
Theoretical Computer Science 591 (2015) 28–59
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

The searchlight problem for road networks

Dariusz Dereniowski a,1, Hirotaka Ono b, Ichiro Suzuki c,2, Łukasz Wrona d,
Masafumi Yamashita e, Paweł Żyliński f,∗,3

a Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, 80-233 Gdańsk, Poland
b Department of Economic Engineering, Kyushu University, 6-19-1, Hakozaki, Fukuoka, 812-8581, Japan
c Department of Electrical Engineering and Computer Science, University of Wisconsin–Milwaukee, WI 53201-0784, USA
d Department of Algorithms and System Modeling, Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of
Technology, 80-233 Gdańsk, Poland
e Department of Computer Science and Communication Engineering, Kyushu University, 744, Motooka, Fukuoka, 819-0395, Japan
f Institute of Informatics, University of Gdańsk, 80-952 Gdańsk, Poland

a r t i c l e i n f o a b s t r a c t

Article history:
Received 20 May 2013
Received in revised form 21 April 2015
Accepted 23 April 2015
Available online 5 May 2015
Communicated by D. Peleg

Keywords:
The searchlight problem
Graph searching
Lines
Line segments
Grids

We consider the problem of searching for a mobile intruder hiding in a road network given
as the union of two or more lines, or two or more line segments, in the plane. Some of
the intersections of the road network are occupied by stationary guards equipped with a
number of searchlights, each of which can emit a single ray of light in any direction along
the lines (or line segments) it is on. The goal is to detect the intruder, that is, to illuminate
its location. Guards may alter the direction in which they aim a searchlight, but need to
switch it off for some finite time interval to effect the change. In contrast, the intruder
may move with arbitrary speed along the network (but cannot pass guards) and exploit
this time interval to recontaminate previously illuminated sections of the network. For
various classes of road networks characterized by the number n of lines (or line segments)
comprising it and the number g (≤ n − 1) of possible locations of guards (fixed in advance
and guaranteed to give complete coverage), we present several upper and lower bounds on
the worst-case number of searchlights, each placed at one of the guard positions, required
to successfully search a given road network. In particular, we prove the following results:

1. min{2g −1, n −2} searchlights are sometimes necessary and min{ 7
3 g, n} −1 are always

sufficient for searching a road network given as the union of n lines;
2. �(g · log n

g) searchlights are sometimes necessary and O (g2 · log n) searchlights are
always sufficient for searching a road network given as the union of n line segments,
and

3. at most one searchlight per guard position, and hence a total of at most g searchlights,
is always sufficient for searching a road network given as the union of axis-aligned
lines or line segments.

* Corresponding author.
E-mail addresses: deren@eti.pg.gda.pl (D. Dereniowski), hirotaka@econ.kyushu-u.ac.jp (H. Ono), suzuki@uwm.edu (I. Suzuki), lukasz.wrona@eti.pg.gda.pl

(Ł. Wrona), mak@csce.kyushu-u.ac.jp (M. Yamashita), zylinski@inf.ug.edu.pl (P. Żyliński).
1 Partially supported by MNiSW Grant No. N206 379337 (2009–2011).
2 Supported in part by UWM Research Growth Initiative.
3 Partially supported by MNiSW Grant No. N516 196437 (2009–2012).
http://dx.doi.org/10.1016/j.tcs.2015.04.026
0304-3975/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.tcs.2015.04.026
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:deren@eti.pg.gda.pl
mailto:hirotaka@econ.kyushu-u.ac.jp
mailto:suzuki@uwm.edu
mailto:lukasz.wrona@eti.pg.gda.pl
mailto:mak@csce.kyushu-u.ac.jp
mailto:zylinski@inf.ug.edu.pl
http://dx.doi.org/10.1016/j.tcs.2015.04.026
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2015.04.026&domain=pdf

D. Dereniowski et al. / Theoretical Computer Science 591 (2015) 28–59 29

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

The proofs of the upper bounds induce algorithms for generating a search schedule for
detecting the intruder using the claimed number of searchlights.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Assume that a mobile intruder capable of moving continuously and arbitrarily fast is hiding in the streets of a dark city,
where each street is modeled as a line or a line segment in the plane. Suppose that a number of stationary guards have
been placed on the streets, each equipped with one or more searchlights, where a searchlight can be aimed in any street
direction (from the guard position) and emit a single ray of light in that direction. The objective of the guards is to detect
the intruder using the searchlights, where the intruder is considered detected at the moment he is illuminated by one of
the searchlights or he reaches a position where a guard is located.

Formally, for n ≥ 2, let L = {L1, L2, . . . , Ln} be a set of n distinct lines, or n distinct (open or closed) line segments, in
the plane, such that their union L̄ = L1 ∪ L2 ∪ · · · ∪ Ln is connected. In the former case we assume that no two collinear
line segments in L intersect each other. For now, we continue the discussion assuming the Li ’s are lines. All definitions and
assumptions naturally carry over to the case of line segments without any change. We call L a road network. A point p is
visible from a point q in L̄ if p and q lie on a common line in L. A finite set of points V ⊆ L̄ is a guard set of L if every
point in L̄ is visible from at least one point in V . The points in V are called guards. Hereafter we assume guards are distinct
points and are always placed at intersections of lines in L, since any guard set can be transformed into another without
increasing the size by relocating every guard lying on a single line to a nearest intersection. The size γ of a smallest guard
set of L is called the guard number of L. Obviously, 1 ≤ γ ≤ n − 1 since L̄ is connected. Given a guard set V of L, where
γ ≤ |V | = g ≤ n − 1, we call the pair A = (L, V) an (n, g)-arrangement, or simply, an arrangement.

A guard p ∈ V , placed at an intersection of k lines, can have one or more searchlight that can emit a single ray of “light”
that can be aimed in the direction of any of the 2k half-lines that meet at p and “illuminate” the points on it.4 Each
searchlight can be aimed in only one direction at a time, and we assume that the direction of the searchlight cannot be
changed instantaneously. One way to interpret this assumption is that F has to be “turned off” while it changes directions.
See Fig. 1 for an illustration of this assumption. In the following we often use the term “rotate” to refer to the action of
changing direction of a searchlight.

Fig. 1. Two searchlights shown on the left are rotated simultaneously as shown on the right. As is shown in the middle, while the searchlights are “turned
off” during the rotation, an intruder hiding in a can move to b without being detected and “recontaminate” b.

Fig. 2. A sample search strategy for an (8, 2)-arrangement. The gray line components searched in (a), together with the half-line illuminated with F ′, are
not recontaminated during the rotation of F ′ , due to the choice of the first wedge and the assumption that the intruder cannot pass through v0 and v1

without being detected.

A searching strategy for A = (L, V) using a given set of searchlights placed at guard positions in V specifies, as a function
of time, the directions in which the searchlights are aimed. A searching strategy successfully searches (or clears) L if it is not

4 If L consists of line segments, then there will be up to 2k possible directions of the searchlight.

http://mostwiedzy.pl

30 D. Dereniowski et al. / Theoretical Computer Science 591 (2015) 28–59

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

possible for the intruder in L̄ to avoid detection during its execution regardless of his moves, where detection occurs at the
moment the intruder is illuminated by one of the searchlights or he reaches a guard. We denote by s(A), or s(L, V), the
smallest total number of searchlights necessary for the guards in V to successfully search L.

See Fig. 2 for an example of successfully searching an (8, 2)-arrangement using three searchlights, F ′ and F ′′ placed at
guard v0 and F placed at v1. The example illustrates a strategy that we often use, termed rotational wedge sweep, in which
the rays of F ′ and F ′′ successively form wedges around v0 not containing v1 and the ray of F searches the segments and
half-lines, referred to as line components, in the wedges visible from v1.5 First, as shown in Fig. 2(a), F ′ and F ′′ are aimed
respectively at the first and second half-lines around v0 clockwise from v1 to form the first wedge not containing v1, and
F searches all line components between v1 and F ′ , and between F ′ and F ′′ . Note that as long as F ′′ remains on, the line
components just searched will remain clear, that is, guaranteed to be free of the intruder, even if F ′ is turned off, because
the intruder cannot pass through v1. F ′ is now rotated clockwise to illuminate the third half-line around v0, so that F ′ and
F ′′ form the second wedge around v0, as shown in Fig. 2(b). The line components in that wedge are searched by F , and
while F ′ remains on, F ′′ is rotated to illuminate the fourth half-line around v0 so that F ′ and F ′′ form the third wedge
around v0 without recontaminating any of the line components searched so far between v1 and F ′ . The process continues
until the line components in the last wedge and the segments between that wedge and v1 are searched by F , as shown in
Fig. 2(c).

The objectives of the searchlight problem for an (n, g)-arrangement A = (L, V) are:

1. To determine s(A).
2. To determine a placement of s(A) searchlights in the guard positions in V and compute a searching strategy for A

using these searchlights.

In this paper we mainly focus on the worst-case scenario for the problems above in the following sense. For n ≥ 2
and 1 ≤ g ≤ n − 1, define s(n, g) to be the maximum of A, over all (n, g)-arrangements A = (L, V). That is, s(n, g) is the
worst-case total number of searchlights necessary to successfully search any (n, g)-arrangement. Our main results include
the following upper and lower bounds on s(n, g).

1. If L is a set of lines, then min{2g − 1, n − 2} ≤ s(n, g) ≤ min{ 7
3 g, n} − 1. (Section 2.)

2. If L is a set of line segments, then s(n, g) = �(g · log n
g) and s(n, g) = O (g2 · log n). (Subsections 3.1 and 3.2, respectively.)

3. If L is a set of axis-aligned lines or line segments, then it is sufficient to have at most one searchlight per guard
position, and hence, s(n, g) ≤ g . (Subsections 2.2 and 3.3, respectively.)

We prove the upper bounds constructively, by presenting in each case an algorithm for successfully searching any
(n, g)-arrangement using a number of searchlights matching the bound.6

Since a (connected) arrangement of lines/line segments can be thought of as a polygon with holes, representing a region
of intersecting thin corridors, our problem can be considered as a variant of the searchlight problem in polygons introduced
by Sugihara et al. [25] and then studied in [10–12,18,22,26,27,32–34,37]. A wider perspective locates our problem as a
variant of the art gallery problem, originally posed by Klee in 1973 as the question of determining the minimum number
of guards sufficient to see every point of the interior of a simple polygon; for more details, see a book by O’Rourke [19],
a survey article by Shermer [21], and a book chapter by Urrutia [31]. In particular, our searchlight problem is a variant of
the art gallery problem for lines and line segments, which was first formulated by Ntafos [17], and then extensively studied
in its several variants in [1–3,6,7,9,14,19,29,30,36].

Furthermore, our problem is also related to the searchlight problem for graphs introduced and studied in [38–40]. The
difference between the two lies in the visibility model: in the searchlight problem for graphs visibility is restricted to within
the neighborhood of a vertex where a searchlight is located, while visibility in our problem is based on a straight line of
sight within a line or a line segment. An analogous vision-based pursuit–evasion problem in grids, where a number of
pursuers have to capture an evader, has been studied in [4,5,16,23,24,28]. The pursuit–evasion problem in grids is itself a
variant of the well-known graph search problem [13,15,20], to mention just a few; see [8] for a beautiful survey of known
results and variations.

The rest of the paper is organized as follows. In Section 2, we provide lower and upper bounds on s(n, g) for the case
in which L is a set of lines. Next, in Section 3, we provide lower and upper bounds on s(n, g) for the case in which L is a
set of line segments. Finally, in Section 4, some open problems are discussed, in particular, for an (n, g)-arrangement (L, V)

of axis-aligned line segments, called a grid, we introduce another parameter: the switch number sn(L, V), defined as the
minimum number of steps required to search (L, V) by g guards with single searchlights located at guards in V .

For the standard terminology of graph theory used in this paper, we refer the reader to [35].

5 There may be line components in a wedge not visible from v1 if |V | ≥ 3.
6 It is out of the scope of the paper to develop efficient implementations of our algorithms or to investigate the time and space complexity of deciding

whether the given arrangement can be searched using k searchlights. We leave these issues for future study.

http://mostwiedzy.pl

D. Dereniowski et al. / Theoretical Computer Science 591 (2015) 28–59 31

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

Fig. 3. Both (3, 2)-arrangements can be searched using two searchlights, by illuminating all half-lines and the segment between the guards in any order,
except in (b) the two half-lines that intersect each other must be illuminated simultaneously.

2. Bounds on s(n, g) for regions composed of lines

In this section, we prove lower and upper bounds on s(n, g) for the case in which L is a set of lines (as opposed to line
segments). We start with a simple observation.

Observation 2.1. s(n, 1) = 1, s(3, 2) = 2, and s(n, n − 1) ≥ n − 1 for n ≥ 4.

Proof. In an (n, 1)-arrangement the n lines pass through a common intersection. So one full rotation of a searchlight placed
at the intersection clears all 2n half-lines. A (3, 2)-arrangement consists of either a line intersecting two parallel lines with
a guard placed at each intersection, or three non-parallel lines with guards placed at any two intersections. Both can be
successfully searched using two searchlights as illustrated in Fig. 3. The third claim is established by an arrangement that
consists of one horizontal line and n − 1 vertical lines, and a guard at each of the n − 1 intersections, where obviously, every
guard needs a searchlight. �
2.1. Lower bounds

Consider the (4, 2)-arrangement A2 = (L2, {v0, v1}) illustrated in Fig. 4(a), where two lines, passing through v0 and
forming a wedge (i.e., an angular region) not containing v1, intersect two lines passing through v1 and forming a wedge
not containing v0. We call the part of L̄2 lying in the shaded region and forming a four-edge cycle block. A2 is an instance
of a more general construction, a (2g, g)-arrangement Ag = (Lg, {v0, . . . , v g−1}), g ≥ 2, illustrated in Fig. 4(b) where (i) two
lines pass through each vi , and (ii) for every pair of i and j, i 	= j, the two lines passing through vi and the two lines passing
through v j form a block intersected by no other lines passing through any other guard.

Clearly s(A2) ≥ 3, because we need at least one searchlight at each guard and the block cannot be cleared unless one
additional searchlight is placed at v0 or v1. Similarly, to clear all blocks of Ag at least two searchlights must be placed at
every guard except possibly one. Therefore s(Ag) ≥ 2g − 1. Since we can add any number of lines passing through v0 to
Ag without reducing the number of searchlights necessary to search, s(n, g) ≥ 2g − 1 if n ≥ 2g .

Fig. 4. (a) (4,2)-Arrangement A2 = (L2, {v0, v1}) that requires at least three searchlights. (b) (2g, g)-Arrangement Ag = (Lg , {v0, . . . , v g−1}), g ≥ 2.

Fig. 5. An (n, g)-arrangement A′
g that requires at least n − 2 searchlights, where g + 2 ≤ n < 2g and k = n − g .

http://mostwiedzy.pl

32 D. Dereniowski et al. / Theoretical Computer Science 591 (2015) 28–59

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

Assume now that g + 2 ≤ n < 2g , in particular, let n = 2g − j, for some j, 1 ≤ j ≤ g − 2. Then, we have n = 2k + j,
and g = k + j, where k = n − g ≥ 2. Now, we construct the (2k, k)-arrangement Ak = (Lk, {v0, . . . , vk−1}), in the manner
described above, which requires at least 2k − 1 searchlights. Next, we add j vertical lines that cross lines in Lk to the right
of vk−1 and j guards vk, . . . , v g−1 at their intersections with one of the lines passing through v0. One can observe that for
the resulting (n, g)-arrangement A′

g (see Fig. 5 for an illustration), the number s(A′
g) of required searchlights is at least

2k + j − 2 = n − 2: at least one searchlight for each of v0, vk, . . . , v g−1 and two searchlights for all but one in v1, . . . , vk−1.
Based on these observations and Observation 2.1, we obtain the following theorem.

Theorem 2.2. For 1 ≤ g ≤ n − 1,

s(n, g) ≥
⎧⎨
⎩

2g − 1 if 1 ≤ g ≤ n
2 ;

n − 2 if n
2 < g ≤ n − 2;

n − 1 if g = n − 1.

Thus in particular, s(n, 2) ≥ 3 for n ≥ 4. We also observe that the search strategy given earlier for the (8, 2)-arrangement
in Fig. 2, where two searchlights placed at a guard successively form wedges and one searchlight placed at the other guard
clears the segments in the wedges, can be used to successfully search any (n, 2)-arrangement for n ≥ 4. Therefore we have:

Corollary 2.3. s(n, 2) = 3 for n ≥ 4.

2.2. Upper bounds in terms of guard degrees

Let A = (L, V) be an (n, g)-arrangement of lines. For any v ∈ V , we regard every line L ∈ L that v lies on as two
half-lines that meet at v , and denote by L(v) the set of all such half-lines that meet at v . We call degA(v) = |L(v)|
the degree of v . Since v is an intersection of two or more lines in L, degA(v) is even and at least 4. Next, let �(A) =
maxv∈V degA(v); �(A) is called the degree of A. Finally, let P ⊂ L be a set of parallel lines in L that together have the
largest number of guards on them among all sets of parallel lines; denote this number by �(A). We have the following
theorem.

Theorem 2.4. For any (n, g)-arrangement A = (L, V) of lines, we have

s(A) ≤ min
{1

2

∑
v∈V

degA(v) − �(A),n − 1
}
.

Before we present the proof, let us point out that if L is a set of axis-aligned lines7 (and hence degA(v) = 4 for all v ∈ V
and �(A) = g), then the inequality s(A) ≤ 1

2

∑
v∈V degA(v) − �(A) implies that it is sufficient to place one searchlight at

each guard for searching L̄ (see Corollary 2.5(d)).

Proof. Let P be a set of parallel lines in L that together have �(A) guards on them. Without loss of generality assume
that the lines in P are vertical. At each guard v ∈ V , place degA(v)/2 − 1 ≥ 1 searchlights if v belongs to a vertical line
in P , and place degA(v)/2 ≥ 2 searchlights otherwise. Note that each v has as many searchlights as there are non-vertical
lines passing through it, and hence, all half-lines extending toward the left from v can be illuminated simultaneously, and
all half-lines extending toward the right from v can be illuminated simultaneously. The total number of searchlights is
1
2

∑
v∈V degA(v) − �(A). Let v0, v1, . . . , v g−1 be the guards in V sorted in left-to-right order (with ties broken arbitrarily).

We search A = (L, V) as follows. Imagine that we sweep the plane from left to right using a vertical line X , starting from
a position to the left of v0 and ending at a position to the right of v g−1. Before the sweep starts, at every guard vi aim
all searchlights toward the left so that all half-lines extending toward the left from vi are illuminated simultaneously. This
ensures that all half-lines that cross X are illuminated simultaneously, as is shown in Fig. 6(a), and hence, no undetected
intruder exists in the region to the left of X . During the sweep, each time X reaches a guard vi , we rotate the searchlights at
vi to first (i) illuminate the vertical half-lines that meet at vi if vi lies on a vertical line in P (in order to detect an intruder
hiding in the vertical line), and then (ii) illuminate simultaneously all half-lines extending toward the right from vi . This,
together with the assumption that no intruder can pass through a guard position, ensures that (i) no undetected intruder
can exists on X , and (ii) no undetected intruder, who initially lies to the right of X , can cross X and enter the region to the
left of X during the sweep. Note that at any time during the sweep, if no guard lies on X , then all half-lines that cross X
are illuminated simultaneously as is shown in Fig. 6(b).

7 The x- and y-axes are considered “horizontal” and “vertical”, respectively. We use “left”, “right”, “down” and “up”, respectively, to refer to the −x, +x,
−y and +y directions in the plane.

http://mostwiedzy.pl

D. Dereniowski et al. / Theoretical Computer Science 591 (2015) 28–59 33

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

Fig. 6. All half-lines that cross X are illuminated simultaneously: (a) at the beginning and (b) during the sweep. Here 1
2

∑
v∈V degA(v) = 16 and �(A) = 3,

and so 13 searchlights are used.

When X reaches a position to the right of v g−1, no undetected intruder can exist on or to the left of X for the above rea-
son, and furthermore, no undetected intruder can exist to the right of X because all half-lines that cross X are illuminated
simultaneously. Therefore, s(A) ≤ 1

2

∑
v∈V degA(v) − �(A).

Now, let us prove s(A) ≤ n − 1. Let the n lines be L1, L2, . . . , Ln . Choose any guard v ∈ V , and choose any two lines that
pass through v , say L j and Lk . Place a searchlight F j at v , and for each of the remaining n − 2 lines Li , i 	= j, k, place a
searchlight Fi at any of the guards on it. (Some guards, including v , may have more than one searchlight.) Now, “rotate”
the entire arrangement A so that Lk becomes vertical, and let A′ be the resulting arrangement having n − 1 searchlights.
Note that in A′ , every line Li except Lk has its “own” searchlight Fi on it, and hence, if the sweep-based strategy described
above is applied to A′ , then (i) the two vertical half-lines that meet at v can be searched using F j when X reaches v , and
(ii) no undetected intruder, who initially lies to the right of X , can cross X and enter the region to the left of X during
the sweep (due to the assumption that no intruder can pass through a guard position). Therefore, since all searchlight are
aimed to the right at the end of the sweep, no undetected intruder can exist, and hence we have successfully searched A′ .
This proves s(A) = s(A′) ≤ n − 1. �

Observe that from Theorem 2.4 we obtain that for any (n, g)-arrangement A with no three lines having a point in
common (�(A) = 4), s(A) ≤ 2g − 1 holds. Furthermore, if additionally �(A) = |V |, that is, all guards of A belong to some
lines that are all parallel, then we obtain s(A) ≤ g . In other words, only one searchlight per each guard is enough. In
particular, it follows that s(A) ≤ g for any (n, g)-arrangement A of axis-aligned lines. Finally, one can easily observe that if
V is a minimal guard set (not necessarily minimum), then each guard requires at least one searchlight, which immediately
results in the exact formula of s(n, g) = g for the class of arrangements of axis-aligned lines, established by the class of
arrangements depicted in Fig. 7, for � n

2 � ≤ g , where g ≤ n − 1.8

Fig. 7. The arrangement A = (L, V) consists of |V | = g = 15 vertical and n − g = 5 ≥ 1 horizontal lines; guards are marked with solid dots. We have
s(A) = g .

We summarize the above observations in the following corollary.

Corollary 2.5.

a) Let A be an (n, g)-arrangement of lines with �(A) = 4. Then, s(A) ≤ min{2g, n} − 1.
b) Let A be an (n, g)-arrangement of lines such that all guards belong to some lines that are all parallel, with �(A) = 4. Then,

s(A) ≤ min{g, n − 1}.
c) For the case of axis-aligned lines, if an arrangement A consists of n′ ≥ 1 horizontal and n′′ ≥ 1 vertical lines, then s(A) =

max{n′, n′′}.
d) For the case of axis-aligned lines, s(n, g) = g for any � n

2 � ≤ g ≤ n − 1.

8 Notice that for any (n, g)-arrangement of axis-aligned lines or line segments, we have � n
2 � ≤ g .

http://mostwiedzy.pl

34 D. Dereniowski et al. / Theoretical Computer Science 591 (2015) 28–59

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

Fig. 8. An arrangement A = (L, V) and the neighbors of a guard (vertex) u in the graph NA .

2.3. Upper bounds on s(n, g) for lines

In this subsection, we provide upper bounds on s(n, g), not based on the sum of guard degrees, but expressed in terms
of the number of so-called source components in the directed graph NA of an arrangement A, a graph that represents
the “neighbor relation” between guards (defined below). In particular, if this graph has exactly one connected component,
we obtain s(A) ≤ 2g , even when �(A) > 4 (compare with Corollary 2.5(a)). The bounds are proved constructively, i.e., we
provide searching strategies (algorithms) that search any given (n, g)-arrangement using a number of searchlights matching
the bound.

Let A = (L, V) be an arrangement of lines and let L(vi) = {Li
0, L

i
1, . . . , L

i
di−1}, where di = |L(vi)|. We assume that the

half-lines Li
0, L

i
1, . . . , L

i
di−1 appear in clockwise order around vertex vi , and denote by W i

t the wedge between Li
t and Li

t+1,
called the t-th wedge of vi . (Indices are calculated modulo di .) We assume that W i

t does not include its boundary Li
t ∪ Li

t+1.
Let u, v ∈ V be two distinct guards. We say that v is a neighbor of u if there exist two intersecting half-lines Lu ∈ L(u)

and Lv ∈ L(v) such that for any w ∈ V \ {u, v}, no half-line in L(w) \ {Lu, Lv} intersects the open segment vx between v
and the intersection x of Lu and Lv (we say Lu is directly reachable from v along bridge vx); see Fig. 8. Intuitively, v is a
neighbor of u if the first half-line hit by some half-line emanating from v belongs to L(u). By definition, if v ∈ Lu then v is
a neighbor of u. Note that this neighbor relation is not necessarily symmetric, i.e., u may not be a neighbor of v , while v is
a neighbor of u. Now, define a directed graph NA = (V , E) that represents the neighbor relation; (u, v) ∈ E if and only if v
is a neighbor of u. In the following, we shall use “guard” and “vertex” interchangeably.

Observation 2.6. If g ≥ 2 then for any v ∈ V , there exists a guard u such that (u, v) ∈ E.

Proof. It follows from the fact that L is connected and V is a guard set for L. �
Observation 2.7. If u is a neighbor of vi and belongs to wedge W i

t of vi , then Li
t or Li

t+1 is directly reachable from u.

Proof. The claim follows immediately from definition. �
Now, let G = (V, E) be the condensation graph of NA , where V = {V1, V2, . . . , Vm} is the set of strongly connected

components of NA and (Vi, V j) ∈ E if and only if there are vertices u ∈ Vi and v ∈ V j such that (u, v) ∈ E . Obviously, sets
V1, V2, . . . , Vm form a partition of V , and G is a directed acyclic graph (DAG). Every source vertex in G is called a source
component of NA .

Observation 2.8. For any source component U of N A , we have |U | ≥ 2.

Proof. The claim follows from Observation 2.6 and the definition of source component. �
Let U1, U2, . . . , Uh be the source components of NA (i.e., the source vertices in G); recall that an arborescence is a

directed rooted tree in which all edges point away from the root.

Observation 2.9. For i = 1, 2, . . . , h, let ui ∈ Ui be any vertex. Then, there is a spanning forest of NA that consists of arborescences
Ti = (V i, Ei), Ui ⊆ V i , each with root ui , for i = 1, 2, . . . , h.

In the following, we first provide an upper bound on s(n, g) when the graph NA has a single source component (and
so a spanning forest of NA consists of one arborescence). Next, we extend our approach to the general case of arbitrary
number of source components. Finally, after introducing the concept of external guards, we prove that s(n, g) ≤ 7g/3 − 1.

http://mostwiedzy.pl

D. Dereniowski et al. / Theoretical Computer Science 591 (2015) 28–59 35

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

2.3.1. When graph NA has a single source component
Let A = (L, V) be an (n, g)-arrangement such that its graph NA has exactly one source component U1. In this subsec-

tion, we shall prove the following theorem.

Theorem 2.10. If NA has exactly one source component, then s(A) ≤ 2g.

Since for g ≤ 2, we have s(A) < 2g by Observation 2.1, we may assume that g ≥ 3. Let T = (V , ET) be a spanning
arborescence of NA , rooted at a vertex in U1 (such an arborescence exists by Observation 2.9). Without loss of generality,
assume that the root of T is v0 and let 〈v0, v1, . . . , v g−1〉 be a topological ordering of T .

Observation 2.11. For any l, 0 ≤ l ≤ g − 2, if vl+1 is in the intersection of wedges of v0, v1, . . . , vl , i.e.,

vl+1 ∈ W 0
t0

∩ W 1
t1

∩ · · · ∩ W l
tl

for some t0, t1, . . . , tl , then for some j, 0 ≤ j ≤ l, L j
t j

or L j
t j+1 is directly reachable from vl+1 along some bridge vl+1x, where x is on

the boundary of W 0
t0

∩ W 1
t1

∩ · · · ∩ W l
tl

and the segment vl+1x except point x lies in W 0
t0

∩ W 1
t1

∩ · · · ∩ W l
tl

.

Proof. Since 〈v0, v1, . . . , vl〉 is a prefix of the topological order 〈v0, v1, . . . , v g−1〉, one of v0, v1, . . . , vl , say v j , is the parent
of vl+1 in T . Since vl+1 is a neighbor of v j , by Observation 2.7 there exists a bridge vl+1x between vl+1 and a point x on
the boundary L j

t j
∪ L j

t j+1 of W j
t j

. Since vl+1 ∈ W 0
t0

∩ W 1
t1

∩ · · · ∩ W l
tl

and no half-line in L intersects the interior of vl+1x, x

must lie on the boundary of W 0
t0

∩ W 1
t1

∩ · · · ∩ W l
tl

. Since W 0
t0

∩ W 1
t1

∩ · · · ∩ W l
tl

is a convex region, the segment vl+1x except
point x lies in W 0

t0
∩ W 1

t1
∩ · · · ∩ W l

tl
. �

We place 2g searchlights as follows; three searchlights F 0, F 0
0 , F 0

1 at v0, two searchlights F i
0, F

i
1 at each guard vi ∈

V \ {v0, v g−1}, and one searchlight F g−1
0 at v g−1. For each i, i = 0, 1, . . . , g − 2, we use F i

0 and F i
1 to successively illuminate

the boundary of the wedges of vi (or in short, support the wedges one by one), to perform a (clockwise) rotational wedge
sweep around vi . Such wedge sweeps are simultaneously executed at multiple guards systematically, so that the intersection
of such wedges can further be subdivided by a wedge sweep of some other guard using its two searchlights. As illustrated
below, the order in which the guards are “activated” to perform a wedge sweep is crucial for a successful completion of the
entire strategy.

Example Before we describe our algorithm formally, let us provide some intuition and an outline of our technique with an
example. Consider an arrangement A = (L, V), with V = {v0, v1, v2, v3, v4, v5}, and the arborescence T of the graph NA ,
both depicted in Fig. 9(a), with a topological ordering O = 〈v0, v1, v2, v3, v4, v5, v6〉.

Suppose we attempt to search the intersection of the wedge W 0 of v0 supported by F 0
0 , F 0

1 and the wedge W 1 of
v1 supported by F 1

0 , F 1
1 ; see Fig. 9(b). Since there is a non-illuminated cycle C around v3 in W 0 ∩ W 1 (Fig. 9(b)), due to

unavoidable “recontamination” (Fig. 9(c)) it is not possible to perform a wedge sweep around v3 using only two searchlights
F 3

0 and F 3
1 . This difficulty can be avoided if the searchlights are activated according to the ordering of the guards in O .

Specifically, since v2 follows v0 and precedes v3 in O , we activate v2 next, instead of v3. Since v2 is a neighbor of v0
and v2 is in W 0 ∩ W 1, by Observation 2.11 there is a bridge from v2 to the boundary of W 0 ∩ W 1. So we illuminate the
bridge by F 2

0 and start a wedge sweep around v2 using F 2
0 and F 2

1 , as shown in Fig. 9(d). Now, since v3 follows v2 in O
and v3 is a neighbor of v2, again by Observation 2.11, we can start a wedge sweep around v3 within W 0 ∩ W 1 ∩ W 2 using
searchlights F 3

0 and F 3
1 , by first illuminating a bridge from v3 to the boundary of W 0 ∩ W 1 ∩ W 2 by searchlight F 3

0 ; see
Fig. 9(e). Note that by illuminating the bridge, we are able to search all cycles around v3 within W 0 ∩ W 1 ∩ W 2. Since no
such bridge is available for v0, the first guard that performs a wedge sweep, we place three searchlights F 0, F 0

0 , F 0
1 there

and use F 0 as a “pseudo bridge.”9 The last guard to be activated, v g−1, needs only one searchlight F g−1
0 , since no further

wedge intersection subdivision should be necessary.
In summary, our strategy is to activate guards/searchlights according to a topological order induced by some arbores-

cence of the graph NA (though, as explained later, searchlights of active guards that cannot subdivide the current wedge
intersection further need not be turned on). Let us now turn the above discussion into a formal description of the algorithm.

Configuration and subarrangement As outlined above, at any moment during a search of A = (L, V), some guards vi , except
the last one v g−1 in the order 〈v0, v1, . . . , v g−1〉, are aiming the two searchlights F i

0 and F i
1 at some half-lines Li

ti
and Li

ti+1

9 If v0 has a half-line that does not intersect any other line at any point other than v0, then that half-line works as a bridge and we can do without F 0.

http://mostwiedzy.pl

36 D. Dereniowski et al. / Theoretical Computer Science 591 (2015) 28–59

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

Fig. 9. Topological ordering of an arborescence T and the order of activating searchlights.

in L(vi) = {Li
0, L

i
1, . . . , L

i
di−1}, supporting the ti -th wedge W i

ti
of vi . Such guards are said to be active. A guard who is not

currently supporting any of its wedges is said to be inactive. We represent the status of all guards by a mapping, called
configuration,

c : V →N∪ {⊥},
where N is the set of non-negative integers and ⊥ represents the “inactive” state of a guard. In particular, we set c(vi) = ti ,
0 ≤ ti ≤ di − 1, if vi is active and aiming F i

0 and F i
1 at Li

ti
and Li

ti+1, and c(vi) = ⊥ if vi is inactive. For a technical reason,
we always set c(v g−1) = ⊥.

Given a configuration c, we can uniquely identify the wedge intersection that is currently being searched.10 First, let
act(c) = {v ∈ V : c(v) ∈ N} be the set of active guards. For each active guard vi ∈ act(c), its searchlights F i

0 and F i
1 currently

support wedge W i
c(vi)

. Therefore,

10 To be precise, it is the segments and half-lines within the wedge intersection that are being searched.

http://mostwiedzy.pl

D. Dereniowski et al. / Theoretical Computer Science 591 (2015) 28–59 37

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

R(c) =
⋂

vi∈act(c)

W i
c(vi)

is the wedge intersection that is currently being searched. By definition, R(c) is an open convex region, and we denote its
boundary by ∂ R(c). The segments and half-lines within R(c) are identified in

L(c) = {L ∩ R(c) : L ∈ L}.
Finally, since L(c) must be searched using searchlights of the guards that are currently inactive (as L(c) only contains line
components visible to inactive guards), we define the subarrangement representing the task of searching L(c) by

A(c) = (L(c), V (c)),

where V (c) = {v ∈ V : c(v) = ⊥} is the set of inactive guards in c. Note that since V is a guard set of L in arrangement
A = (L, V), for every segment or half-line in L(c), there exists a guard in V (c) that can illuminate it.

Remark Subarrangement A(c) = (L(c), V (c)) is not necessarily an arrangement defined earlier, in two aspects: (1) L(c) is
not necessarily a connected region. (2) There may be guards in V (c) that cannot illuminate any segment or half-line in L(c).

The algorithm Our successive wedge sweep algorithm can best be described as a recursive procedure. Since the top-most
level of recursion that describes guard v0’s actions is slightly different from the subsequent recursive calls, we describe it
separately here as ALGORITHM1 for A = (L, V). Presenting ALGORITHM1 also helps us clarify the concept of rotational
wedge sweep.

ALGORITHM1 uses a recursive search procedure SEARCH(A, c), where c is a configuration, that (as explained later)
clears the subarrangement A(c) = (L(c), V (c)) using the searchlights of the guards in V (c). We defer the description of
SEARCH(A, c) until later. Again, we assume that a topological order 〈v0, v1, . . . , v g−1〉 of the guards in V has already been
chosen using a spanning arborescence of NA .

Algorithm ALGORITHM1(A)

/* v0 performs a rotational wedge sweep */
Step 1: /* initialization */

1.1 Aim F 0 at L0
0. /* F 0’s direction never changes during the search */

1.2 Aim F 0
0 at L0

0 and aim F 0
1 at L0

1.
Step 2: /* Support the wedges W 0

0 , W 0
1 , . . . , W 0

d0−1 one by one and call SEARCH to clear the segments in them */
2.1 For j = 0 to d0 − 1 do
2.2 Rename the searchlights so that F 0

0 is aimed at L0
j and F 0

1 is aimed at L0
j+1.

2.3 Set configuration c by c(v0) = j and c(v) = ⊥ for all v 	= v0.
2.4 Call SEARCH(A, c).
2.5 Rotate F 0

0 clockwise and aim it at L0
j+2.

Even without the details of SEARCH, the following lemma is obvious.

Lemma 2.12. If, in Step 2.4, SEARCH(A, c) successfully searches L(v) of subarrangement A(c) = (L(c), V (c)) using the searchlights
of the guards in V (c) = {v1, v2, . . . , v g−1}, then ALGORITHM1(A) successfully searches arrangement A.

Proof. Given the assumption above, the first call of SEARCH clears all segments and half-lines in the 0-th wedge W 0
0 of v0.

When F 0
0 is rotated clockwise to illuminate L0

2 in Step 2.5, W 0
0 remains clear because F 0 and F 0

1 illuminate its boundary
L0

0 ∪ L0
1. Again, by assumption the second call of SEARCH clears all segments and half-lines in the 1-st wedge W 0

1 of v0

that are being supported by F 0
0 and F 0

1 . When F 0
0 is rotated clockwise to illuminate L0

3 in Step 2.5, W 0
0 ∪ W 1

0 remains clear
because F 0 and F 0

1 illuminate its boundary L0
0 ∪ L0

2. Continuing this argument, we can conclude that all lines in A are clear
at the termination of ALGORITHM1(A), provided that SEARCH(A, c) successfully searches L(v) using the searchlights of
the guards in V (c). �

We now present the details of the recursive procedure SEARCH(A, c) that activates the guards in the order
〈v0, v1, . . . , v g−1〉 and searches the subarrangement A(c) = (L(c), V (c)) using the searchlights of the guards in V (c). The
command “return” means the current execution of SEARCH is terminated and the control is transferred back to the calling
process.

http://mostwiedzy.pl

38 D. Dereniowski et al. / Theoretical Computer Science 591 (2015) 28–59

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

Procedure SEARCH(A, c)
Let vk be the first guard in 〈v0, v1, . . . , v g−1〉 that is inactive in c.
Case 1: L(c) = ∅

1.1 return.
Case 2: L(c) 	= ∅ and vk = v g−1

2.1 Clear L(c) by rotating searchlight F g−1
0 at v g−1 around v g−1.

2.2 return.
Case 3: L(c) 	= ∅ and vk 	= v g−1

Subcase 3.1: vk /∈ R(c) /* see Fig. 10(a) */
3.1.1 Let W k

m, W k
m+1, . . . , W

k
m+t−1 be the wedges of vk that R(c) intersects.

/* 1 ≤ t < dk; Lk
m does not intersect R(c) */

3.1.2 Set first = m and last = m + t − 1.
3.1.3 Go to SWEEP.

Subcase 3.2: vk ∈ R(c) /* R(c) intersects all W k
0, W k

1, . . . , W k
dk−1; see Fig. 10(b) */

3.2.1 Let Lk
m be the half-line in L(vk) that contains the bridge from vk to ∂ R(c).

3.2.2 Set first = m and last = m + dk − 1.
3.2.3 Go to SWEEP.

SWEEP: /* Perform wedge sweep over wedges W k
first, W

k
first+1, . . . , W

k
last */

S.1 Aim F k
0 at Lk

first and aim F k
1 at Lk

first+1.
S.2 For j = first to last do
S.3 Rename the searchlights so that F k

0 is aimed at Lk
j and F k

1 is aimed at Lk
j+1.

S.4 Set configuration c′ by c′(vk) = j and c′(v) = c(v) for all v 	= vk .
S.5 Call SEARCH(A, c′).
S.6 Rotate F k

0 clockwise and aim it at Lk
j+2.

S.7 return.

Remarks

1. In Step 3.1.1, 1 ≤ t < dk and Lk
m does not intersect R(c), because R(c) is convex, dk ≥ 4, and all wedges have an apex

angle of less than π .
2. In Step 3.1.1, if t = 1 then R(c) is fully contained in wedge W k

m . In this case the loop in SWEEP is executed only once
for j = m, and searchlights F k

0 and F k
1 do not subdivide R(c) any further. Therefore, Steps S.1, S.3 and S.6 can be omitted

without affecting the rest of the search of R(c).

The next two lemmas establish the correctness of procedure SEARCH.

Lemma 2.13. In any invocation of SEARCH(A, c), from within ALGORITHM1(A) or from within SEARCH, the configuration c passed
has the form in which for some l, 0 ≤ l ≤ g − 2, c(i) ∈N for i = 0, 1, . . . , l and c(i) = ⊥ for i = l + 1, l + 2, . . . , g − 1.

Proof. Configuration c has the above format when first generated in Step 2.3 of ALGORITHM1(A). Subsequently, new con-
figurations c′ are generated in SEARCH from this c by always changing the first entry of ⊥ to an integer. Furthermore,
c(v g−1) = ⊥ is never changed. This completes the proof. �
Lemma 2.14. When called in Step 2.4 of ALGORITHM1(A), SEARCH(A, c) successfully searches subarrangement A(c) =
(L(v), V (c)) using the searchlights of the guards in V (c).

Fig. 10. Step 3 of Procedure SEARCH: (a) vk /∈ R(c); (b) vk ∈ R(c): Lk
m contains the bridge vkx.

http://mostwiedzy.pl

D. Dereniowski et al. / Theoretical Computer Science 591 (2015) 28–59 39

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

Proof. There are no segments or half-lines to search in Case 1. For Case 2, by Lemma 2.13 vk = v g−1 implies guards
v0, v1, . . . , v g−2 are all active, each supporting one of its wedges. Thus, all segments and half-lines in L(c) are visible
from v g−1, and they do not intersect with any half-line that does not emanate from v g−1. Thus, v g−1 can clear them
simply by illuminating them by F g−1

0 in any order. In Subcase 3.1, R(c) is subdivided into smaller wedge intersections by
searchlights F k

0 and F k
1 of vk , and each is searched recursively by SEARCH in Step S.5 without using the searchlights of

v0, v1, . . . , vk . Therefore, assuming (inductively) that each of these searches ends successfully, the search of entire R(c) will
successfully complete, since the wedge sweep starting with W k

m that partially intersects R(c) prevents recontamination of
cleared wedge intersections. Finally, for Subcase 3.2, first note that by Lemma 2.13 guards v0, v1, . . . , vk−1 are all active,
and hence R(c) is the intersection of wedges of all guards v0, v1, . . . , vk−1. Thus by Observation 2.11, vk ∈ R(c) implies that
there exists a bridge between vk and ∂ R(c). Therefore, again assuming (inductively) that each of the searches in Step S.5
ends successfully, we can conclude that the search of entire R(c) will successfully complete, because (i) the wedge sweep
starts by first searching wedge W k

m that has the bridge on its boundary, and (ii) the bridge, which has no intersection with
other lines, will not be recontaminated during the sweep once it is searched. �

Theorem 2.10 follows from Lemmas 2.12 and 2.14.

2.3.2. When graph NA has more than one source component
Let us extend the discussion above, so that we can handle, in a unified manner, all (n, g)-arrangements A whose

graph NA has h source components, h ≥ 1. We start by modifying ALGORITHM1 slightly so that the resulting algorithm,
ALGORITHM2, successfully searches arrangement A = (L, V) regardless of the number of source components in NA , using
any given ordering 〈v0, v1, . . . , v g−1〉 of the guards in V and the following placement of searchlights based on the order
〈v0, v1, . . . , v g−1〉:

1. Three searchlights F 0, F 0
0 , F 0

1 are placed at v0.
2. For i = 1, 2, . . . , g − 2,

(a) three searchlights F i, F i
0, F

i
1 are placed at vi if vi is not a neighbor of any of v0, v1, . . . , vi−1, and

(b) two searchlights F i
0, F

i
1 are placed at vi otherwise.

3. One searchlight F g−1
0 is placed at v g−1.

The total number of searchlights is 2g plus the number of guards vi , 2 ≤ i ≤ g − 2, that is not a neighbor of any of
v0, v1, . . . , vi−1. ALGORITHM2(A) is identical to ALGORITHM1(A), except that Steps 3.2.1 and S.1 of SEARCH(A, c) are
replaced by the following Steps 3.2.1′ and S.1′ , respectively11:

3.2.1′ If there exists a bridge from vk to ∂ R(c), then let Lk
m be the half-line in L(vk) that contains the bridge. Otherwise set

m = 0.
S.1′ Aim F k

0 at Lk
first and aim F k

1 at Lk
first+1. In addition, aim F k at Lk

first if vk has F k .

By construction, guard vk has a third searchlight F k and aims it at Lk
first in Step S.1′ precisely when no bridge exists from

vk to ∂ R(c) in Step 3.2.1′ .
Note that if NA has exactly one source component and 〈v0, v1, . . . , v g−1〉 is a topological order of the guards in V

induced by a spanning arborescence of NA , then a total of 2g searchlights are placed and ALGORITHM2 reduces to ALGO-
RITHM1.

The correctness of ALGORITHM2 is proved in the next lemma.

Lemma 2.15. Given an arbitrary ordering 〈v0, v1, . . . , v g−1〉 of the guards in V , ALGORITHM2(A) successfully searches arrangement
A = (L, V) using the searchlights placed as above.

Proof. Let us focus on the difference between ALGORITHM1 and ALGORITHM2. In Case 1, Case 2 and Subcase 3.1 the
two algorithms behave identically. Consider Subcase 3.2, where vk , the guard to be activated, is in the intersection R(c)
of wedges of guards v0, v1, . . . , vk−1. If vk is a neighbor of some v j , 1 ≤ j ≤ k − 1, then the argument in the proof of
Observation 2.11 carries through (even though 〈v0, v1, . . . , v g−1〉 may not be a topological order of any arborescence of NA)
and shows that a bridge exists from vk to ∂ R(c). Thus, as in ALGORITHM1, a wedge sweep around vk can be performed
using two searchlights F k

0 and F k
1 starting with the wedge W k

first that has the bridge on its boundary. If, on the other hand,
vk is not a neighbor of any of v j , 1 ≤ j ≤ k − 1, then such a bridge does not exist. In this case vk has a third searchlight F k ,
so as in Step 1.1 of ALGORITHM1, a wedge sweep around vk can be performed using F k

0 and F k
1 after setting F k as a “pseudo

bridge” in Step S.1′ . This completes the proof of the lemma. �
11 Technically, it is the procedure SEARCH that is different in ALGORITHM1 and ALGORITHM2.

http://mostwiedzy.pl

40 D. Dereniowski et al. / Theoretical Computer Science 591 (2015) 28–59

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

We are now ready to prove an upper bound on s(A) in terms of the number h of source components in NA . Theo-
rem 2.16 generalizes Theorem 2.10.

Theorem 2.16. s(A) ≤ 2g + (h − 1).

Proof. Let U1, U2, . . . , Uh be the source components of NA . By Observation 2.9 there exists a spanning forest of NA con-
sisting of h arborescences T j = (V j, E j), 1 ≤ j ≤ h, each with root u j ∈ U j , where V 1, V 2, . . . , Vk form a partition of V .
For 1 ≤ j ≤ h, let σ j be a topological order of the guards in V j induced by T j , and let 〈v0, v1, . . . , v g−1〉 = σ1σ2 . . . σh be
their concatenation. Note that each σ j starts with u j , v0 = u1, and v g−1 	= uh by Observation 2.8. In this sequence, there are
exactly h −1 guards, u2, u3, . . . , uh , among v1, . . . , v g−2 that are not a neighbor of any guard preceding them. Therefore, the
total number of searchlights placed at the guards to run ALGORITHM2 is 2g + (h − 1) (three at each of u1, u2, . . . , uh , one
at v g−1, and two at each of the remaining g −h −1 guards). The theorem follows from this observation and Lemma 2.15. �

We observe that the orderings σ1, σ2, . . . , σh induced by the h arborescences T j = (V j, E j), 1 ≤ j ≤ h, can be chosen
independently of one another in the proof of Theorem 2.16, without affecting the correctness of ALGORITHM2. This fact
allows us to “dynamically” modify σ j for some j during the execution of ALGORITHM2 to further reduce the total number
of searchlights.

Specifically, suppose ALGORITHM2 is being executed using the ordering 〈v0, v1, . . . , v g−1〉 = σ1σ2 . . . σh set in the
proof of Theorem 2.16, where for each j, 1 ≤ j ≤ h, σ j starts with root u j ∈ U j of arborescence T j = (V j, E j). Suppose
SEARCH(A, c) is being called with current configuration c. The only situation in which the next guard vk to be activated
needs three searchlights is where vk = u j (i.e., vk is the first guard among v0, v1, . . . , vk−1, vk that belongs to V j) for
some j, 2 ≤ j ≤ h, and u j ∈ R(c) (Subcase 3.2). Now, suppose the following condition holds for U j :

Condition A: There exists a guard vi , 0 ≤ i ≤ k − 1, such that none of the wedges of vi contains all guards in U j .

Condition A ensures that there exists another guard u′
j ∈ U j that is not in the wedge of vi containing u j , and hence,

u′
j /∈ R(c). (Recall that |U j | ≥ 2 by Observation 2.8.) So, if we modify the ordering σ1σ2 . . . σ j . . . σk at this moment by

replacing σ j by σ ′
j , where σ ′

j is a topological ordering of the guards in V i starting with u′
j induced by an arborescence

T ′
j = (V j, E ′

j) with root u′
j , then vk = u′

j /∈ R(c) holds (Subcase 3.1) and vk needs only two searchlights to perform a wedge
sweep. Of course, the correctness of ALGORITHM2 is not affected by this modification. In summary, if Condition A holds
for U j , then we can always ensure that vk /∈ R(c), by using either σ j (if u j /∈ R(c)) or σ ′

j (if u j ∈ R(c)). Let us now formalize
this observation.

Given an arrangement A = (L, V) whose graph NA has h source components U1, . . . , Uh , a component Ui is called a
splitter of U j , i 	= j, if there exists a guard v ∈ V [Ui] such that none of the wedges of v fully contains U j , where V [Ui]
is the set of guards reachable from the guards in Ui in NA . Construct now a directed graph G∗

A = (V∗, E∗) such that
V∗ = {U1, U2, . . . , Uh} and, for 1 ≤ i, j ≤ h, (Ui, U j) ∈ E∗ if and only if i 	= j and Ui is a splitter of U j . Note that (Ui, U j) ∈ E∗
implies that if the searchlights at the guards in V [Ui] are activated before those in U j , then U j satisfies Condition A and
hence none of the guards in U j needs three searchlights.

Let h∗ be the minimum number of arborescences in a spanning forest of G∗
A . (Equivalently, h∗ is the number of source

vertices in the condensation graph of G∗
A .) Since h∗ ≤ h, the following theorem improves the upper bound on s(A) proved

in Theorem 2.16.

Theorem 2.17. s(A) ≤ 2g + (h∗ − 1).

Proof. Choose a spanning forest of G∗
A consisting of h∗ arborescences. Pick an ordering of U1, U2, . . . , Uh consistent with

topological orderings induced by the arborescences. Without loss of generality, rename the source components as necessary
and let 〈U1, U2, . . . , Uh〉 be such an ordering. Next, choose a spanning forest of NA consisting of h arborescences T j =
(V j, E j), 1 ≤ j ≤ h, each with root u j ∈ U j , where V 1 = V [U1] and for 2 ≤ j ≤ h, V j = V [U j] \(V [U1] ∪ V [U2] ∪· · ·∪ V [U j−1]).
(Such a spanning forest always exists, by Observation 2.9 and the fact that, for each j, every guard in V j is reachable
from u j in the subgraph of NA induced by V j .) As in the proof of Theorem 2.16, let σ j be a topological order of the
guards in V j induced by T j , 1 ≤ j ≤ h, and let 〈v0, v1, . . . , v g−1〉 = σ1σ2 . . . σh be their concatenation, where each σ j starts
with u j , v0 = u1, and v g−1 	= uh by Observation 2.8. In this sequence, there are exactly h − 1 guards, u2, u3, . . . , uh , among
v1, . . . , v g−2 that are not a neighbor of any guard preceding them. Now, as the discussion preceding the theorem shows,
for 2 ≤ j ≤ h, the number of searchlights u j requires to execute a wedge sweep is two if Condition A holds for U j , and
three otherwise. Obviously, by the choice of the sequence 〈U1, U2, . . . , Uh〉 that reflect the “splitter” relation, Condition A
does not hold for exactly h∗ components among U1, U2, . . . , Uh (including U1) that are the roots of the h∗ arborescences
in the spanning forest of G∗

A . Therefore, the total number of searchlights necessary is 2g + (h∗ − 1) (three each at u1 and
additional h∗ − 1 guards among u2, . . . , uh , one at v g−1, and two each at the remaining g − h∗ − 1 guards). The theorem
follows from this observation and Lemma 2.15. �

http://mostwiedzy.pl

D. Dereniowski et al. / Theoretical Computer Science 591 (2015) 28–59 41

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

As we observed earlier in Footnote 9, a guard needs only two searchlights to perform a wedge sweep if it has a half-line
that does not intersect any other line. We can strengthen this observation as follows. Given an (n, g)-arrangement A =
(L, V), call a guard v ∈ V external if it lies on the boundary of an unbounded face of the planar subdivision determined
by L̄. A guard that has a half-line that does not intersect any other line is external. The following observation generalizes
the remark in Footnote 9.

Observation 2.18. An external guard v needs only two searchlights to perform a wedge sweep.

Proof. Let f be an unbounded face whose boundary v is on. Draw an imaginary half-line L emanating from v that stays
within f . Since L does not intersect any other line, as noted in Footnote 9, v can perform a wedge sweep using two
searchlights, using L as a pseudo bridge. This means that in the absence of L, v can still perform a wedge sweep using two
searchlights by simply ignoring all instructions to illuminate L. �

As shown below, Observation 2.18 allows us to obtain another upper bound on s(A) in the presence of external guards.
Let X be the set of external guards of an (n, g)-arrangement A = (L, V), and set U0 = V [X] ⊆ V , where V [X] is the set of
vertices of NA = (V , E) that are reachable from some vertex in X . Consider the pair A′ = (L′, V ′), where V ′ = V \ U0 and
L′ is the set of all lines in L that cannot be illuminated from any guard in U0, obtained from A by removing the guards
in U0 (and the half-lines emanating from them).

Lemma 2.19. If L′ is not empty, then A′ = (L′, V ′) is an arrangement.

Proof. Suppose L′ is not empty. We need to show that V ′ is a guard set of L′ and L̄′ is connected. The former holds by
definition, and we prove the latter by showing that every guard in V ′ is at the intersection of two lines in L′ , which implies
that not all lines in L′ are parallel. Let v be any guard in V ′ . Suppose v is on just one line L in L′ , while, by assumption
on A, v is at the intersection of two lines L and L′ in L. Then, it must be the case that L′ ∈ L(u) for some guard u ∈ U0.
This implies that v is a neighbor of u and hence v ∈ V [X] = U0, which contradicts v ∈ V ′ = V \U0. �

Based on Lemma 2.19, let U1, . . . , Uh′ be the source components of the directed graph NA′ of arrangement A′ . Define a
directed graph G+

A = (U+, E+) where U+ = {U0, U1, U2, . . . , Uh′ }, and for 1 ≤ i, j ≤ h′ , (Ui, U j) ∈ E+ if and only if i 	= j and
Ui is a splitter of U j . In addition, for 1 ≤ j ≤ h′ , (U0, U j) ∈ E+ if and only if there exists a guard v ∈ U0 such that none of
the wedges of v fully contains U j .12 Note that, by definition, U0 is always a source vertex of G+

A . Let h+ be the minimum
number of arborescences in a spanning forest of G+

A . (Equivalently, h+ is the number of source vertices in the condensation
graph of G+

A .) We have the following theorem.

Theorem 2.20. If X 	= ∅, then s(A) ≤ 2g + (h+ − 2).

Proof. As in the proof of Theorem 2.17, it suffices to give an ordering 〈v0, v1, . . . , v g−1〉 of the guards in V for which 2g +
(h+ − 2) searchlights are sufficient for executing ALGORITHM2. Such an ordering can easily be obtained by concatenating
the following two orderings in the given order:

1. Any ordering of the guards in X followed by an ordering of the guards in U0 \ X , such that, every guard v /∈ X is a
neighbor of some guard preceding it in the sequence. (Such an ordering always exists because U0 = V [X].)

2. An ordering of the guards in V ′ (= V \U0) constructed for NA′ from U1, U2, . . . , Uh′ based on a spanning forest of NA′
consisting of h+ arborescences, as was done in the proof of Theorem 2.17 for NA from U1, U2, . . . , Uh .

Since every guard in X (including the guard that is now v0) needs only two searchlights by Observation 2.18, the total
number of searchlights is 2g + (h+ − 2) (three at each first guard of the h+ − 1 source vertices of G+

A excluding U0, one at
v g−1, and two at each of the remaining g − h+ guards). This completes the proof. �

We now establish an upper bound of 7g/3 − 1 on s(n, g) based on estimates of h∗ and h+ and the bounds given in
Theorems 2.17 and 2.20. First, we have:

Lemma 2.21. Let U be an arbitrary source component of an arrangement. If U does not contain an external guard, then |U | ≥ 3.

Proof. Assume that U does not contain an external guard. By Observation 2.8, |U | ≥ 2. Suppose for a contradiction that
|U | = 2 and denote U = {x1, x2}. Since neither x1 nor x2 is external and neither is a neighbor of any other guard, every

12 Since U0 = V [U0] holds, (U0, U j) ∈ E+ effectively means U0 is a “splitter” of U j . However, the splitter relation has been defined over the set of source
components, to which U0 does not belong.

http://mostwiedzy.pl

42 D. Dereniowski et al. / Theoretical Computer Science 591 (2015) 28–59

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

Fig. 11. Illustration for the proof of Lemma 2.21.

half-line in L(x1) is intersected first by a half-line in L(x2), and every half-line in L(x2) is intersected first by a half-line in
L(x1). Thus, x1 and x2 cannot lie on the same line. Let L1

1, L
1
2 be the half-lines in L(x1) defining the smallest wedge of x1

containing x2. Similarly, let L2
1, L

2
2 be the half-lines in L(x2) defining the smallest wedge of x2 containing x1. See Fig. 11.

For each of these half-lines Lp
q , let us denote by L′ p

q the half-line in L(xp) such that Lp
q and L′ p

q are the two halves of a
single line passing through xp . Then, either L′ 2

1 or L′ 2
2 is not intersected by any half-line in L(x1), or either L′ 1

1 or L′ 1
2 is not

intersected by any half-line in L(x2) — a contradiction. �
Lemma 2.21 implies that if X = ∅ then h∗ ≤ g/3, and if X 	= ∅ then h+ ≤ (g − |U0|)/3 ≤ (g − 1)/3. By these observations

and Theorems 2.17 and 2.20, we obtain:

Theorem 2.22. For each n ≥ 1 and g ≥ 1, s(n, g) ≤ 7g/3 − 1.

It is worth pointing out that the result of Lemma 2.21 cannot be improved since for every k ≥ 1, there exists an arrange-
ment without external guards having exactly k source components, each of size three: see Fig. 12(a, b and c), respectively,
for such an arrangement for k = 1, its schematic drawing, and a schematic drawing of such an arrangement for k = 2. On the
other hand, they satisfy h+ = 1 because the most “internal” source component is a splitter for all other source components,
and hence by Theorem 2.20, they require only 2g searchlights.

Fig. 12. (a) An arrangement A = (L, V) with no external guards whose directed graph NA is a 3-vertex bidirectional cycle. The three guards in the cycle
form a single connected component. (b) For any guard v ∈ V , we “bundle” the lines in L(v) tightly and use the bundles to form a triangular arrangement.
(c) By repeatedly embedding a triangular arrangement in the “interior” of an existing arrangement, we obtain an arrangement with no external guards,
having k source components of size three each; here k = 2.

3. The searchlight problem for line segments

In this section, we discuss the bounds on the number of searchlights that are sometimes necessary but always sufficient
to successfully search an arbitrary (n, g)-arrangement A = (L, V) of line segments. We note that the problem of determining
the minimum guard set for a set of line segments is NP-hard [2].

In Section 3.1, we show a lower bound of �(g · log n
g) on s(n, g), that is, we prove that there are (n, g)-arrangements

of line segments that require �(g · log n
g) searchlights. Next, in Section 3.2, we establish an upper bound of O (g2 · log n)

on s(n, g), that is, we prove that any (n, g)-arrangement of line segments can be searched using O (g2 · log n) searchlights.
Finally, following the approach discussed in Section 2.2, we provide an upper bound on s(n, g) in terms of the sum of guard
degrees.

As before, �(A) = maxv∈V degA(v) is the degree of A = (L, V), where degA(v) = |L(v)| and L(v) is the set of all
maximal subsegments of line segments in L that meet at v .

3.1. The lower bound

Consider the arrangement A2 = (L2, V 2) depicted in Fig. 13, with �(A2) = �2 = 4, |L2| = 2 · �2 = 8 and V 2 = {v0, v1}.

http://mostwiedzy.pl

D. Dereniowski et al. / Theoretical Computer Science 591 (2015) 28–59 43

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

Fig. 13. Arrangement A2 = (L2, V 2) and its subarrangement A�

2 .

Fig. 14. Arrangement A3 constructed from three copies of A2: Â2, Ā2 and Ǎ2, and eight additional line segments.

Fig. 15. Arrangement Ak constructed from three copies of Ak−1 and eight additional line segments.

We now construct an arrangement A3 = (L3, V 3) and its subarrangement A�
3 as depicted in Fig. 14, where

�(A3) = �3 = 4 + 3 · �2 = 16 ≤ 4 · �2.

A3 is constructed from three “copies” of A2 and eight additional line segments; observe that |L3| = 2 · �3 and |V 3| =
|V 2| = 2.

We continue with an analogous construction for any k ≥ 4. Namely, the arrangement Ak = (Lk, Vk), with |Lk| = 2 ·
�(Ak), Vk = {v0, v1} and

�(Ak) = �k = 4 + 3 · �k−1 ≤ 4 · �k−1 ≤ 4k−1 (1)

is constructed from three “copies” of the arrangement Ak−1 with disjoint sets Lk−1 and eight additional line segments, as
illustrated in Fig. 15. One can observe that the arrangement Ak has the following key property: Between any two copies of
A�

k−1 , there is a path that avoids the line segments of the third copy of Ak−1.

Lemma 3.1. For each k ≥ 2, s(Ak) = �(log �k).

Proof. If, in a searching strategy for Ak , i ≥ 1 searchlights simultaneously illuminate some segments in Lk at time t , each
containing a segment from A�

k , then we say that these i searchlights are involved in searching A�
k at time t . Following this

definition, for a searching strategy A for Ak , let xA(Ak) denote the maximum number of searchlights involved in searching
A�

k by A. Define

x(Ak) := min
A

xA(Ak),

where the minimum is taken over all searching strategies A for Ak . For the purpose of the proof, let A1 = (∅, {v0, v1}).
Observe that s(A1) = x(A1) = 0 and we have s(Ak) ≥ x(Ak) for each k ≥ 2.

Now, we prove by induction on k ≥ 2 that x(Ak) ≥ x(Ak−1) + 1 holds. For k = 2, the claim follows from the fact that
x(A1) = 0 and we need to place at least one searchlight at each guard in A2 to search A� (and so x(A2) ≥ 2).
2

http://mostwiedzy.pl

44 D. Dereniowski et al. / Theoretical Computer Science 591 (2015) 28–59

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

Fig. 16. Arrangement A with s(A) = �(g · log n
g); here g = 5.

Suppose now that the claim holds for some k −1 ≥ 2 and we prove it for k. Let Â�
k−1, Ā�

k−1 and Ǎ�
k−1 be the three copies

of A�
k−1 included in A�

k , as shown in Fig. 15. By definition, since A�
k includes a copy of A�

k−1, we have x(Ak) ≥ x(Ak−1).
Consider now any searching strategy A for Ak , and suppose for a contradiction that A involves only x(Ak−1) searchlights in
searching A�

k . Note that A clears the entire A�
k , and Â�

k−1, Ā�
k−1 and Ǎ�

k−1 are pairwise disjoint copies of A�
k−1. Thus, by

the induction hypothesis, there exist three time moments t̂ , t̄ and ť in which at least x(Ak−1) searchlights are involved in
searching Â�

k−1, Ā�
k−1 and Ǎ�

k−1, respectively. Take t̂ , t̄ and ť to be maximal, i.e., Â�
k−1, Ā�

k−1 and Ǎ�
k−1 remain clear after

the time moments t̂ , t̄ and ť , respectively. Moreover, since Â�
k−1, Ā�

k−1 and Ǎ�
k−1 are pairwise disjoint, we have that the

three time moments are pairwise different.
Assume without loss of generality that t̂ < t̄ < ť . Consider the time moment t̄ when all x(Ak−1) searchlights are involved

in searching Ā�
k−1. Now, since there is a non-illuminated path in A�

k (i.e., a path disjoint from all segments of Āk−1) from
the contaminated Ǎ�

k−1 to Â�
k−1, the intruder may at time moment t̄ get from Ǎ�

k−1 to Â�
k−1 without being detected.

This contradicts the maximality of t̂ , i.e., it contradicts the assumption that Â�
k−1 remains clear at any time moment t ≥ t̂ .

Consequently, the searching strategy A cannot use only x(Ak−1) searchlights to search A�
k (and thus to search Ak). This

proves that x(Ak) ≥ x(Ak−1) + 1.
Now we are ready to conclude the proof of the lemma. Note that for k ≥ 2, s(Ak) ≥ x(Ak) ≥ 2 and a simple induction on

k together with the above claim imply s(Ak) ≥ k. Thus, by (1), s(Ak) = �(log |Lk|) = �(log �k) as required. �
Now, by adjoining g − 1 copies of Ak , as shown in Fig. 16, we construct an (n, g)-arrangement A = (L, V) with n =

(g − 1) · �(A) and �(A) = 2 · �(Ak). Each guard in V requires �(log �(A)) searchlights to search A, and hence s(A) =
�(g · log �(A)) = �(g · log n

g).
Of course, the above construction is derived for a particular choice of g and n. However, to derive asymptotically the

same lower bound for any choice of g and n, all we need is to consider the largest k such that (g − 1) · 2 · 4k−1 ≤ n. Then
our construction provides the arrangement A such that s(A) = �(g · k). Since k = �(log n

g) by the maximality of k, we also
obtain s(A) = �(g · log n

g), and hence we may conclude with the following theorem.

Theorem 3.2. For arrangements of line segments, we have s(n, g) = �(g · log n
g).

3.2. The upper bound

In this section we prove that O (g2 · log n) searchlights are always sufficient to search any (n, g)-arrangement A = (L, V)

of line segments. Briefly, the idea is as follows. First, by permanently illuminating a set I ⊆ L of segments using at most
2g − 1 searchlights (Section 3.2.1), we divide A into k “nice” subarrangements A1, A2, . . . , Ak such that each satisfies three
“nice” properties defined below. Next, we search these subarrangements one by one using for each of them a recursive
divide-and-conquer procedure based on the concept of “balanced splitters” and “separators” (Section 3.2.3 and Section 3.2.4,
respectively).

3.2.1. Partitioning into nice subarrangements
Let I ⊆L be a set of segments that satisfies the following nice properties.

1. Every guard in V lies on some segment in I ,
2. the union Ī of segments in I is connected, and
3. there is a segment L ∈ I incident to the unbounded face F of the planar subdivision formed by the segments in L (in

other words, L has an endpoint on the boundary of F).

Note that such set I always exists (one may take I =L); in Lemma 3.4 we will establish the existence of a set I of “small”
cardinality. Now, if we place a sufficient number of searchlights at the guard locations and simultaneously and permanently
illuminate all segments in I , then the segments in L \I are partitioned into a number of sets L1, . . . , Lk of non-illuminated
subsegments (to which we shall simply refer as “segments” hereafter), where each L̄i is a maximal connected set in L̄ \ Ī;
see Fig. 17. Each Li , i = 1, . . . , k, together with I , constitutes a nice subarrangement of A with respect to I , denoted by
Ai = (Li, V , I). We call I the boundary of Ai . The above properties of I guarantee the following.

Observation 3.3. For each i ∈ {1, . . . , k}, every segment in Li has an endpoint in I .

http://mostwiedzy.pl

D. Dereniowski et al. / Theoretical Computer Science 591 (2015) 28–59 45

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

Fig. 17. (a) An arrangement A = (L, V) with a subset I ⊂ L of illuminated segments, marked gray. (b, c) Some subarrangements of A with respect to I .
(c) A segment in L may contribute a number of line segments in a subarrangement; here, segment s ∈L \ I contributes three line segments.

Fig. 18. (a) The set L(v) of all maximal line-segments that meet at v; here |L(v)| = 14. (b) The set L̃(v) ⊂ L̃ of all (non-illuminated) segments of a nice
subarrangement Ã = (L̃, V , I) that can be illuminated from v ∈ V ; here |L̃(v)| = 11. (c) The set L̃∗(v) of all edges contained in the segments in L̃(v);
here |L̃∗(v)| = 22.

The next lemma shows that a desired set I ⊆L can be constructed using at most 2g − 1 line segments in L.

Lemma 3.4. Let A = (L, V) be an (n, g)-arrangement of line segments. There exists a subset I ⊆L of size at most 2g −1 that satisfies
the three nice properties.

Proof. Let G = (V , E) be the graph with vertex set V , and in which two vertices vi and v j , i 	= j, are adjacent if and only
if either (i) L(vi) ∩ L(v j) 	= ∅ (i.e., vi and v j lie on a segment L in L), or (ii) some segments L′ ∈ L(vi) and L′′ ∈ L(v j)

intersect. We say that L or, respectively, L′ and L′′ , correspond(s) to the edge {vi, v j} of G; if there are several such pairs
(L′, L′′), we choose (and fix) any of them. Notice that since the union L̄ is connected, G is connected as well. Let T be a
spanning tree of G . First, for every edge of T , include in I either one segment or a pair of segments that corresponds to it.
Next, if no segment chosen so far has an endpoint in the unbounded face of the planar subdivision formed by the segments
in L, then choose an arbitrary segment in L that has an endpoint in the unbounded face and include it in I . The resulting
set I consists of at most 2g − 1 segments all taken from L, and satisfies the three nice properties. �

Taking into account the above lemma, by using at most 2 · (2g − 1) = 	(g) searchlights to permanently illuminate all
segments in I , we may focus only on bounding the number of searchlights that are needed to search any (single) nice
subarrangement of A with respect to the boundary I . Our idea for proving the existence of such a searching strategy that
uses ‘few’ searchlights is built on a nested “balanced” dissection method, discussed in the next sections.

3.2.2. Splitters and induced subarrangements
Let Ã = (L̃, V , I) be a nice subarrangement with respect to I of a given arrangement A = (L, V). Since I induces a

partition of A, a line segment L ∈ L may contribute several segments in L̃. Hence now, for v ∈ V , L̃(v) denotes the set of
all segments in L̃ that can be illuminated from v (by illuminating the line segments in L(v)), see Fig. 18(a, b); note that
|L̃| = O (n2). Next, for a segment L̃ ∈ L̃(v), the line segment in L(v) that contains L̃ is called the representative of L̃ and
is denoted by r(L̃). Finally, for a subset S̃ ⊆ L̃, the set of representatives of elements in S̃ is denoted by r(S̃); note that
|r(S̃)| ≤ |S̃|.

Let us consider the case in which the segments in L̃ lie within a bounded face F of the planar subdivision formed by the
segments in I; the case where F is unbounded is discussed in Subsection 3.2.6. A splitter S ⊂ F for the face F is defined as
any line segment, not necessarily in L̃, whose endpoints are in the union Ī of segments in I and that has no other point in
common with Ī . Note that S may contain up to two segments in L̃, and we use L̃(S) to denote the set of such segments.
On the other hand, S may contain no segment in L̃. We denote by X̃ (S) the set of segments in L̃ that intersect the interior
of S but do not intersect any of the elements in L̃(S). See Fig. 19(a). Note that X̃ (S) may be empty.

Suppose now we simultaneously illuminate the segments in r(L̃(S) ∪ X̃ (S)) (in addition to those in I) so that I ∪
r(L̃(S) ∪ X̃ (S)) is now a boundary for A. Then, by Observation 3.3, I ∪ r(L̃(S) ∪ X̃ (S)) satisfies the nice properties (1–3),
and the segments in L̃ that are not illuminated form a number of nice subarrangements of Ã induced by S; see Fig. 19(b) for

http://mostwiedzy.pl

46 D. Dereniowski et al. / Theoretical Computer Science 591 (2015) 28–59

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

Fig. 19. (a) A subarrangement Ã= (L̃, V , I): the splitter is marked with the bold dashed gray line, and the elements of X̃ (S) are marked with bold black
lines; notice that |L̃(S)| = 1. (b) The subarrangements induced by S .

an illustration. (If all segments in L̃ are illuminated, then we consider the result to be an empty subarrangement (∅, V , I ∪
r(L̃(S) ∪X̃ (S))).) This method may be used recursively but it has two potential problems that we need to overcome. The first
problem is that the set X̃ (S) may be too large, forcing the searching strategy to use too many searchlights simultaneously.
This issue is addressed in Section 3.2.4. The second problem is the depth of recursion — this problem is addressed in the
next section.

3.2.3. Balanced splitters
A maximal subsegment L of a segment in L̃ such that the interior of L has no points in common with other segments

in L̃ ∪ I , is called an edge. Note that the only points that an edge L may have in common with other segments in L̃ ∪ I
are its endpoints.

Let L̃∗(v) denote the set of all edges contained in the segments in L̃(v). See Fig. 18(c) for an illustration. A natural
divide-and-conquer strategy for searching a nice subarrangement Ã is to divide it by using a splitter into a number of
“balanced” subarrangements, and the measure we use for balancing subarrangements is related to the size of L̃∗(v). Notice
that

∑
v∈V |L̃∗(v)| = O (n2).

Let Ã = (L̃, V , I) be a nice subarrangement and let v ∈ V be such that |L̃(v)| ≥ 1. We say that a splitter S for any face
in Ã is balanced with respect to v if |L̃∗

i (v)| ≤ 2|L̃∗(v)|/3 for all 1 ≤ i ≤ k, where Ãi = (L̃i, V , I ∪ r(L̃(S) ∪ X̃ (S))), 1 ≤ i ≤ k,
are the nice subarrangements of Ã induced by S . If v is clear from the context, then we simply say that S is balanced.

Lemma 3.5. Given a nice subarrangement Ã = (L̃, V , I), for any v ∈ V such that |L̃(v)| ≥ 1, there exists a balanced splitter with
respect to v.

Proof. (See Fig. 20 for an illustration.) Consider a line segment L ∈ L̃(v). L is contained in a face F of the planar subdivision
formed by the segments in I . If L has one of its endpoints in the interior of F , then we (temporarily) extend L within
F until it hits the boundary of F . Now, by cutting along all (extended or not) line segments in L̃(v), we partition F
into several subfaces F1, . . . , Fq . We refer to these cuts as essential diagonals. Next, by adding, as necessary, more internal
(non-essential) diagonals whose endpoints lie on segments in I we triangulate arbitrarily each face Fi , i = 1, . . . , q. (Note
that the non-essential diagonals, in general, are not segments in L̃(v) and contain no segments in L̃(v).) Clearly, such a
triangulation exists. We obtain a partition of F into triangles whose dual graph is a tree T with maximum degree at most
three [19].

Now, to each edge e of T we assign a weight w(e) that equals the number of edges in L̃∗(v) contained in the diagonal
to which e corresponds. Note that w(e) ≤ n − 3 for each diagonal e, since e can intersect with at most n − 4 segments
within F , excluding L and the three or more segments forming ∂ F . Finally, by directing each edge e of T toward the
side having a larger sum of edge weights (breaking ties arbitrarily), we obtain a subcubic directed weighted tree with the
following property: there is at least one edge e incident to a sink vertex of T such that removal of e splits T into two
subtrees, each having a total edge weight sum of no greater than 2/3 of the total edge weight sum of T .13 The diagonal to
which e corresponds is a desired balanced splitter with respect to v . �

We search a nice subarrangement Ã = (L̃, V , I) using the following recursive divide-and-conquer strategy: Choose a
guard v ∈ V arbitrarily, and find a balanced splitter S with respect to v based on the above lemma, illuminate the segments
in r(L̃(S) ∪ X̃ (S)) (in addition to those in I), and then, using the same strategy with respect to this v , search each of
the nice subarrangements induced by S . Every branch of recursion continues until we arrive at a nice subarrangement
Ãv = (L̃v , V , Iv) such that L̃∗

v (v) = ∅. (We say Ãv is empty with respect to v .) We then select another guard u ∈ V and
apply the same recursive strategy to Ãv with respect to u, until we obtain a nice subarrangement that is empty with
respect to both v and u. Continuing the above strategy over all guards in an arbitrary order, we eventually arrive at a

13 The fact of existence of a balanced 1-edge separator in a weighted tree of bounded degree seems to be a folklore result and has already appeared in the
literature. However, we failed to affiliate its authorship, and the proof we present is a modification of the proof for 1-node separators in trees, presented
by Satish Rao in his lecture notes on foundations of parallel and distributed systems.

http://mostwiedzy.pl

D. Dereniowski et al. / Theoretical Computer Science 591 (2015) 28–59 47

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

Fig. 20. Illustration for the proof of Lemma 3.5 (continuing with the example in Fig. 18). Essential diagonals are marked with bold black lines and only
non-zero weights in the directed dual tree T of the triangulation are shown. Edge e incident to the sink vertex (marked with the solid dot in the left figure)
corresponds to a desired balanced splitter S with respect to v in the right figure (note that here, S ∈ L̃(v)): there are 9 ≤ 2

3 · |L̃(v)| = 2
3 · 22 = 14 2

3 edges
contributed by segments in L(v) on both sides of S .

subarrangement ÃV = (∅, V , IV) that is empty with respect to all guards in V and hence is completely illuminated. By
Lemma 3.5 and by the fact that |L̃∗(v)| = O (n2) for each v ∈ V , the depth of the recursion leading to ÃV is O (g · log n).14

What is the total number of searchlights that are sufficient? Assume for now that for every balanced splitter S that
we encounter in the above process, the number x(S) of points that the segments in r(X̃ (S)) have in common with S is
bounded by some constant c ≥ 0. Then dividing an arrangement into the subarrangements induced by S requires at most c
searchlights, and consequently, no more than O (g logn) searchlights will be used simultaneously (by all guards, and hence
by any single guard) each time a subarrangement that is empty with respect to all guards is reached at a deepest level of
recursion. Therefore, the above recursive procedure can be executed successfully if we place O (g log n) searchlights at every
guard, and hence the total number of searchlights used by all guards is O (g2 log n).

However, if no such c exists, in particular, if x(S) = 	(n) holds, then unless we modify the strategy presented above in
which all segments in r(L̃(S) ∪ X̃ (S)) are illuminated simultaneously, the total number of searchlights needed may exceed
O (g2 log n). In the next section we overcome this difficulty (informally speaking) by using a sequence of “separators” that
separate the sides of S “piece by piece” and isolate the subarrangements induced by S one by one. Each separator consists
of O (1) segments, and consequently O (g2 log n) remains an upper bound on the total number of required searchlights.

3.2.4. Small separators through splitters
Let Ã = (L̃, V , I) be a nice subarrangement, v ∈ V be any guard and let, as before, F be a bounded face of the planar

subdivision formed by the segments in I . Following the previous notation, let S be a balanced splitter of Ã with respect
to v whose existence is guaranteed by Lemma 3.5. Without loss of generality assume that S is vertical and F forms a
simple polygon.15 Refer to the two induced (sub)faces Fi of F , i = 1, 2, as the left and right faces, respectively. Partition the
boundary of F into three parts: the endpoints of S , the (open) left half ∂ F1, and the (open) right half ∂ F2. We say that a
line segment L ∈ L̃ \ L̃(S) is left with respect to S if either (i) it has an endpoint in ∂ F1, or (ii) it shares an endpoint with S
and lies within F1. Analogously, L ∈ L̃ \ L̃(S) is right with respect to S if either (i) it has an endpoint in ∂ F2, or (ii) it shares
an endpoint with S and lies within F2. See Fig. 21(a), which illustrates how to identify left and right segments in L̃. Note
that a segment may be both left and right, and by Observation 3.3, every segment in L̃ \ L̃(S) is left or right.

Our algorithm for searching subarrangement A is based upon the concept of a separator of a curve, and an (S, x)-curve,
where x ∈ S belongs to a segment in X̃ (S). Before we formally introduce them, let us sketch the role they play in our final
algorithm (see Fig. 22 for an illustration). For searching a nice subarrangement, we determine all points xi that S has in
common with X̃ (S). Having those points increasingly sorted according to their y-coordinates, we move along S starting
with x1 and visiting all consecutive points xi one by one. Once we are done processing some point xi , it is guaranteed that
some face Fi ⊂ F that contains the segment bxi , where b is the bottom endpoint of S , is clear. The border of Fi is formed by
segments of I (this is the part that coincides with the boundary of the nice subarrangement) and an (S, xi)-curve Ci (this
is the part of the boundary of Fi that lies within F and intersects some segments of the subarrangment; it may coincide
with some segments in I). Clearly, such an (S, xi)-curve is an artificial object from the perspective of a search strategy
because many points of such a curve do not belong to any segment in L̃ ∪ I . However, the points of Ci that do not belong
to segments in L̃ ∪ I cannot be used by a fugitive and hence in order to guarantee that the fugitive cannot cross Ci , it
is enough to illuminate all its points that belong to some segments in L̃, i.e., to the segments that form a separator of a
curve. In our strategy, provided that all segments within Fi are clear and all segments of a separator of Ci are illuminated

14 Observe that, for a segment L̃ ∈ L̃(w), w ∈ V , by illuminating its representative r(L̃) ∈ L(w), it may happen that we illuminate several other segments
in L̃(w). Thus, our recursion might have stopped earlier.
15 If F forms a weakly simple polygon then, in order to define left and right segments properly (for the definition of left and right segments, see below),

we have to define ∂ F1 and ∂ F2 more carefully, since they may overlap.

http://mostwiedzy.pl

48 D. Dereniowski et al. / Theoretical Computer Science 591 (2015) 28–59

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

Fig. 21. (a) A subarrangement Ã and its left (dashed) and right (dotted) segments with respect to a splitter S . (b) A splitter S , a (dotted gray) curve C and
its (S, x)-separator (the black bold lines).

Fig. 22. (a) An illustration of the idea of the final algorithm. (a) (Separator of) Ci is illuminated and all segments within face Fi are recursively searched.
(b) (Separator of) Ci remains illuminated, (separator of) Ci+1 starts being illuminated, and we recursively search all segments within Fi+1 \ Fi . Observe
that no segment in L intersects the open segment xi xi+1. (c) (Separator of) Ci stops being illuminated, (separator of) Ci+1 remains illuminated, and all
segments within Fi+1 are recursively searched.

along with the ones in I , the algorithm starts clearing segments within the next face Fi+1 ⊂ F . To that end, the segments
in a separator of the (S, xi+1)-curve Ci+1 are first illuminated. Then, the nice subarrangements between Ci and Ci+1 are
recursively cleared (i.e., the ones within Fi+1 \ Fi). The processing of xi+1 finishes by keeping illuminated only segments
in I and the separator of Ci+1. The formal description of our algorithm is provided in Section 3.2.5, and this section is
devoted to a proof that one can find for each point xi the corresponding (S, xi)-curve having a separator of fixed size.

Let C ⊂ F be a curve that may have points in common with the boundary of F . A subset S ⊆ L̃ of segments forms a
separator of C if every point that C has in common with a segment in L̃ belongs to some segment in S ∪ I . Clearly, any
curve C ⊂ F has a separator, and a minimum separator of C is one having the minimum cardinality.

Consider now a non-illuminated point x ∈ S that belongs to a segment in X̃ (S). Let C ⊂ F be a curve such that (see
Fig. 21(b)):

a) x ∈ C ∩ S;
b) C does not intersect the open line segment bx, where b is the bottom endpoint of S;
c) both endpoints c1 and c2 of C belong to the boundary I;
d) c1 ∈ ∂ F1 and c2 ∈ ∂ F2; in particular, if C is closed, then C touches I at one of the endpoints of S (and then both c1

and c2 correspond to this endpoint).

Any curve that satisfies the above condition is called an (S, x)-curve. We emphasize that C may touch and/or move along
some segments in I several times.

Clearly, there exists a curve C satisfying (a–d), and we call any separator of such C an (S, x)-separator. The weight of C is
then defined as |S|, where S is a minimal (S, x)-separator of C . For two points x, y ∈ C , let C(x, y) denote the (closed) part
of C between points x and y.

http://mostwiedzy.pl

D. Dereniowski et al. / Theoretical Computer Science 591 (2015) 28–59 49

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

Fig. 23. There is no (S, x)-curve of weight less than 16 that crosses the splitter S exactly once.

We now prove a crucial lemma in our analysis. In particular, in this lemma we prove two claims. The first claim is
about the existence of a small (of fixed size) (S, x)-separator for each non-illuminated point x ∈ S that belongs to a segment
in X̃ (S). The second claim is more subtle and, informally speaking, it is related to the way how the separators are used in
our final algorithm. To give a sketch of this part of our method, in our algorithm for two consecutive (distinct) points x′

1

and x′
2 on S that belong to two segments in X̃ (S), the relevant (S, x′

1)- and (S, x′
2)-separators S1 and S2, respectively, are

illuminated and we recursively search all subarrangements ‘between’ those separators. To bound the depth of recursion by
O (log n), we need to guarantee that separators S1 and S2 are ‘safe’ (see the definition below). Note that the separator size
only influences the number of guards used in each recursion level, but not the depth of recursion. The crucial condition that
allows us to bound the depth of recursion is related to the number of edges in L̃∗(v), which can be informally explained
as follows. Recall that the splitter S is selected carefully to be balanced, i.e., on each of its sides there is a constant fraction
of all edges in L̃∗(v). On one side of S we have edges in L̃∗(v) contained in left segments from L̃(v), and on the other
side of S — the edges in L̃∗(v) contained in right segments from L̃(v). Since the (S, x)-curves are by definition allowed to
cross the line segment xt , where t is the top endpoint of S , it could potentially happen that an edge in L̃∗(v) contained
in a left segment and an edge in L̃∗(v) contained in a right segment could end up in the same nice subarrangement for
which a recursive call is performed. We want to exclude this possibility to guarantee the recursion depth of O (logn), and
the selection of ‘safe’ separators defined below will provide us this desired property.

Let C be an (S, x)-curve. Recall that S is a balanced splitter with respect to v ∈ V , and x ∈ S is a non-illuminated point
that belongs to a segment in X̃ (S). If C crosses S only at x, then any separator of C is called safe. Suppose now that C
crosses S three times at points x, x′′

1 and x′′
2, where x is closer to b than x′′

1, and x′′
1 is closer to b than x′′

2 (see Fig. 31 for
an illustration). Let S be a separator of C . For any set of segments S ′ ⊆ L̃, S ∪ S ′ is clearly an (S, x)-separator, which is
not minimal if S ′ \ S 	= ∅. Now, let Fx be the subface of F bounded by C and x′′

1x′′
2 (again, see Fig. 31). We say that the

(S, x)-separator S ∪ S ′ is safe for C if no subarrangement Ãx = (L̃x, V , I ∪ r(S ∪ S ′)) that has a non-illuminated segment
L ∈ L̃x such that L ∩ Fx 	= ∅, has both a subsegment of a right segment and a subsegment of a left segment in L̃(v) with
respect to S .

Note that in the above definition we focus on curves C that cross S either once or three times. This is a consequence of
the proof of the following lemma. In particular, one could allow arbitrary number of crossings as long as it is guaranteed
that the crucial requirement is met, that is: No subarrangement Ãx = (L̃x, V , I ∪ r(S ∪ S ′)) that has a non-illuminated
segment L ∈ L̃x such that L ∩ Fx 	= ∅, has both a subsegment of a right segment and a subsegment of a left segment in L̃(v)

with respect to S . However, in our following proof we are able to guarantee that we can always find C with either one or
three crossing, and for this reason we keep the above definition simpler by excluding arbitrary number of crossings.

Lemma 3.6. Let S be a splitter for Ã= (L̃, V , I) with respect to v ∈ V . For each x ∈ S that belongs to a segment in X̃ (S), there exists
an (S, x)-curve C with a safe separator of size at most 15.

Briefly, the idea of the proof is as follows. We take an (S, x)-curve that crosses the splitter S exactly once and has
minimum weight. If the weight is bounded by 15, then we have found a desired safe (S, x)-separator. (Fig. 23 provides an
example where any (S, x)-curve crossing the splitter S exactly once is of weight at least 16.) Otherwise, we modify this
curve so that the new (S, x)-curve will cross S three times and have a safe separator. Moreover, the latter is of size at most
15 as required.

Proof. Of all the simple (S, x)-curves that have one point in common with the internal part of S , choose one, C with
endpoints c1 and c2, of minimum weight. Assume that C is not closed, i.e., c1 ∈ ∂ F1 and c2 ∈ ∂ F2; we omit a similar
argument for the case in which C is closed, i.e., c1 = c2.

Consider now a minimum separator S of C and let L1 ∈ S be a line segment such that x ∈ L1. Suppose that L1 is left.
Now, if C does not go along L1 from c1 to x within F1, that is, C(c1, x) ∩ F1 	= L1 ∩ F1, we modify C by replacing C(c1, x) with
the line segment c′

1x, where c′
1 ∈ ∂ F1 is an endpoint of L1. The new C is a simple (S, x)-curve, is of the same weight, and

still has one point in common with the internal part of S . Hence in the following, we assume that C(c1, x) ∩ F1 = L1 ∩ F1.

http://mostwiedzy.pl

50 D. Dereniowski et al. / Theoretical Computer Science 591 (2015) 28–59

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

Now, since C is simple, C(c1, x) ∩ F1 = L1 ∩ F1, and C has one point in common with the internal part of S , without loss
of generality we may additionally assume that for any L ∈ L̃, L ∩ C ∩ F2 has at most one connected component, i.e., it is an
empty set, a point, or a segment. Indeed, if this is not the case, then there exist two distinct points y, z ∈ L ∩ C ∩ F2, where
y appears before z when C is traversed from c1 to c2. Then, C can be replaced with C(c1, y) ∪ yz ∪ C(z, c2), with the same
separator S of C .

The above assumption, in particular, the fact that no three segments in S may now have a point in C ∩ F2 in common,
allows us to order the segments in S = {L1, . . . , Lk} according to their first appearance along C ∩ F2 when C is traversed
from c1 to c2.

Recall that L1 is left. Now we prove that all but possibly Lk are also left segments. If there is no right segment in S or
k = 1, then the claim follows; so let j ∈ {2, . . . , k} be the smallest index such that L j is right. We argue that there exists
y ∈ F2 ∩ C ∩ L j . Suppose for a contradiction that C and L j have no point in common in F2. But then, C(c1, x) ∩ F1 = L1 ∩ F1
and the fact that C has one point in common with S imply that S \ {L j} is an (S, x)-separator of C , which gives the required
contradiction with the choice of C . So let y be the first point in F2 that C and L j have in common when C is traversed
from c1 to c2.

We now construct a curve C′ from C by replacing C(y, c2) by the line segment yc′
2, where c′

2 ∈ ∂ F2 is an endpoint
of L j . Again, since C′ is a simple (S, x)-curve, we obtain j = k by the minimality of C . This proves that L1, . . . , Lk−1 are left
segments, as required.

Recall that we assumed L1 to be a left segment, and in such a case S is said to be left (see Fig. 24(a)). On the other
hand, if L1 is right, by similar arguments, in particular, by ordering the segments in S = {L1, . . . , Lk} according to their
first appearance along C ∩ F1 when C is traversed from c2 to c1, we may conclude that segments L1, . . . , Lk−1 are right
segments; in such a case S is said to be right. (Notice that S may be both left and right).

Assume in the following that S is left. (The argument for the other case is symmetric and is omitted.) Clearly, if |S| =
k ≤ 15, then there is nothing to prove, so assume that k > 15.

The remaining part of the proof is divided into two parts. In the first part we obtain a new (S, x)-curve (that crosses S
three times) and has weight at most 15. In the second part, we construct a safe (S, x)-separator for this curve, also of size
at most 15, as stated in the lemma.

We start the first part of the proof by introducing some notation. Let L̃+ ⊆ X̃ (S) ⊆ L̃ be the set of left segments that
intersect the vertical open line segment xt , where t is the top endpoint of S , and analogously, let L̃− ⊆ X̃ (S) ⊆ L̃ be the
set of left segments that intersect the vertical line segment bx, where b is the bottom endpoint of S; see Fig. 24(b) for
an illustration and notice that L1 ∈ L̃− . Next, let R̃ ⊂ L̃ denote the set of all right segments. We say that two segments
L′, L′′ ∈ L̃− ∪ L̃+ ∪ R̃ form a good pair (L′, L′′) if and only if a point of L′ can be connected to a point of L′′ with a “free”
curve, where a simple curve is called free if it is contained in F2 and has no point in common with a segment in L̃, except
for its endpoints. In particular, if L′ and L′′ intersect, then they form a good pair (in this case, the free curve degenerates to
the point of their intersection).

For i ∈ {1, . . . , k}, let X (i) denote the set of all segments in L̃ having a point in common with Li ∩ C ∩ F2. (See Fig. 24(c)
for an illustration; we emphasize that X (i), X (i + 1) and X (i + 2) may have an element in common.) Next, for i, j ∈
{1, . . . , k}, i ≤ j, let X j

i = ⋃ j
t=i X (t). Observe that every segment that intersects C ∩ F2 belongs to X k

1 .
Before continuing, let us provide some intuition regarding the above definitions. Good pairs play an important role in our

analysis because some types of good pairs are proved to be non-existent while we argue that some other good pairs have
to exist — and we utilize the latter ones to construct our new (S, x)-curve. The fact that certain good pairs are not allowed
follows from observations that otherwise one could use them to construct a ‘bypass’ that provides a new (S, x)-curve having
a separator of smaller size than C , contradicting the minimality of C . For example, we argue (Claim 3.8) that there is no
good pair in X k−3

1 × R̃. Intuitively, such a good pair in X (i) × R̃ for some i ∈ {1, . . . , k − 3} gives us a ‘shortcut’ that leads
from Li directly to ∂ F2 bypassing Li+1, . . . , Lk and thus providing a smaller separator. Similarly, a good pair in Xm

1 ×X k
m+4

for some m ∈ {1, . . . , k − 4} can be used to bypass the segments Lm+1, . . . , Lm+3 (see Claim 3.9). Having excluded those good
pairs, we prove in Claims 3.10 and 3.11 that two certain good pairs need to exist. Those pairs will be used to construct our
new curve by taking C and creating ‘bypass’ that starts at one of the segments L2, L3, L4 and ends at one of the segments
Lk−6, Lk−5, Lk−4. This ‘bypass’ introduces the part of the new curve that crosses S twice, which (including the intersection
of S and C at x) implies that the new curve will cross S three times. (We point out that the new curve may have points in
common with the boundary I of F .)

Claim 3.7. No segment in X k−2
1 can be connected with a free curve to ∂ F2.

Proof of Claim 3.7. (See Fig. 25.) Contrary to our claim, suppose there exists a free curve C′ connecting a segment L′ ∈
X (i) with ∂ F2, for some i ∈ {1, . . . , k − 2}; notice that C′ may intersect C at several points. Let p1 be the endpoint of
C′ such that p1 ∈ L′ and let p0 ∈ L′ ∩ C ∩ F2 be the closest point to p1 (along L′); note that p0 = p1 may hold. The
concatenation of C(c1, p0), p0 p1 and C′ includes a simple (S, x)-curve that intersects S exactly once, with {L1, . . . , Li, L′} as
its (S, x)-separator. (Notice that this concatenation may have a loop.) Since i + 1 < k, we obtain a contradiction with the
minimality of C . �
Claim 3.8. There is no good pair in X k−3 × R̃.
1

http://mostwiedzy.pl

D. Dereniowski et al. / Theoretical Computer Science 591 (2015) 28–59 51

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

Fig. 24. (a) S = {L1, L2, L3, L4} is a left separator: L1, L2, L3 are left segments and L4 is right. (b) Sets L̃+ and L̃− (black and gray dashed lines, respectively).
(c) Sets X (1), X (2), X (3) and X (4) (marked with bold lines).

Fig. 25. An illustration of the proof of Claim 3.7. Here, L′ ∈ L̃− . The gray region indicates the possible range of left segments in X k−2
1 .

Proof of Claim 3.8. (See Fig. 26.) Contrary to our claim, suppose there exists a free curve C′ connecting a segment L′ ∈
X (i) with a segment L′′ ∈ R̃, for some i ∈ {1, . . . , k − 3}; again note that C′ may intersect C at several points. Let p1
and p2 be the endpoints of C′ such that p1 ∈ L′ and let p0 ∈ L′ ∩ C ∩ F2 be the closest point to p1 (along L′); note that
p0 = p1 may hold. Then the concatenation of C(c1, p0), p0 p1, C′ and p2z, where z ∈ ∂ F2 is the endpoint of L′′ , includes
a simple (S, x)-curve that intersects S exactly once, with {L1, . . . , Li, L′, L′′} as its (S, x)-separator. (Again notice that the
aforementioned concatenation may have a loop.) Since i + 2 < k, we obtain a contradiction with the minimality of C . �
Claim 3.9. There is no good pair in Xm ×X k for each m ∈ {1, . . . , k − 4}.
1 m+4

http://mostwiedzy.pl

52 D. Dereniowski et al. / Theoretical Computer Science 591 (2015) 28–59

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

Fig. 26. An illustration of the proof of Claim 3.8. Here, L′ ∈ L̃− . The gray region indicates the possible range of left segments in X k−3
1 .

Fig. 27. An illustration of the proof of Claim 3.9. Here, L′ ∈ L̃+ and L′′ ∈ L̃− . The gray region indicates the possible range of left segments in Xm
1 ∪X k

m+4.

Proof of Claim 3.9. (See Fig. 27.) Contrary to our claim, suppose there exists a good pair (L′, L′′) ∈ X (i) × X (j), for some
i ∈ {1, . . . , m} and j ∈ {m + 4, . . . , k}. Let C′ be a free curve with endpoints p1 and p2 that connects L′ and L′′ , where p1 ∈ L′
and p2 ∈ L′′; again notice that C′ may intersect C in several points. Let p0 ∈ L′ ∩C ∩ F2 be the closest point to p1 (along L′),
and let p3 ∈ L′′ ∩ C ∩ F2 be the closest point to p2 (along L′′). The concatenation of C(c1, p0), p0 p1, C′ , p2 p3 and C(p3, c2)

includes a simple (S, x)-curve that intersects S exactly once, with {L1, . . . , Li} ∪ {L′, L′′} ∪ {L j, . . . , Lk} as its (S, x)-separator.
Since the size of the latter is equal to i + 2 + (k − j + 1), which is strictly smaller than k = |S|, we obtain a contradiction
with the minimality of C . �
Claim 3.10. There exists a good pair (L′

1, L
′′
1) ∈ L̃− × L̃+ such that {L′

1, L
′′
1} ∩X 4

2 	= ∅.

Proof of Claim 3.10. Note that X 4
2 	= ∅ because {L2, L3, L4} ⊆ X 4

2 . Also, all segments in X 4
2 are left because S is left. If

X 4
2 ∩ L̃− 	= ∅ and X 4

2 ∩ L̃+ 	= ∅, then the claim follows. Indeed, consider a pair (L′
1, L′′

1) ∈ (X 4
2 ∩ L̃−) × (X 4

2 ∩ L̃+) that
minimizes the length of C(p′, p′′), where p′ ∈ L′

1 ∩ C and p′′ ∈ L′′
1 ∩ C , respectively. Then, (L′

1, L
′′
1) is a required good pair.

Assume without loss of generality that X 4
2 ∩ L̃+ = ∅ (the case where X 4

2 ∩ L̃− = ∅ is symmetric). Hence, X 4
2 ∩ L̃− 	= ∅

because (X 4
2 ∩ L̃−) ∪ (X 4

2 ∩ L̃+) =X 4
2 by Claim 3.8. Assign now colors to line segments as follows:

• gray is assigned to line segments in X 1
1 ;

• red is assigned to line segments in X 4
2 ;

• black is assigned to line segments in X k
5 ;

• blue is assigned to line segments in L̃+;
• green is assigned to line segments I ∪ R̃.

Notice that not all segments in L̃− have a color assigned, i.e., segments that do not intersect C in F2, or in other words,
those in L̃− \X k

1 . On the other hand, some segments may have more than one color assigned. Suppose for a contradiction
that the claim does not hold, i.e., there is no good pair (L′

1, L′′
1) ∈ L̃− × L̃+ such that {L′

1, L
′′
1} ∩X 4

2 	= ∅.
Let F ′ be the subface of F bounded by C and the boundary of F such that xt ⊂ F ′ . By Claims 3.7 and 3.8, there is no

good pair (L′, L′′) of segments such that L′ has been assigned color red and L′′ has been assigned color green. Consequently,
there exists in F2 ∩ F ′ a simple polyline P with both endpoints on C separating red segments from green segments such
that each point of P either belongs to no segment or belongs to a gray or a black segment, and P contains a point of a gray
segment and contains a point of a black segment. (See Fig. 28.) This is due to the following observations: first, segments
(in L−) with no color have no point in common with F2 ∩ F ′ since none of these segments intersects either C in F2 or xt;
second, there is no good pair formed by a red and blue segments. In such P , there exist two points p′ and p′′ that belong to
gray and black segments L′ and L′′ , respectively, and the open curve P(p′, p′′) has no point in common with any segment.
This implies that (L′, L′′) is a good pair, which then contradicts Claim 3.9. �

http://mostwiedzy.pl

D. Dereniowski et al. / Theoretical Computer Science 591 (2015) 28–59 53

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

Fig. 28. An illustration of the proof of Claim 3.10. The gray region indicates the possible range of left segments in X 4
2 .

Fig. 29. An illustration of the construction of an (S, x)-curve C̃ that intersects S more than once but at most three times and has a separator S̃ of size at
most 15.

By the same arguments as above, we may derive the following claim.

Claim 3.11. There exists a good pair (L′
2, L

′′
2) ∈ L̃− × L̃+ such that {L′

2, L
′′
2} ∩X k−4

k−6 	= ∅.

Now, having proved the above claims, we continue by constructing the desired (not necessarily simple) (S, x)-curve C̃ of
weight at most 15 (see Fig. 29 for an illustration). Let (L′

1, L
′′
1) ∈ L̃− × L̃+ be a good pair from Claim 3.10 and let C′

1 be a
free curve that connects L′

1 and L′′
1. Similarly, let (L′

2, L
′′
2) ∈ L̃− × L̃+ be a good pair from Claim 3.11 and let C′

2 be a free
curve that connects L′

2 and L′′
2. Next, let C1 ⊆ L′

1 ∪ L′′
1 ∪ C′

1 be the simple curve whose one endpoint, denoted by p′′
1, is the

endpoint of L′′
1 in ∂ F1 and whose other endpoint, denoted by p′

1, is the closest point to p′′
1 (along C1) in C . Similarly, let

C2 ⊆ L′
2 ∪ L′′

2 ∪ C′
2 be the simple curve whose one endpoint, denoted by p′′

2, is the endpoint of L′′
2 in ∂ F1 and whose other

endpoint, denoted by p′
2, is the closest point to p′′

2 (along C1) in C . Finally, let P be the shortest (simple) curve contained
in L1 ∪ L′′

1 ∪ L′′
2 ∪ ∂ F1 that connects points x′′

1 and x′′
2, where x′′

1 = S ∩ C1 and x′′
2 = S ∩ C2.

Now, we observe that the concatenation of C(c1, p′
1), C1(p′

1, x
′′
1), P , C2(x′′

2, p′
2) and C(p′

2, c2) includes an (S, x)-curve C̃
with a possible overlapping only along L1 ∩ F1. (Recall that c1 and c2 are the endpoints of C , and c1 ∈ L1.) And C̃ has a
separator S̃ such that S̃ ⊆ {L1, . . . , L4, L′

1, L
′′
1, L′

2, L
′′
2, Lk−6, . . . , Lk−1, Lk}. Since |S̃| ≤ 15, the proof is completed.

In the remaining part of the proof, we construct an (S, x)-separator that is safe for C̃ . This separator consists of the
segments in S̃ and the two good pairs L′

1, L
′′
1 and L′

2, L
′′
2, respectively. We emphasize that the separator S̃ itself may not

be safe. Informally, the reason for this is the existence of a nice subarrangement that may contain segments that lie on
both sides of S because C̃ crosses S more than once (we refer here to the subarrangement from the definition of a ‘safe’
separator). This subarrangement may simultaneously contain subsegments of left and right segments in L̃(v). Thus, our
efforts will focus on proving that the addition of L′

1, L′′
1, L′

2, L
′′
2 to S̃ will further subdivide this subarrangement into nice

subarrangements with required properties. More precisely, we need to focus our analysis on a nice subarrangement Ãx

created by this subdivision and consisting, again, segments on both sides of S . The Ãx may contain a subsegment of a left
segment in L̃(v) but we argue that no subsegment of a right segment from L̃(v) is present in Ãx .

We start with the following technical lemma.

Claim 3.12. There is no good pair (L′, L′′) ∈ {L′
1, L

′′
1} × {L′

2, L
′′
2}.

Sketch of proof. The proof follows by arguments similar to those in the proof of Claim 3.9. Namely, if such a pair existed, we
could construct a “bypass” (curve) of a minimum separator of size at most four (contributed by segments in {L′

1, L′′
1, L′

2, L
′′
2}),

which together with segments in X 4
1 ∪X k

k−6 would imply the existence of a simple (S, x)-curve of weight at most 4 +4 +7 =
15 (since k ≥ 16) that intersects S exactly once. This gives a contradiction with the minimality of C . We omit the details. �

http://mostwiedzy.pl

54 D. Dereniowski et al. / Theoretical Computer Science 591 (2015) 28–59

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

Fig. 30. C1 ⊆ L′
1 ∪ L′′

1 ∪ C′
1 and C2 ⊆ L′

2 ∪ L′′
2 ∪ C′

2.

Fig. 31. In Fx , no non-illuminated subsegment of a left segment in L̃(v) exists that can be connected along a non-illuminated path to a non-illuminated
subsegment of a right segment in L̃(v).

We now introduce some notation (see Fig. 30 for an illustration). For i ∈ {1, 2}, let C′
i be a free curve in F2 that connects

L′
i and L′′

i and let Ci ⊆ L′
i ∪ C′

i ∪ L′′
i be the simple curve with the endpoints p′

i and p′′
i , where p′

i (resp. p′′
i) is the endpoint

of L′
i (reps. L′′

i) on ∂ F1. Note that p′
1, p′′

1, p′
2 and p′′

2 may not be distinct. Then, no point in C1 ∩C2 lies in F2 (since otherwise,
we obtain a contradiction with Claim 3.12). In particular, the segments in {L′

1, L′′
1, L′

2, L
′′
2} are distinct, and if either L′

1 and L′
2

or L′′
1 and L′′

2 intersect, then their intersections are not in F2 (but can lie on the splitter S).
Thus, keeping in mind also the minimality of C , we observe:

• The y-coordinate of the intersection x′
1 = L′

1 ∩ S is not smaller than the y-coordinate of the intersection x′′
1 = L′

2 ∩ S .
• The y-coordinate of the intersection x′′

1 = L′′
1 ∩ S is not greater than the y-coordinate of the intersection x′′

2 = L′′
2 ∩ S .

Next, we have the following claim.

Claim 3.13. There is no right segment in L̃(v) intersecting C2 .

Sketch of proof. The proof follows by arguments similar to those in the proof of Claim 3.8. Namely, if such a segment R
existed, we could construct a “bypass” (curve) with a minimum separator of size at most three (contributed by segments in
{L′

2, L
′′
2, R}), which together with segments in X k−4

1 would imply the existence of a simple (S, x)-curve of weight at most
k − 1 that intersects S exactly once. This contradicts the minimality of C . We omit details. �

For the (S, x)-separator S̃ of C̃ constructed above, define its (not necessarily minimal) separator

S◦ = S̃ ∪ {L′
1, L′′

1, L′
2, L′′

2}.
Observe that |S◦| ≤ 15. Let Fx be the subface of F bounded by P and x′′

1x′′
2 (Fig. 31). Consider now any subarrangement

Ãx = (L̃x, V , I ∪ r(S◦)) that has a non-illuminated segment L ∈ L̃x such that L ∩ Fx 	= ∅. We have the following claim.

Claim 3.14. No segment in L̃x is contained in a right segment in L̃(v).

Proof. Suppose on the contrary that there is in L̃x a non-illuminated subsegment R of a right segment in L̃(v). Then, R
intersects in F2 either L′

2 or C′
2. Due to Claims 3.8 and 3.13, none of those situations is possible, which gives a required

contradiction. �
Note that Claim 3.14 implies that S◦ is safe for C̃ , which completes the proof of Lemma 3.6. �

http://mostwiedzy.pl

D. Dereniowski et al. / Theoretical Computer Science 591 (2015) 28–59 55

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

3.2.5. Searching strategy for nice subarrangements
Let Ã = (L̃, V , I) be a nice subarrangement of an arrangement A = (L, V), let v ∈ V be selected arbitrarily and let

S be a balanced splitter in Ã with respect to v , whose existence is guaranteed by Lemma 3.5. Recall that for a set of
line segments X ⊆ L̃, r(X) is the (minimum) set of line segments in L whose illumination ensures that all line segments
in X are illuminated. Without loss of generality assume that S is vertical, with the bottom endpoint denoted by b. Let
X = {x1, . . . , xm} be the points that S has in common with segments in X (S); the points in X are ordered with respect to
the increasing y-coordinate. Next, let Ci , i ∈ {1, . . . , m}, be an (S, xi)-curve having a safe (S, xi)-separator S◦

i = {Li
1, . . . , L

i
ki
}

of size O (1); such Ci exists by Lemma 3.6. Let Fi , i ∈ {1, . . . , m}, denote the (bounded) face of the planar subdivision formed
by segments in I and the curve Ci such that bxi ⊂ Fi (condition (b) for Ci). Denote by xm+1 and Fm+1 the top endpoint
of S and the face of the planar subdivision formed by I such that bxm+1 ⊂ Fm+1, respectively.

Informally speaking, we construct a searching strategy that illuminates separators S◦
i one by one, keeping always the

current one and the previous one illuminated, and making recursive calls to search subarrangements ‘between’ the two
separators. We now describe the first few steps of this searching process formally, and then we provide a pseudocode for
constructing our searching strategy, together with its correctness proof.

Consider any subarrangement Ã1 = (L̃1, V , I ∪ r(L̃(S)) ∪ r(S◦
1)) whose non-illuminated segments in L̃1 lie within the

face F1; we emphasize that together with line segments in I , we illuminate at most two elements in r(L̃(S)) and all O (1)

line segments in r(S◦
1). The boundary I ∪ L̃(S) ∪ r(S◦

1) satisfies the nice properties (1–3). We apply a recursive call to Ã1,
which results in clearing Ã1. Then, we keep r(S◦

1) illuminated (but not r(L̃(S))).

Next, consider any subarrangement Ã2 = (L̃2, V , I ∪ r(L̃(S)) ∪ r(S◦
1) ∪ r(S◦

2)) whose non-illuminated segments in L̃2 lie
within F2. Together with the segments in I∪r(L̃(S)) ∪r(S◦

1), we now illuminate the segments in r(S◦
2), and I∪r(S◦

1) ∪r(S◦
2)

maintains the nice properties (1-3). Since S◦
1 and S◦

2 are the two separators whose curves C1 and C2 pass through the two
consecutive points x1 and x2 along our splitter S , respectively:

• If the elements in L̃2 lie within F1 ∩ F2, Ã2 is already clear because I ∪ r(S◦
1) is kept illuminated.

• Otherwise, that is if the elements in L̃2 lie within F2 \ F1, we apply a recursive call to Ã2.

Consequently, Ã2 becomes clear, and we turn off the searchlights illuminating r(S◦
1), keeping only the segments in r(L̃(S)) ∪

r(S◦
2) illuminated (together with I), to keep Ã2 (and any other subarrangement within F2) clear for the next step.

We apply the same argument to any subarrangement Ãi = (L̃i, V , I ∪ r(L̃(S)) ∪ r(S◦
i−1) ∪ r(S◦

i)), whose non-illuminated
segments in L̃i lie within Fi , i = 3, . . . , m + 1. Note that the segments within F \ Fm become clear when i = m + 1, which
eventually results in clearing the whole Ã.

The pseudocode of algorithm SNS (Search Nice Subarrangement) is given below. The algorithm takes a nice subarrange-
ment Â = (L̂, V , Î) and v ∈ V as input. In the first step, it is checked if Â is already cleared, and if this is the case, then
the computation stops. Otherwise, it may be the case that Â is not cleared but all line segments of the subarrangement Â
contained in L̂(v) are already cleared: then another guard in V is selected as v . Step 2 computes S , the points x1, . . . , xm+1

with the corresponding safe separators.16 The main part of SNS, i.e., Step 3, performs the clearing as described above.

Algorithm SNS(Â, v)

Step 1: If there are no contaminated line segments in L̂, then exit (the subarrangement Â is clear). If there are no con-
taminated line segments in L̂(v), then let (a new) v ∈ V be any guard with at least one contaminated line segment
in L̂(v).

Step 2: Let S be a balanced splitter of Â with respect to v . Determine the points x1, . . . , xm+1, a safe (S, xi)-separator S◦
i

and the face Fi for each i ∈ {1, . . . , m + 1}, where S◦
m+1 = ∅. Let F0 = ∅ and S◦

0 = ∅.
Step 3: For each i := 1, . . . , m + 1 (in this order) do:

Step 3a: Stop illuminating any line segments except for those in Î ∪ r(L̂(S)) ∪ r(S◦
i−1).

Step 3b: Illuminate additionally the line segments in r(S◦
i) so that the segments in Î ∪ r(L̂(S)) ∪ r(S◦

i−1) ∪ r(S◦
i) are

now illuminated.
Step 3c: For each nice subarrangement Âi of (L̂, V , Î ∪ r(L̂(S)) ∪ r(S◦

i−1) ∪ r(S◦
i)) within the face Fi \ Fi−1, call

SNS(Âi, v).

Theorem 3.15. Any nice (n, g)-subarrangement Ã= (L̃, V , I) can be searched with O (g2 · log n) searchlights.

16 Note that we use this algorithm to prove our upper bound on the number of searchlight needed for clearing a nice subarrangement and therefore we
skip the details of the efficiency of computing S and the separators. We only remark that there are O (n2) possible splitters S , for each splitter it can be
verified in polynomial time whether it is balanced or not and minimal separators can be obtained in polynomial time by a modification of a shortest path
algorithm.

http://mostwiedzy.pl

56 D. Dereniowski et al. / Theoretical Computer Science 591 (2015) 28–59

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

Fig. 32. Adding a virtual simple closed polyline P allows us to treat the unbounded face as a bounded one.

Proof. Given any nice subarrangement Ã = (L̃, V , I), the call to SNS(Ã, v), where v ∈ V is selected arbitrarily, results in
clearing Ã. This follows from a simple induction on the total number of representatives of contaminated line segments in L̃,
as we sketch below. The way the separators are illuminated in Steps 3a and 3b of Algorithm SNS gives two observations.
First, if a face Fi−1, i ∈ {2, . . . , m + 1}, contains no contaminated subsegment at the beginning of the i-th iteration of the
main loop in Step 3, then Fi−1 has no contaminated subsegment at the end of Step 3b in that iteration. Second, at the end
of Step 3c of this iteration, there is no contaminated subsegment in the face Fi \ Fi−1 (due to the induction hypothesis).
Thus, at the end of the (m + 1)-st iteration, Fm+1 has no contaminated subsegment, which implies that the input nice
subarrangement is clear. (Observe that each recursive call SNS(Ãi, v) results in decreasing the number of non-illuminated
representatives since S is balanced; see the discussion below.)

We now bound the number of searchlight that SNS uses for Ã. The analysis is divided into two parts: first we bound
the recursion depth, and then we bound the number of searchlights used by each instance of SNS.

Note that for a given choice of v ∈ V several (possibly zero) subsequent recursive calls to SNS take v as part of the
input. Then, if L̃(v) has no contaminated line segments, then another guard in V is selected and searching of the current
nice subarrangement continues. Thus, for bounding the depth of the recursion, it is enough to argue that for any choice of
v , after O (log n) recursive calls the input nice subarrangement has no contaminated line segments in L̃(v). This, however,
is due to the two following facts. First, in each call to SNS a balanced splitter S is selected: such a splitter exists by
Lemma 3.5. Second, any subarrangement Ãi , i ∈ {1, . . . , m + 1}, in Step 3c can have either a non-illuminated subsegment of
a left segment in L̃(v) or a non-illuminated subsegment of a right segment in L̃(v), but not both. This is due to the fact
that each separator S◦

i is safe; such separator exists by Lemma 3.6.
By Lemma 3.6, illuminating the separator S◦

i , i ∈ {1, . . . , m}, requires O (1) searchlights, and the procedure illuminates at
most two separators at a time. The maximum depth of recursion of SNS is O (log n) per guard and hence its total recursion
depth is O (g log n). Moreover, O (g log n) searchlights will be used simultaneously (by all guards, and hence by any single
guard) at a deepest level of recursion. Therefore, placing O (g log n) searchlights at each guard is sufficient and hence the
total number of searchlights used by all guards in SNS is O (g2 log n). Finally, by Lemma 3.4, |I| ≤ 2g − 1. �
3.2.6. Subarrangements within the unbounded face

We have assumed that non-illuminated segments of Ã = (L̃, V , I) are within a bounded face of the planar subdivision
formed by line segments in I . If non-illuminated segments are within the unbounded face F of this subdivision, then all we
need is to add a virtual simple closed polyline P ⊂ F to I such that P encloses I and shares a vertex only with one line
segment endpoint or one intersection of segments in I . See Fig. 32. Then essentially the same argument as above applies to
the section of the unbounded face enclosed by P . (The details are omitted.) Consequently, we obtain the following theorem.

Theorem 3.16. Any (n, g)-arrangement of line segments can be searched with O (g2 · log n) searchlights.

Proof. Let A = (L, V) be an (n, g)-arrangement of line segments. By permanently illuminating a set I ⊆ L of segments
using at most O (g) searchlights (Lemma 3.4), we first divide A into a number of nice subarrangements. Next, by Theo-
rem 3.15, we search each of the nice subarrangements, one by one, using O (g2 log n) searchlights. �
Corollary 3.17. For arrangements of line segments, we have s(n, g) = O (g2 · log n).

3.3. Upper bounds in terms of guard degrees

The argument leading to the upper bound on s(A) given in Theorem 2.4 for (n, g)-arrangements A = (L, V) of lines
carries over to the case of (n, g)-arrangements of line segments without any change. Therefore we have the following corol-
laries, where �(A) is the maximum number of guards in V that lie on a set of parallel line segments in L, degA(v) is the
number of maximal subsegments of line segments in L ending at v , and �(A) = maxv∈V degA(v).

Corollary 3.18. For any (n, g)-arrangement A = (L, V) of line segments, we have

s(A) ≤ min
{1

2

∑
degA(v) − �(A),n − 1

}
.

v∈V

http://mostwiedzy.pl

D. Dereniowski et al. / Theoretical Computer Science 591 (2015) 28–59 57

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

Fig. 33. An example of a grid.

Corollary 3.19. Let A be an (n, g)-arrangement of line segments with �(A) ≤ 4. Then

s(A) ≤ min{2g,n} − 1.

Additionally, if all guards belong to some lines that are all parallel, then s(A) ≤ min{g, n − 1}.

In particular, the above corollary can be applied for the case of grids. Recall — a grid G is a connected arrangement
of axis-aligned line segments, see Fig. 33 for an example. The problem of guarding a grid was introduced by Ntafos in
1986, who proved that the minimum guard set for a given n-segment grid can be found in O (n2.5) time [17]. For any grid
G = (L, V), we have �(G) ≤ 4 and |�(G)| = g , which results in the following corollary.

Corollary 3.20. For grids, we have s(n, g) ≤ min{g, n − 1}.

In particular, for a given (n, g)-grid G = (L, V), if V is minimal, then each guard in V requires at least one searchlight
to search G , which yields s(n, g) = g for the case of grids (see Fig. 7; recall that for grids we have � n

2 � ≤ g).

4. Concluding remarks

We conclude with a few open problems.

Problem 1. Provide better estimates on s(n, g) in the case of (n, g)-arrangements of lines. In particular, prove or disprove
that s(n, g) ≤ 2g .

Problem 2. Provide better estimates on s(n, g) in the general case of (n, g)-arrangements of line segments. Without any
strong evidence, we conjecture that the upper bound on s(n, g) can be improved up to O (g log �), which will then
match the lower bound proved in Subsection 3.1; in other words, we expect that the worst-case total number of search-
lights necessary to successfully search any (n, g)-arrangement strictly depends on the degree �(A) of an arrangement
A = (L, V) to be searched.

Problem 3. The function s(n, g) describes the total number of searchlights required by g guards. It is natural then to ask
what is the maximum number ṡ(n, g) of searchlights ever needed per some guard to search any (n, g)-arrangement of
line segments. Notice that the proofs of Theorems 3.2 and 3.16 imply that there are infinitely many arbitrarily large
arrangements A that require �(log �(A)) searchlights per a guard and ṡ(n, g) = O (g log n), respectively. Keeping in
mind the above conjecture for Problem 2, we expect that to search an (n, g)-arrangement A = (L, V) of line segments,
O (log�(A)) searchlights are needed per a guard in V .

Define the switch number as the minimum number of steps needed to search an arrangement using a given placement of
searchlights. The discussions leading to the proof of Theorem 2.4 and Corollary 3.18 show that an (n, g)-grid G = (L, V) of
lines or line segments can be searched in at most 3g + 1 steps using one searchlight at every guard (all searchlights are
aimed toward the left in step 1, and thereafter the searchlights, one by one, change directions at most three times). Focusing
only on the case of searching a grid of line segments using exactly one searchlight at every guard, we denote by sn(G) the
search number of grid G = (L, V), and by sn(n, g) the maximum of sn(G) over all (n, g)-grids. We then propose:

Problem 4. Given an (n, g)-grid G = (L, V) of line segments, determine sn(G). We expect this problem to be NP-hard, and
pose the problem of identifying non-trivial subclasses of grids for which the problem is solvable in polynomial time.

Problem 5. Obtain tight bounds on sn(n, g).

In the rest of this section we present the following initial result on Problem 5.

Theorem 4.1.

1. For any 1 ≤ g ≤ n − 1, sn(n, g) ≤ 3g + 1.

http://mostwiedzy.pl

58 D. Dereniowski et al. / Theoretical Computer Science 591 (2015) 28–59

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

Fig. 34. Grid Tg for the case k = 5, n = 32 and g = 16, where the black dots show the guard positions. Tg has a switch number sn(Tg) ≥ log2 g .

2. For every k = 1, 2, . . . , n = 2k and g = n/2, sn(n, g) ≥ log2 g.

Proof. The first claim holds because, as discussed above, sn(G) ≤ 3g + 1 for any (n, g)-grid of line segments. To prove the
second claim, we show by induction that for any k = 2, 3, . . . the triangular (n, g)-grid Tg consisting of n = 2k line segments
and g = n/2 guards depicted in Fig. 34 satisfies sn(Tg) ≥ log2 g . (The case k = 1, n = 2 and g = 1 is trivial.) Since every
intersection in Tg has to be illuminated by two searchlights (one aimed down and one aimed right) simultaneously at least
once during a search (we say an intersection is checked when this happens), it suffices to show that it takes at least log2 g
steps to check all intersections of Tg . We now show OPT(g) ≥ log2 g , g = 2k−1, by induction on k, where OPT(g) denotes
the minimum number of steps sufficient to check all intersections in Tg .

Obviously OPT(g) ≥ log2 g holds for k = 2 (n = 4 and g = 2). Now, consider Tg for some k ≥ 3, and assume OPT(g/2) ≥
log2(g/2) = log2 g − 1. Without loss of generality we may assume that all g searchlights are on at every step while all
intersections in Tg are checked in optimal OPT(g) steps. Thus at every step at least g/2 searchlights are either aimed right
or aimed down. Fix a step t , and let Tg/2 be any sub-grid of Tg consisting only of g/2 guards whose searchlights are
aimed right (or aimed down) together with the g line segments incident on them. Since (i) none of the intersections in
Tg/2 are checked in step t , and (ii) all intersections in Tg/2 must be checked in OPT(g) steps (when all intersections in
Tg are checked in OPT(g) steps), we have OPT(g) ≥ OPT(g/2) + 1 ≥ log2 g , where the second inequality is by the inductive
hypothesis. �

Acknowledgement

We thank Giovanni Viglietta for providing constructive comments and helpful suggestions in improving the contents of
this paper. Paweł Żyliński wishes to express his gratitude to ks. Waldemar Waluk for discussion, mostly not on the topic.

References

[1] P. Bose, J. Cardinal, S. Collette, F. Hurtado, M. Korman, S. Langerman, P. Taslakian, Coloring and guarding arrangements, Discrete Math. Theor. Comput.
Sci. 15 (3) (2013) 139–154.

[2] V.E. Brimkov, A. Leach, M. Mastroianni, J. Wu, Guarding a set of line segments in the plane, Theoret. Comput. Sci. 412 (15) (2011) 1313–1324.
[3] B. Brodén, M. Hammar, B.J. Nilsson, Guarding lines and 2-link polygons is APX-hard, in: Proceedings of the 13th Canadian Conference on Computational

Geometry, CCCG, 2001, pp. 45–48.
[4] R.W. Dawes, Some pursuit–evasion problems on grids, Inform. Process. Lett. 43 (5) (1992) 241–247.
[5] A. Dumitrescu, H. Kok, I. Suzuki, P. Żyliński, Vision-based pursuit–evasion in a grid, SIAM J. Discrete Math. 24 (3) (2010) 1177–1204.
[6] A. Dumitrescu, J.S.B. Mitchell, P. Żyliński, Watchman routes for lines and segments, Comput. Geom. 47 (4) (2014) 527–538.
[7] A. Dumitrescu, J.S.B. Mitchell, P. Żyliński, The minimum guarding tree problem, Discrete Math. Algorithms Appl. 6 (1) (2014) #1450011.
[8] F.V. Fomin, D.M. Thilikos, An annotated bibliography on guaranteed graph searching, Theoret. Comput. Sci. 399 (3) (2008) 236–245.
[9] L.P. Gewali, S. Ntafos, Covering grids and orthogonal polygons with periscope guards, Comput. Geom. 2 (6) (1993) 309–334.

[10] T. Kameda, I. Suzuki, Z.J. Zhang, Finding the minimum-distance schedule for a boundary searcher with a flashlight, in: Proceedings of the 9th Latin
American Symposium on Theoretical Informatics, LATIN 2010, in: Lecture Notes in Computer Science, vol. 6034, 2010, pp. 84–95.

[11] T. Kameda, M. Yamashita, I. Suzuki, On-line polygon search by a seven-state boundary 1-searcher, IEEE Trans. Robot. 22 (3) (2006) 446–460.
[12] T. Kameda, Z. Zhang, M. Yamashita, Simple characterization of polygons searchable by 1-searcher, in: Proceedings of the 18th Canadian Conference on

Computational Geometry, CCCG, 2006, pp. 113–116.
[13] L.M. Kirousis, C.H. Papadimitriou, Searching and pebbling, Theoret. Comput. Sci. 47 (3) (1986) 205–218.
[14] A. Kosowski, M. Małafiejski, P. Żyliński, Cooperative mobile guards in grids, Comput. Geom. 37 (2) (2007) 59–71.
[15] N. Megiddo, S.L. Hakimi, M.R. Garey, D.S. Johnson, C.H. Papadimitriou, The complexity of searching a graph, J. ACM 35 (1) (1988) 18–44.
[16] S.W. Neufeld, A pursuit–evasion problem on a grid, Inform. Process. Lett. 58 (1) (1996) 5–9.
[17] S. Ntafos, On gallery watchman in grids, Inform. Process. Lett. 23 (2) (1986) 99–102.
[18] K.J. Obermeyer, A. Ganguli, F. Bullo, A complete algorithm for searchlight scheduling, Internat. J. Comput. Geom. Appl. 21 (1) (2011) 101–130.
[19] J. O’Rourke, Art Gallery Theorems and Algorithms, Oxford University Press, New York, 1987.
[20] T.D. Parsons, Pursuit–evasion in a graph, in: Theory and Applications of Graphs, in: Lecture Notes in Mathematics, vol. 642, 1978, pp. 426–441.
[21] T. Shermer, Recent results in art galleries, Proc. I.E.E.E. 80 (9) (1992) 1384–1399.
[22] B.H. Simov, G. Slutzki, S.M. Lavalle, Clearing a polygon with two 1-searchers, Internat. J. Comput. Geom. Appl. 19 (1) (2009) 59–92.
[23] K. Sugihara, I. Suzuki, On a pursuit–evasion problem related to motion coordination of mobile robots, in: Proceedings of the 21st Annual Hawaii

International Conference on System Sciences, 1988, pp. 218–226.
[24] K. Sugihara, I. Suzuki, Optimal algorithms for a pursuit–evasion problem in grids, SIAM J. Discrete Math. 2 (1) (1989) 126–143.

http://refhub.elsevier.com/S0304-3975(15)00369-2/bib422B3132s1
http://refhub.elsevier.com/S0304-3975(15)00369-2/bib422B3132s1
http://refhub.elsevier.com/S0304-3975(15)00369-2/bib424C4D573131s1
http://refhub.elsevier.com/S0304-3975(15)00369-2/bib42484E3031s1
http://refhub.elsevier.com/S0304-3975(15)00369-2/bib42484E3031s1
http://refhub.elsevier.com/S0304-3975(15)00369-2/bib443932s1
http://refhub.elsevier.com/S0304-3975(15)00369-2/bib444B535A3130s1
http://refhub.elsevier.com/S0304-3975(15)00369-2/bib444D5A313461s1
http://refhub.elsevier.com/S0304-3975(15)00369-2/bib444D5A313462s1
http://refhub.elsevier.com/S0304-3975(15)00369-2/bib46543038s1
http://refhub.elsevier.com/S0304-3975(15)00369-2/bib474E3933s1
http://refhub.elsevier.com/S0304-3975(15)00369-2/bib4B535A3130s1
http://refhub.elsevier.com/S0304-3975(15)00369-2/bib4B535A3130s1
http://refhub.elsevier.com/S0304-3975(15)00369-2/bib4B59533036s1
http://refhub.elsevier.com/S0304-3975(15)00369-2/bib4B5A593036s1
http://refhub.elsevier.com/S0304-3975(15)00369-2/bib4B5A593036s1
http://refhub.elsevier.com/S0304-3975(15)00369-2/bib4B503836s1
http://refhub.elsevier.com/S0304-3975(15)00369-2/bib4B4D5A3037s1
http://refhub.elsevier.com/S0304-3975(15)00369-2/bib4D48472B3838s1
http://refhub.elsevier.com/S0304-3975(15)00369-2/bib4E3936s1
http://refhub.elsevier.com/S0304-3975(15)00369-2/bib4E74613836s1
http://refhub.elsevier.com/S0304-3975(15)00369-2/bib4F47423131s1
http://refhub.elsevier.com/S0304-3975(15)00369-2/bib4F523837s1
http://refhub.elsevier.com/S0304-3975(15)00369-2/bib706172736F6E733736s1
http://refhub.elsevier.com/S0304-3975(15)00369-2/bib5368653932s1
http://refhub.elsevier.com/S0304-3975(15)00369-2/bib53534C3039s1
http://refhub.elsevier.com/S0304-3975(15)00369-2/bib53533838s1
http://refhub.elsevier.com/S0304-3975(15)00369-2/bib53533838s1
http://refhub.elsevier.com/S0304-3975(15)00369-2/bib53533839s1
http://mostwiedzy.pl

D. Dereniowski et al. / Theoretical Computer Science 591 (2015) 28–59 59

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

[25] K. Sugihara, I. Suzuki, M. Yamashita, The searchlight scheduling problem, SIAM J. Comput. 19 (6) (1990) 1024–1040.
[26] I. Suzuki, M. Yamashita, Searching for a mobile intruder in a polygonal region, SIAM J. Comput. 21 (5) (1992) 863–888.
[27] I. Suzuki, M. Yamashita, H. Umemoto, T. Kameda, Bushiness and a tight worst-case upper bound on the search number of a simple polygon, Inform.

Process. Lett. 66 (1) (1998) 49–52.
[28] I. Suzuki, P. Żyliński, Capturing an evader in a building — randomized and deterministic algorithms for mobile robots, IEEE Robotics & Automation

Magazine 15 (2) (2008) 16–26.
[29] C.D. Tóth, Illumination in the presence of opaque line segments in the plane, Comput. Geom. 21 (3) (2002) 193–204.
[30] C.D. Tóth, Illuminating disjoint line segments in the plane, Discrete Comput. Geom. 30 (3) (2003) 489–505.
[31] J. Urrutia, Art gallery and illumination problems, in: Handbook of Computational Geometry, Elsevier, 2000, pp. 973–1027.
[32] G. Viglietta, Searching polyhedra by rotating planes, Internat. J. Comput. Geom. Appl. 22 (3) (2012) 243–275.
[33] G. Viglietta, Partial searchlight scheduling is strongly PSPACE-complete, in: Proceedings of the 25th Canadian Conference on Computational Geometry,

CCCG, 2013, pp. 55–60.
[34] G. Viglietta, M. Monge, The 3-dimensional searchlight scheduling problem, in: Proceedings of the 22nd Canadian Conference on Computational Geom-

etry, CCCG, 2010, pp. 9–12.
[35] D.B. West, Introduction to Graph Theory, Prentice Hall, 2001.
[36] N. Xu, P. Brass, On the complexity of guarding problems on orthogonal arrangements, in: Proceedings of the 20th Annual Fall Workshop on Computa-

tional Geometry, FWCG, 2010, #33.
[37] M. Yamashita, I. Suzuki, T. Kameda, Searching a polygonal region by a group of stationary k-searchers, Inform. Process. Lett. 92 (1) (2004) 1–8.
[38] W.C.K. Yen, C.Y. Tang, An optimal algorithm for solving the searchlight guarding problem on weighted trees, Inform. Sci. 87 (1–3) (1995) 79–105.
[39] W.C.K. Yen, C.Y. Tang, An optimal algorithm for solving the searchlight guarding problem on weighted interval graphs, Inform. Sci. 100 (1–4) (1997)

1–25.
[40] W.C.K. Yen, C.Y. Tang, An optimal algorithm for solving the searchlight guarding problem on weighted two-terminal series-parallel graphs, Acta Inform.

36 (2) (1999) 143–172.

http://refhub.elsevier.com/S0304-3975(15)00369-2/bib5353593930s1
http://refhub.elsevier.com/S0304-3975(15)00369-2/bib53593932s1
http://refhub.elsevier.com/S0304-3975(15)00369-2/bib5359554B3938s1
http://refhub.elsevier.com/S0304-3975(15)00369-2/bib5359554B3938s1
http://refhub.elsevier.com/S0304-3975(15)00369-2/bib535A3038s1
http://refhub.elsevier.com/S0304-3975(15)00369-2/bib535A3038s1
http://refhub.elsevier.com/S0304-3975(15)00369-2/bib543032s1
http://refhub.elsevier.com/S0304-3975(15)00369-2/bib543033s1
http://refhub.elsevier.com/S0304-3975(15)00369-2/bib553030s1
http://refhub.elsevier.com/S0304-3975(15)00369-2/bib563131s1
http://refhub.elsevier.com/S0304-3975(15)00369-2/bib563133s1
http://refhub.elsevier.com/S0304-3975(15)00369-2/bib563133s1
http://refhub.elsevier.com/S0304-3975(15)00369-2/bib564D3130s1
http://refhub.elsevier.com/S0304-3975(15)00369-2/bib564D3130s1
http://refhub.elsevier.com/S0304-3975(15)00369-2/bib573031s1
http://refhub.elsevier.com/S0304-3975(15)00369-2/bib58423130s1
http://refhub.elsevier.com/S0304-3975(15)00369-2/bib58423130s1
http://refhub.elsevier.com/S0304-3975(15)00369-2/bib5953543034s1
http://refhub.elsevier.com/S0304-3975(15)00369-2/bib59543935s1
http://refhub.elsevier.com/S0304-3975(15)00369-2/bib59543937s1
http://refhub.elsevier.com/S0304-3975(15)00369-2/bib59543937s1
http://refhub.elsevier.com/S0304-3975(15)00369-2/bib59543939s1
http://refhub.elsevier.com/S0304-3975(15)00369-2/bib59543939s1
http://mostwiedzy.pl

	The searchlight problem for road networks
	1 Introduction
	2 Bounds on s(n,g) for regions composed of lines
	2.1 Lower bounds
	2.2 Upper bounds in terms of guard degrees
	2.3 Upper bounds on s(n,g) for lines
	2.3.1 When graph NA has a single source component
	Example
	Conﬁguration and subarrangement
	Remark
	The algorithm
	Remarks

	2.3.2 When graph NA has more than one source component

	3 The searchlight problem for line segments
	3.1 The lower bound
	3.2 The upper bound
	3.2.1 Partitioning into nice subarrangements
	3.2.2 Splitters and induced subarrangements
	3.2.3 Balanced splitters
	3.2.4 Small separators through splitters
	3.2.5 Searching strategy for nice subarrangements
	3.2.6 Subarrangements within the unbounded face

	3.3 Upper bounds in terms of guard degrees

	4 Concluding remarks
	Acknowledgement
	References

