed and detailed in the two books by Haynes et al. [5, 6]. Paired-domination in graphs was introduced by Haynes and Slater [7] as a model for assigning backups to guard for security purposes. This concept of domination is well studied (see [1-4, 8-10]).

Let $G=(V, E)$ be a graph which is finite, undirected, without loops, multiple edges and isolated vertices. The number of vertices of G is called the order of G and is denoted by $n(G)$. When there is no confusion we use the abbreviation $n(G)=n$. Let H be a connected graph. Then we denote by $m H, m \geq 1$, the graph consisting of
m components H_{1}, \ldots, H_{m}, where $H_{i}=H$ for $i=1, \ldots, m$. A matching in a graph G is a set of independent edges in G. A perfect matching M in G is a matching in G such that every vertex of G is incident to an edge of M. A paired-dominating set, abbreviated PDS, of a graph G is a set $S=\left\{u_{1}, \ldots, u_{t}, v_{1}, \ldots, v_{t}\right\}$ of vertices of G such that every vertex is adjacent to some vertex in S and the subgraph $\langle S\rangle$ induced by S contains a perfect matching $M=\left\{e_{1}, \ldots, e_{t}\right\}$, where $e_{i}=u_{i} v_{i}$ for $i=1, \ldots, t$. Two vertices u_{i} and v_{i} joined by an edge of M are said to be paired. Let S_{p} be the set of paired vertices in S, that is $S_{p}=\left\{\left\{u_{i}, v_{i}\right\} \mid\right.$ where $\left.i=1, \ldots, t\right\}$. The paired-domination number of G, denoted by $\gamma_{p}(G)$, is the minimum cardinality of a PDS. A PDS S of G is minimal if no proper subset of S is a PDS of G. The upper paired-domination number of G, denoted by $\Gamma_{p}(G)$, is the maximum cardinality of a minimal PDS. A minimal PDS of G of cardinality $\Gamma_{p}(G)$ we call a $\Gamma_{p}(G)-$ set.

2. GRAPHS WITH EQUAL γ_{p} AND Γ_{p}

The aim of this section is describing graphs G for which $\gamma_{p}(G)=\Gamma_{p}(G)=n-i$ for $i=0,1,2$.

We start from the following statement.
Observation 2.1. For a graph $G, \Gamma_{p}(G)=n$ if and only if G is $m K_{2}$.
Proof. Obviously, $\Gamma_{p}\left(m K_{2}\right)=2 m=n$, since for $G=m K_{2}$ the unique PDS of G is $V(G)$.

Now, suppose that $\Gamma_{p}(G)=n$ and $G \neq m K_{2}$. Then, n is even and all the vertices of G are paired in S_{p}. Since $G \neq m K_{2}$, without loss of generality we may assume that vertex u_{j} is adjacent to vertex v_{k}, where $j \neq k$. But then the vertices of $V(G)-$ $\left\{v_{j}, u_{k}\right\}$ form a paired-dominating set, which is a contradiction with minimality of $S=V(G)$.

The subdivided star $K_{1, t}^{*}$ is the graph obtained from a star $K_{1, t}$ by subdividing every edge once. In [7] we have the following notation and statements. Let \mathcal{F} be the collection of graphs C_{3}, C_{5} and the subdivided stars $K_{1, t}^{*}$.
Theorem 2.2 ([7]). If G is a connected graph of order $n \geq 3$, then $\gamma_{p}(G) \leq n-1$. Furthermore $\gamma_{p}(G)=n-1$ if and only if $G \in \mathcal{F}$.

We can reformulate Corollary 8 of [7] and then we obtain the following statement.
Corollary 2.3. Let G be a graph with $n \geq 3$. Then $\gamma_{p}(G)=n-1$ if and only if $G=H \cup r K_{2}$, where $H \in \mathcal{F}$ and $r \geq 0$.

Let $K_{1, t}^{* \Delta}$ be the graph obtained by attaching zero or more triangles to the central vertex of $K_{1, t}^{*}$ (see Figure 1). Now let $\mathcal{F}^{\Delta}=\left\{C_{3}, C_{5}, K_{1, t}^{* \Delta}\right\}$.

Now we establish a bound on $\Gamma_{p}(G)$ for connected graphs G. Moreover, we determine extremal graphs achieving this bound.
Theorem 2.4. If G is a connected graph of order $n \geq 3$, then $\Gamma_{p}(G) \leq n-1$. Furthermore, $\Gamma_{p}(G)=n-1$ if and only if $G \in \mathcal{F}^{\Delta}$.

Fig. 1. The graph $K_{1, t}^{* \Delta}$.

Proof. Since G is a connected graph with $n \geq 3$, by Observation 2.1 we have that $\Gamma_{p}(G) \leq n-1$. It is easy to see that $\Gamma_{p}\left(C_{3}\right)=2, \Gamma_{p}\left(C_{5}\right)=4$ and $\Gamma_{p}\left(K_{1, t}^{* \Delta}\right)=n-1$, and so $\Gamma_{p}(G)=n-1$ for $G \in \mathcal{F}^{\Delta}$.

Now assume that G is a connected graph with $n \geq 3$ such that $\Gamma_{p}(G)=n-1$. Let S be a $\Gamma_{p}(G)$-set and let $V-S=\{x\}$. Since S dominates G, x has at least one neighbour in S, say u_{1}. If $\Gamma_{p}(G)=2$, then G is ether $P_{3}=K_{1,1}^{*}$ or C_{3}, so $G \in \mathcal{F} \subseteq \mathcal{F}^{\Delta}$. Thus we may assume that $\Gamma_{p}(G) \geq 4$. Now we state that $S-\left\{u_{1}, v_{1}\right\}$ induces an independent set of edges. Let us assume that there is on the contrary. Then without loss of generality we may suppose that vertex u_{i} is adjacent to vertex v_{k}, where $2 \leq i<k$. It follows that $S-\left\{v_{i}, u_{k}\right\}$ is a PDS of G with $S_{p}-\left\{\left\{u_{i}, v_{i}\right\},\left\{u_{k}, v_{k}\right\}\right\} \cup\left\{\left\{u_{i}, v_{k}\right\}\right\}$ as a set of paired vertices, that contradicts the minimality of S. Furthermore, if the pair $\left\{u_{i}, v_{i}\right\} \in S_{p}-\left\{\left\{u_{1}, v_{1}\right\}\right\}$ has a common neighbour in S, then $S-\left\{u_{i}, v_{i}\right\}$ is a PDS, contradicting the minimality of S. Suppose that u_{1} is adjacent to u_{i}, where $i \geq 2$. Then, $S_{p}-\left\{\left\{u_{1}, v_{1}\right\},\left\{u_{i}, v_{i}\right\}\right\} \cup\left\{\left\{u_{1}, u_{i}\right\}\right\}$ is a set of paired vertices for a PDS which is $S-\left\{v_{1}, v_{i}\right\}$, again contradicting the minimality of S. Hence $N\left(u_{1}\right)=\left\{x, v_{1}\right\}$. By connectivity, exactly one vertex from each pair $\left\{u_{i}, v_{i}\right\} \in S_{p}-\left\{u_{1}, v_{1}\right\}$ must be adjacent to v_{1} or vertices from $\left\{u_{i}, v_{i}\right\}$ must be adjacent to x.

Now assume that v_{1} is adjacent to u_{i} for $i \geq 2$. If $N(x) \cap\left(S-\left\{u_{1}, v_{i}\right\}\right) \neq \emptyset$, then the vertices in the pairs of $S_{p}-\left\{\left\{u_{1}, v_{1}\right\},\left\{u_{i}, v_{i}\right\}\right\} \cup\left\{\left\{u_{i}, v_{1}\right\}\right\}$ form a PDS of G, a contradiction. Hence, if $x v_{i} \in E(G)$ then $N\left(v_{1}\right)=\left\{u_{1}, u_{i}\right\}$ and $N(x)=\left\{u_{1}, v_{i}\right\}$ and $G=C_{5}$.

Thus we have the remaining cases:
(1) exactly one vertex from each pair $\left\{u_{i}, v_{i}\right\} \in S_{p}-\left\{\left\{u_{1}, v_{1}\right\}\right\}$ is adjacent to v_{1} and we obtain $G=K_{1, t}^{*}$ and
(2) at least one vertex from $\left\{u_{i}, v_{i}\right\}$ is adjacent to x and then we obtain $G=K_{1, t}^{* \Delta}$.

This completes the proof of the theorem.
Corollary 2.5. Let G be a graph with $n \geq 3$. Then $\Gamma_{p}(G)=n-1$ if and only if $G=H \cup r K_{2}$, where $H \in \mathcal{F}^{\Delta}$ and $r \geq 0$.

Now, let us consider the following problem: for which graphs G the equality $\gamma_{p}(G)=\Gamma_{p}(G)$ holds? In this paper we present a solution of the above problem for large parameters.

By Theorem 6 of [7] and Observation 2.1 we obtain the following statement.
Fact 2.6. Let G be a graph. Then $\gamma_{p}(G)=\Gamma_{p}(G)=n$ if and only if $G=m K_{2}$.
Since $\mathcal{F} \subseteq \mathcal{F}^{\Delta}$, by Corollary 2.3 and Corollary 2.5, we obtain the following result.
Corollary 2.7. Let G be a graph satisfying $n \geq 3$. Then $\gamma_{p}(G)=\Gamma_{p}(G)=n-1$ if and only if $G=H \cup r K_{2}$, where $H \in \mathcal{F}$ and $r \geq 0$.

Now we determine graphs G for which $\gamma_{p}(G)=\Gamma_{p}(G)=n-2$.
In [10] we showed that only the graphs in family \mathcal{G} (see Figure 2) are connected and satisfy the condition $\gamma_{p}(G)=n-2$.

Theorem 2.8. Let G be a connected graph of order $n \geq 4$. Then $\gamma_{p}(G)=n-2$ if and only if $G \in \mathcal{G}$.

Corollary 2.9. If G is a graph of order $n \geq 4$, then $\gamma_{p}(G)=n-2$ if and only if:

1) exactly two of the components of G are isomorphic to graphs of the family \mathcal{F} given in Theorem 2.2 and every other component is K_{2} or
2) exactly one of the components of G is isomorphic to a graph of the family \mathcal{G} given in Theorem 2.8 and every other component is K_{2}.

Next, we describe graphs with the paired-domination and the upper paired-domination numbers two less than their order.

Corollary 2.10. If G is a graph of order $n \geq 4$, then $\gamma_{p}(G)=\Gamma_{p}(G)=n-2$ if and only if G is a graph given in Theorem 2.8 and Corollary 2.9.

Proof. It follows from the former theorems that the condition $\gamma_{p}(G)=n-2$ holds if and only if $G \in \mathcal{G}$ or G is the graph described in Corollary 2.9. It follows the necessity. Now let $G \in \mathcal{G}$ or G be a graph from Corollary 2.9. Since G is a graph of even order, moreover $\Gamma_{p}(G) \geq \gamma_{p}(G)$ and $G \neq m K_{2}$, then by Observation 2.1 we conclude that $\Gamma_{p}(G)=\gamma_{p}(G)$. But then by Theorem 2.8 and Corollary 2.9 we obtain the sufficiency.

3. Γ_{p} FOR PATHS AND CYCLES

Dorbec et al. [2] established the upper paired-domination number of the path.
Proposition 3.1. For $n \geq 2$ an integer,

$$
\Gamma_{p}\left(P_{n}\right)=8\lfloor(n+1) / 11\rfloor+2\lfloor((n+1) \bmod 11) / 3\rfloor .
$$

In this paper we determine the upper paired-domination number for the cycle.

Proposition 3.2. For $n \geq 3$ an integer,

$$
\Gamma_{p}\left(C_{n}\right)=8\lfloor n / 11\rfloor+2\lfloor(n \bmod 11) / 3\rfloor
$$

for $n \neq 5$ and $\Gamma_{p}\left(C_{5}\right)=4$.
Proof. For $3 \leq n \leq 12$ we can detemine the values of $\Gamma_{p}\left(C_{n}\right)=2,2,4,4,4,4,6,6,8,8$, respectively. Thus, the statement holds.

For $n \geq 13$, let $f(n)=8\lfloor(n+1) / 11\rfloor+2\lfloor((n+1) \bmod 11) / 3\rfloor$.
Then we proceed with the following statement.
Claim 1. For $n \geq 3$ an integer, $f(n-1) \geq 2\lfloor n / 3\rfloor$.
Proof of Claim 1. Let $n=33 k+r$, where $0 \leq r<33$. Then $f(n-1)=24 k+r_{1}$, $2\lfloor n / 3\rfloor=22 k+r_{2}$ and $r_{1} \geq r_{2}$. Hence we can obtain the desired result.
Now, for the path P_{n} of order n, we costruct a special $\Gamma_{p}\left(P_{n}\right)$ - set.
Claim 2. Let P_{n} be the path $v_{1}, v_{2}, \ldots, v_{n}$ of order n, where $n \geq 2$ and $n \neq 4$. Then there exists a $\Gamma_{p}\left(P_{n}\right)$-set S such that $v_{1} \in S$.
Proof of Claim 2. Assume that $v_{1}, v_{2}, \ldots, v_{n}$ are consecutive vertices on the path P_{n}. We construct a set S as follows. Let $S_{p}=A_{n}$ be a set of paired vertices in S for the path P_{n}. First we define A_{n} for $2 \leq n \leq 10$. Let

$$
\begin{aligned}
A_{2} & =A_{3}=\left\{\left\{v_{1}, v_{2}\right\}\right\}, & A_{4} & =\left\{\left\{v_{2}, v_{3}\right\}\right\} \\
A_{5} & =\left\{\left\{v_{1}, v_{2}\right\},\left\{v_{4}, v_{5}\right\}\right\}, & A_{6} & =A_{7}=\left\{\left\{v_{1}, v_{2}\right\},\left\{v_{5}, v_{6}\right\}\right\}, \\
A_{8} & =A_{9}=\left\{\left\{v_{1}, v_{2}\right\},\left\{v_{3}, v_{4}\right\},\left\{v_{7}, v_{8}\right\}\right\}, & A_{10} & =A_{8} \cup\left\{\left\{v_{9}, v_{10}\right\}\right\}
\end{aligned}
$$

Now, we determine A_{n} for $n=11 k+r$, where $k \geq 1$ and $0 \leq r<11$. At first we define the sets B_{i} for $i \geq 0$ as follows:

$$
B_{i}=\left\{\left\{v_{1+11 i}, v_{2+11 i}\right\},\left\{v_{3+11 i}, v_{4+11 i}\right\},\left\{v_{7+11 i}, v_{8+11 i}\right\},\left\{v_{9+11 i}, v_{10+11 i}\right\}\right\}
$$

Next, we define A_{n} as follows: $A_{n}=\bigcup_{i=0}^{k-1} B_{i}$ for $r=0, A_{n}=\bigcup_{i=0}^{k-1} B_{i} \cup A_{r}$ for $r \geq 2$ and

$$
A_{n}=\bigcup_{i=0}^{k-1} B_{i}-\left\{\left\{v_{11 k-2}, v_{11 k-1}\right\}\right\} \cup\left\{\left\{v_{11 k}, v_{11 k+1}\right\}\right\} \quad \text { for } \quad r=1
$$

It is clear that the above set S is a PDS of P_{n}. Now we show the minimality of S. For this purpose suppose that $S^{\prime} \subseteq S$ and $S^{\prime} \neq S$, next consider two possibilities. If $S^{\prime}=S-\left\{v_{j}, v_{j+1}\right\}$, where $\left\{v_{j}, v_{j+1}\right\} \in S_{p}=A_{n}$, then S^{\prime} is not a PDS of P_{n}. Now assume that $\left\{v_{j}, v_{j+1}\right\},\left\{v_{j+2}, v_{j+3}\right\} \in S_{p}$. Then $S^{\prime}=S-\left\{v_{j}, v_{j+3}\right\}$ with paired vertices v_{j+1} and v_{j+2}, is not a PDS of P_{n} again. Now we calculate the size of S. Let $n=11 k+r$, where $k \geq 1$ and $0 \leq r<11$. Then consider the following cases.
Case A. $r=0$. Then we have $|S|=(8 / 11) n=8 k$, but on the other hand

$$
f(n)=8\lfloor(11 k+1) / 11\rfloor+2\lfloor((11 k+1) \bmod 11) / 3\rfloor=8 k .
$$

Fig. 2. Graphs in family \mathcal{G}

Case B. $r \geq 2$. Now we obtain

$$
|S|=8 k+f(r)=8 k+8\lfloor(r+1) / 11\rfloor+2\lfloor((r+1) \bmod 11) / 3\rfloor .
$$

Case B.1. $r<10$. Then

$$
|S|=8 k+2\lfloor((r+1) \bmod 11 / 3\rfloor=f(n) .
$$

Case B.2. $r=10$. Then

$$
|S|=8 k+f(r)=8 k+8=8\lfloor(n+1) / 11\rfloor=f(n) .
$$

Case C. $r=1$. In this case we have $|S|=8 k$, but on the other hand

$$
f(n)=8\lfloor(11 k+2) / 11\rfloor+2\lfloor((11 k+2) \bmod 11) / 3\rfloor=8 k .
$$

Thus, in every case we have that $|S|=f(n)$ and S is a $\Gamma_{p}\left(P_{n}\right)$-set.
Now let v_{1}, \ldots, v_{n} are consecutive vertices on the cycle C_{n} and consider the path $P_{n-1}=C_{n}-v_{n}$. By Claim 2, we conclude that there exists a $\Gamma_{p}\left(P_{n-1}\right)$-set S such that $v_{1} \in S$. It is obvious that S is a PDS of C_{n}. Now suppose that there exists a proper subset S^{\prime} of S such that S^{\prime} is a PDS of C_{n}. Since $v_{n} \notin S^{\prime}$, then S^{\prime} would be a PDS of P_{n-1}, contradicting the minimality of S. Therefore, S is a minimal PDS of C_{n}.

Hence we obtain

$$
\Gamma_{p}\left(P_{n-1}\right) \leq \Gamma_{p}\left(C_{n}\right)
$$

Now we show that $\Gamma_{p}\left(C_{n}\right) \leq \Gamma_{p}\left(P_{n-1}\right)$.

At first assume that there exists a $\Gamma_{p}\left(C_{n}\right)$-set S^{\prime} such that for all vertices v_{i}, v_{i+1} paired in $S^{\prime}, v_{i-1} \notin S^{\prime}$ and $v_{i+2} \notin S^{\prime}$. Then we have $\Gamma_{p}\left(C_{n}\right) \leq 2\lfloor n / 3\rfloor$. Hence and by Claim 1 we obtain $\Gamma_{p}\left(P_{n-1}\right) \geq \Gamma_{p}\left(C_{n}\right)$.
So we may assume that for every $\Gamma_{p}\left(C_{n}\right)$-set S^{\prime} there exist vertices v_{i}, v_{i+1} paired in S^{\prime} and such that at least one vertex v_{i-1}, v_{i+2} is in S^{\prime}.
Without loss of generality we may assume that vertices v_{n-1}, v_{n} are paired in S^{\prime} and at least one among vertices v_{n-2}, v_{1} is in S^{\prime}. It follows from the minimality of S^{\prime} that exactly one of v_{n-2}, v_{1} belongs to S^{\prime}. Let $v_{1} \notin S^{\prime}$ and $v_{n-2} \in S^{\prime}$. Hence $v_{n-3} \in S^{\prime}$. Note that $v_{n-4} \notin S^{\prime}$, because vertices v_{n-4}, v_{n-5} would be paired in the opposite case, which contradicts the minimality of S^{\prime}.
Now consider the following cases.
Case 1. $v_{2} \in S^{\prime}$. Then $v_{n-5} \notin S^{\prime}$, because the set $S^{\prime}-\left\{v_{n-3}, v_{n}\right\}$ would be a PDS of C_{n} in the opposite case, which contradicts the minimality of S^{\prime}. Now S^{\prime} is a minimal PDS of $P_{n-1}=C_{n}-v_{1}$. Really, suppose that $S^{\prime \prime}$, where $S^{\prime \prime} \subseteq S^{\prime}$ and $S^{\prime \prime} \neq S^{\prime}$, is a PDS of P_{n-1}. Then $S^{\prime \prime}$ must include vertices $v_{n-3}, v_{n-2}, v_{n-1}, v_{n}$, therefore $S^{\prime \prime}$ would be a PDS of C_{n}, a contradiction.
Case 2. $v_{2} \notin S^{\prime}$. Then $v_{3} \in S^{\prime}$.
Case 2.1. $v_{n-5} \in S^{\prime}$. Then consider the path $P_{n-1}=C_{n}-v_{n-4}$. By reasoning similar to that in Case 1 we conclude that S^{\prime} is a minimal PDS of P_{n-1}.
Case 2.2. $v_{n-5} \notin S^{\prime}$. Then S^{\prime} is a minimal PDS of $P_{n-1}=C_{n}-v_{1}$. Really, suppose that $S^{\prime \prime}$, where $S^{\prime \prime} \subseteq S^{\prime}$ and $S^{\prime \prime} \neq S^{\prime}$, is a PDS of P_{n-1}. Then $S^{\prime \prime}$ must include vertices $v_{n-3}, v_{n-2}, v_{n-1}, v_{n}$ and v_{3}, therefore $S^{\prime \prime}$ would be a PDS of C_{n}, a contradiction.
In all cases we have that S^{\prime} is a minimal PDS of P_{n-1} and so $\Gamma_{p}\left(C_{n}\right) \leq \Gamma_{p}\left(P_{n-1}\right)$.
This completes the proof of the statement.
Now let us consider the problem when

$$
\gamma_{p}(G)=\Gamma_{p}(G)
$$

for $G=P_{n}$ or $G=C_{n}$.
Since $\gamma_{p}\left(P_{n}\right)=\gamma_{p}\left(C_{n}\right)=2\lceil n / 4\rceil$ (see [7]), by Proposition 3.1 and by Proposition 3.2 one can obtain the following statements.

Proposition 3.3. $\gamma_{p}\left(P_{n}\right)=\Gamma_{p}\left(P_{n}\right)$ if and only if $n=2,3,4,5,6,7$ or 9 .
Proposition 3.4. $\gamma_{p}\left(C_{n}\right)=\Gamma_{p}\left(C_{n}\right)$ if and only if $n=3,4,5,6,7,8,9,10$ or 13 .

REFERENCES

[1] M. Chellali, T.W. Haynes, Trees with unique minimum paired-dominating sets, Ars Combin. 73 (2004), 3-12.
[2] P. Dorbec, M.A. Henning, J. McCoy, Upper total domination versus upper paired--domination, Quest. Math. 30 (2007), 1-12.
[3] P. Dorbec, S. Gravier, M.A. Henning, Paired- domination in generalized claw-free graphs, J. Comb. Optim. 14 (2007), 1-7.
[4] O. Favaron, M.A. Henning, Paired-domination in claw-free cubic graphs, Graphs Comb. 20 (2004), 447-456.
[5] T.W. Haynes, S.T. Hedetniemi, P.J. Slater (Eds.), Fundamentals of domination in graphs, Marcel Dekker, New York, 1998.
[6] T.W. Haynes, S.T. Hedetniemi, P.J. Slater (Eds.), Domination in graphs: advanced topics, Marcel Dekker, New York, 1998.
[7] T.W. Haynes, P.J. Slater, Paired-domination in graphs, Networks 32 (1998), 199-209.
[8] M.A. Henning, Graphs with large paired-domination number, J. Comb. Optim. 13 (2007), 61-78.
[9] J. Raczek, Lower bound on the paired-domination number of a tree, Australas. J. Comb. 34 (2006), 343-347.
[10] W. Ulatowski, All graphs with paired-domination number two less than their order, Opuscula Math. 33 (2013) 4, 763-783.

Włodzimierz Ulatowski
twoulat@mif.pg.gda.pl

Gdansk University of Technology
Faculty of Physics and Mathematics
Narutowicza 11/12, 80-233 Gdańsk, Poland
Received: July 1, 2013.
Revised: February 17, 2014.
Accepted: February 17, 2014.

