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Abstract: Honing of holes allows for small shape deviation and a low value of a roughness profile 

parameter, e.g., Ra parameter. The honing process heats the workpiece and raises its temperature. 

The increase in temperature causes thermal deformations of the honed holes. The article proposes 

the construction of a honing cell, containing in addition to CNC honing machine: thermographic 

camera, sound intensity meter, and software for collecting and analyzing data received during 

machining. It was proposed that the level of sound intensity obtained during honing could be 

monitored continuously and that the images from a thermographic camera could be analyzed on-

line. These analyses would be aimed at supervising honing along with the on-line correction of 

machining parameters. In addition to the oil cooler, the machining cell may have an automatic 

selection of the grain trajectory shape, with specified value of the radii of curvature of the abrasive 

grain trajectories, according to the wall thickness of the honed workpiece, which will result in 

reducing the temperature generated during honing. Automated honing cell can mostly increase 

honing process efficiency. Simulations in FlexSim showed the possibility of increasing the efficiency 

of the honing process more than 20 times. 

Keywords: honing of holes; kinematics of honing; automation of honing; abrasive grain trajectories; 

FlexSim; thermography 

 

1. Introduction 

The honing process heats the workpiece and raises its temperature. Specialist literature dealing 

with the honing process of cylindrical surfaces draws attention to the issue of the temperature 

increase during machining [1–11], which causes the thermal deformation of the honed hole. The 

temperature increase is also a very important issue during the honing process of flat surfaces by 

grinding with lapping kinematics as shown in [12]. Another interesting issue, in addition to the 

coexisting issue, i.e., surface texturing [13], is the use of new honing methods [14–17] and honing 

equipment used during machining [18,19] to improve the quality of the holes obtained [20–24]. 

The process of honing is influenced by the selection of proper machining parameters [1,25–30], 

which directly affects the obtained cylindricity deviations of the honed holes [9,10,31–35]. Much 

attention in the literature has also been devoted to examining the possibility of creating a new honing 

equipment and machines [18] as well as machining strategy, during which a different shape of oil 

channels cross-hatch could be obtained [12,36–46] which influences the further development of 

honing methods [47–52]. 

Irene Buj-Corral [2] described the methodology of selecting the appropriate density of the 

abrasive whetstone based on the analysis of the acoustic signal recorded in honing process and 

checked that roughness of honed cylinders increases mainly with abrasive grain size, followed by 

honing head pressure. She researched that tangential speed influences roughness slightly [53]. 

Similarly, Chavan [38] describes the effect of the pressure of the abrasive whetstone and the honing 
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speed on the obtained roughness profile parameters. Deepak [27] dealt with in detail the influence of 

honing parameters on the obtained parameters of the roughness profile of honed surface. He stated 

that the rotational speed of the head had the greatest influence on the Rz, Rk, and Rvk parameters, while 

the linear speed of the jump had the greatest influence on the Rpk parameter. Barylski [1] indicates 

that the selection of parameters affects the size of the honed material and affects the amount of 

temperature generated in the workpiece. 

The latest literature describes the use of the neural network method to supervise the honing 

process [54], but the analysis of parameters leads to obtaining the desired roughness profile 

parameters. In this article, it is proposed that the neural network completely diagnose the process of 

honing, including the analysis of the sound signal obtained during honing and the analysis of 

thermograms recorded during honing, which is a novelty in proposing the direction of the honing 

process and its automation. 

2. Kinematics of Honing Process 

Goeldel [41,55] proposed to use new shapes of grain paths for honing of cylindrical holes. Bujukli 

[56] describes the effect of the honing head stroke length on the improvement of the cylindrical shape 

deviation of the honed hole. 

Figure 1 shows the cross-section of the honing head and the speeds occurring in the machining 

system: Vax—axial linear speed of the honing head [m/min], Vaz—peripheral speed of the honing head 

[m/min], Vexp—infeed speed of abrasive whetstone [µm/min]. 

The honing head has a vision system (item 6), which records the real-time image of the honed 

surface, introducing data to the neural network that verifies the number of oil channels produced in 

such a way that the continuity for the flowing oil is broken. The gauge of the pressure force and the 

diameter of the machined hole (item 4) and the temperature gauge (item 5) enable the supervision of 

the honing process in real time. 

 

Figure 1. Honing head with main honing speeds; 1—honed cylinder liner, 2—abrasive whetstone, 3—

expanding mandrel, 4—pressure and machined diameter measurement, 5—temperature 

measurement, 6—vision system. 

The basic formulas that define the honing kinematics (Figure 1) are: 
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- resultant cutting speed [m/min] 

�� = ����
� + ���

�  (1) 

- linear speed of the head in reciprocating motion [m/min] 

��� = 2���� (2) 

where: L is the length of the head stroke in the axial direction, in reciprocating motion [m]; nαx is the 

head stroke frequency in reciprocating motion [1/min]; Vaz is the peripheral speed of the head [m/min] 

��� =
���

1000
 (3) 

where: n is the head rotation speed [min-1]; d is the diameter of the honed hole [mm]; 

And 

��� =
���
���

 (4) 

where: α is the honing angle [°]. 

The honing angle is a parameter influencing the oil consumption and the amount of toxic 

compounds emitted to the environment during the operation of internal combustion engines [57]. It 

also affects the coefficient of friction of the piston rings against the cylinder surface [38,42,58,59], 

which has a direct impact on engine power losses. 

The honing angle depends on the mutual relation of the rotational speed and the speed of the 

axial linear stroke of the head. A higher value of the rotational speed with a lower value of the honing 

head stroke speed makes the angle closer to the horizontal direction, a lower value of the rotational 

speed with a lower value of the head stroke speed makes the angle closer to the vertical direction. 

Figure 2 shows an exemplary trajectory of the abrasive grain (item 1) obtained during honing on 

the developed surface of the machined hole (item 2). The advantage of the honing cell is the automatic 

selection of the shape of the abrasive grain trajectory, with different values of the grain trajectory 

curvature, which directly affects the amount of temperature generated in the workpiece. 

There are a many combinations possible in the honing process of oil channel angle. This diversity 

is presented in Table 1. Various honing researchers and different engine manufacturers suggest the 

use of different honing angles, but this article proposes the use of honing with variable kinematics, 

which enables the creation of a scratch grid in the form of curvilinear oil channels. 
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Figure 2. Possible directions of movement of honing head in honing of cylindrical holes: 1—abrasive 

grain trajectories, 2—expanding of honed surface, 3—honed cylinder liners with honing head, 4—

additional honing head oscillation motion in vertical direction, 5—additional honing head oscillation 

motion in horizontal direction, 6—additional oscillation motion of honing head rotation direction. 

Honing with traditional kinematics is carried out without a change in the machining parameters. 

Figure 3 shows traditional honing process, where rotational speed of honing had has a constant value 

during process. This honing method allows to create cross-hatch shape of abrasive grain trajectories. 

The rotational speed of the honing head at the beginning of the cycle increases from zero to a constant 
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value (Figure 3a), the feed value increases from zero to a constant value (Figure 3b). In honing with 

constant kinematics, the stroke length increases linearly (Figure 3c), while the grain path length 

increases according to the curve shown in Figure 3d. 

 

Figure 3. Traditional kinematics of honing process, (a) constant value of honing speed, (b) constant 

linear speed of honing head, (c) linear value of honing head, (d) length of abrasive grain path in 

traditional honing process; 1—an example of abrasive grain path. 

Honing with variable kinematics is carried out with a change in the machining parameters. 

Figure 4 shows non-traditional honing process, where rotational speed of honing had has a different 

rotation speed in one single cycle of honing process. This honing method allows to create different 

shape of abrasive grain trajectories. The rotational speed of the honing head at the beginning of the 

cycle increases from zero and can still increase or decrease in turn (Figure 4a), the feed value increases 

from zero and can increase and decrease in turn, etc., the return of the speed vector can change to the 

opposite in any way (Figure 4b). In honing with variable kinematics, the stroke length increases not 

linearly but curvilinear and according to the rotational speed and stroke speed value (Figure 4c), 

while the grain path length increases according to the curve shown in Figure 4d. 
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Figure 4. Variable kinematics of honing process—an example of abrasive grain trajectory obtained 

during honing with variable linear and tangential speed. Components of the cylindrical honing 

process: 1—an example of abrasive grain path received in variable kinematics of honing, 2—

comparative abrasive grain path obtained in traditional honing. 

Table 1 shows the honing angles that are discussed in the specialist literature. 
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Table 1. The honing angles discussed in the literature. 

Authors or Companies 
Literature Item 

Number 
Honing Angle [°] 

Bouassida H. [57] 

45 
Entezami S., Farahnakian M., Akbari A., [59] 

Karpuschewski B., Welzel F., Risse K., Schorgel M. [60] 

Mansori El. M., Goeldel B., Sabri L. [61] 

Brush research manufacturing Co. Inc. [62] 25–30 

Buj-Corral I., Vivancos-Calvet J. [3] 36.9; 38.6; 53.1 

Chavan P.S., Harne M.S. [38[ 46–57 

Dahlmann D., Denkena B. [63] 110 

Graboń W., Pawlus P., Wos S., Koszela W., Wieczorowski 

M. 
[42] 15.5; 55; 72; 125 

Demirci I., Mezghani S., Yousfi M., El Mansori M. [64] 50–130 

Deshpande A.K., Bhole H.A., Choudhari L.A. [65] 25–75 

Fiat Chrysler America [66] 36 

Goeldel B., Mansori M., [40] 

50 

Graboń W., Pawlus P., Sep J. [67] 

Michalski J., Woś P. [68] 

Reizer R., Pawlus P., Galda L., Graboń W., Dzierwa A. [69] 

Pawlus P., Cieslak T., Mathia T., [52] 

Goeldel B., Mansori M., [55] 45, 135 

Jocsak J. [43] 30, 35, 40, 45, 60, 90 

Johansson S., Nilsson Per.H., Ohlsson R., Anderberg C., 

Rosen B.G. 
[44] 

40, 140 Johansson S., Nilsson Per.H., Ohlsson R., Anderberg C., 

Bengt-Goran Rosen 
[45] 

Kim J.K., Xavier F.A., Kim D.E. [70] 

Kapoor J., [71] 15–22 

Knoll G., Rienacker A., [48] 10, 30, 60, 90, 120, 150, 170 

KS Motor Service International GmbH [72] 40, 60, 80 

Lawrence D. K., Ramamoorthy B. [27] 
41, 48, 51, 54, 59, 61, 64, 71, 74, 84, 88, 89, 

102, 105, 111 

Mezghani S., Demirci I., Yousfi M., Mansori E.M. [49] 40–60; 120–140 

Mezghani S., Demirci I., Zahouani H., Mansori E.M. [73] 
10, 20, 30, 40, 50, 60, 70, 80, 100, 110, 130, 

140, 150 

Obara R.B., Souza R.M. [51] 66 

Reizer R. Pawlus P. [74] 53 

Pimpalgaonkar M.H., [75] 20–60 

Qin P.P., Yang C.I., Huang W., Xu G.W., Liu C.J. [76] 30, 45 

Sabri L., Mezghani S., Mansori E.M., Le Lan Jean-Vincent [77] 51.14; 30–60; 140 

Gashev E.A., Muratov K.R., [39] 

variable angle 

Polyanchikov Yu. N., Plotniko A.L., Polyanchikova M.Yu., 

Kursin O.A., 
[78] 

Sender P. [5–8] 

Yousfi M. [79–85] 

Tripathi B.N., Singh N.K., Vates U.K.  [20] 
25–75 

 

Yuan S., Huang W., Wang X., [13] 45, 90 

Deepak Lawrence K., Ramamoorthy B. [27] 
43, 50, 53, 56, 60, 63, 68, 74, 79, 81, 94, 106, 

108, 114 

Ozdemir M., Korkmaz M.E., Guanay M.B. 

Buj-Corral I., Vivancos-Calvet J., Coba-Salcedo M. 

[86] 

[87] 
40–80 

Q. Wang, Q. Feng, Q.F. Li and C.Z. Ren [88] 83.70 

Because of the disordered distribution of the grain in the abrasive stone, the grain fracture planes 

are at any angle to the grain direction, determined by the vector of the resultant honing speed Vc. 

During honing, the direction of the forces acting on the grain changes. Some of the grains are too 

weak in a given plane to transfer cutting forces, so that new cutting edges are constantly created 

during the honing process. Changing the direction of grain work also prevents the deposition of the 
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processed material particles on the grain working surfaces; because of this phenomenon the change 

of the direction of the velocity vector Vc, i.e., variable honing kinematics, is an important parameter 

influencing the course of the process [5–8] and reduces the friction coefficient in the piston-cylinder 

assembly [80,82,84,85]. The value of normal acceleration an is responsible for the change of the vector 

Vc direction and the trajectory curvature. 

3. Methods 

The article proposes the construction of a honing cell, containing in addition to CNC honing 

machine: thermographic camera, sound intensity meter, and software for collecting and analyzing 

data received during machining. It was verified that the main factor hindering the serial honing 

treatment is the deformation of the shape of the honed hole, caused by the heating of the workpiece 

due to the friction of the abrasive stone against the honed surface, which also causes a change in the 

diameter of the hole. The prevention of this phenomenon consists in controlling the temperature to 

which the honed workpiece is heated during machining, and in carrying out the treatment in such a 

way that the amount of temperature increase is reduced due to the selection of proper honing 

parameters, depending on the shape and CCR (the curve curvature radius) of the abrasive grain 

trajectories [5]. 

Honing cell principle of operation: 1—numerical simulation of deformations, stresses, and heat 

flow, 2—programming of honing head movements with the selection of the appropriate shape of the 

abrasive grain path adjusted to the thickness of the section or sections of the honed workpieces, 3—

supervising of honing during the process, measuring of diameter and cylindricity of honed hole, 

measuring of sound signal, 4—correcting of actual machining parameters. 

3.1. The Equipment of the Honing Cell 

Figure 5 shows a CNC vertical milling center equipped with the honing instrumentation, a 

thermographic camera, surface roughness measure gauge, and sound intensity meter. Each of the 

three shown laptops analyzed different signals and their output values obtained during the honing 

process. 

 

Figure 5. Haas VF-3SS milling machine with honing equipment: 1—thermal imaging camera, 2—

software of thermal imaging camera, 3—Mitutoyo SJ-210 roughness meter, 4—software of Mitutoyo 

SJ-210 roughness meter, 5—sound intensity meter, 6—vibration meter, 7—air nozzle. 
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The key issue of the proposed automated honing cell is to be able to supervise the honing process 

by analyzing the audio signal and by analyzing the images obtained from the thermographic camera 

during the process. The task of supervision of honing process should be to generate abrasive grain 

paths with different shape of grain trajectories and with different radii of curvature, depending on 

the data obtained from the analysis of the acoustic signal and from the analysis of the thermogram of 

the workpiece. 

3.2. Numerical Simulations of Honing Process 

The honing cell should verify the influence of honing parameters on the size of the temperature 

increase, which is related to thermal deformation of the honed hole. The measurement should be 

carried out before machining, by performing a numerical simulation of honing. 

Figure 6 shows the image recorded during the numerical simulation, showing the heat flux flow 

through the honed cylinder liner. The occurrence of different values of heat flux is clearly noticeable, 

depending on the thickness of the section of honed workpiece. The differences affect the non-uniform 

cylindrical deformation, more information is included in [5–8]. The simulation will provide 

information about the size of deformation for various possible variants of machining parameters, e.g., 

the amount of pressure of the abrasive whetstone on the workpiece. 

 

Figure 6. Image from computer simulation of honing process—heat flux flow; 1—the thickest 

machined cross–section, 2—the thinnest honed cross-section, 3—maximum value of the measured 

heat flux. 

The different temperature value of the honed workpieces causes the occurrence of different 

values of thermal stress in different places of the workpiece and affects the deformation of the 

cylinder shape, which is an undesirable phenomenon. 

The honing cell should verify the influence of honing parameters on the amount of stresses and 

deformations occurring during honing in the workpiece. The measurement should be carried out 

before machining, by performing a numerical simulation of honing (Figure 7). 

1 
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(a) 

 
(b) 

Figure 7. Deformation of the honed workpieces—different value in different places. (a)view of the 

window from the simulator with the effect of the deformations obtained, (b) view of the window 

from the simulator with the presentation of non-linear deformation results of the honed workpiece. 

3.3. Programming of the Grain Trajectories in Non-Conventional Way 

It was verified in [5] that the shape of the abrasive grain trajectories obtained in the honing 

process influenced the size of the temperature rise in the honed workpieces. In addition, abrasive 

grain trajectories can be generated using mathematical functions such as sin(x), cos(x) etc., which 

would allow the creation of a path of any shape, also curves with different radii of curvature. 

A very interesting issue is the problem of programming the path of the abrasive grain, different 

one than the traditional path resultant from the rotational and linear speeds of the honing head, 
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which is so far used in most honing machines manufactured by leading manufacturers. In the 

proposed approach, a curvilinear path can be selected and generated depending on the cross-sections 

of the honed workpiece. It is defined in the form of a mathematical formula that defines a curvilinear 

path of various shapes with variable shape parameters (radius of curvature, amplitude size, 

frequency of change of direction). This kind of non-conventional programming can be realized in the 

CAD/CAM system, and previously planned in CCR (curve curvature radius) module. 

Figure 2 shows the window view from the CAD/CAM Alphacam software, where it is possible 

to define a curvilinear path by adding a circular vibration to the path of varying magnitude and 

frequency of change of abrasive grain move direction. 

Changing the shape of the abrasive grain path from a circular path to a sinusoidal path. Most 

basic form of sine wave describing the time function t is: 

y = A sin(ωt + f) 
(5) 

where: A—amplitude, ω—pulsation in radians per second (closely related to the frequency in hertz), 

f—phase shift (if the phase is different from zero, the function graph looks shifted in time by 0 s). 

The curves describing the trajectory of the abrasive grain may have various shapes, 

characterized by a different curvature of the grain trajectory [5]. The grain trajectory may take any 

shape, while performing which the honing head may more or less frequently change the direction of 

the axial movement (Figure 8). The quality of the hole made depends on the accuracy of the honing 

head movement [89,90]. 

 

Figure 8. Examples of different grain trajectory shapes, shown on the developed surface of machined 

hole, with different oscillation frequency, with different path length for the same length on horizontal 

direction of the treated surface. The function marked with digit 1 has one change of the head 

movement direction in the lower and upper turning point. The function marked with digit 2 has one 

change in the head movement direction in the lower turning point and two changes in the direction 

of the upper turning point. 

Figure 9 shows the modification of the cylindrical path, which consists in changing the shape 

into a sinusoidal shape. 
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Figure 9. Programming in non-conventional way by adding oscillation frequency and amplitude’s 

high to circular path generated in CAD/CAM system; 1—entering parameters, 2—circular path, 3—

the resulting sinusoidal trajectory. 

Figure 10 shows how to modify the shape of the machining path (item 2 from Figure 9) to a zig-

zag shape path or a sinusoidal path (item 3 from Figure 9). 

 

Figure 10. The method of modifying the shape of the machining path in CAD/CAM system 

Alphacam. 
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3.4. Setting of Honing Parameters 

Automated honing cell should automatically setup the needing abrasive grain trajectories shape, 

as shown on Figure 9. Construction of honing head should allow for two-way steering of direction of 

abrasive whetstone and honing head movement (Figure 11) and should have possibilities to receive 

a machined surface images during process. 

 

Figure 11. Idea of honing process with abilities to control the abrasive whetstone and honing head 

movements in both direction: 1—honing head body; 2—expanding pin for abrasive whetstones; 3—

abrasive whetstone; 4—possible TWO-WAY direction of movement control; 5—automatic vision 

system. 

An important task is to use appropriate honing parameters that influence the course of the 

process. Incorrect honing parameters result in an excessive temperature increase and may cause the 

whetstone wear out in a very short time. Figure 12 shows the whetstone: 1—new, 2—after machining 

with incorrect pressure at the beginning of honing process, 3—worn out in a very short time. 

It is advantageous to set machining parameters influencing uniform wear of the machining tool. 

 

Figure 12. Machining tool: 1—new whetstone; 2—damaged whetstone; 3—worn whetstone. 

3.5. Supervision of Honing During Process 

A very important issue for the automatic honing cell, in addition to the selection of machining 

parameters after the initial numerical simulation of the honing process, is to verify, supervise, and 

correct the obtained machining results in real time of honing process. 
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3.5.1. Supervising of Surface Textures 

Figure 13 shows the surface obtained after honing with a variable value of the linear feed of the 

honing head. Variable honing kinematics, unlike traditional kinematics, enables the creation of oil 

scratches with new, and never used earlier, shapes of abrasive grain trajectories. The literature clearly 

shows the advantages of honing with variable kinematics, which reduces the wear of the machining 

tool and with surfaces with lower roughness profile parameters, e.g., Ra and Rpk. 

 

Figure 13. Obtained texture of the honed surface for variable stroke speed of honing head in the range 

of 1000–3000 mm/min—average value of tangent angle to the grain trajectory of 14°; 1—sample 

abrasive grain path; 2—tangent line to the abrasive grain path. 

Figures 14 and 15 shows examples of surfaces obtained after honing, on which, in addition to 

measuring the deviation in the shape of roundness and cylindricity and the parameters of the 

roughness profile, the quality of received texture of machined hole is checked. 

Figure 14 shows the surface after honing, without texture defects. 

Figure 15 shows the surface after honing, with texture defects in the form of: 1—scratches, 2—

point heterogeneity. The quality of the obtained surface is determined by the homogeneity of the 

dimensions, shape, and texture of the obtained surface after honing process. 

honed texture 
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Figure 14. Example of a honed surface without texture defects, 1—probe tip. 

 

Figure 15. An example of a honed surface with texture defects: 1—scratch; 2—point flaw. 

Figure 16 shows the verification of the obtained oil channel pattern in a schematic manner. The 

verification consists in checking whether the obtained oil channels are continuous, or whether they 

are clogged with fragments of the honed workpiece’s material. The individual layers of neural 

networks check whether the image fragment shows an oil channel shape is a line, whether it is a 
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curve, whether the shape is broken, or the break is caused by the intersection of oil channels or the 

presence of the workpiece material in the oil channel. In the event that the verification would confirm 

a significant number of oil channel breaks, the shape of the grain path should change, and the 

treatment should ensure the minimum number of places with a break for oil flow. 

 

Figure 16. Verification of the shape and it’s continuity of oil channels using a neural network. The 

numbers indicate the stages of the subsequent stages of surface texture verification. 

3.5.2. Analysis of Image of Honed Workpieces in Matlab’s Image Processing Toolbox 

Figure 17 shows a cone representing the HSV color description method. Each color has its own 

shade, brightness, and value by which the color can be defined. 

 

Figure 17. Cone showing the color description method named HSV. 

honed texture 

honed texture 
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At the beginning of the honing process, the workpiece temperature is equal to the ambient 

temperature. During processing, the temperature of the workpiece increases, which causes thermal 

deformations of the honed hole. The temperature rise of the item can be observed on-line through 

the Matlab Image Processing Toolbox module. 

3.6. Correcting of Honing Parameters 

The honing cell should include a CNC honing machine, a thermal infrared camera, a 

microphone, and modules of e.g., Matlab’s software for on-line image and sound level spectrum 

analysis, an oil cooler and a CCR (curve curvature radius) module—the matching module of the 

shape of the abrasive grain trajectories received on developed surface of the machined workpieces to 

a certain thickness of the cross section of the honed workpiece. 

Figure 18 shows possible actions to be performed during the honing process by automated 

honing cell: (a) FEM mesh overlay and working pressure setting, (b) determination of thermal 

conditions, (c) deformation, sound level and image analysis, (d) determination of honing parameters, 

(e) honing with variable kinematics setting with CCR module, (f) receiving variable shape of abrasive 

grain trajectories optimized to manufacturing conditions. 

Figure 19 shows schematically the process parameters verified on-line during the treatment. 

Depending on the values of the obtained parameters, the values of the machining parameters would 

be corrected automatically. 

The main factor influencing the differentiation of efficiency of manufacturing is the lack of the 

need to multiple cool the honed workpieces before the end of the honing process, and lack of the 

multiple measurements of the obtained diameter and shape deviation of honed hole. 

 

Figure 18. Schematic diagram of honing algorithm: (a) FEM mesh overlay and working pressure 

setting, (b) determination of thermal conditions, (c) deformation, sound level and image analysis, (d) 

determination of honing parameters, (e) honing with variable kinematics setting with CCR module, 

(f) receiving variable shape of abrasive grain trajectories optimized to manufacturing conditions. 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Machines 2020, 8, 70 18 of 29 

 

 

Figure 19. Schematic diagram of automated honing process. 

4. Results 

Performing numerical simulations makes it easier to plan the machining process. Owing to the 

simulation, we can find out the size of deformations and stresses occurring during honing, which 

allows us to decide on the selection of the right machining parameters. 

Owing to the sound signal level analysis and thermal image of honed workpieces analysis one 

can establish the needed parameters of the honing process. 

4.1. Stresses and Deformations in Machined Workpieces 

In Figure 20 digit 1 indicates the location of the stress measurement, that the honing cell could 

monitor online. A honing head with the ability to measure the amount of pressure of the whetstone 

on the treated surface would allow for the verification of the shape deviation of the honed hole. 

Figure 21 shows the numerical inhomogeneous simulation values of the deformation of the 

honed hole obtained during honing of thin-walled workpiece with a variable wall thickness, which 

shows the actual manufacturing difficulties of this type of workpieces. 
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Figure 20. Results of numerical analysis of honing process of cylinder linear with different thickness 

of cross-section; (a) simulation result of the entire assembly, (b) assembly simulation result without 

cylinder linear, (c) assembly simulation result without cylinder linear and without honing head body, 

(d) simulation of stresses obtained during honing process. 

 

Figure 21. Numerical simulation—deformation of a cylinder with a variable wall thickness: 1—the 

greatest cylindrical deformation value of honed workpiece; 2—the smallest cylindrical deformation 

value of honed workpiece. 
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4.2. Analysis of Sound Signal Level, Received During Honing Process, in Matlab’s Audio Toolbox 

Figure 22 shows a graph of the intensity of the sound signal, which was obtained during honing 

with varying kinematics. Measured sound was introduced into the Matlab Audio Toolbox. Distance 

from peak to peak in horizontal direction, in the diagram shown in Figure 22, indicates the time of 

the honing cycle (movement of the striking head up and down). Similarly, to Buj-Corral I. [2], it has 

been verified that the choice of honing parameters is reflected by the amount of sound signal emission 

(Figure 22), which means that the acoustic signal analysis is a good tool for verifying the honing 

process. Figure 23 shows the test stand with the equipment for measuring the sound intensity level. 

Figure 24 shows the sound pressure level for different mean values of the variable stroke feed 

of the honing head. Figure 24 shows that the lower value of the sound intensity level is obtained for 

the mean value range of the variable stroke feed of the honing head. 

A lower sound level [dB] value means the occurrence of lower cutting forces, associated with 

the occurrence of lower cutting forces for the middle range of the applied feed. 

 

 

Figure 22. Matlab Audio Labeler—analysis of sound level vs honing process time conducted on CNC 

vertical milling machine Haas VF-3SS. Honing with variable kinematics condition, with different 

value of honing head stroke speed; 1—shorter honing cycle time, 2—longer honing cycle time, 3—

honed workpiece, 4—honing equipment. 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Machines 2020, 8, 70 21 of 29 

 

 

Figure 23. Test stand: 1 equipment for measuring of the sound intensity level. 

. 

Figure 24. Sound intensity level depending on the average value of the variable head feed, obtained 

during honing with variable kinematics. 

4.3. Analysis of Image of Honed Workpieces in Matlab’s Image Processing Toolbox 

Figures 25 and 26 show the temperatures of the processed object obtained during honing. Using 

the HSV description method, it was proposed to analyze the temperature distribution over the 

surface of the entire object. Instead of checking the highest temperature to which the honed object 

has heated up, an analysis of the uniformity of the temperature of the entire object was proposed. As 

shown in Figure 25, the temperatures analyzed in the Matlab Image Processing Toolbox module 

(value and degree of heating of the object) are verified using the Hue, Value, and Saturation 

parameter. 

It can be clearly noticed that in Figure 26, i.e., on the workpiece after processing (heated from 

honing), the H parameters shift to the right toward the red shade, which means that the workpiece 
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has heated up (the recorded thermogram shows a higher temperature than at the beginning of the 

treatment). The value and saturation of the color, the S and V parameters, respectively, also shift to 

the right, which suggests an increase in the temperature value on a larger surface of the object to be 

polished. 

The task of the automatic cell is to monitor the degree of heating of the object, while the H 

parameter takes the appropriate color value, the S and V parameters respectively will confirm that 

the object has been heated evenly over the entire surface. 

As shown in Figure 26 the hotter the temperature of honed workpiece, the more bright red color. 

Figure 26 also shows the shifting of the amount of the measured light color to the right, i.e., toward 

the lighter colors, by means of arrows. 

The analysis of the thermogram, in contrast to the analysis of only the maximum temperature of 

the workpiece, can provide information about the local temperature increase of the honed workpiece 

during machining, which provides comprehensive knowledge about the temperature rise in the 

workpiece for different cross-section thicknesses and for different places on the honed hole. 

Figure 27 shows a window view from the FlexSim 2020 simulator in which a simulation of 

honing on an automated cell was prepared and compared to conventional honing. The automatic cell 

enables more than 20 times faster production than in the conventional way. 

 

 

Figure 25. Matlab Image Colour Thresholder—analysis of thermogram of honed workpiece on CNC 

vertical milling machine Haas VF-3SS (earlier stage of honing (than on Figure 26). H—hue, S—

Saturation, and V—Value (HSV). 
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Figure 26. Matlab Image Colour Thresholder—analysis of thermogram of honed part on CNC vertical 

milling machines Haas VF-3SS (later stage of honing process than shown on Figure 25). H—hue, S—

Saturation, and V—Value (HSV). 
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Figure 27. Window from the FlexSim 2020 simulator—comparison of production on a conventional 

station and on an automatic cell; 1—automated honing cell (efficiency of automated honing cell: 11.6 

workpieces/h), 2—conventional honing cell (efficiency of traditional honing: 0.5 workpiece/h). 3 and 

4—FlexSim 2020 simulation’s algorithms of honing process in Process Flow. 

5. Discussion 

Building a test stand with all components listed in the article will allow to produce workpieces 

of complex shapes with different wall thickness and required specifications. The proposed honing 

cell consists of CNC honing center with honing equipment, thermographic camera, 

profilographometer, sound intensity measuring device, software for a thermographic camera, 

software for a roughness gauge, software for a sound level meter, cooling nozzle, measuring 

instruments—a diaphragm gauge, and computers enabling simultaneous observation of changes of 

data for individual instruments could enable the automation of honing process and the reduction of 

manufacturing time. 

When changing the machining parameters and when switching the honing process on and off, 

individual devices had to be turned on, set, turned off, and properly turned on and off for collecting 

data in a dedicated software. After setting up the tooling, it was necessary to upload the appropriate 

program to the CNC machine, turn on individual devices and their dedicated software. 

A very advantageous solution would be to create a honing cell with all listed elements 

implemented in honing machine and used simultaneously during honing. 

The automatic honing cell could monitor on-line the temperature of the honed workpiece, the 

pressure of the whetstones obtained during machining, the sound level of honing process, and 

depending on the honing process conditions, it could automatically, using the CCR module, create 

3 

4 
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an abrasive grain path shape with an appropriate radius of curve curvature to improve machining 

conditions. An important conclusion is the possibility of about a 20-fold increase in the efficiency of 

serial production of honing thin-walled objects 

6. Conclusions 

Performing a simulation of machining before the honing process enables the selection of 

machining parameters before the process begins, it would be particularly valuable to program the 

shape of the grain trajectory with a specific value of the curve radius adjusted to the honed 

workpieces. 

The measurement of the sound intensity in the honing process is a valuable source of 

information because the value of the sound level is directly related to the processing conditions, 

which is easily noticeable in the way that the lower sound level corresponds to the lower cutting 

forces occurring at a given processing time. 

The temperature increase of the honed workpieces can be monitored during the honing process, 

the advantage of the HSV method is the fact that we analyze the temperature distribution over the 

entire smoothed surface, and not only collect information about the maximum temperature obtained, 

this method has many advantages, mainly that it can control the temperature distribution in such a 

way that the honing process heats the workpiece uniformly. 

Supervision and control of the honing process enables about twenty-fold reduction of the time 

needed to perform honing machining of thin-walled objects and of variable thicknesses of 

workpieces, because of the elimination of the need to divide the processing into several stages, 

followed by cooling to the ambient temperature, in which diameter of the honed hole can be 

measured. 

The analysis of the surface texture obtained during honing process, with the use of the neural 

networks, allows for quick verification whether the obtained surface has a uniform texture shape of 

the obtained oil channels or whether additional corrective machining passes of honing head are 

required. 
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