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Abstract

In the paper by D. Burago, S. Ivanov and A. Novikov, “A survival guide for feeble fish”, it has been 
shown that a fish with limited velocity can reach any point in the (possibly unbounded) ocean provided that 
the fluid velocity field is incompressible, bounded and has vanishing mean drift. This result extends some 
known global controllability theorems though being substantially nonconstructive. We give a fish a different 
recipe of how to survive in a turbulent ocean, and show its relationship to structural stability of dynamical 
systems by providing a constructive way to change slightly the velocity field to produce conservative (in the 
sense of not having wandering sets of positive measure) dynamics. In particular, this leads to the extension 
of C. Pugh’s closing lemma to incompressible vector fields over unbounded domains. The results are based 
on an extension of the Poincaré recurrence theorem to some σ -finite measures and on specially constructed 
Newtonian potentials.
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1. Introduction

Consider the following problem first suggested in [6]: a fish in an unbounded turbulent ocean 
is able to move with its own velocity u not exceeding in modulus the given value δ > 0. The ocean 
is assumed to be unbounded and is identified hereinafter with Rd , its velocity field V is assumed, 
as it is customary, to be bounded and incompressible, i.e. divV = 0. One is asked whether the 
fish can reach any point starting from an arbitrary one. This is clearly the classical point-to-point 
controllability problem for the autonomous system of ordinary differential equations

ẋ = V (x), (1.1)

where x(·) ∈ Rd . Namely, one has to find a control function u(·) in some class of admissible 
controls such that the trajectory x(·) of the system

ẋ = V (x) + u(t), (1.2)

starting at a given x0 ∈ Rd at time t = 0 (i.e. satisfying x(0) = x0) arrives at some given x1 ∈Rd

at some finite time τ > 0, i.e. has x(τ) = x1. The usual choice of the class of admissible controls 
is that of piecewise continuous functions u : R+ → Rd satisfying ‖u‖∞ ≤ δ, where ‖ · ‖∞ is the 
supremum norm, and δ > 0 is given.

In case when the phase space of (1.2) instead of Rd is just a compact subset of the latter 
invariant with respect to the flow of (1.1) (in particular, a smooth compact manifold), then the 
positive answer to the posed question is provided by the global controllability theorem 4.2.7 
in [3] (there it is formulated for analytic vector fields on compact Riemannian manifolds), while 
in the whole Rd the incompressibility condition of V is clearly not enough for such a theorem to 
hold as can be seen just taking V to be constant with sufficiently large modulus. This is in fact 
the only possible obstacle for controllability in the whole Rd : in fact, it has been proven in [6]
that if V is incompressible and has vanishing mean drift (called small mean drift in [6]) in the 
sense

lim
�→∞ sup

x∈Rd

∣∣∣∣∣∣∣
1

�d

∫
[0,�]d

V (x + y)dy

∣∣∣∣∣∣∣ = 0,

then the above controllability problem in Rd is solvable for every couple of points x0 and x1
(this result has been further extended in [5] to nonautonomous equations). The respective proof 
is however by contradiction and hence strongly nonconstructive. In other words, one assures the 
fish that it can reach any given destination without giving any clue on how to do that.

In search for a more constructive solution one might ask whether one can take the control to 
be given by a simple feedback u(·) = W(x(·)), for some a priori unknown vector field W : Rd →
Rd , that could be explicitly constructed. Once one looks at this problem under such a point of 
view, one immediately observes that in a particular case of the return problem (i.e. with x0 = x1) 
the answer is positive when x0 is a nonwandering point of (1.1), that is, in any neighborhood 
of x0 there are points which return infinitely many times in this neighborhood under the flow 
of (1.1). It is in fact provided by the famous Pugh’s closing lemma [11], which says that the 
perturbation W of the original vector field V can be taken arbitrarily small not only in the uniform 
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norm, but even in Lipschitz norm (sometimes in the dynamical systems literature called C1

norm). The latter lemma is one of the fundamental results of structural stability theory for smooth 
dynamical systems, and is the first one of a series of similar results, the most well-known of 
which are the Mañe ergodic closing lemma [10], the Hayashi connecting lemma [7] and Bonatti 
and Crovisier connecting lemma [4] (see [2] for the comprehensive overview on the subject). 
It is important however to emphasize here the simple though quite striking observation that the 
incompressibility of V , i.e. invariance of the Lebesgue measure under the flow induced by (1.1), 
says nothing about existence of nonwandering points for this equation (as can be seen just by 
the example of a constant vector field V ). This is in sharp contrast with the case when (1.1) has 
a finite invariant measure (which holds in particular when it has a compact invariant set): in the 
latter case all the points of the support of the invariant measure are nonwandering by the classical 
Poincaré recurrence theorem, and even assuming additionally the small mean drift condition for 
V does not a priori improve this situation (see Remark 4.9).

Our first principal result (Theorem 4.8) shows that in fact under just incompressibility and 
vanishing mean drift condition on V one can perturb the latter vector field by a small pertur-
bation W (even with small derivatives) so that every point of Rd becomes nonwandering with 
respect to the flow of V + W . This will be done by an explicit construction using Newtonian 
potential so as to ensure that the flow of V + W preserve a new invariant measure, the support 
of which is the whole Rd . This measure will still be not finite so that the classical Poincaré 
recurrence theorem cannot be applied, but will “grow not too fast at infinity”, which will be 
shown to be enough for the extension of the latter theorem (Proposition 4.1 and Corollary 4.3) to 
hold. This result combined with Pugh’s closing lemma immediately implies its extension (The-
orem 4.14), namely, that in fact every chosen point of Rd can be made periodic for a dynamical 
system provided by an ODE with incompressible vector field with vanishing mean drift at the 
right hand side up to a small perturbation of the vector field in the Lipschitz norm. Finally, we 
show that our construction actually implies the Burago-Ivanov-Novikov controllability theorem 
(Theorem 4.11), with a proof conceptually different from the original one, but very close to that 
of the classical controllability results for affine control systems with recurrent drift (see theo-
rem 5 from [8, chapter 4] or theorem 4.2.7 in [3]). All the mentioned results are heavily based on 
the estimates for gradients of constructed potentials, which are located in Appendix B and use 
the results on vanishing mean drift condition from Appendix A.

2. Notation and preliminaries

The finite-dimensional space Rd is assumed to be equipped with the Euclidean norm | · |, 
notation Br(x) ⊂ Rd stands for the usual open Euclidean ball of radius r centered at x, and ej to 
the j -th unit Cartesian coordinate vector. The volume of the unit ball B1(0) ⊂ Rd will be denoted 
ωd . The usual scalar product of x ∈ Rd and y ∈ Rd is denoted by x · y. For any set D ⊂ Rd , we 
let D̄ be the closure of D, 1D be its characteristic function, Dc := Rd \ D.

We denote by C(Rd ; Rm) (respectively Ck(Rd ; Rm), C
k,β
loc (Rd; Rm), Lip(Rd ; Rm),

L1(Rd ;Rm), L∞(Rd ; Rm)) the set of continuous (respectively k-times continuously differ-
entiable, k-times continuously differentiable with locally β-Hölder k-th derivatives, Lipschitz, 
Lebesgue integrable, Lebesgue measurable and essentially bounded) functions f : Rd → Rm, 
omitting the reference for Rm when m = 1, i.e. for real valued functions. The standard uniform 
norms in C(Rd; Rm) and in L∞(Rd ; Rm) will be both denoted by ‖ · ‖∞. By L1(∂B1(0); Hd−1)

we denote the class of functions over ∂B1(0) integrable with respect to the (d − 1)-dimensional 
Hausdorff measure Hd−1. For a V ∈ Lip(Rd ; Rm) we denote by LipV its (least) Lipschitz con-
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stant, and also use the notation ‖V ‖Lip := ‖V ‖∞ + LipV . By ∗ we denote the convolution of 
functions.

All the measures considered in the sequel are positive Radon measures, not necessarily finite. 
For a Borel measure μ over a metric space X we let suppμ stand for its support, and for a Borel 
map T : X → Y between metric spaces X and Y we denote by T#μ the push-forward of μ, i.e. 
the measure over Y defined by (T#μ)(B) := μ(T −1(B)) for every Borel B ⊂ Y . For a metric 
space X the set M ⊂ X will be called invariant for the map T : X → X, if T (M) = M , and 
the measure μ over X will be called invariant for this map, if T#μ = μ (of course, the map is 
assumed Borel in the latter case).

3. Accessibility

In what follows we suppose that (1.1) is uniquely solvable and defined a flow Tt : Rd → Rd , 
t ∈ R by the formula Tt (y) := x(t), where x(·) is a solution of (1.1) satisfying x(0) = y. In the 
sequel, we will also denote the flow Tt by ϕt

V when we need to emphasize that it is produced by 
the vector field V . As the set of admissible controls Uδ with given δ > 0 we consider, as usual 
in control theory, the set of piecewise continuous functions u : R → Rd with ‖u‖∞ < δ, and set 
U0 := {0}. We recall the following definitions.

Definition 3.1. Given δ > 0, we say that a point z ∈ Rd is δ-accessible from an y ∈ Rd in finite 
time τ > 0, if there is an admissible control u ∈ Uδ such that a trajectory of (1.2) with initial 
condition x(0) = y arrives in z before time τ , i.e. x(s) = z for some s ∈ [0, τ ]. The set of such 
points will be denoted by A(y, τ, Uδ). We will also refer to

A(y,Uδ) := ∪τ>0A(y, τ,Uδ)

as the set of points accessible from y ∈Rd using controls in Uδ .

We also recall the following classical notions.

Definition 3.2. We say that a set ωx ⊂ Rd is the ω-limit set of x ∈ Rd for the flow Tt , if it is the 
set of limit points of trajectories of (1.1) starting at x, i.e. a set of y ∈ Rd such that there exist a 
sequence tk → +∞ (depending on y) such that Ttk (x) → y as k → ∞.

A point x ∈ Rd is called

(i) (forward) Poisson stable for the flow Tt , if x ∈ ωx , where ωx ⊂Rd is the ω-limit set of x;
(ii) nonwandering for the flow Tt , if for every open U ⊂Rd , x ∈ U one has Ttk (U) ∩ U �= ∅ for 

some sequence tk → +∞ (depending on U ).

Clearly the closure of the set of Poisson stable points for the flow Tt is contained in the set of 
nonwandering points for the latter (called usually nonwandering set).

We will further use the following technical and probably folkloric (though not easily found in 
the literature) result (in a sense, a vaguely similar assertion is theorem 5 from [8, chapter 4]).

Proposition 3.3. Let V : Rd → Rd be bounded and continuous, such that (1.1) is uniquely solv-
able, hence generating the flow Tt := ϕt

V . Let also M ⊂Rd be a closed set invariant with respect 
to Tt such that the set of Poisson stable points of Tt is dense in M . If M cannot be represented as a 
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disjoint union of two non-empty closed subsets invariant with respect to Tt , then M ⊂A(x0, Uδ)

for every δ > 0 and every x0 ∈ M .

Proof. Fix an arbitrary x0 ∈ M and δ > 0. Consider the set

Mx0,δ := M ∩A(x0,Uδ)

of all points y ∈ M accessible from x0 using controls in Uδ . Clearly, Mx0,δ �= ∅ because 
A(x0, U0) ⊂ Mx0,δ . We now prove several consecutive claims.

STEP 1. We show that Mx0,δ is relatively open in M . In fact, z ∈ Mx0,δ means that z = x(s)

for an s > 0 and some trajectory x(·) of (1.2) with x(0) = x0 and ‖u‖∞ < δ.
Choose now an ε > 0 so small that

|V (y) − V (z)| < δ − ‖u‖∞
4

, (3.1)

for all y ∈ Bε(z), and a τ ∈ (0, s) (depending on ε) so small that

(‖V ‖∞ + δ)τ < ε/2, (3.2)

|x(s − τ) − z| < ε/2. (3.3)

Letting x̄(·) over [s − τ, s] stand for the trajectory of the ODE ˙̄x(t) = V (z) + u(t) satisfying 
x̄(s − τ) = x(s − τ), we get that both x̄(t) ∈ Bε(z) and x(t) ∈ Bε(z) for all t ∈ [s − τ, s] due 
to (3.2) and (3.3). Therefore, from (3.1) we get

|z − x̄(s)| = |x(s) − x̄(s)| < τ
δ − ‖u‖∞

4
. (3.4)

For an α ∈ Rd denote by xα(·) over [s − τ, s] the trajectory of the ODE

ẋα(t) = V (z) + u(t) + α

satisfying xα(s − τ) = x(s − τ). We have then

xα(t) = x̄(t) + αt,

and in particular,

{
xα(s) : |α| < δ − ‖u‖∞

2

}
= Br(x̄(s)), where r := τ

δ − ‖u‖∞
2

,

which contains z and hence an open ball centered in z in view of (3.4). It is enough then to set

uα(t) :=
{

u(t), t ∈ [0, s − τ ],
V (z) − V (x (t)) + u(t) + α, t ∈ (s − τ, s],
α

http://mostwiedzy.pl


S. Kryzhevich, E. Stepanov / J. Differential Equations 267 (2019) 3442–3474 3447

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

to get that xα is a trajectory of (1.2) over [0, s] (with uα instead of u). Since (3.2) implies that 
also xα(t) ∈ Bε(z) for all t ∈ [s − τ, s], then from the definition of uα we obtain for |α| <
(δ − ‖u‖∞)/2 the estimate

|uα(t)| ≤ |u(t)| + |α| + |V (z) − V (xα(t))|

≤ ‖u‖∞ + δ − ‖u‖∞
2

+ sup
y∈Bε(z)

|V (y) − V (z)|

≤ ‖u‖∞ + δ − ‖u‖∞
2

+ δ − ‖u‖∞
4

by (3.1)

< δ,

which proves the claim.
STEP 2. We show

Ts(Mx0,δ) = Mx0,δ for all s ∈ R+. (3.5)

To show Ts(Mx0,δ) ⊂ Mx0,δ , observe that Ts(Mx0,δ) ⊂ Mx0,δ , and therefore, as proven on Step 1, 
Mx0,δ contains a relatively open neighborhood of Ts(Mx0,δ), which implies the desired inclusion 
for the closure.

To prove the converse inclusion Mx0,δ ⊂ Ts(Mx0,δ), we note that the set of Poisson stable 
points belonging to Mx0,δ is dense in Mx0,δ , because the latter set is relatively open in M by 
Step 1. Take now an arbitrary Poisson stable point p ∈ Mx0,δ , so that p = limk x(tk) where x(·)
is a solution of (1.1) with x(0) = p, for some sequence tk → +∞. Clearly x(t) ∈ Mx0,δ for 
every t ∈ R+, and hence qk := x(tk − s) ∈ Mx0,δ . By construction x(tk) ∈ Ts(qk) ⊂ Ts(Mx0,δ), 
and hence p ∈ Ts(Mx0,δ). The inclusion being proven follows then from density of Poisson stable 
points in Mx0,δ .

STEP 3. As a result of Step 2 we have that Mx0,δ is closed. Therefore, M ⊂ Mx0,δ since 
otherwise disjoint sets M

⋂
Mx0,δ and M \ Mx0,δ are both closed, nonempty and invariant for Tt

for all t ∈ R+ contrary to the assumption. �
Remark 3.4. Note that the above Proposition 3.3 does not require V to be locally Lipschitz, nor 
even uniformly continuous.

4. Controllability and closing lemma

4.1. Poincaré recurrence theorem for not necessarily finite measures

We need the following generalization of the Poincaré recurrence theorem, which we formulate 
for injective maps, since this will be more adapted to the use in the sequel.

Proposition 4.1. Let T : Rd → Rd be an injective Borel map preserving a σ -finite Borel measure 
μ. Suppose also that

μ

(
n⋃

T k(Bρ(0))

)
= o(n) as n → +∞
k=0
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for every ρ > 0 fixed. Then for every open U ⊂Rd such that μ(U) > 0 one has T n(U) 
⋂

U �= ∅
for a subsequence of n ∈N (depending on U ).

Remark 4.2. The conditions of Proposition 4.1 are in particular satisfied in the following cases 
which are of practical importance:

(i) μ is finite (this recovers the classical statement of the Poincaré recurrence theorem;
(ii) for some function κ : R+ → R+ one has

μ(Bρ(0)) = o(κ(ρ)) as ρ → +∞,

T n(Bρ(0)) ⊂ BR(0) with R = R(ρ,n) > 0, R(ρ, ·) nondecreasing

and κ(R) = O(n) as n → +∞ for every ρ > 0 fixed;

(iii) |T n(x)| ≤ A|x| + Bn for some A ≥ 0, B ≥ 0, and μ(Bρ(0)) = o(ρ) as ρ → +∞, as can be 
seen from taking κ linear in (ii).

Proof. Since it is enough to prove the statement for each U ∩ Bρ(0), for an arbitrary ρ > 0, we 
may assume without loss of generality that U ⊂ Bρ(0) for some ρ > 0. Fix an arbitrary n ∈ N
and consider the set

Un := {x ∈ U : T k(x) /∈ U for all k ≥ n}.

Let F := T n and since Fk are injective and preserve μ, we get

μ(Fk(U)) = μ(F−k(F k(U))) = μ(U)

for all k ∈N . Clearly, {Fk(Un)}k∈N are pairwise disjoint, since otherwise one would have D :=
Fm(Un) ∩ F i(Un) �= ∅ for some m > i ≥ n, and hence, using again injectivity of Fk , we would 
get

(F i)−1(D) = Fm−i (Un) ∩ Un = T (m−i)n(Un) ∩ Un �= ∅

contradicting the definition of Un. Then

mμ(Un) = μ

(
m−1⋃
k=0

Fk(Un)

)
because Fk(Un) are pairwise disjoint

≤ μ

⎛
⎝(m−1)n⋃

k=0

T k(Un)

⎞
⎠ = o(m)

as m → ∞, which implies μ(Un) = 0. �
The following corollary gives a “continuous” version of this statement adapted to our setting.
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Corollary 4.3. Let V : Rd → Rd be a bounded locally Lipschitz vector field, and μ be a σ -finite 
Borel measure invariant with respect to the flow ϕt

V induced by V and satisfying μ(BR(0)) =
o(R) as R → +∞. Then for every open U ⊂Rd and for every τ > 0 one has

μ
({

x ∈ U : ϕt
V (x) /∈ U for all t ≥ τ

}) = 0.

Proof. Fix an arbitrary τ > 0 and let T := ϕτ
V . The statement follows from Proposition 4.1

together with Remark 4.2(iii) (with A := 1, B := ‖V ‖∞, since ‖ϕt
V (x)‖ ≤ |x| + ‖V ‖∞t for 

t ≥ 0). �
Remark 4.4. The above Corollary 4.3 remains valid for locally Lipschitz but not necessarily 
bounded vector fileds V satisfying one-sided Osgood estimate

sup
|x|≤r

V (x) · x
|x| ≤ K(r)

for all r > 0 and for some measurable function K : R+ → R+ such that

∞∫
0

ds

K(s)
= +∞,

under the condition

μ(Bρ(0)) = o

⎛
⎝ ρ∫

0

ds

K(s)

⎞
⎠ ,

as ρ → ∞. In fact, denoting

κ(ρ) :=
ρ∫

0

ds

K(s)
,

we get that κ is strictly increasing with κ(t) → +∞ as t → +∞. Furthermore,

|ϕt
V (x)| ≤ R(|x|, t) := κ−1(t + κ(|x|)), (4.1)

because for r(t) := |x(t)|, x(t) := ϕt
V (x) one has

ṙ(t) = V (x(t)) · x(t)

r(t)
≤ K(r(t)),

and integrating the latter inequality one gets κ(r(t)) − κ(r(0)) ≤ t , which implies (4.1). Thus, 
ϕt

V (Bρ(0)) ⊂ BR(ρ,t)(0) with κ(R(ρ, t)) = O(t) as t → +∞, and μ(Bρ(0)) = o (κ(ρ)) as ρ →
+∞, and hence in the proof of Corollary 4.3 it is enough to refer to Remark 4.2(ii) instead of 
Remark 4.2(iii).
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We will further use also the following statement.

Corollary 4.5. Under conditions of Corollary 4.3 (or, more generally, of the Remark 4.4) one has 
that Poisson stable points of V are dense in supp μ, and in particular, all the points of supp μ

are nonwandering for the flow generated by V .

Proof. We repeat the main idea of the part 1 of proposition 4.1.18 from [9]. Let {Uj }j∈N be a 
countable base of the topology in Rd . For every j ∈ N we consider

Nj := {x ∈ Uj : ϕt
V (x) /∈ Uj for all t ≥ T0 and for some T0 = T0(x) ∈R},

R :=
⋂
j

Nc
j .

In other words, Nj is the set of all points of Uj , the iterations of which leave this set forever, 
while for every x ∈ R ∩ Uj there is a sequence tk → ∞ such that ϕtk

V (x) ∈ Uj . By Corollary 4.3, 
μ(Nj ) = 0 for all j ∈N , and thus μ(Rc) = 0, which implies density of R in supp μ.

But if x ∈ R, then for any neighborhood U of x there is a Uj ⊂ U such that x ∈ Uj , and 
hence for a sequence tk → +∞ one has ϕtk

V (x) ∈ Uj ⊂ U for sufficiently large k ∈ N . This 
means that the ω-limit set ωx of the point x intersects with U . Since the set ωx is closed and the 
neighborhood U is arbitrary, we have x ∈ ωx concluding the proof. �
4.2. Correcting the vectorfield

The basic idea of our construction is as follows. Supposing that the Lebesgue measure over 
Rd is invariant under the flow of the vector field V , we will “correct” the latter by adding a new 
vector filed W (referred later as corrector such that the sum V + W satisfy Corollary 4.3 (or, 
more generally, of the Remark 4.4), and hence also Corollary 4.5 for some new σ -finite measure 
μ with supp μ =Rd which will also be explicitly constructed. This will immediately lead to the 
proof of Burago-Ivanov-Novikov controllability theorem once one shows that ‖W‖∞ may be 
made arbitrarily small. We will further show that this construction is in fact deeper and provides, 
for instance, a version of the Pugh closing lemma.

To fulfill this program define a positive function

ψ(x) := (|x|2 + α2)−p, (4.2)

where α and p are positive parameters to be defined later. We will define a smooth map 
W : Rd → Rd depending on α and p will so that the measure μ := ψ dx be invariant under 
the flow of the perturbed system of ODEs

ẋ = V (x) + W(x). (4.3)

Making μ invariant with respect to the flow of (4.3) amounts to making

divψ(V + W) = 0 (4.4)

or equivalently, recalling that V is incompressible,
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div (ψW) = −∇ψ · V (4.5)

in the weak sense. Letting u stand for a solution to the Poisson equation

−�u = ∇ψ · V
in Rd , we get that (4.5) is satisfied with

W := 1

ψ
∇u. (4.6)

We may thus take u of the form

u := � ∗ (∇ψ · V ),

where � stands for the fundamental solution of the Laplace equation in Rd , so that (4.6) reduces 
then to

W(x) := − cd

ψ(x)

∫
Rd

x − y

|x − y|d ∇ψ(y) · V (y)dy

= 2pcd(|x|2 + α2)p
∫
Rd

x − y

|x − y|d
y · V (y)

(|y|2 + α2)p+1 dy,

(4.7)

where cd := 1/dωd . Clearly, therefore, the following statement is valid.

Lemma 4.6. If V : Rd → Rd is locally Lipschitz, then for every p and α the vector field W de-
fined by (4.7) is C1,β

loc smooth for every β ∈ [0, 1). If, moreover, V is also bounded, incompressible 
and has vanishing mean drift, then W is bounded and the measure μ := ψ dx is invariant under 
the flow of (4.3).

Proof. The smoothness of W follows immediately from local elliptic Sobolev regularity together 
with the Sobolev embedding theorem. If V is also bounded, incompressible and has vanishing 
mean drift, then boundedness of W follows from Lemma B.1. Hence in this case the vector field 
V +W generates the flow, and the invariance of μ follows from (4.4) in view of Lemma C.1. �

We observe now that with the appropriate choice of the parameters the vector field W can be 
made arbitrarily small in supremum and, under a bit more requirements on regularity of V , even 
Lipschitz norm; this is the assertion of the following lemma which collects several calculations 
made in the Appendices B and A.

Lemma 4.7. Let p ∈ ((d − 1)/2, d/2). Suppose that V ∈ Liploc(R
d ; Rd) is a bounded incom-

pressible vector field with vanishing mean drift. Then, given an ε > 0, there is an ᾱ = ᾱ(p, ε)
such that for every α > ᾱ the vector field W defined by (4.7) satisfies

(i) ‖W‖∞ ≤ ε,
(ii) ‖divW‖∞ ≤ ε.

http://mostwiedzy.pl


3452 S. Kryzhevich, E. Stepanov / J. Differential Equations 267 (2019) 3442–3474

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

If, moreover, V ∈ Lip(Rd ; Rd) is incompressible vector field with vanishing mean drift, and all 
Vxj

, j = 1, . . . , d , are locally Lipschitz still having vanishing mean drift, then one can choose ᾱ
so as to have additionally

(iii) ‖Wxj
‖∞ ≤ ε for every α > ᾱ and for every j = 1, . . . , d .

In particular, the latter assertion holds when V ∈ C1(Rd ; Rd) ∩ Lip(Rd ; Rd) and has uniformly 
continuous first derivatives.

Proof. Assertions (i) and (ii) are Lemma B.1 and Corollary B.2 respectively, (iii) is Lemma B.3. 
Finally, when V ∈ C1(Rd ; Rd) ∩ Lip(Rd ; Rd) and has uniformly continuous first derivatives, 
then the first derivatives of V also are incompressible and have vanishing mean drift by 
Lemma A.5, and so (iii) still holds. �
4.3. The end of the game: results

The following statement is the first principal result of the paper.

Theorem 4.8. Let V ∈ Liploc(R
d; Rd) be a bounded incompressible vector field with vanishing 

mean drift. Then for every ε > 0 there is a C1,β
loc (for every β > 0) vector field Wε : Rd → Rd

with ‖Wε‖∞ ≤ ε such that every x ∈ Rd is a nonwandering point of the system of ODEs

ẋ = V (x) + Wε(x). (4.8)

If, moreover, V ∈ C1(Rd ; Rd) ∩ Lip(Rd ; Rd) and has uniformly continuous first derivatives, 
then one may find Wε as above satisfying even the stronger estimate ‖Wε‖Lip ≤ ε.

Proof. We choose a p ∈ ((d − 1)/2, d/2) and an α > 0 so as to have ‖W‖∞ ≤ ε (resp. 
‖W‖Lip ≤ ε under the stronger regularity condition V ∈ C1(Rd ; Rd) ∩ Lip(Rd ; Rd) with uni-
formly continuous first derivatives), where W is defined by (4.7): this is possible in view of 
assertion (i) (resp. (iii)) of Lemma 4.7. Since we have chosen p > (d − 1)/2, then

μ(BR(0)) =
∫

BR(0)

ψ(x) dx = dωd

R∫
0

rd−1 dr

(r2 + α2)p
= o(R)

as R → +∞, and hence by Corollary 4.5 applied to V + W (in place of V ) all the points of 
Rd = suppμ (note that suppμ is invariant for the latter flow by Lemma C.3) are nonwandering 
for the flow generated by the vector field V + W . It suffices to take then Wε := W . �
Remark 4.9. It is important to emphasize that in contrast with the case when (1.1) has a finite
invariant measure (e.g. when it has a compact invariant set), an incompressible smooth vector 
field V with vanishing mean drift may produce a strongly dissipative dynamics in the sense of 
having a wandering set of full measure, as, for instance, when d = 2 and, say, V (x1, x2) :=
(0, sinx1). In view of this observation the Theorem 4.8 is quite striking: it says that one may 
change the dynamics from strongly dissipative to a conservative one (i.e. with no wandering 
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set) over the whole (unbounded) space by an arbitrarily small perturbation (even with small first 
derivatives) of the vector field.

Remark 4.10. It is worth observing that the perturbation Wε, and hence the perturbed vector field 
V + Wε constructed in the proof of the above Theorem 4.8 are in general not incompressible. 
However in view of Lemma 4.7(ii) one can ensure that the divergence of Wε (hence also that of 
V + Wε) be arbitrarily small in the uniform norm.

The first corollary of the above theorem is the following global point-to-point controllabil-
ity result, which is a reformulation of the Burago-Ivanov-Novikov controllability theorem 1.1 
from [6] (and a partial extension of theorem 4.2.7 in [3] formulated for compact manifolds, al-
though for possibly more general control affine systems), however proven now by a completely 
different and direct method.

Theorem 4.11. Let V ∈ Liploc(R
d ; Rd) be a bounded incompressible vector field with vanishing 

mean drift. Then for every couple of points {x0, y0} ⊂ Rd and every ε > 0 there is a piecewise 
continuous function u : R+ → Rd (“control”) with ‖u‖∞ ≤ ε such that the trajectory of the 
system of ODEs

ẋ = V (x) + u(t), (4.9)

satisfying x(0) = x0 passes through y0, i.e. x(T ) = y0 for some T > 0.

Proof. Fixed an ε > 0, by Theorem 4.8 we find a smooth vector field Wε : Rd → Rd with 
‖Wε‖∞ ≤ ε/2 such that every x ∈ Rd is nonwandering with respect to the flow defined by V +
Wε and Rd is invariant with respect to the latter flow. Proposition 3.3 (minding Remark 3.4) 
applied with M := Rd and V +Wε instead of V (in particular, Tt standing for the flow generated 
by V + Wε) implies now the existence of a piecewise continuous control ũ : R+ → Rd with 
‖ũ‖∞ ≤ ε/2 such that the trajectory x(·) of the system

ẋ = V (x) + Wε(x) + ũ(t)

starting at x0 ∈ Rd arrives at y0 ∈ Rd in finite time (in alternative to Proposition 3.3 one could 
have used here theorem 5 from [8, chapter 4]). It suffices to take now u(t) := Wε(x(t)) +
ũ(t). �
Remark 4.12. If one extends a bit Proposition 3.3 showing that one can achieve any given point 
in a compact set from a another point in the same set in finite time depending on the compact set, 
then under global Lipschitz continuity of V one would have also the estimate on arrival time to 
the destination as in theorem 1.2 of [6] (and with exactly the same proof), though this is beyond 
the scope of the present paper.

The following easy corollary slightly extends Theorem 4.11 to velocity fields which are just 
uniformly continuous (hence possibly even not provide unique solvability of (1.1)).

Corollary 4.13. If V : Rd → Rd is a bounded uniformly continuous (not necessarily locally 
Lipschitz) incompressible (in the weak sense) vector field with vanishing mean drift, then for 
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every couple of points {x0, y0} ⊂ Rd and every ε > 0 there is a piecewise continuous control 
u : R+ →Rd with ‖u‖∞ ≤ ε such that there is a trajectory of the system of ODEs (4.9) satisfying 
x(0) = x0 and x(T ) = y0 for some T > 0.

Proof. Fixed an ε > 0, by means of a convolution with an appropriate smooth approximate iden-
tity with compact support we may find a smooth Vε : Rd → Rd satisfying ‖V −Vε‖∞ ≤ ε/2 (this 
is possible because V is assumed to be uniformly continuous). Clearly, Vε is still incompressible 
and has vanishing mean drift. Since now Vε is smooth, we may apply Theorem 4.11 to find a 
piecewise continuous control ũ : R+ → Rd with ‖ũ‖∞ ≤ ε/2 such that the trajectory x(·) of the 
system

ẋ = Vε(x) + ũ(t)

starting at x0 ∈ Rd arrives at x1 ∈ Rd in finite time. It suffices to take then u(t) := Vε(x(t)) −
V (x(t)) + ũ(t). �

At last, we are able to prove the following version of the Pugh closing lemma which is the 
second principal result of the paper.

Theorem 4.14. Let V ∈ C1(Rd ; Rd) ∩ Lip(Rd ; Rd) be a bounded incompressible vector field 
with uniformly continuous first derivatives and satisfying vanishing mean drift condition. Then 
for every x0 ∈Rd and every ε > 0 there is a C1 vector field Yε : Rd →Rd with ‖Yε‖Lip ≤ ε such 
that x0 is a periodic (or occasionally even stationary) point of the system of ODEs

ẋ = V (x) + Yε(x). (4.10)

Proof. Fixed an ε > 0, by Theorem 4.8 we find a smooth vector field W : Rd → Rd with 
‖W‖∞ ≤ ε/2 such that every x ∈Rd is nonwandering with respect to the flow defined by V +W . 
Observe that perturbation W of the vector field V is global and does not depend on the point x0
which we want to make periodic. It suffices now to use Pugh’s closing Lemma [11] to construct 
a local small perturbation W̃ of V + W with ‖W̃‖Lip ≤ ε/2, so that x0 becomes periodic with 
respect to the flow of V + Y , where Y := W + W̃ , and observe that ‖Y‖Lip ≤ ε as claimed. �
Appendix A. Vanishing mean drift condition

We collect in this section some auxiliary results essentially depending on the vanishing mean 
drift condition of a vector field involved. Here the vector field will be always assumed at least 
locally Lipschitz, so that its divergence is understood in the classical pointwise (a.e.) sense. In 
principle this can be further somewhat weakened (e.g. by substituting incompressibility condition 
in the sense of vanishing pointwise divergence by its suitable weaker analogue), though we do 
not pursue this direction here.

A.1. Properties of vector fields with vanishing mean drift

We start with the following statement.
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Lemma A.1. Suppose V ∈ Liploc(R
d ; Rd) is a bounded vector field, and for each ε > 0 there is 

an �0 > 0 such that for every (d − 1)-dimensional box Q of sidelength � ≥ �0 one has that the 
mean flux

1

�d−1

∣∣∣∣∣∣∣
∫
Q

V (x) · ndHd−1(x)

∣∣∣∣∣∣∣ ≤ ε, (A.1)

where n stands for a normal vector to the hyperplane containing Q (we will say that V has 
vanishing mean flux). Then V has vanishing mean drift.

Vice versa, if a bounded V ∈ Liploc(R
d ; Rd) has vanishing mean drift and is incompressible, 

then it satisfies the above property (i.e. has vanishing mean flux). In particular, for incompress-
ible bounded locally Lipschitz vector fields, having vanishing mean drift is equivalent to having 
vanishing mean flux.

Remark A.2. It is worth observing that incompressibility condition is essential for a vector 
field V having vanishing mean drift to have vanishing mean flux. In fact, the vector field 
V (x, y) := (f (x), 0) in R2, where f is a smooth function with compact support in R, clearly 
has vanishing mean drift, but not vanishing mean flux as can be seen by computing the flux of 
V through one-dimensional segments {x} × [−�/2, �/2] as � → ∞; in fact, V is in general not 
incompressible.

Proof. For a fixed ε > 0 let �0 be such that the vector field (in fact, even not necessarily incom-
pressible) V satisfies (A.1) for every cube Q of sidelength � > �0. Then for every i ∈ {1, . . . , d}
and every � > �0 one has

∣∣∣∣∣∣∣
∫

x+[−�/2,�/2]d
Vi(y) dy

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
�/2∫

−�/2

dt

∫
(x+[−�/2,�/2]d )∩{xi=t}

Vi(s) dHd−1(s)

∣∣∣∣∣∣∣

≤
�/2∫

−�/2

dt

∣∣∣∣∣∣∣
∫

(x+[−�/2,�/2]d )∩{xi=t}
Vi(s) dHd−1(s)

∣∣∣∣∣∣∣
≤ �

�/2∫
−�/2

ε�d−1 dt = ε�d,

i.e. V has vanishing mean drift as claimed. The reverse statement for incompressible V is 
lemma 3.1 from [6]. �

It seems quite intuitive that the (d − 1)-dimensional boxes in the vanishing mean flux condi-
tion of Lemma A.1 may be replaced by more general increasing sequences of sets. We give here 
only two particular examples to be used later.
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Example A.3. If V ∈ Liploc(R
d ; Rd) is a bounded vector field with vanishing mean flux, then 

for each ε > 0 there is an R0 = R0(ε) > 0 such that for every (d − 1)-dimensional ball (i.e. a ball 
in a (d − 1)-dimensional affine hyperplane) BR of radius R ≥ R0 one has that the mean flux

1

Hd−1(BR)

∣∣∣∣∣∣∣
∫
BR

V (x) · ndHd−1(x)

∣∣∣∣∣∣∣ ≤ ε, (A.2)

where n stands for a normal vector to the hyperplane containing BR . In fact, given an ε >

0, we may cover a part of the unit (d − 1)-dimensional ball B with N = N(ε) disjoint 
(d − 1)-dimensional open boxes Qi ⊂ B , i = 1, . . . , N , so that

Hd−1(B \ ∪N
i=1Qi) ≤ ε

2‖V ‖∞
Hd−1(B).

Letting now x0 stand for the center of BR , we may take an R0 > 0 (of course, depending on ε) 
such that

∣∣∣∣∣∣∣
∫

x0+RQi

V (x) · ndHd−1(x)

∣∣∣∣∣∣∣ ≤ ε

2
Hd−1(RQi) = ε

2
Rd−1Hd−1(Qi)

for all i = 1, . . . , N and all R > R0 in view of the vanishing mean drift condition. We get there-
fore

∣∣∣∣∣∣∣
∫
BR

V (x) · ndHd−1(x)

∣∣∣∣∣∣∣ ≤

∣∣∣∣∣∣∣∣
∫

∪N
i=1(x0+RQi)

V (x) · ndHd−1(x)

∣∣∣∣∣∣∣∣
+ ‖V ‖∞Hd−1(RB \ ∪N

i=1RQi)

≤ ε

2
Rd−1Hd−1(∪N

i=1Qi) + ε

2
Rd−1Hd−1(B \ ∪N

i=1Qi)

= εRd−1Hd−1(B)

for R > R0 proving the claim.

Example A.4. For an x ∈ ∂B1(0) and r ≤ 2 denote Dr(x) := ∂B1(0) ∩ Br(x) (i.e. a ball in the 
natural inner metric of ∂B1(0)). If V ∈ Liploc(R

d ; Rd) is a bounded incompressible vector field 
with vanishing mean drift (hence with vanishing mean flux by Lemma A.1), then for each ε > 0
there is an R0 > 0 such that for every R ≥ R0 and every x ∈ ∂B1(0) one has that the mean flux

1

Hd−1(RDr(x))

∣∣∣∣∣∣∣
∫

V (y) · n(y)dHd−1(y)

∣∣∣∣∣∣∣ ≤ ε, (A.3)
RDr(x)
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where n(y) stands for the external unit normal to ∂B1(0) at y. In fact, consider the spherical 
cap � cut from the unit ball B1(0) by the hyperplane π containing the set ∂B1(0) ∩ ∂Br(x) (i.e. 
the relative boundary of Dr(x) in ∂B1(0)), so that its boundary is the union of Dr(x) with the 
(d − 1)-dimensional closed ball Cr := B̄1(0) ∩ π . Letting n stand for the external normal to the 
boundary of �, we get, given an ε > 0, the estimate

∣∣∣∣∣∣∣
∫

RDr(x)

V (y) · n(y)dHd−1(y)

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣−
∫

RCr

V (y) · n(y)dHd−1(y) +
∫

R�

divV (y)dy

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
∫

RCr

V (y) · n(y)dHd−1(y)

∣∣∣∣∣∣∣
≤ εHd−1(RCr) = εHd−1(Cr)R

d−1

≤ εHd−1(Dr(x))Rd−1

for all R > R0, where R0 is chosen (depending on ε) so that the first inequality in the above chain 
be satisfied (which is possible by Example A.3), and therefore

1

Hd−1(RDr(x))

∣∣∣∣∣∣∣
∫

RDr(x)

V (y) · n(y)dHd−1(y)

∣∣∣∣∣∣∣ ≤ ε

as claimed.

Lemma A.5. Suppose V ∈ C1(Rd ; Rd) is a vector field with vanishing mean drift having uni-
formly continuous first derivatives. Then these derivatives also have vanishing mean drift.

Proof. For an arbitrary i ∈ {1, . . . , d} and j ∈ {1, . . . , d} we have that

∣∣∣∣Vi(x + tej ) − Vi(t)

t
− Vi,xj

(x)

∣∣∣∣ = ∣∣Vi,xj
(x + θej ) − Vi,xj

(x)
∣∣ (A.4)

for some θ ∈ [0, t] (depending possibly on x ∈ Rd ), and hence given an ε > 0 we may choose a t
such that the right hand side of (A.4) does not exceed ε/2. Since V j

t := (Vi(x + tej ) − Vi(t))/t

clearly has vanishing mean drift, then there is an �0 > 0 (depending on t which is fixed) such 
that for every d-dimensional box Q ⊂Rd of side length � > �0 one has

∣∣∣∣∣∣∣
∫
Q

V
j
t (x) dx

∣∣∣∣∣∣∣ ≤ ε�d/2,

and therefore one has
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∣∣∣∣∣∣∣
∫
Q

Vi,xj
(x) dx

∣∣∣∣∣∣∣ ≤

∣∣∣∣∣∣∣
∫
Q

V
j
t (x) dx

∣∣∣∣∣∣∣ +
∫
Q

∣∣∣V j
t (x) − Vi,xj

(x)

∣∣∣ dx ≤ ε�d/2 + ε�d/2 = ε�d,

proving the claim. �
Proposition A.6. Let F ⊂ L1(∂B1(0); Hd−1) be a compact family of functions and V ∈
Liploc(R

d; Rd) be a bounded incompressible vector field with vanishing mean drift. Then

∫
∂B1(0)

f (x)x · V (αx)dHd−1(x) → 0

as α → +∞, uniformly over f ∈ F , i.e. for every ε > 0 there exists an α0 > 0 such that∣∣∣∣∣∣∣
∫

∂B1(0)

f (x)x · V (αx)dHd−1(x)

∣∣∣∣∣∣∣ < ε

for all f ∈ F , α ≥ α0.

Proof. If not, there is a sequence {αn} ⊂R, limn αn = +∞, and fn ⊂ F , such that

∣∣∣∣∣∣∣
∫

∂B1(0)

fn(x)x · V (αnx)dHd−1(x)

∣∣∣∣∣∣∣ ≥ ε0

for some ε0 > 0 and all n ∈ N . By eventually passing to a subsequence of n (not relabeled) we 
may assume that fn → f in L1(∂B1(0)) as n → ∞. But then

∣∣∣∣∣∣∣
∫

∂B1(0)

fn(x)x · V (αnx)dHd−1(x)

∣∣∣∣∣∣∣ ≤
∫

∂B1(0)

|fn(x) − f (x)|x · V (αnx)dHd−1(x)

+

∣∣∣∣∣∣∣
∫

∂B1(0)

f (x)x · V (αnx)dHd−1(x)

∣∣∣∣∣∣∣
≤ ‖V ‖∞‖fn − f ‖1

+

∣∣∣∣∣∣∣
∫

∂B1(0)

f (x)x · V (αnx)dHd−1(x)

∣∣∣∣∣∣∣ → 0

since the latter integral is vanishing by Lemma A.7, a contradiction. �
The following lemma has been used in the above proof.
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Lemma A.7. Let f ∈ L1(∂B1(0); Hd−1) and V ∈ Liploc(R
d ; Rd) be a bounded incompressible 

vector field with vanishing mean drift. Then

∫
∂B1(0)

f (x)x · V (αx)dHd−1(x) → 0

as α → +∞.

Proof. It is enough to prove the statement for f from a family of functions having dense linear 
span in L1(∂B1(0); Hd−1), in particular, for f just a characteristic function of the form f =
1Dr(x) for some r ∈ (0, 2], x ∈ ∂B1(0), where Dr(x) is defined in Example A.4. The claim for 
this case follows then from the change of variables

∫
Dr(x)

y · V (αy)dHd−1(y) = 1

αd−1

∫
αDr(x)

V (y) · n(y)dHd−1(y),

where n stands for the external normal to ∂B1(0), and from Example A.4. �
A.2. Auxiliary estimates of integral operators

We will also need the following technical assertions on estimates of integral operators involv-
ing vector fields with vanishing mean drift.

Lemma A.8. Let p ∈ ((d − 1)/2, d/2), and K : Rd × Rd → R be a function locally Lips-
chitz outside the diagonal {(x, y) ∈ Rd × Rd : x = y} and uniformly continuous outside every 
R-neighborhood of the diagonal (for every R > 0), with

K(x,y) = A(x,y)

|x − y|k , k < d,

for all (x, y) ∈ Rd ×Rd , for some A ∈ L∞(Rd ×Rd) continuous outside the diagonal. Suppose 
that V ∈ Liploc(R

d ; Rd) is a bounded incompressible vector field with vanishing mean drift. 
Then, with the notation n(x) := x/|x| one has

�(x) :=
∫
Rd

K(n(x), y)
y · V (α|x|y)

(|y|2 + |x|−2)p+1 dy → 0 (A.5)

as α → +∞ uniformly in x /∈ B1(0) ⊂ Rd .

Proof. Without loss of generality (up to a small increase of k) we may assume A to be continuous 
over the whole Rd ×Rd . Let x ∈ Bc

1(0) ⊂ Rd and choose an arbitrary ε > 0.
Fixed and arbitrary ρ ∈ (0, 1), the function F : Bρ(0) → Rd defined by

F(y) := K(n(x), y) − K(n(x),0)
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is Lipschitz (because of local Lipschitz continuity of K outside the diagonal), while clearly, 
F(0) = 0, so that one has in particular |F(y)| ≤ C|y| for some C = C(ρ) > 0 (independent on 
x) whenever |y| ≤ ρ. Therefore,

∣∣∣∣∣∣∣
∫

Bρ(0)

(K(n(x), y) − K(n(x),0))
y · V (α|x|y)

(|y|2 + |x|−2)p+1 dy

∣∣∣∣
≤ C‖V ‖∞

∫
Bρ(0)

|y|2
(|y|2 + |x|−2)p+1 dy

≤ C‖V ‖∞
∫

Bρ(0)

|y|2
|y|2(p+1)

dy = Cdωd‖V ‖∞

ρ∫
0

dr

r2p−d+1 ,

and recalling that p < d/2 we conclude that one can choose a ρ > 0 so that

∣∣∣∣∣∣∣
∫

Bρ(0)

(K(n(x), y) − K(n(x),0))
y · V (α|x|y)

(|y|2 + |x|−2)p+1 dy

∣∣∣∣∣∣∣ ≤ ε/3.

But by Lemma A.9 one has

∫
Bρ(0)

(K(n(x), y) − K(n(x),0))
y · V (α|x|y)

(|y|2 + |x|−2)p+1 dy

=
∫

Bρ(0)

K(n(x), y)
y · V (α|x|y)

(|y|2 + |x|−2)p+1 dy,

and hence ∣∣∣∣∣∣∣
∫

Bρ(0)

K(n(x), y)
y · V (α|x|y)

(|y|2 + |x|−2)p+1 dy

∣∣∣∣∣∣∣ ≤ ε/3. (A.6)

Choose now an R ∈ (0, 1 − ρ) such that

∫
BR(n(x))

dy

|n(x) − y|k < δ,

for some δ > 0 to be chosen later (it is only here that we use the assumption on k). Denoting

KR(n(x), y) :=
{

K(n(x), y), y ∈ Bc
R(n(x)),

A(n(x), y)/Rk, y ∈ B (n(x)),
R
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we get that (x, y) �→ KR(n(x), y) is bounded and uniformly continuous in Bc
1(0) × Rd . Now, 

recalling that ρ < |y| < 1 when y ∈ BR(n(x)), we get

∣∣∣∣∣∣∣
∫

Bc
ρ(0)

K(n(x), y)
y · V (α|x|y)

(|y|2 + |x|−2)p+1 dy

∣∣∣∣

≤

∣∣∣∣∣∣∣
∫

Bc
ρ(0)∩Bc

R(n(x))

K(n(x), y)
y · V (α|x|y)

(|y|2 + |x|−2)p+1 dy

∣∣∣∣∣∣∣ + δ‖V ‖∞‖A‖∞
ρ2(p+1)

≤

∣∣∣∣∣∣∣
∫

Bc
ρ(0)

KR(n(x), y)
y · V (α|x|y)

(|y|2 + |x|−2)p+1 dy

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
∫

BR(0)

A(n(x), y)

Rk

y · V (α|x|y)

(|y|2 + |x|−2)p+1 dy

∣∣∣∣∣∣∣ + δ‖V ‖∞‖A‖∞
ρ2(p+1)

≤

∣∣∣∣∣∣∣
∫

Bc
ρ(0)

KR(n(x), y)
y · V (α|x|y)

(|y|2 + |x|−2)p+1 dy

∣∣∣∣∣∣∣
+ ωdRd−k‖V ‖∞‖A‖∞

1

ρ2(p+1)
+ δ‖V ‖∞‖A‖∞

ρ2(p+1)
,

so that choosing δ (depending on ρ and ε) and R (depending on δ, ρ and ε) sufficiently small we 
will have

∣∣∣∣∣∣∣
∫

Bc
ρ(0)

K(n(x), y)
y · V (α|x|y)

(|y|2 + |x|−2)p+1 dy

∣∣∣∣

≤

∣∣∣∣∣∣∣
∫

Bc
ρ(0)

KR(n(x), y)
y · V (α|x|y)

(|y|2 + |x|−2)p+1 dy

∣∣∣∣∣∣∣ + ε/3.

(A.7)

Finally,

∫
Bc

ρ(0)

KR(n(x), y)
y · V (α|x|y)

(|y|2 + |x|−2)p+1 dy

=
+∞∫
ρ

rd dr

(r2 + |x|−2)p+1

∫
KR(n(x), rs)s · V (α|x|rs) dHd−1(s).

(A.8)
∂B1(0)
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Recalling that the family of functions {s ∈ ∂B1(0) �→ KR(n(x), rs) : r ≥ ρ, x ∈ Bc
ρ(0)} on 

∂B1(0) is bounded and equicontinuous, we get from Proposition A.6 that

∫
∂B1(0)

KR(n(x), rs)s · V (βs) dHd−1(s) → 0

uniformly in x ∈ Bc
1(0) and r ≥ ρ as β → +∞, so that in particular

∫
∂B1(0)

KR(n(x), rs)s · V (α|x|rs) dHd−1(s) → 0

uniformly in x ∈ Bc
1(0) and r ≥ ρ as α → +∞. Thus, observing that

rd

(r2 + |x|−2)p+1 ≤ rd

(r2 + 1)p+1

for x ∈ Bc
1(0) and r ≥ 0, the function on the right-hand side of the above inequality being inte-

grable over (0, +∞) (because p > (d − 1)/2), we get from (A.8) the existence of some ᾱ > 0
(independent of x) such that the estimate

∣∣∣∣∣∣∣
∫

Bc
ρ(0)

KR(n(x), y)
y · V (α|x|y)

(|y|2 + |x|−2)p+1 dy

∣∣∣∣≤ ε/3, (A.9)

holds for all x ∈ Bc
1(0) once α ≥ ᾱ. Combining the estimates (A.6), (A.7) and (A.9) we arrive 

from (A.5) to |�(x)| ≤ ε for α ≥ ᾱ, with ᾱ > 0 independent on x ∈ B1(0)c , as claimed. �
The following lemma has been used in the above proof.

Lemma A.9. For an incompressible vector field V ∈ Liploc(R
d; Rd) one has

∫
Bρ(0)

y · V (α|x|y)

(|y|2 + |x|−2)p
= 0,

for every ρ > 0 and every α > 0.

Proof. We write

∫
Bρ(0)

y · V (α|x|y)

(|y|2 + |x|−2)p
=

ρ∫
0

rk dr

(r2 + |x|−2)p

∫
∂B1(0)

s · V (α|x|rs) dHd−1(s),

and recalling that V is divergence-free, and hence so is the vector field y �→ V (α|x|ry) (with α, 
r and x fixed), one has
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∫
∂B1(0)

s · V (α|x|rs) dHd−1(s) = 0

implying the thesis. �
At last we need the following computation.

Lemma A.10. Let p > (d − 1)/2, and K : Rd × Rd → R be a function uniformly continuous 
outside every R-neighborhood of the diagonal {(x, y) ∈ Rd × Rd : x = y} (for every R > 0), 
with

K(x,y) = A(x,y)

|x − y|k , k < d,

for some A ∈ L∞(Rd × Rd) continuous outside the diagonal and for all (x, y) ∈ Rd × Rd . 
Suppose that V ∈ Liploc(R

d ; Rd) is a bounded incompressible vector field with vanishing mean 
drift. Then

�̃(x) :=
∫
Rd

K(x, y)
y · V (αy)

(|y|2 + 1)p+1 dy → 0 (A.10)

as α → +∞ uniformly in x ∈ B̄1(0) ⊂ Rd .

Proof. As in the proof of Lemma A.8 without loss of generality (up to a small increase of k) we 
assume A to be continuous over the whole Rd ×Rd . Consider an arbitrary x ∈ B̄1(0) ⊂ Rd and 
an arbitrary ε > 0. Denote for brevity

C(p) := sup
y∈Rd

|y|
(|y|2 + 1)p+1

(note that C(p) < +∞ because p > −1/2). Finding a ρ ∈ [0, 1] such that∫
Bρ(x)

dy

|x − y|k < δ, (A.11)

for some δ > 0 to be chosen later, we get

|�̃(x)| ≤
(
‖A‖∞ωdρdδC(p)‖V ‖∞ + |I (α,ρ)|

)
, where

I (α,ρ) :=
∫

Bc
ρ(x)

K(x, y)
y · V (αy)

(|y|2 + 1)p+1 dy.
(A.12)

Denoting

Kρ(x, y) :=
{

K(x,y), y ∈ Bc
ρ(x),

A(x, y)/ρk, y ∈ B (x),
(A.13)
ρ
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we get that Kρ is uniformly continuous and bounded in Rd ×Rd . We have now

|I (α,ρ)| ≤

∣∣∣∣∣∣∣
∫
Rd

Kρ(x, y)
y · V (αy)

(|y|2 + 1)p+1 dy

∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣
∫

Bρ(x)

A(x, y)

ρk

y · V (αy)

(|y|2 + 1)p+1 dy

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣
∫
Rd

Kρ(x, y)
y · V (αy)

(|y|2 + 1)p+1 dy

∣∣∣∣∣∣∣ + ‖A‖∞C(p)‖V ‖∞ωdρd−k.

(A.14)

Recall that ∫
Rd

Kρ(x, y)
y · V (αy)

(|y|2 + 1)p+1 dy

=
+∞∫
0

rd

(r2 + 1)p+1 dr

∫
∂B1(0)

Kρ(x, rs)s · V (αrs) dHd−1(s).

We choose δ > 0 and ρ > 0 to be sufficiently small (depending on ε) so as to have

‖A‖∞ωdρdδC(p)‖V ‖∞ < ε/5, ‖A‖∞C(p)‖V ‖∞ωdρd−k < ε/5,

so that in view of (A.14) the estimate (A.12) becomes

|�̃(x)| ≤ 2ε/5 +

∣∣∣∣∣∣∣
∫
Rd

Kρ(x, y)
y · V (αy)

(|y|2 + 1)p+1 dy

∣∣∣∣∣∣∣ . (A.15)

We choose now r0 > 0 and r1 > r0 (depending on ε and ρ) such that

r0∫
0

rd

(r2 + 1)p+1 dr

∫
∂B1(0)

∣∣Kρ(x, rs)s · V (αrs)
∣∣ dHd−1(s)

≤ ‖Kρ‖∞dωd‖V ‖∞
r0∫

0

rd

(r2 + 1)p+1 dr ≤ ε/5,

+∞∫
r1

rd

(r2 + 1)p+1 dr

∫
∂B1(0)

∣∣ϕρ(x, rs)s · V (αrs)
∣∣ dHd−1(s)

≤ ‖Kρ‖∞dωd‖V ‖∞
+∞∫
r1

rd

(r2 + 1)p+1 dr ≤ ε/5,
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(recall that we assumed p > (d − 1)/2). Since by Proposition A.6 one has

∫
∂B1(0)

Kρ(x, rs)s · V (αrs) dHd−1(s) → 0

uniformly in x ∈ B1(0) as α → +∞ for all r ∈ [r0, r1], we get

∣∣∣∣∣∣∣
∫
Rd

Kρ(x, y)
y · V (αy)

(|y|2 + 1)p+1 dy

∣∣∣∣∣∣∣ ≤ 3ε/5,

for all α ≥ ᾱ (with some ᾱ > 0 independent of x ∈ B1(0)) and hence, by (A.15), |�̃(x)| ≤ ε for 
such α as claimed. �
Appendix B. Estimates on the corrector

B.1. Uniform estimates

We show that with the appropriate choice of the parameters the vector field W defined by 
the formula (4.7) can be made arbitrarily small in supremum norm, namely, that the following 
lemma is valid.

Lemma B.1. Let p ∈ ((d − 1)/2, d/2). Suppose that V ∈ Liploc(R
d ; Rd) is a bounded incom-

pressible vector field with vanishing mean drift. Then, given an ε > 0, there is an ᾱ = ᾱ(p, ε)
such that

‖W‖∞ ≤ ε for every α > ᾱ.

Proof. We calculate

Wα(x) := W(αx) = 2pcdα2p(|x|2 + 1)p
∫
Rd

αx − y

|αx − y|d
y · V (y)

(|y|2 + α2)p+1 dy

= 2pcd(|x|2 + 1)p
∫
Rd

x − y

|x − y|d
y · V (αy)

(|y|2 + 1)p+1 dy,

(B.1)

and note that ‖W‖∞ = ‖Wα‖∞, so that we may estimate the latter.
CASE 1: |x| ≤ 1. The desired estimate follows immediately from Lemma A.10 applied with

K(x,y) := xi − yi

|x − y|d

(i.e. A(x, y) := (xi − yi)/|x − y)|, k = d − 1) for every i = 1, . . . , d .
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CASE 2: |x| > 1. In this case, denoting n(x) := x/|x|, we further calculate

Wα(x) = 2pcd(1 + |x|−2)p|x|2p

∫
Rd

n(x)|x| − y

|n(x)|x| − y|d
y · V (αy)

(|y|2 + 1)p+1 dy

= 2pcd(1 + |x|−2)p
∫
Rd

n(x) − y

|n(x) − y|d
y · V (α|x|y)

(|y|2 + |x|−2)p+1 dy,

(B.2)

so that the necessary estimate follows immediately from Lemma A.8 applied with the same data 
as in Case 1. �
Corollary B.2. Under conditions of Lemma B.1 one has that for every ε > 0, there is an ᾱ =
ᾱ(p, ε) such that

‖divW‖∞ ≤ ε for every α > ᾱ.

Proof. From (4.5) one has

ψdivW = div (ψW) − ∇ψ · W = −∇ψ · V − ∇ψ · W,

so that

divW = −∇ logψ · (V + W) = 2p
|x|

|x|2 + α2

x

|x| · (V + W).

This gives

|divW | ≤ 2p

α

|x/α|
|x/α|2 + 1

(‖V ‖∞ + ‖W‖∞) ≤ p

α
(‖V ‖∞ + ‖W‖∞),

since |t |/(t2 + 1) ≤ 1/2, concluding the proof. �
B.2. Estimates on the derivatives

We show now that if V is sufficiently smooth, then the derivatives of W can also be made as 
small as desired with the appropriate choice of parameters.

Lemma B.3. Let p ∈ ((d − 1)/2, d/2). Assume that V ∈ Lip(Rd ; Rd) is incompressible vec-
tor field with vanishing mean drift, and all Vxj

, j = 1, . . . , d , are locally Lipschitz still having 
vanishing mean drift. Given an ε > 0, there is an ᾱ = ᾱ(p, ε) such that

‖Wxj
‖∞ ≤ ε for every α > ᾱ

for every j = 1, . . . , d .
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Proof. Fix an arbitrary j ∈ {1, . . . , d}. Rewriting (4.7) in the form

W(x) = 2p(−1)dcd(|x|2 + α2)p
∫
Rd

z

|z|d
(x − z) · V (x − z)

(|x − z|2 + α2)p+1 dz,

we get the following relationships

Wxj
(x) = Z1(x) + Z2(x) + Z3(x), where (B.3)

Z1(x) = 4p2(−1)dcdxj (|x|2 + α2)p−1
∫
Rd

z

|z|d
(x − z) · V (x − z)

(|x − z|2 + α2)p
dz

= 4p2cdxj (|x|2 + α2)p−1
∫
Rd

x − y

|x − y|d
y · V (y)

(|y|2 + α2)p
dy

= 2pxj

|x|2 + α2 W(x),

(B.4)

Z2(x) = 2p(−1)dcd(|x|2 + α2)p
∫
Rd

z

|z|d
(x − z) · Vxj

(x − z)

(|x − z|2 + α2)p+1 dz

= 2pcd(|x|2 + α2)p
∫
Rd

x − y

|x − y|d
y · Vyj

(y)

(|y|2 + α2)p+1 dy,

(B.5)

Z3(x) = 2p(−1)dcd(|x|2 + α2)p
∫
Rd

z

|z|d V (x − z) · ∂

∂xi

x − z

(|x − z|2 + α2)p+1 dz

= 2pcd(|x|2 + α2)p
∫
Rd

x − y

|x − y|d V (y) · ∂

∂yi

y

(|y|2 + α2)p+1 dy.

(B.6)

We now estimate separately the three terms Z1, Z2 and Z3.
ESTIMATE OF Z1. Since the function x �→ xj /(|x|2 +α2) is uniformly bounded over Rd , then 

from (B.4) by Lemma B.1 we get that ‖Z1‖∞ ≤ ε/3 once α is sufficiently large (depending on 
p and ε).

ESTIMATE OF Z2. From (B.5) we see that the expression for Z2 is exactly the same as the 
definition (4.7) of W , but with Vxj

instead of V . Since Vxj
is still bounded, incompressible 

and has vanishing mean drift, then again by Lemma B.1 we get that ‖Z2‖∞ ≤ ε/3 once α is 
sufficiently large (depending on p and ε).

ESTIMATE OF Z3. We let

Z3,α(x) := Z3(αx) = 2pcd

α
(|x|2 + 1)p

∫
Rd

x − y

|x − y|d V (αy) · ∂

∂yj

y

(|y|2 + 1)p+1 dy, (B.7)

and note that ‖Z3‖∞ = ‖Z3,α‖∞, so that we may estimate the latter. As in the proof of 
Lemma B.1 we separate this estimate in two cases.
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Case |x| ≤ 1. In this case we repeat line by line the proof of Lemma A.10 with

K(x,y) := xi − yi

|x − y|d
(i.e. A(x, y) := (xi − yi)/|x − y)|, k = d − 1) for every i = 1, . . . , d , but with the vector field 
∂

∂yj

y

(|y|2+1)p+1 in place of just y/(|y|2 + 1)p+1, observing that this vector field is still uniformly 
bounded by a constant depending only on p that we will call C(p). Then choosing an arbitrary 
δ > 0 and a ρ > 0 so as to satisfy (A.11), instead of (A.12) and (A.14) we will get, with the 
notation of ϕρ defined in (A.13), the estimate

|Z3,α(x)| ≤ 2pcd2p

α
δC(p)‖V ‖∞ + 2pcd2p

α
C(p)‖V ‖∞ωdρ

+ 2pcd2p

α

∣∣∣∣∣∣∣
′,

∫
Rd

ϕρ(x, y)V (αy) · ∂

∂yj

y

(|y|2 + 1)p+1 dy

∣∣∣∣∣∣∣ .
(B.8)

Writing∫
Rd

ϕρ(x, y)V (αy) · ∂

∂yj

y

(|y|2 + 1)p+1 dy

=
+∞∫
0

rd−1

(r2 + 1)p+1 dr

∫
∂B1(0)

ϕρ(x, rs)Vj (αrs) dHd−1(s)

− 2(p + 1)

+∞∫
0

rd+1

(r2 + 1)p+2 dr

∫
∂B1(0)

ϕρ(x, rs)sj s · V (αrs) dHd−1(s),

(B.9)

and estimating

∣∣∣∣∣∣
+∞∫
0

rd−1

(r2 + 1)p+1 dr

∫
∂B1(0)

ϕρ(x, rs)Vj (αrs) dHd−1(s)

∣∣∣∣∣∣∣
≤ dωd

1

ρd−1 ‖V ‖∞
+∞∫
0

rd−1

(r2 + 1)p+1 dr,

∣∣∣∣∣∣
+∞∫
0

rd+1

(r2 + 1)p+2 dr

∫
∂B1(0)

ϕρ(x, rs)sj s · V (αrs) dHd−1(s)

∣∣∣∣∣∣∣
≤ dωd

1

ρd−1 ‖V ‖∞
+∞∫
0

rd+1

(r2 + 1)p+2 dr,
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the integrals on the right-hand sides of the above inequalities being convergent (because p >

d/2 − 1), we get that the integral on the left-hand side of (B.9) is estimated by a constant de-
pending only on d , p, ‖V ‖∞ and ρ. Recalling that α is in the denominator in the right-hand 
side of (B.8), we get from (B.8) together with (B.9) that |Z3,α(x)| ≤ ε/3 for α sufficiently large 
(depending only on p and ε).

Case |x| > 1. We rewrite

Z3,α(x) = 2pcd

α|x| (1 + |x|−2)p
∫
Rd

n(x) − y

|n(x) − y|d V (α|x|y) · ∂

∂yj

y

(|y|2 + |x|−2)p+1 dy, (B.10)

where n(x) := x/|x|. Let now

�1(x) := 2pcd

α|x| (1 + |x|−2)p

∫
Rd

(
n(x) − y

|n(x) − y|d − n(x) − y

|n(x) − y|d−1

)
V (α|x|y) · ∂

∂yj

y

(|y|2 + |x|−2)p+1 dy

�2(x) := 2pcd

α|x| (1 + |x|−2)p
∫
Rd

n(x) − y

|n(x) − y|d−1 V (α|x|y) · ∂

∂yj

y

(|y|2 + |x|−2)p+1 dy,

so that Z3,α(x) = �1(x) + �2(x). We estimate the terms �1 and �2 separately.
To estimate �1, consider the function f : ∂B1(0) ×Rd → Rd defined by

f (x, y) := x − y

|x − y|d − x − y

|x − y|d−1 .

Since 
∣∣fy(x, y)

∣∣ ≤ C for some C = C(ρ) > 0 (independent on x and y) whenever |y| ≤ ρ < 1
and |x| = 1, then for the function F : B1(0) → Rd defined as F(y) := f (n(x), y) one clearly has 
F(0) = 0 and |F(y)| ≤ C|y| whenever |y| ≤ ρ, |x| > 1 for some ρ ∈ (0, 1). Therefore, one gets

|�1(x)| ≤ 2pcd

α
2pC‖V ‖∞

∫
Bρ(0)

|y| ·
∣∣∣∣ ∂

∂yj

y

(|y|2 + |x|−2)p+1

∣∣∣∣ dy + 2pcd

α
2p |Jα| ,

≤ 2pcd

α
2pC‖V ‖∞C(p)ωdρd+1 + 2pcd

α
2p |Jα| ,

(B.11)

where

Jα :=
∫

Bc
ρ(0)

f (n(x), y)V (α|x|y) · ∂

∂yj

y

(|y|2 + |x|−2)p+1 dy.

To estimate Jα , we write
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Jα =
∫

Bc
ρ(0)

f (n(x), y)V (α|x|y) · ∂

∂yj

y

(|y|2 + |x|−2)p+1 dy

=
∫

Bc
ρ(0)∩Bc

R(n(x))

ηR(n(x), y)V (α|x|y) · ∂

∂yj

y

(|y|2 + |x|−2)p+1 dy

+
∫

BR(n(x))

f (n(x), y)V (α|x|y) · ∂

∂yj

y

(|y|2 + |x|−2)p+1 dy,

and calculating

∂

∂yj

y

(|y|2 + |x|−2)p+1 dy = ej

(|y|2 + |x|−2)p+1 − 2(p + 1)
yj y

(|y|2 + |x|−2)p+2 ,

we obtain

Jα =
+∞∫
ρ

rd−1

(r2 + |x|−2)p+1 dr

∫
∂B1(0)

ηR(n(x), rs)Vj (αrs) dHd−1(s)

− 2(p + 1)

+∞∫
ρ

rd+1

(r2 + |x|−2)p+2 dr

∫
∂B1(0)

ηR(n(x), rs)sj s · V (αrs) dHd−1(s)

+
∫

BR(n(x))

f (n(x), y)V (α|x|y) · ∂

∂yj

y

(|y|2 + |x|−2)p+1 dy,

(B.12)

where R ∈ (0, 1 − ρ) will be chosen later, and

ηR(x, y) :=
⎧⎨
⎩

x−y

|x−y|d − x−y

|x−y|d−1 , y ∈ Bc
R(x),

x−y

Rd − x−y

Rd−1 , y ∈ BR(x).

Since for y ∈ BR(n(x)) one has

∣∣∣∣ ∂

∂yj

yi

(|y|2 + |x|−2)p+1

∣∣∣∣ = |δij − 2(p + 1)yiyj |
(|y|2 + |x|−2)p+2

≤ 1 + 2(p + 1)R2

|y|2(p+2)
≤ CR := 1 + 2(p + 1)R2

|1 − R|2(p+2)
,

choosing R so that
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∫
BR(n(x))

|f (n(x), y)|dy < δ

for some δ > 0, we get

∣∣∣∣∣∣∣
∫

BR(n(x))

f (n(x), y)V (α|x|y) · ∂

∂yj

y

(|y|2 + |x|−2)p+1 dy

∣∣∣∣∣∣∣ ≤ ‖V ‖CRδ. (B.13)

But

∣∣∣∣∣∣
+∞∫
ρ

rd−1

(r2 + |x|−2)p+1 dr

∫
∂B1(0)

ηR(n(x), rs)Vj (αrs) dHd−1(s)

∣∣∣∣∣∣∣
≤ ‖V ‖∞‖ηR‖∞dωd

+∞∫
ρ

rd−1

r2(p+1)
dr,

∣∣∣∣∣∣
+∞∫
ρ

rd+1

(r2 + |x|−2)p+2 dr

∫
∂B1(0)

ηR(n(x), rs)sj s · V (αrs) dHd−1(s)

∣∣∣∣∣∣∣
≤ ‖V ‖∞‖ηR‖∞dωd

+∞∫
ρ

rd+1

r2(p+2)
dr,

the integrals on the right-hand side of the above inequalities being convergent (because p >

d/2 − 1), so that combining this with (B.13) we get from (B.12) that |Jα| is bounded by a 
constant independent on α (hence depending only on p, d , ‖V ‖∞). Therefore, from (B.11) we 
have that |�1(x)| ≤ ε/6 for α sufficiently large (depending on p and ε).

Finally, it remains to estimate �2. To this aim integrating by parts the expression for �2, we 
get (with notation V T standing for V transposed, i.e. seen as a row, while by default the vectors 
are seen as columns)

�2(x) = −2pcd

α|x| (1 + |x|−2)p
∫
Rd

∂

∂yj

(
n(x) − y

|n(x) − y|d−1 V T (α|x|y)

)
y dy

(|y|2 + |x|−2)p+1

= −2pcd

α|x| (1 + |x|−2)p
∫
Rd

∂

∂yj

(
n(x) − y

|n(x) − y|d−1

)
V (α|x|y) · y dy

(|y|2 + |x|−2)p+1

− 2pcd(1 + |x|−2)p
∫
Rd

n(x) − y

|n(x) − y|d−1 Vyj
(α|x|y) · y dy

(|y|2 + |x|−2)p+1

= 2pcd

α|x| (1 + |x|−2)p
∫
d

ej

|n(x) − y|d−1 V (α|x|y) · y dy

(|y|2 + |x|−2)p+1
R
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−2p(d − 1)cd

α|x| (1 + |x|−2)p

∫
Rd

(
n(x) − y

|n(x) − y|d+1 (nj (x) − yj )

)
V (α|x|y) · y dy

(|y|2 + |x|−2)p+1

−2pcd(1 + |x|−2)p
∫
Rd

n(x) − y

|n(x) − y|d−1 Vyj
(α|x|y) · y dy

(|y|2 + |x|−2)p+1 ,

and the desired estimate for �2 follows from Lemma A.8 applied to each of the three integrals 
in the right-hand side of the above equality (for the second integral it has to be applied with 
A(x, y) := (xi − yi)(xj − yj )/|x − y|2, k := d − 1, for all i = 1, . . . , d). �
Appendix C. Auxiliary lemmata

In this section we collect some easy auxiliary results of “folkloric” nature.

Lemma C.1. Suppose that V : Rd → Rd is a bounded continuous vector field providing the 
uniqueness of the solution to the Cauchy problem for (1.1) with any initial datum, hence generat-
ing the flow Tt := ϕt

V : Rd → Rd , t ∈ R, of the latter equation. If μ is a σ -finite Radon measure 
over Rd satisfying div (V μ) = 0 in the weak (i.e. distributional) sense in Rd , then it is invariant 
with respect to Tt .

This lemma is well-known in a very particular case when V is smooth and μ is the Lebesgue 
measure, though for the general situation its proof maybe not quite immediate.

Proof. The “constant” curve of measures {μt}t∈R+ defined by μt := μ for all t ∈ R+, clearly 
satisfies the continuity equation

∂tμt + div (V μt ) = 0 (C.1)

in the weak (distributional) sense in R+ × Rd . Consider an arbitrary ϕ ∈ C1(Rd) and set 
ϕt (x) := ϕ(T −1

t (x)) (note that unders the conditions of the Lemma being proven Tt is in fact 
a homeomorphism). We show

∂t (ϕtμ) + div (V ϕtμ) = 0 (C.2)

in the weak sense in R+ ×Rd . In fact,

0 = d

dt
ϕ(x) = d

dt
ϕt (Tt (x)) = (∂tϕt )(Tt (x)) + (∇ϕt )(Tt (x)) · V (Tt (x))

for all x ∈Rd in view of (1.1), and hence

∂tϕt (x) + ∇ϕt (x) · V (x) = 0 (C.3)

for all x ∈ Rd . Therefore, using the chain rule for distributional derivatives, (C.3) and (C.1), we 
get
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∂t (ϕtμ) + div (V ϕtμ) = μ(∂tϕt + ∇ϕt · V ) + ϕt (∂tμ + div (V μ)) = 0,

that is, (C.2).
On the other hand, clearly, Tt#(ϕμ) := ϕtTt#μ, and hence

∂t (ϕtTt#μ) + div (V ϕtTt#μ) = 0 (C.4)

in the weak sense in R+ × Rd because of (1.1). Assuming now that ϕ is nonnegative and have 
compact support in Rd , we have that both curves of finite positive Borel measures {ϕtTt#μ}t∈R+
and {ϕtμ}t∈R+ satisfy the continuity equation, and have the same initial point ϕμ. By the super-
position principle for curves of measures (see theorem 12 in [1] for its statement in the Euclidean 
space, or theorem 3.21 in [12] for the general metric space version) for each fixed T > 0 there 
are finite positive Borel measures η and η̃ on C([0, T ]; Rd) each concentrated over trajectories 
of (1.1) such that et#η = ϕtTt#μ and et#η̃ = ϕtμ for a.e. t ∈ [0, T ], e0#η = e0#η̃ = ϕμ, where 
et : C([0, T ]; Rn) → Rd stands for the evaluation map et (θ) := θ(t). Disintegrating

η = (ϕμ) ⊗ ηx, η̃ = (ϕμ) ⊗ η̃x

with ηx and η̃x Borel probability measures concentrated each over the trajectory of (1.1) starting 
at x ∈ Rd , we have that ηx = η̃x for ϕμ-a.e. x ∈ Rd by the assumption on unique solvability 
of (1.1). Thus η = η̃, which implies ϕtTt#μ = ϕtμ for a.e. t ∈ [0, T ], and hence, since ϕ is 
arbitrary (nonnegative with compact support) and T > 0 is arbitrary, we get that Tt#μ = μ for 
a.e., and thus for all t ∈R+, i.e. μ is invariant as claimed. �
Remark C.2. In fact, under the conditions of the above Lemma C.1 the Radon measure μ over 
Rd is invariant with respect to Tt , if and only if div (V μ) = 0 in the weak sense in Rd . The “if” 
part is however trivial: for f ∈ C1(Rd) with compact support we get

0 = d

dt

∫
Rd

f dμ = d

dt

∫
Rd

f dTt#μ = d

dt

∫
Rd

f (Tt (x)) dμ(x)

=
∫
Rd

d

dt
f (Tt (x)) dμ(x),

(C.5)

the latter equality being due to the Lebesgue dominated convergence theorem since

d

dt
f (Tt (x)) = ∇f (Tt (x)) · V (Tt (x)) (C.6)

is bounded and has compact support, hence is integrable with respect to μ. Plugging (C.6)
into (C.5), we get

0 =
∫
Rd

∇f (Tt (x)) · V (Tt (x)) dμ(x) =
∫
Rd

∇f (x) · V (x)dμ(x),

the latter again by invariance of μ with respect to Tt , proving that div (V μ) = 0 weakly in Rd .
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It is worth emphasizing that the above Lemma C.1 can be stated and proven in a similar way 
even for less regular vector fields V . However, in the present paper we apply it only in a very 
particular situation when V is bounded and locally Lipschitz, and μ = ψ dx with ψ : Rd →
R+ smooth. In this case its proof could be clearly simplified without even referring to general 
superposition principle, but just by observing “manually” the uniqueness of positive solutions 
to continuity equation. We provided here a more general (and less common) version just for the 
readers’ convenience.

Another easy statement we use in the paper is as follows.

Lemma C.3. If T : X → X is continuous, has an invariant measure μ, and T (suppμ) is closed 
(in particular, this is true if μ has compact support). Then suppμ is invariant for T .

Proof. Denoting for brevity M := suppμ, we have that T −1(M) is closed and μ((T −1(M))c) =
μ(T −1(Mc)) = 0, in other words, μ is concentrated on T −1(M), which implies M ⊂ T −1(M), 
thus T (M) ⊂ M . On the other hand,

μ((T (M))c) = (T#μ)((T (M))c)

= μ(T −1((T (M))c) = μ((T −1(T (M))c) ≤ μ(Mc) = 0,

the inequality in the above chain being due to M ⊂ T −1(T (M)). Thus μ is also concentrated on 
T (M) and since T (M) is also closed, we have M ⊂ T (M) concluding the proof. �

Note that continuity of T in the above Lemma C.3 is essential.
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