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Abstract—This paper refers to the problem of shepherding
clusters of passive agents consisting of a large number of objects
by a team of active agents. The problem of shepherding and
the difficulties that arise with the increasing number of data
describing the location of agents have been described. Several
methods for reducing the dimensionality of data are presented.
Selected autoencoding method using a Restricted Boltzmann
Machine is then discussed. Autoencoding is deployed to reduce
the dimensionality of graphic representation of clusters. Reduced
data is used to train the neural network which determine
movements of the active agents. Genetic algorithms are used in
optimization of the parameters of this network.

Keywords—shepherding, autoencoder, Restricted Boltzmann
Machine, Genetic Algorithm

I. INTRODUCTION

A. Shepherding

Shepherding consists in forcing movement of objects into
the desired direction. The most common example of such a
process is shepherding of sheep by a shepherd dog on pasture.
The dog makes sure that the herd does not get distracted,
but stays in a compact group. A similar mechanism can be
observed in many areas of human activity, such as superintend-
ing the movement of crowd by the police, limiting the effects
of spreading epidemics, extinguishing fire, and removing oil
stains in water reservoirs. In times of intensive development
of computer control systems, it is extremely important to
construct algorithms which are to optimally perform the tasks
mentioned above.

The problem of shepherding can be presented as interaction
of two types of agents: active and passive. Active agents, by
moving in a proper direction, force movement or eliminate
passive agents. There are many versions of this problem
depending on the task performed by active agents. In the case
of relocation of passive agents, typical tasks are: focusing,
driving, patrolling, keeping passive agents on a target surface
or relocating them toward another position [11]. If the task
is to eliminate passive agents, the problem can be reduced to
passing through the areas they occupy. In this article, to check
the legitimacy of the chosen approach, a case of shepherding
is considered, in which passive agents are eliminated.

There are many ways in which active agents acquire
information about the position of passive agents. There are
shepherding problems, in which active agents track the location
of passive agents. It may also happen that in addition to active
and passive agents, there is an observer of the working area
which provides the active agents with the needed information.

The literature suggests many models of shepherding pro-
cess. Several heuristic algorithms are presented [11], [12],
which are based on observation of real shepherding process,
for example considering the behavior of shepherd dogs [20].
A simple algorithm of shepherding and successful testing of
this algorithm on a real robot that herds a flock of geese to
the point indicated in space is discussed in the paper [22].

Optimal algorithms for a few agents can be considered
in continuous [18] or discrete [8] time domain, in which the
solution is obtained via dynamic programming and using the
Dijkstra algorithm.

There are very few papers describing the direct creation of
a shepherding algorithm using machine learning. Optimization
of autonomous agents’ activities by teaching Bayesian net-
works proposed in [16] was applied to the discrete problem
of shepherding of one sheep by one agent on a 4 × 4 mesh.
Using a genetic algorithm for a similar problem of one sheep
being driven by one agent is described in [17]. Determining
the mode of operation of active agents controlled by neural
networks, taught by genetic algorithms, is described in [13].

In the above-mentioned works, in which the control al-
gorithm is set by learning or optimization, the number of
agents must be small, except for heuristic algorithms. In the
simplest case, the system includes only one active agent and
one passive agent, although sometimes even a dozen agents
can be considered. A small number of agents is applied obvi-
ously to limit the complexity of optimizing calculations. More
agents appear only with heuristic algorithms. The constrains
of optimal control algorithms only for small sets of agents is
a significant limitation for their practical applications.

The problem of shepherding can be extended to the situa-
tion when passive agents are represented by a continuous area.
Figure 1 illustrates three cases regarding the number of agents.

The case of passive agents forming continuous area occurs
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(a) (b) (c)

Fig. 1. Typical problems related to the number of agents in the process of
shepherding: (a) small number of discrete agents – suitable for optimization
by various methods; (b) large number of discrete agents – solved by heuristic
methods; (c) big number of agents represented by continuous areas – as
discussed in this paper (crosses represent active agents; and circles and
continuous areas - stands for passive agents)

in nature e.g. during extinguishing fires or removing the effects
of leaks. The area occupied by passive agents can be described
as a set of elementary cells, which in the case of digital images
are pixels. Unfortunately, for such a representation of passive
agents, the number of data that the shepherding algorithm must
operate to perform its task is unacceptably large. The novelty
of this work consists in creating a system based on learning
that can implement a simple process of shepherding objects
occupying continues area. Striving to create such a system, it
is necessary to reduce the dimensionality of data describing
the location of the continuous passive agents.

II. REDUCING DIMENSION

Dimension reduction is simply a process of transforming
multidimensional data into a space with fewer dimensions. It
is often used in statistics [15], machine learning (to determine
a model of a phenomenon) [5], pattern recognition and image
processing [1]. Dimension reduction can be aimed at:

• shorting the processing time,

• reducing the amount of memory needed to store data

• getting rid of data linearly dependent on other data
(improves the effectiveness of learning algorithms),

• data visualization in two-dimensional or three-
dimensional space (for better understanding),

• extracting the features of data decisive for classifica-
tion of patterns (improving generality performance).

There are two basic approaches to this problem: feature
selection and feature extraction.

Feature selection consists in separating a subset of the
original data dimensions (variables) [3]. The methods of fea-
ture selection are used when data contains many redundant
or irrelevant variables. Search methods are used to select
an appropriate subset. The simulated annealing algorithms,
evolutionary methods and Particle Swarm Optimization are
applied most frequently.

Feature extraction rely on the determination of new features
describing these data (useful for a specific problem). In the
case considered in this work, the data (from which the features
should be extracted) are the numbers describing the brightness
of subsequent pixels of a graphic image. Therefore, only the
features that can be attributed to this type of data will be
considered later in this subsection.

Fig. 2. Structure of the autoencoder

There are plenty of methods for extracting features of
graphic patterns that can be used here. Among all of the
possible solutions, the following methods can be listed:

• Heuristic (e.g. approximating the shape with a set of
simpler shapes)

• Mathematical transformation

• Image processing (e.g skeletonization)

• Quadruple or map edges

• Compresses (e.g JPG, LZW)

• Analysis of the main components (PCA)

• Autoencoding.

In this paper the autoencoding method was chosen to
reduce the dimension of graphic images of areas occupied by
passive agents. The use of this method for the above-mentioned
purpose has been discussed in [21].

III. AUTOENCODING

Autoencoder represents an artificial neural network used in
the field of unsupervised learning for efficient data encoding
[5], [9], [10], [14]. The aim of the autoencoder is to learn a
certain representation of input data, which make it possible
to reproduce the data again with a possibly greatest accuracy.
Structurally, in the simplest form an autoencoder is a feedfor-
ward network with the same number of inputs and outputs, see
Fig. 2. The autoencoder consists of two main parts: an encoder
and a decoder. The purpose of the encoder is to extract features
from the input data. The decoder has the reverse task that the
well-reconstructed input data is presented at the output layer
of the network. A code layer is a common layer of neurons for
the encoder and decoder. The values of this neurons’ activation
are the taught (new) representation of data. If there are fewer
neurons in this layer than in the network inputs, the dimension
reduction of the data is achieved.

In practice it is difficult to train, i.e. to determine the
optimal values of weights of the deep autoencoder, if classical
methods of the weights initialization are applied. This is
because in the learning process it is not possible to assess
the real impact of weights in the first layer of the network
on the output of the network. In this case, the phenomenon
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Fig. 3. Example of the Restricted Boltzmann Machine

of vanishing or exploding gradient is involved. Vanishing
gradients result in a very low learning rate of the network,
while exploding gradients pose the risk of getting stuck in
a local minimum, i.e. leading to a suboptimal solution. One
solution to this problem is pretraining proposed in 2006 by
Hinton and Salakhutdinov [5]. It allows to initialize network
weights with values that extract the desired features from the
data. The selection of initial weights significantly improves
the results achieved during a fine-tuning stage by the standard
methods based on backward propagation.

Pretraining involves the iterative, layer by layer unsuper-
vised neural network training. During the process of deter-
mining weights between two successive layers of the network,
these two layers are treated as the Restricted Boltzmann
Machine (RBM) [2]. Calculated weights are later used in
finetuning the autoencoder.

RBM is a generative (i.e. used to generate data), stochastic
neural network which generates random data, whose probabil-
ity distribution is shaped by appropriate selection of weights
and biases. A template of the Restricted Boltzmann Machine
is shown in Fig. 3. It consists of two layers, which are called
the visible and hidden. In RBM, neurons are binary units, i.e.
they take one of the two values: 0 or 1. The state of the visible
layer can be represented by an N -dimensional vector v, where
N is the number of neurons in the visible layer. The hidden
layer state can be represented by an M -dimensional vector h,
where M is the number of neurons in the hidden layer. As can
be seen in Fig. 3 each of the visible unit is connected to each
hidden unit via a gain (weight). All weights are integrated into
a matrix W of dimension M × N . In addition, each neuron
also has its own bias. Biases for visible layer are described
by an N - dimensional vector b, and the biases of the hidden
layer are represented as the M - dimensional vector c. The
states of hidden and visible layers can be updated (i.e. the
current value of the v and h vector can be replaced with new
value). The states of visible units are set to one with probability
σ(WT h + b), where σ(x) is a logistic function and they are
set to zero otherwise. Analogically, the new states of hidden
units is set to one with probability σ(Wv + c).

The purpose of training RBM is to determine such weights
and biases that will maximize the probability of generating
training data in the visible layer of RMB. As can be deduced

[7] [19], the probability can be described as

p(v) =
1

Z

∑
h

e−E(v,h)

where Z =
∑

v,h e
−E(v,h) and E, called the energy, is

computed as follows:

E(v,h) = −
∑

i∈visible

bivi −
∑

j∈hidden

cjhj −
∑
i,j

vihjwij

The probability that the state of the visible units will be
set to the training data can be increased by adjusting weights
and biases according to the derivative of the logarithm of this
probability with respect to every weight or bias. As can be
shown [4], these derivatives have the following form:

∆wi,j ∝
∂ log p(v)

∂wi,j
= E [vihj ]data − E [vihj ]recon

∆bi ∝
∂ log p(v)

∂bi
= E [vi]data − E [vi]recon

∆cj ∝
∂ log p(v)

∂cj
= E [hj ]data − E [hj ]recon

where E [·]data means expected value when in visible layer is
data and hidden layer is driven by it, while E [·]recon means the
expected value when RBM is in equilibrium (after infinitely
many updates of both layers).

In practice, the calculation of E [·]recon is very computa-
tionally costly. Therefore a Contrastive Divergence algorithm
[4] was proposed, which simplifies the computation of the term
[·]recon, to adjust the weights and biases of RBM. Using this
algorithm for pre-training deep autoencoder, firstly the inputs
of the autoencoder are treated as the visible layer of RBM, and
the first hidden layer of the autoencoder as the hidden layer
of RBM. Once the weights and biases of the first RBM have
been trained, the activations of the hidden units are written as
new data for training the second RBM. The first hidden layer
of the autoencoder is then treated as a new RBM visible layer
and the second hidden layer of neurons as a new RBM hidden
layer. In the same way, all subsequent layers of the encoder
are trained.

In the fine-tuning stage, adjusted matrices W and vectors
c are used as the initial encoder weights and biases and the
matrices WT and the vectors b are applied as the initial
decoder weights and biases. Due to such an initialization the
weights and biases are much closer to the optimal values than
in case of their random initialization. As a result, a good quality
training result can be achieved in acceptable time.

IV. SHEPHERDING ALGORITHM

The reduced data of the position of passive agents are used
to control the movement of active agents. The displacements
of active agents are determined by neural networks.

In order to confirm the proposed approach, we choose
a variant of shepherding, in which passive agents are not
pushed, but eliminated when one of the active agents is close
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enough and falls within one of the four neighboring cells.
Similar process occurs, for example, during fire fighting. In
addition, active agents are provided with all information about
the location of active agents. At each step of the algorithm, the
active agents are able to move to one of their eight neighboring
cells in the workspace.

The inputs of the neural network are the transformed data
of the location of active and passive agents. The data transfor-
mation process is illustrated in Fig. 4. First, the data is centered
so that the center of mass of the passive agent is in the center
of the work area. Passive and active agents are rotated so that
the active agent, whose move is to be determined, is exactly
under the mass center of the passive agents. This operation
provide a useful rotational and displacement invariance to the
observed agents. The prepared data of the location of passive
agents is applied to the input of the autoencoder. The 2D
image determining location of passive agents is treated by the
autoencoder as a one-dimensional data, so the resultant feature
vector is also one-dimensional.

Neural network determining the shifts of active agents is
trained using a genetic algorithm. Individuals in this algorithm
are sets of network weights and biases. Their fitness is eval-
uated on the basis of the number of passive agents which
have not been eliminated in the evolutionary process. The
fewer passive agents are left, the greater the chance that this
individual is worth reproducing.

V. EXPERIMENTS AND RESULTS

Let us separately consider problems of shepherding for
the herds of passive agents forming one coherent area and
for herds that are represented as a few isolated areas. Figure
5(a) shows 5 examples of generated images of coherent herds
(stains) and Figure 6(a) illustrates 6 examples of generated
images of isolated herds (stains).

A. Dataset

Data for the conducted experiments were generated as
stains of random shapes in the image of the size of 28 by
28 pixels. A stain means the surface area occupied by passive
agents in the work area. We decided that in every analyzed
image of the dataset the stain occupies 50 pixels. 30000
images have been generated containing coherent stains and
other 30000, which may contain isolated stains. From each
dataset, 5000 images were used as test data. Remaining images
served as training data.

B. Autoencoding

A deep autoencoder with 7 fully connected hidden layers
was used for autoencoding. One model was trained for dataset
containing images of coherent stains and the other for dataset
containing images of isolated stains. In subsequent layers there
were 600, 300, 150, 30, 150, 300, 600 neurons, respectively.
At the pre-trening stage, a mini-batch gradient descent with
the batch size of 100 was applied. The momentum method was
used to update the parameters. In addition, after each parameter
update, they were scaled by 0.99998. Such a regularization
was used to achieve better generalization. The length of the
pre-training phase was confirmed to 50 epochs. During the
fine-tuning phase, the same mini-batch gradient descent was

applied and the parameters were updated using the RMSPROP
method [6]. In this way, two models of the deep autoencoder
converting images of size 28 × 28 pixels into 30 real numbers
have been identified.

The outputs of the trained models of the autoencoder are
shown in Fig. 5b and 6b. As can be seen the data have
been reconstructed in a very precise way. The results of the
autoencoder have been compared to the effects of the PCA
method. By means of the PCA algorithm, the input data has
been reduced to a vector of the same size as the one of the
generated by the autoencoder (i.e. to a 30-dimensional vector
for coherent stains and to a 50-dimensional vector for isolated
stains). Then, the input data has been reconstructed using the
reduced data. Obtained results are presented in Fig. 5c and 6c.
It has also been checked how many dimensions the resulting
PCA vector must have to obtain the same mean square error
of the reconstruction process. Namely, it has been verified,
that it is 50 features in the case of coherent stains, and 80 for
the isolated stains. The reconstruction results for the analyzed
vectors are presented in the Fig. 5d and 6d. As can be seen
there the blurring effects are clearly different. In the case of
autoencoding some information (small details) about the stain
is lost, but the stain has sharp edges. The stains obtained with
the use of PCA method retain information about details, but
the stains are more blurred, making it difficult to decide which
pixel belongs to the spot and which doesn’t.

C. Shepherding

Let us consider experiments with 3 active agents par-
ticipating in the process of shepherding. Their movements
are controlled by three identical fully connected networks.
The network consists of two layers of neurons (30-2) with
a sigmoid activation function. At the input of the network,
30 code coefficients are given for coherent stains and 50 for
isolated stains (obtained from the autoencoder) where as 6
coordinates define the location of 3 active agents. One of
the output neurons determines whether the active agent is to
move towards the mass center of the passive agents or, on
the contrary, it should move away from it. The second output
neuron decides if the agent should move left or right relative
to the center of mass of the passive agents.

Training of the network was performed using a genetic
algorithm with the population size of 50 individuals. Each
individual was represented as a vector of 1172 weights (30
neurons in input layer × (30 parameters of the stains + 6
parameters defining position of active agents) + 30 biases
+ 2 neurons in output layer × 30 inputs + 2 biases) of
the neural network determining the shifts of active agents
for coherent stains. For isolated stains the vectors had 1772
coordinates. Each epoch of the genetic algorithm consisted
4 stages: assessment of the fitness of individuals, selection,
crossover and mutation.

Assessment of fitness was determined based on 20 full
training scenarios, where a scenario means one multi-step
shepherding process. Each scenario was selected from a set of
25000 training images. For each scenario, the starting positions
of 3 active agents were selected randomly from within the
workspace.
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Fig. 4. A scheme for determining the shift of active agents. Note that the vector obtained from autoencoder represent the feature of the stain.

(a)

(b)

(c)

(d)

Fig. 5. Illustration of the effects of dimensional reduction of images of
coherent patches: (a) randomly generated input images; (b) reconstruction of
input images resulting from 30 real numbers generated by an autoencoder; (c)
reconstruction of input images resulting from 30-dimensional vector obtained
using the PCA method; (d) reconstruction of input images resulting from 50-
dimensional vector obtained using the PCA method;

(a)

(b)

(c)

(d)

Fig. 6. Illustration of the effects of dimensional reduction of images of
isolated patches: (a) randomly generated input images; (b) reconstruction of
input images resulting from 50 real numbers generated by an autoencoder; (c)
reconstruction of input images resulting from 50-dimensional vector obtained
using the PCA method; (d) reconstruction of input images resulting from 80-
dimensional vector obtained using the PCA method;

The process of shepherding took 50 iterations (i.e. each
active agent performed 50 moves in any direction). After
evaluating 20 training shepherding scenarios, the fitness of in-
dividuals was assessed on the basis of the number of pixels still
occupied by passive agents after finishing shepherding. The
selection process was carried out using the roulette method.

The crossover of randomly selected pairs took place with
a probability of 0.7 and was carried out in accordance with
the following formula:

ôik = βko
i
k + (1− βk)ojk

ôjk = (1− βk)oik + βko
j
k

where ôrs and ôrs are the n-th element of the weight vector of the
m-th individual before and after crossover, and βk represents
a realization of a random variable with a uniform distribution
which takes its value ranging from 0 to 1.

The mutation of individuals was carried out by adding
(with a probability equal to 0.01) to each element of the indi-
vidual’s vector a random variable having normal distribution
with a zero expected value and a variance equal to 2.

For the considered problem of shepherding passive agents
forming a coherent shapes, the genetic algorithm (run using the
mechanism of elitism) was performed for 100 epochs. After
completing the algorithm, the fitness of individuals was again
assessed on a set of 100 test scenarios, while the individual
with the highest efficiency was chosen as the winner.

The total number of pixels left after 100 tests was equal to
77 (the maximum value that could be achieved is equal to 100
× 50). Hence, this results in the winning unit being 98.46%
effective. Note that on average, only one pixel consisting of a
passive agent was left after shepherding.

In Fig. 7 three trajectories of active agents are presented.
The initial stain is displayed in the background, in gray. As
you can see, the agents learned to move spirally towards the
center of the stain and circulate in a clockwise direction. In
this example, the active agents managed to eliminate the whole
stain of passive agents.

For the considered problem of shepherding passive agents
forming isolated shapes (herds), the genetic algorithm was
performed for 2500 epochs. The total number of pixels left
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Fig. 7. Trajectories of active agents in the process of shepherding coherent
stains. The initial positions of the active agents are marked as circles

after 100 tests was equal to 400 (the maximum number which
is equal to 100 × 50). Thus, the winning individual has
the effectiveness of 92.00%. On average, only four pixels
representing passive agents were left after shepherding.

VI. SUMMARY AND FUTURE RESEARCH

This article has implemented the task of shepherding a
large number of passive agents creating a continuous area.
Two types of data have been generated, representing situations
in which passive agents form a coherent shape or isolated
(disjoint) herds. Reduction of the dimensionality of the data
describing the positions of passive agents has been obtained
using a deep autoencoder.

A pretraining technique based on the training of Restricted
Boltzmann Machine has been used to train the autoencoder.
Then the reduced data has been used for genetic training
of a neural network, which determines the movements of
active agents. The preliminary results have shown that this
approach can be extended to other, more complex problems of
competing.

Further research in this area may focus on the type of
criterion functions and variants of genetic algorithms and data
processing, in order to speed up the learning process.

During the process of eliminating passive agents, it may
happen that coherent stains become a group of smaller isolated
stains. In this case, it would be worth replacing the type of
neural network models so that the behavior of active agents
would be optimal for such cases.

In this work, only the simplest variant of the shepherding
problem has been considered, in which active agents are
eliminating static passive agents. When considering a real
shepherding problem (like fire fighting), one should model the
passive agents as expanding stains.

You should also take into account additional factors af-
fecting the fire development, such as wind direction, material
flammability near the fire and ambient temperature. In such
cases, it would be useful to teach active agents to keep mutual
distances (from each other) to reduce the effects of fire spread.
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