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Abstract: We consider a planar autonomous Hamiltonian system q̈ +∇V (q) = 0, where the potential V : R2 \ {ξ} → R
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simple geometrical arguments.
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1. Introduction

In this paper we consider the second order Hamiltonian system (Newtonian system) of the form
q̈+∇V (q) = 0, (1)

where ¨= d2/dt2, q ∈ R2, and ∇V denotes the gradient of a potential V . We denote by | · | the norm in R2 induced bythe standard inner product (·, ·). Throughout this work we assume that the potential V satisfies the following conditions:
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(V1) there exists ξ ∈ R2 such that V ∈ C 1(R2 \ {ξ},R),
(V2) lim

x→ξ
V (x) = −∞,

(V3) there is a neighbourhood N of the point ξ and there is a function U ∈ C 1(N \ {ξ},R) such that |U(x)| → ∞ as
x → ξ and |∇U(x)|2 ≤ −V (x) for all x ∈ N \ {ξ},

(V4) V (x) ≤ 0 and there are two distinct points a, b ∈ R2 \ {ξ} such that V (x) = 0 if and only if x ∈ {a, b},
(V5) there is a negative constant V0 such that lim sup

|x|→∞
V (x) ≤ V0.

From now on, M stands for the set of stationary points of the system (1), i.e.
M = {a, b}.

Under the above assumptions, applying a variational approach we study the existence and multiplicity of heteroclinicand (nonstationary) homoclinic orbits of (1) which, as t → ±∞, are asymptotic to a pair of different stationary points ora stationary point, respectively, and omit the singularity ξ .During the last twenty years, there has been a great progress in the use of variational methods to find homoclinic andheteroclinic solutions for Hamiltonian systems. Such solutions are global in time, therefore it is natural and reasonableto use global methods to obtain them. Moreover, there are classical principles such as the Maupertuis principle ofleast action and Hamilton’s principle that give a variational characterization of solutions of Hamiltonian systems. Theexistence of connecting orbits is an important problem in the study of the behaviour of dynamical systems. For example,their existence may give horseshoe chaos, see [11] and the references given there. The presence of infinitely manygeometrically distinct homoclinic and/or heteroclinic orbits is an indication of nonintegrability and chaotic behaviour forthe system (1), see [2].Condition (V3) is the strong force condition introduced by Gordon, see [6]. It governs the rate at which V (x)→ −∞ as
x → ξ and holds, for example, if α ≥ 2 for V (x) = −|x − ξ|−α near ξ . (V3) implies that W 1,2loc -collisions are not possiblefor the system (1), i.e. no solution of (1) in W 1,2loc (R,R2) can enter the singularity ξ in finite time. The case of singularHamiltonian systems seems to be important since potentials arising in physics have infinitely deep wells. However,as pointed out by Gordon, it is disappointing that the strong force condition excludes the gravitational potential, i.e.
V (x) = −|x − ξ|−1.There are works on homoclinic and heteroclinic orbits for singular Hamiltonian systems involving a strong force: werefer the reader to [1, 3–5, 10, 12]. We underline that they concern problems which are similar, both in the spirit and inthe approach to the one studied in this work, but they regard a case of Hamiltonian systems with one stationary pointand/or multiple singularities.The main result of this paper is the starting point for showing the existence of infinitely many heteroclinic and homoclinicorbits to the system (1) with some condition introduced by Bolotin, see [2].Let

E = {q ∈ W 1,2loc (R,R2) : ∫ ∞
−∞
|q̇(t)|2dt < ∞} .

Then E is a Hilbert space under the norm
‖q‖2E = ∫ ∞

−∞
|q̇(t)|2dt + |q(0)|2.

Let Λ = {q ∈ E : q(t) 6= ξ for all t ∈ R},the set of curves in E that avoid ξ . For q ∈ Λ, set
I(q) = ∫ ∞

−∞

(12 |q̇(t)|2 − V (q(t)))dt. (2)
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The shadowing chain lemma for singular Hamiltonian systems involving strong forces

To shorten notation, q(±∞) = lim
t→±∞

q(t). If q ∈ Λ and I(q) < ∞ then q(±∞) ∈M (see Corollary 2.3).We define the family F as follows. A set Z ⊂ Λ is a member of F if it has the following properties:• I(q) < ∞ for all q ∈ Z ,
• if p, q ∈ Z then p(±∞) = q(±∞),
• for each q ∈ Z and for each ψ ∈ C∞0 (R,R2) there exists δ > 0 such that if s ∈ (−δ, δ) then q+ sψ ∈ Z .

Let us remark that if q is a minimizer of I on a set Z ∈ F then
d
ds I(q+ sψ)∣∣s=0 = 0 = ∫ ∞

−∞

((q̇(t), ψ̇(t))− (∇V (q(t)), ψ(t)))dt,
and consequently, q is a weak solution of (1). Analysis similar to that in the proof of [9, Proposition 3.18] shows that
q is a classical solution of (1).Let us now introduce the polar coordinate system in R2 with the pole ξ and the polar axis {x ∈ R2 : x = ξ+t · ~ξa, t ≥ 0}.It is well-known that each point on the plane is determined by a distance r from the pole called a radius and an angle φfrom the axis called a polar angle. In this work, polar angles are measured counterclockwise from the axis. In this polarcoordinate system one has q(t) = (r(t) cosφ(t), r(t) sinφ(t)) for all q ∈ Λ. There is no uniqueness of a function φ(t).If q(t) is continuous then we can assume that r(t) and φ(t) are continuous, too.
Definition 1.1.For each q ∈ Λ such that q(±∞) = a, q(±∞) = b or q(−∞) = a and q(∞) = b we define the rotation number rot(q)(the winding number) as follows: rot(q) = [φ(∞)− φ(−∞)2π

]
,

where [s] denotes the integral part of s ∈ R. If q(−∞) = b and q(∞) = a, set
rot(q) = [φ(∞)− φ(−∞)2π

] + 1.
This definition is independent of the choice of φ(t). Set

R = 13 min {|b − a|, |b − ξ|, |a − ξ|}.
From now on, Br(x) stands for a ball in R2 of radius r > 0, centered at a point x ∈ R2.
Remark 1.2.If q ∈ Λ and there are t1, t2 ∈ R and 0 < ε ≤ R such that if q((−∞, t1]) ⊂ Bε(a) and q([t2,∞)) ⊂ Bε(b), then

rot(q�[t1,t2 ]) = rot(p),
where p : R→ R2 \ {ξ} is given by

p(t) =


a if t < t1−1,
a(t1−t) + q(t1)(t −t1 + 1) if t ∈ [t1−1, t1),
q(t) if t ∈ [t1, t2],
q(t2)(1+ t2−t) + b(t −t2) if t ∈ (t2, t2 +1],
b if t > t2 +1.
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Similarly, one can define the rotation number rot(q�[t1,t2 ]) for each q ∈ Λ such that q((−∞, t1]) ∪ q([t2,∞)) ⊂ Bε(a) or
q((−∞, t1]) ∪ q([t2,∞)) ⊂ Bε(b).
Remark 1.3.Assume that q ∈ Λ, q(−∞) = a, and q(∞) = b. For each T ∈ R such that q(T ) ∈ Bε(a) or q(T ) ∈ Bε(b) we will denoteby rot(q�(−∞,T ]) and rot(q�[T ,∞)) the rotation numbers of appropriate paths in Λ that arise from q�(−∞,T ] and q�[T ,∞) byconnecting q(T ) to a or b, respectively, by a line segment.
We can introduce similar notations for q ∈ Λ such that q(±∞) = a, q(±∞) = b and q(−∞) = b, q(∞) = a.In this paper we continue the research started by the second author in [8], where the following result was proved:
Theorem 1.4.
Under the assumptions (V1)–(V5), the Hamiltonian system (1) possesses at least two solutions which wind around ξ and
join M to M. One of them is a heteroclinic orbit joining a to b. The second is either heteroclinic with a rotation number
different from the first or homoclinic.

Our purpose now is to prove the shadowing chain lemma which states:
Lemma 1.5.
Let Z ∈ F be an arbitrary set all of whose elements have the same rotation number M ∈ Z. Set

z = inf {I(q) : q ∈ Z}.
Under the conditions (V1)–(V5), there are a finite number of homoclinic and heteroclinic solutions Q1, Q2, . . . , Ql ∈ Λ of
the Hamiltonian system (1) such that

z = I(Q1) + I(Q2) + · · ·+ I(Ql) and M = rot(Q1) + rot(Q2) + · · ·+ rot(Ql).
As we have already mentioned, this lemma is the starting point for showing the existence of infinitely many homoclinicand heteroclinic orbits to the system (1) under a certain condition introduced by Bolotin. Precisely, we want to adaptfrom Bolotin the condition on the existence of a minimal noncontractible periodic orbit around ξ . A result similar toLemma 1.5 was obtained by Caldiroli and Jeanjean in [4]. They considered the Hamiltonian system (1) with the potential
V possessing a global maximum at 0. Their lemma is about a chain of homoclinics to 0. We would like to underlinethat our method of the proof differs from theirs. An example of a shadowing chain of solutions of (1) can be found in theproof of [8, Lemma 4.6]. That chain was composed of two elements and at least one of them was a heteroclinic orbit.The paper is organized as follows: In Section 2 we study the Lagrangian functional associated with the Hamiltoniansystem (1). In Section 3 the shadowing chain lemma is proved. Appendix provides a detailed proof of two technicallemmas stated in Section 3.
2. The Lagrangian functional

In this section we will be concerned with the study of the Lagrangian functional given by (2). We will use its propertiesin the proof of the shadowing chain lemma.Set
αε = inf {−V (x) : x /∈ Bε(M)},

where 0 < ε ≤ R and Bε(M) = Bε(a) ∪ Bε(b). By (V2), (V4) and (V5) it follows that αε > 0.
1931
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The shadowing chain lemma for singular Hamiltonian systems involving strong forces

Lemma 2.1.
Suppose that q ∈ Λ and q(t) /∈ Bε(M) for each t ∈

⋃k
i=1[ri, si], where [ri, si] ∩ [rj , sj ] = ∅ for i 6= j. Then

I(q) ≥√2αε k∑
i=1 |q(si)− q(ri)|.

The proof of Lemma 2.1 is the same as that of [9, Lemma 3.6] or [7, Lemma 2.1].
Corollary 2.2.
If q ∈ Λ and I(q) < ∞ then q ∈ L∞(R,R2).
Corollary 2.3.
If q ∈ Λ and I(q) < ∞ then q(±∞) ∈M.

We can easily prove these two corollaries by the use of Lemma 2.1. For more details we refer the reader to [9, Remark 3.10and Proposition 3.11] and [7, Corollary 2.2 and Lemma 2.4].
Proposition 2.4.
Let Z ∈ F. If {qm}m∈N ⊂ Z and {I(qm)}m∈N ⊂ R is bounded, then {qm}m∈N possesses a subsequence that converges
weakly in E, and hence strongly in L∞loc(R,R2).
Proof. It is sufficient to show that {qm}m∈N is a bounded sequence in E . By assumption, there is M > 0 such thatfor all m ∈ N, 0 < I(qm) ≤ M. From this and (2) we get

‖q̇m‖2L2 ≤ 2M.
Moreover, from Corollary 2.2 it follows that qm ∈ L∞(R,R2) for all m ∈ N.Let x0 and y0 denote the starting and ending point, respectively, of a function q ∈ Z . Fix 0 < ε ≤ R . Then foreach m ∈ N there are τm, tm ∈ R such that qm(τm) ∈ ∂Bε(x0), qm(t) ∈ Bε(x0) for all t < τm, qm(tm) ∈ ∂Bε(y0) and
qm(t) ∈ Bε(y0) for all t > tm. Finally, for qm�[τm ,tm ] there is sm ∈ [τm, tm] such that

|qm(sm)| = max
t∈[τm ,tm ] |qm(t)|.

Applying Lemma 2.1 we conclude that the sequence {qm(sm)}m∈N is bounded. Hence {qm}m∈N is bounded in L∞(R,R2).In consequence, {qm}m∈N is bounded in E . By the reflexivity of E there is Q ∈ E such that, passing to a subsequence,
qm ⇀ Q in E , which implies that qm → Q in L∞loc(R,R2).
Lemma 2.5.
If q ∈ Λ and q(t) ∈ N for all t ∈ [σ, µ] then

|U(q(µ))| ≤ |U(q(σ ))|+(∫ µ

σ
−V (q(t))dt)1/2

·
(∫ µ

σ
|q̇(t)|2dt)1/2

.

The proof of this lemma can be found in [10, (2.21), p. 271]. It is based on the strong force condition. Applying the aboveinequality and (2), for q ∈ Λ such that q(t) ∈ N for all t ∈ [σ, µ] we get
|U(q(µ))| ≤ |U(q(σ ))|+√2I(q).
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Proposition 2.6.
Let Z ⊂ Λ be a set such that the functional I restricted to Z is bounded. Then there exists r > 0 such that |q(t)−ξ| ≥ r
for all q ∈ Z and t ∈ R.

Proof. By Corollary 2.3, q(±∞) ∈M for each q ∈ Z .On the contrary, suppose that there exist sequences {qm}m∈N ⊂ Z and {µm}m∈N ⊂ R such that qm(µm)→ ξ as m →∞.Fix 0 < δ ≤ R such that Bδ (ξ) ⊂ N. There is m0 ∈ N such that for m ≥ m0, |qm(µm)− ξ| < δ. For each m ≥ m0 thereexists σm < µm such that qm(σm) ∈ ∂Bδ (ξ) and qm(t) ∈ Bδ (ξ) for all t ∈ (σm, µm). Then
|U(qm(µm))| ≤ |U(qm(σm))|+√2I(qm).

As {U(qm(σm))}m∈N and {I(qm)}m∈N are bounded, we get {U(qm(µm))}m∈N is bounded, too. On the other hand, by (V3),we receive |U(qm(µm))| → ∞ as m →∞, a contradiction.
Proposition 2.7.
If Q ∈ Λ is a homoclinic or heteroclinic solution of (1) then

Q̇(t)→ 0 as t → ±∞.

This can be found in [8, Proposition 2.8, p. 477].
Proposition 2.8.
Let Z ⊂ Λ be a set such that the functional I restricted to Z is bounded. Then there exists M > 0 such that |rot(q)| ≤ M
for all q ∈ Z.

Proof. Suppose, contrary to our claim, that for every m ∈ N there exists qm ∈ Z such that |rot(qm)| > m. FromProposition 2.6 it follows that there is r > 0 such that |qm(t)− ξ| > r for all m ∈ N and t ∈ R.Fix 0 < ε ≤ R . It is clear that one can associate with qm a family of mutually disjoint intervals {[rmi , smi ]}kmi=1 such that
qm([rmi , smi ]) ∩ Bε(M) = ∅ and |qm(smi )− qm(rmi )| ≥ r. Moreover, km increases with m. By Lemma 2.1,

I(qm) ≥√2αεkmr,
a contradiction.
From now on, to simplify notation we write
IT2
T1 (q) = ∫ T2

T1
(12 |q̇(t)|2 −V (q(t)))dt, IT−∞(q) = ∫ T

−∞

(12 |q̇(t)|2 −V (q(t)))dt, I∞T (q) = ∫ ∞
T

(12 |q̇(t)|2 −V (q(t)))dt,
where T1, T2, T ∈ R.
Remark 2.9.For all T1, T2 ∈ R such that T1 < T2, the functional given by

Λ 3 q 7→ IT2
T1 (q) ∈ R

is weakly lower semi-continuous.
1933

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


The shadowing chain lemma for singular Hamiltonian systems involving strong forces

Remark 2.10.If q ∈ Λ then for each θ ∈ R, θq = q( · − θ) ∈ Λ and I(q) = I(θq). Moreover, I(q) = I(q(−t)).
Lemma 2.11.
For each η > 0 there is 0 < r ≤ R such that for all x, y ∈ Br(a) (resp. x, y ∈ Br(b)) and T ∈ R,

∫ T+1
T

(12 |y − x|2 − V (lx,y(t)))dt < η,

where lx,y(t) = (T +1−t)x + (t −T )y for each t ∈ [T , T +1].
The proof of this lemma is straightforward.
Lemma 2.12.
Let {qm}m∈N be a minimizing sequence of the Lagrangian functional I restricted to a set Z ∈ F. If qm ⇀ Q in E then
Q is a homoclinic or heteroclinic solution of (1).
Proof. Set z = inf {I(q) : q ∈ Z}. By assumption, I(qm)→ z as m →∞. From Remark 2.9 we conclude that I(Q) ≤ z.Corollary 2.3 now implies Q(±∞) ∈M. Finally, Proposition 2.6 gives Q(t) 6= ξ for all t ∈ R.Define

Z̃ = {
q ∈ Λ : q(±∞) = Q(±∞), rot(q) = rot(Q)}.

It is clear that Z̃ ∈ F. Let z̃ be given by z̃ = inf {I(q) : q ∈ Z̃}. We shall have the lemma established if we prove that
I(Q) = z̃.Conversely, suppose that I(Q) > z̃. Fix η > 0 such that I(Q) = z̃ + 8η. By the definition of infimum there exists q ∈ Z̃such that I(q) < z̃+ η. By Lemma 2.11 there is 0 < r ≤ R such that for all x, y ∈ Br(a) (resp. x, y ∈ Br(b)) and T ∈ R,

∫ T+1
T

(12 |y−x|2 − V (lx,y(t)))dt < η.

Choose now T > 0 such that the sets q((−∞,−T ]), q([T ,∞)), Q((−∞,−T ]), Q([T ,∞)) are contained in Br(M) and
I(Q)− IT−T (Q) < η. Since qm goes to Q uniformly on compact subsets of R, there is m0 ∈ N such that qm([−T −1, −T ])and qm([T , T +1]) are subsets of Br(M) for all m ≥ m0.We will consider the behaviour of the sequence {pm}m∈N defined by

pm(t) =


qm(t) if t < −T −1,(−T −t)qm(−T −1) + (T +1+ t)q(−T ) if t ∈ [−T −1, −T ],
q(t) if t ∈ [−T, T ],(T +1−t)q(T ) + (t −T )qm(T +1) if t ∈ [T , T +1],
qm(t) if t > T +1.

We have pm(−∞) = qm(−∞), pm(∞) = qm(∞), and moreover, for m ≥ m0,
rot(pm) = rot(qm�(−∞,−T−1]) + rot(q) + rot(qm�[T+1,∞)) = rot(qm�(−∞,−T−1]) + rot(Q) + rot(qm�[T+1,∞))= rot(qm�(−∞,−T−1]) + rot(qm�[−T−1,T+1]) + rot(qm�[T+1,∞)) = rot(qm).
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Hence {pm}∞m=m0 ⊂ Z . From Remark 2.9 it follows that there is m1 ∈ N such that for m ≥ m1, IT−T (qm) > IT−T (Q)−η. Bythe above, for m ∈ N sufficiently large,
I(qm)− I(pm) ≥ IT+1

−T−1(qm)− IT−T (q)− 2η ≥ IT−T (qm)− IT−T (q)− 2η > IT−T (Q)− IT−T (q)− 3η > I(Q)− I(q)− 4η > 3η.
Thus I(qm) > I(pm) + 3η. Letting m →∞ we get

z ≥ lim inf
m→∞

I(pm) + 3η ≥ z + 3η,
a contradiction.
3. The shadowing chain lemma

Let Z ∈ F be an arbitrary but fixed set all of whose elements have the same rotation M ∈ Z. We will denote by x0 and
y0 the starting and ending point, respectively, of a function q ∈ Z . From Corollary 2.3 it follows that x0, y0 ∈M. Set

z = inf {I(q) : q ∈ Z}.
Choose a minimizing sequence {qm}m∈N of the functional I restricted to Z , i.e. {qm}m∈N ⊂ Z and

lim
m→∞

I(qm) = z.

For each i ∈ N let a set Ci be defined by
Ci = ∞⋃

m=iqm(R) .
It is easily seen that the sets Ci are compact and connected. Moreover, x0, y0 ∈ Ci and Ci ⊃ Ci+1 for each i ∈ N. Set

C = ∞⋂
i=1Ci.

By the above, the set C is a nonempty continuum.
Lemma 3.1.
For each x ∈ C there exists a homoclinic or heteroclinic solution Qx of (1) such that Qx (0) = x.

Proof. Fix x ∈ C \ {x0, y0}. Thus qmn (tn) → x, n → ∞. Define q̂mn (t) = qmn (t+ tn), where n ∈ N. FromProposition 2.4 we conclude that there is Qx ∈ E such that, passing to a subsequence if necessary, q̂mn ⇀ Qx in Eand q̂mn → Qx in L∞loc(R,R2). Lemma 2.12 yields Qx is a homoclinic or heteroclinic solution of (1). Moreover, we have
x = lim

n→∞
q̂mn (0) = Qx (0).

In fact, C is a sum of chains each of which has a structure described by the following shadowing chain lemma.
Lemma 3.2.
There are a finite number of homoclinic and heteroclinic solutions Q1, Q2, . . . , Ql of (1) such that

z = I(Q1) + I(Q2) + · · ·+ I(Ql) and M = rot(qm) = rot(Q1) + rot(Q2) + · · ·+ rot(Ql).
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The shadowing chain lemma for singular Hamiltonian systems involving strong forces

Proof. Fix 0 < ε ≤ R . Remark 2.10 implies there is no loss of generality in assuming that qm(0) ∈ ∂Bε(x0) and
|qm(t)−x0| < ε for all m ∈ N and t < 0. By Proposition 2.4, there is Q1 ∈ E such that, passing to a subsequence ifnecessary, qm ⇀ Q1 in E and qm → Q1 in L∞loc(R,R2). From Lemma 2.12 we obtain Q1 is a homoclinic or heteroclinicsolution of (1). Obviously, Q1(0) ∈ ∂Bε(x0) and |Q1(t)−x0| ≤ ε for all t < 0. Hence Q1(−∞) = x0. On account ofRemark 2.9, we have I(Q1) ≤ z.Set x1 = Q1(∞). Fix η > 0. By Lemma 2.11 there is 0 < r ≤ R such that for all x, y ∈ Br(a) (resp. x, y ∈ Br(b)) and
T ∈ R, ∫ T+1

T

(12 |y−x|2 − V (lx,y(t)))dt < η.

Choose T > 0 such that Q1([T ,∞)) ⊂ Br(x1) and I(Q1) − IT−T (Q1) < η. Since qm → Q1 uniformly on [T , T +1], thereexists m(T ) ∈ N such that if m ≥ m(T ) then qm([T , T +1]) ⊂ Br(x1). Let qTm be given by
qTm(t) =


x1 if t < T ,(T +1−t)x1 + (t −T )qm(T +1) if t ∈ [T , T +1],
qm(t) if t > T +1.

We see at once that qTm(−∞) = x1, qTm(∞) = y0 and for m ≥ m(T ),
rot(qTm) = rot(qm)− rot(Q1) = M − rot(Q1).

Define
Z1 = {

q ∈ Λ : q(−∞) = x1, q(∞) = y0, rot(q) = M − rot(Q1)}.Set
z1 = inf {I(q) : q ∈ Z1}.We may now take the sequence ηn = 1/n, where n ∈ N, and repeat our construction. In this way we find a decreasingsequence {rn}n∈N going to 0, an increasing sequence {Tn}n∈N going to ∞, an increasing sequence {mn}n∈N of positiveintegers mn = m(Tn) and a sequence {pn}n∈N given by

pn(t) = qTnmn (t) =

x1 if t < Tn,(Tn+1−t)x1 + (t −Tn) qmn (Tn+1) if t ∈ [Tn, Tn+1],
qmn (t) if t > Tn+1.

Lemma 3.3.
The sequence {pn}n∈N is a minimizing sequence of the functional I restricted to Z1, i.e. lim

n→∞
I(pn) = z1.

Lemma 3.4.
The following equality holds: z = I(Q1) + z1.

For the proofs of these lemmas we refer the reader to Appendix. If z1 = 0 then I(Q1) = z, Q1 is a solution of (1) joining
x0 to y0 and rot(Q1) = M. Consider the case z1 > 0. By shifting each pn appropriately in time, we can assume that
pn(0) ∈ ∂Bε(x1) and |pn(t)−x1| < ε for all n ∈ N and t < 0. From Proposition 2.4 it follows that there is Q2 ∈ Esuch that, passing to a subsequence if necessary, pn ⇀ Q2 in E and pn → Q2 in L∞loc(R,R2). Lemma 2.12 implies Q2is a homoclinic or heteroclinic solution of (1). Obviously, Q2(0) ∈ ∂Bε(x1) and |Q2(t)−x1| ≤ ε for all t < 0. Thus
Q2(−∞) = x1. By Remark 2.9, I(Q2) ≤ z1.Set x2 = Q2(∞). Define

Z2 = {
q ∈ Λ : q(−∞) = x2, q(∞) = y0, rot(q) = M − rot(Q1)− rot(Q2)}, z2 = inf {I(q) : q ∈ Z2}.

Replacing {qm}m∈N by {pn}n∈N we can now proceed analogously as above. Next we continue by induction. Lemma 2.1makes it obvious that l is finite.
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Note that Theorem 1.4 is a direct consequence of the above lemma. To this end, consider two families Γ−1,Γ0 ∈ Fdefined as follows: Γi = {
q ∈ Λ : q(−∞) = a, q(∞) = b, rot(q) = i

}
, i = −1, 0.Set

γi = inf {I(q) : q ∈ Γi}, i = −1, 0.Without loss of generality we can assume that γ−1 ≤ γ0. Let {qm}m∈N ⊂ Γ−1 be a minimizing sequence. By theshadowing chain lemma, there is a heteroclinic solution q ∈ Γ−1 of (1) with I(q) = γ−1. Moreover, if {pm}m∈N ⊂ Γ0 isa minimizing sequence then there is a heteroclinic solution p ∈ Λ of (1) joining a to b. Now two cases are possible.If rot(p) 6= −1 then p and q are two geometrically distinct heteroclinic solutions of (1). Assume that rot(p) = −1. Itmight happen that, with accuracy up to a reparametrization, p = q. However, by the shadowing chain lemma, the chaincontaining p possesses at least two elements, and Theorem 1.4 is proved.Note that we are actually able to obtain even more precise information. Define
Ωa = {q ∈ Λ : q(±∞) = a, rot(q) = 1}, Ωb = {q ∈ Λ : q(±∞) = b, rot(q) = 1}.

Let ωa and ωb be the corresponding infima. The shadowing chain lemma now implies the following.
Fact 3.5.
If γ0 − γ−1 < min{ωa, ωb} then (1) possesses at least two heteroclinic solutions p and q in Λ such that rot(p) 6= rot(q).
Appendix

For the convenience of the reader this section will be devoted to the proof of two technical lemmas of Section 3. We followthe notation used in the proof of Lemma 3.2.
Proof of Lemma 3.3. Suppose the lemma were false, i.e.

lim inf
n→∞

I(pn) > z1.
Then we could find {un}n∈N ⊂ Z1 such that I(un)→ z1, n → ∞. By Remark 2.10, we can assume that for each n ∈ N,
un(Tn+1) ∈ ∂Brn (x1) and |un(t)−x1| < rn for all t < Tn+1. Let {vn}n∈N be given by

vn(t) =

qmn (t) if t < Tn,(Tn+1−t) qmn (Tn) + (t −Tn)un(Tn+1) if t ∈ [Tn, Tn+1],
un(t) if t > Tn+1.

We see at once that vn(−∞) = x0, vn(∞) = y0 and rot(vn) = M. Hence {vn}n∈N ⊂ Z . Furthermore,
I(vn) < ITn+1

−∞ (qmn ) + 1
n + I(un)

for all n ∈ N. Letting n → ∞ we get
lim inf
n→∞

I(vn) ≤ lim inf
n→∞

ITn+1
−∞ (qmn ) + z1.

We also have lim inf
n→∞

ITn+1
−∞ (qmn ) = z − lim inf

n→∞
I(pn) < z − z1.Consequently, lim inf

n→∞
I(vn) < z,which is impossible.
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Proof of Lemma 3.4. The proof will be divided into two steps.
Step 1. We first prove that z ≤ I(Q1) + z1. Fix η > 0. From Lemma 2.11 it follows that there is 0 < δ ≤ R such thatfor all x, y ∈ Bδ (x1) and for every T ∈ R,

∫ T+1
T

(12 |y−x|2 − V (lx,y(t)))dt < η.

Choose T > 0 such that Q1([T ,∞)) ⊂ Bδ (x1). By the definition of infimum, there is q ∈ Z1 such that I(q) < z1 + η.Applying Remark 2.10 we can assert that q((−∞,T +1]) ⊂ Bδ (x1). Define
u(t) =


Q1(t) if t ≤ T ,(T +1−t)Q1(T ) + (t −T )q(T +1) if t ∈ [T , T +1],
q(t) if t ≥ T +1.

We check at once that u(−∞) = x0, u(∞) = y0 and rot(u) = M. Hence u ∈ Z . By the above,
z ≤ I(u) < I(Q1) + z1 + 2η.

Letting η → 0+ we get z ≤ I(Q1) + z1.
Step 2. We now show that z ≥ I(Q1) + z1. Fix η > 0. Lemma 2.11 implies there is 0 < δ ≤ R such that for all
x ∈ Bδ (x1) and T ∈ R, ∫ T

T−1
(12 |x −x1|2 − V (lx1,x (t)))dt < η,

where lx1,x (t) = (T −t)x1 + (t −T +1)x for each t ∈ [T − 1, T ]. Choose T > 0 such that Q1([T ,∞)) ⊂ Bδ (x1) and
IT−∞(Q1) > I(Q1)− η. Let {um}m∈N be defined by

um(t) =

x1 if t ≤ T −1,(T −t)x1 + (t −T +1)qm(T ) if t ∈ [T −1, T ],
qm(t) if t ≥ T .

Then um(−∞) = x1 and um(∞) = y0. Moreover, there is m0 ∈ N such that for all m ≥ m0 we have rot(um) = M−rot(Q1)and
I(um) < I∞T (qm) + η.

From Remark 2.9 we conclude that there is m1 ∈ N such that for all m ≥ m1,
IT−∞(qm) > IT−∞(Q1)− η.

In consequence, for m ∈ N large enough, I(qm) > I(Q1) + z1 − 3η. Letting m → ∞, and next η → 0+, we get
z ≥ I(Q1) + z1.
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