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Abstract. The paper is devoted to Professor Andrzej Lasota’s contribution to the ergodic
theory of stochastic operators. We have selected some of his important papers and shown
their influence on the evolution of this topic. We emphasize the role A. Lasota played
in promoting abstract mathematical theories by showing their applications. The article
is focused exclusively on ergodic properties of discrete stochastic semigroups {P n : n ≥ 0}.
Nevertheless, almost all of Lasota’s results presented here have their one-parameter conti-
nuous semigroup analogs.

Keywords: invariant measure, asymptotic stability, asymptotic periodicity, compact
attractor, lower function, smoothing, cell cycle, sweeping, genericity.

Mathematics Subject Classification: Primary 37A30, 47A35; Secondary 45D05, 46B42,
60J20, 92D15.

1. INTRODUCTION

An essential part of Professor Andrzej Lasota’s mathematical work concerns asymp-
totic behaviour of iterates of linear contractions and their stability. The goal of
this article is to describe it briefly from the perspective of the past 30 years. We
will emphasize the role that Professor A. Lasota played in both abstract operator
ergodic theory and its applications to biology, medicine and technology by selecting
a few representative results. We will show how his ideas have developed into well
established theories. It seems to be an easy task, as his contribution to this topic is
enormous. On the other hand, this is not a survey article, neither does it aim to be
complete in any sense. Definitely, it might omit some important material due to the
author’s ignorance, poor memory and the limited time for its preparation. The reader
should not expect a comprehensive and updated review of A. Lasota’s work in such
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a restricted volume. Frankly speaking, the choice of the material is very subjective
and follows the paths which the author stepped into after the Master.

The paper is organized as follows. After this short Introduction, we proceed to
Section 2, where we first provide a historical background for A. Lasota’s works. Then
we present classical results of A. Lasota on the existence of absolutely continuous
invariant measures for piecewise monotonic functions of the unit interval [0, 1]. In
Section 3, we describe original methods introduced by A. Lasota for studying asym-
ptotic stability and periodicity of Markov operators. The most fruitful notions which
are still in use are the constrictivity and lower bound techniques. They have been
borrowed by numerous pure and applied mathematicians (including the author) and
generalized into different directions. We mention A. Lasota’s studies on genericity
of ergodicity or mixing in the class of semigroups of stochastic operators. Section 4
deals with applications to biology and medicine. We discuss A. Lasota’s models of cell
cycles based on asymptotic stability of stochastic operators. Final Section 5 brings
information on recent progress in the noncommutative versions of the above topics.
All papers discussed in that section use, more or less openly, methods introduced by
A. Lasota.

2. INVARIANT MEASURES FOR PICEWISE EXPANDING MAPS

Given a measure space (X,
∑

, µ), we say that a transformation τ : X → X is
measurable if τ−1(

∑
) ⊆

∑
. The system (X,

∑
, µ, τ) is called a measurable dynamical

(discrete time) system. In order to understand it, we need to know the (asymptotic)
behaviour of its (typical) trajectories τn(x) : n ≥ 0, x ∈ X. We restrict our studies to
the case when τ is nonsingular (which means that if µ(A) = 0 then µ(τ−1(A)) = 0).
It follows from the famous Birkhoff Individual Ergodic Theorem that whenever τ is
measure µ preserving (i.e., µ ◦ τ−1 = µ), then for each f ∈ L1(µ) the Cesaro averages

Aτ
Nf(x) =

1
N

N−1∑
j=0

f(τ j(x))

converge pointwise (for µ almost all x ∈ X) and in the L1 norm to f(x), where
f ∈ L1(µ) and is τ–invariant (i.e., f ◦ τ = f). τ is said to be ergodic if

∑
inv =

{A ∈
∑

: τ−1(A) = A} = {∅, X}. For ergodic and measure preserving τ there is
f(x) = 1

µ(X)

∫
X

fdµ for µ almost all x ∈ X if µ is finite and f = 0 if µ is infinite.
Even in the very classical case of τα(x) = (x + α)mod 1, where x = [0, 1),

∑
is the

σ–algebra of Borel (Lebesgue) subsets of [0, 1) and µ = λ|[0,1) (the Lebesgue measure),
studying Cesaro means Aτ

Nf(x), and not using the Birkhoff theorem, is a nontrivial
task in analysis. It appears that τα is λ|[0,1) preserving and ergodic if and only if α is
irrational. In this case,

lim
N→∞

]{k : 0 ≤ k < N, τk
α(x) ∈ [a, b]}

N
= b− a
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for all x ∈ [0, 1) and 0 ≤ a < b < 1. What can be said about other transformations
of the unit interval like the Renyi transformation τ(x) = (rx)mod1, where r > 1,
τ(x) = (ln(x))mod1 or

γ(x) =

{
x

1−x for 0 ≤ x < 1
2 ,

2x− 1 for 1
2 ≤ x ≤ 1?

As long as we know that a transformation τ preserves measure µ or another
equivalent measure ν (i.e. µ(A) = 0 if and only if ν(A) = 0) or at least measure ν
which is absolutely continuous with respect to µ (which means that ν(A) = 0 whenever
µ(A) = 0), the Birkhoff Ergodic Theorem describes asymptotic average behaviour of
trajectories τn(x) as far as the frequency of visiting measurable sets is concerned.
Therefore, the first step towards understanding the system (X,

∑
, µ, τ) is to answer

the question of the existence of τ invariant measures. In general, there is no technique
available for studying the asymptotic behaviour of Aτ

Nf(x), even if τ is given by a
simple explicit formula. Lifting our transformation τ (it may be very nonlinear) to
some linear operator Pτ : L1(µ) → L1(µ) seems to be an artificial step. Luckily it
will work.

In 1973, in [65], A. Lasota and J.A. Yorke solved S. Ulam’s problem (see [103]):
whether transformations τ : [0, 1] → [0, 1] which are piecewise C2 and inf |τ ′| > 1 ad-
mit invariant measures ν which are equivalent to λ|[0,1]. They openly used techniques
from functional analysis. For this, let Pτ : L1(µ) → L1(µ) be defined as a linear
operator ∫

A

Pτfdµ =
∫

τ−1(A)

fdµ.

Pτ is called the Frobenius–Perron operator corresponding to the transformation τ . It
can easily be verified that Pτ is positive (i.e., Pτf ≥ 0 for f ≥ 0) and the integral
preserving (i.e.,

∫
X

Pτfdµ =
∫

X
fdµ for all f ∈ L1(µ)). It easily follows from the

last properties that ‖Pτf‖1 ≤ ‖f‖1 (i.e., Pτ is a contraction). The adjoint operator
P ∗

τ : L∞(µ) → L∞(µ) (called the Koopman operator) is the composition operator
P ∗

τ h(x) = h(τ(x)). Clearly, Pn
τ = Pτn . If f∗ ∈ L1(µ) is nonnegative and normalized

(we call such a function a density) and Pτf∗ = f∗, then the measure νf∗(A) =
∫

A
f∗dµ

is τ invariant (νf∗(τ
−1(A)) =

∫
τ−1(A)

f∗dµ =
∫

A
Pτf∗dµ =

∫
A

f∗dµ = νf∗(A)). This
leads us to a conclusion: finding all fixed densities of Pτ means finding all τ invariant
absolutely continuous probabilities. In the case of τ : [0, 1] → [0, 1], we have a
representation

Pτf(x) =
d

dx

∫
τ−1([0,x])

f(s)ds.

We recall that a transformation τ : [0, 1] → [0, 1] is called piecewise C1+δ (we will
consider δ > 0) if there exists a partition 0 = a0 < a1 < · · · < ap = 1 of the unit
interval such that for each index i the restriction τi = τ |(ai−1,ai) is a C1+δ function
which can be extended to the closed interval [ai−1, ai] as a C1+δ function, τ need not
be continuous at the points ai (we recall that a function τ : [a, b] → [c, d] is called
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C1+δ, δ > 0 if τ is differentiable and |τ ′(x)− τ ′(y)| ≤ K|x− y|δ for all x, y ∈ [a, b] and
some positive K). In [65], A. Lasota and J.A. Yorke proved:

Theorem 1. Let τ : [0, 1] → [0, 1] be a piecewise C2 function such that inf |τ ′| > 1.
Then for any f ∈ L1(µ) the sequence

1
N

N−1∑
j=0

P j
τ f

converges in the norm ‖ · ‖1 to a function f∗ ∈ L1(µ). The limit function has the
following properties:

1. f ≥ 0 ⇒ f∗ ≥ 0,
2.

∫ 1

0
f∗dλ =

∫ 1

0
fdλ,

3. Pτf∗ = f∗,
4. the function f∗ is of bounded variation; moreover there exists a constant c inde-

pendent of the choice of initial f such that the variation of the limiting f∗ satisfies
the inequality

∨1
0 f∗ ≤ c‖f‖1.

It is also noticed in [65] that the assumption inf |τ ′| > 1 is essential. In particular,
this assumption is violated for the transformation γ defined above and it may be
proved that it has no invariant absolutely continuous finite measures.

The proof of the above theorem is based on the K. Yoshida and S. Kakutani
(see [106]) mean ergodic theorem and the C.T. Ionescu-Tulcea and G. Marinescu (see
[37]) spectral decomposition theorem. The observation that iterates P k

τ f for f from
the unit ball of L1(µ) are attracted to a norm ‖ · ‖1 compact subset F ⊂ L1(µ) is
crucial. This motif has further been exploited in a generalized form by A. Lasota,
his coauthors, students, collaborators and numerous others (see [20, 22, 24, 25, 32, 35,
68–70, 76–78, 85]). I will specially emphasize the works of Z. Kowalski [50, 51] and
[52] on ergodic properties of piecewise expanding transformations of the unit interval,
because it was him who brought (in the mid-1970s) this topic from A. Lasota (at that
time lecturing in Kraków) to Wrocław. Attending in 1978 Z. Kowalski’s lectures on
Ergodic Theory, I first heard about the pioneering results of A. Lasota and realized
that there was still room for more results in this direction. Extensions to expanding
transformations of n–dimensional cubes were intensively studied by M. Jabłoński (see
[41]). On the other hand, ergodic properties of transformations of the unit interval
with piecewise expanding transformations and with countably many components were
studied by M.R. Rychlik (see [90]). His beautiful compact result states that for every
transformation τ : [0, 1] → [0, 1] which has the property that on partition intervals
Ji = (ai, bi) the transformation is expanding (Ji ∩ Jk = ∅ for i 6= k,

⋃∞
i=1 Ji = [0, 1]

and inf |τ ′|Ji | ≥ a > 1) and the total variation
∨

U ( 1
|τ ′(x)| ) < ∞, where U =

⋃
i=1 Ji,

there exists a τ invariant absolutely continuous measure. In this section we have
given a very brief account of ergodic theory of piecewise monotonic and expanding
transformations of the unit interval. For more detailed accounts, we refer the reader
to the books [56] and [19].
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The above topic, even though it looks very abstract, provides theoretical back-
ground for technological applications. For instance, it was used (see [62] and more
recently [23]) for modeling the dynamics of a rotary drill and finally to design its im-
proved version. This was formally acknowledged by technicians who granted A. Lasota
a patent. Other applications are mentioned in [19]. Recently, piecewise expanding
transformations, and their invariant measures have been used in mathematical mod-
eling of option pricing (see [6]).

3. CONSTRICTORS, ASYMPTOTIC PERIODICITY AND GENERICITY

A measure preserving transformation τ defined on a measure space (X,
∑

, µ) is called
exact if

∑
∞ =

⋂∞
n=1{τ−n(A) : A ∈

∑
} = {∅, X}. M. Lin proved in [71] that a

(doubly measurable and measure preserving) τ is exact if and only if for every f ∈
L1(µ) there is limn→∞ ‖Pn

τ f − (
∫

X
fdµ)1‖1 = 0 (i.e., if Pτ is asymptotically stable).

A. Lasota and J.A. Yorke’s paper [66] originated a series of publications on exactness
and equivalent conditions. They introduced the concept of lower and upper bounds.
These ideas have been adapted to a more general setting; therefore, we introduce a
modern version here. First of all, instead of the Frobenius-Perron operator, we may
consider what is known as stochastic operators. Namely, for a σ–finite measure space
(X,

∑
, µ), a linear operator P : L1(µ) → L1(µ) is called stochastic (Markov) if it

is positive and preserves the integral (f ∈ L1
+(µ) ⇒ Pf ∈ L1

+(µ) and
∫

X
Pfdµ =∫

X
fdµ). The set of all stochastic operators on L1(µ) is denoted by S (clearly S

is a convex unital semigroup of operators, closed in the weak operator topology in
L(L1(µ))). A stochastic operator P is called asymptotically stable if there exists a
density f∗ such that for all f ∈ L1(µ) there holds limn→∞ ‖Pf − (

∫
X

fdµ)f∗‖1 = 0
(in other words, Pn converge in the strong operator topology to the one dimensional
projection 1⊗ f∗). Clearly, if P is asymptotically stable, then the limit density f∗ is
unique and it is a fixed point (hence νf∗ is τ invariant). A nonzero function h ∈ L1

+(µ)
is called a lower bound if for each density f ∈ L1(µ) there is limn→∞ ‖(h−Pnf)+‖1 =
0. On the other hand, a nonzero function h ∈ L1

+(µ) such that ‖h‖1 < 2 is called an
upper bound if for each density f ∈ L1(µ) there is limn→∞ ‖(Pnf − h)+‖1 = 0. In
[66] the authors proved

Theorem 2. Let τ be a doubly measurable nonsingular transformation of a σ-finite
measure space (X,

∑
, µ). Then τ is exact (the corresponding Frobenius-Perron

operator Pτ is asymptotically stable) if and only if Pτ has a lower bound and only
if Pτ has an upper bound.

The notion of lower and upper bounds appeared to be very fruitful, relatively easy
to verify and therefore was generalized in many directions (see [33,34,53,63,84,86,93,
97,98,109]). We focus on some of them only. The following concept emerges directly.
We will say that a stochastic operator P overlaps supports if for every two nonzero and
positive f1, f2 ∈ L1(µ) there exists n such that Pnf1∧Pnf2 6= 0. For quite a long time
it was an intriguing question (posed by A. Lasota) whether any stochastic operator
which overlaps supports and posses an (necessarily unique) invariant density is asymp-
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totically stable. It was disapproved by R. Rudnicki in [89] (compare also [17]). The
notion of overlapping in its different versions was discussed in [10]. If there exists ε > 0
such that for every two densities f1, f2 there exists n0 such that ‖Pn0f1∧Pn0f2‖1 ≥ ε,
then for every two densities f1, f2 there holds limn→∞ ‖Pnf1 − Pnf2‖1 = 0 (such
operators are called mixing o ≡ the iterates Pn converge to zero in the strong
operator topology on L1

0(µ) = {f ∈ L1(µ) :
∫

X
fdµ = 0}). ε-overlapping is equiv-

alent to asymptotic stability as long as there exists an invariant density. Uni-
form ε-overlapping means that there exist n0 and ε > 0 such that for every two
densities f1, f2 there is ‖Pn0f1 ∧ Pn0f2‖1 ≥ ε. It can be proved that uniform
ε-overlapping implies that a (unique) invariant density f∗ does exist and in this case
limn→∞ |||Pn − 1⊗ f∗||| = 0 (i.e., the iterates Pn converge in the operator norm on
L(L1(µ)) to the one dimensional projection 1⊗f∗). Moreover, the rate of convergence
is exponential.

A version of this notion, the so-called mean lower bound, was recently discussed
in [29].

The next paper [54] of A. Lasota, T.Y. Li and J.A. Yorke may be recognized as an-
other milestone in the stability theory of Markov operators. The following important
notion has been introduced: given a stochastic operator P : L1(µ) → L1(µ), where
(X,

∑
, µ) is a fixed σ-finite measure space, we say that P is strongly constrictive if

there exists a norm compact subset F ⊆ D such that for all densities f ∈ D there
holds

lim
n→∞

dist(Pnf,F) = 0.

The set F is called a norm constrictor (this concept appeared even earlier in the proof
of Theorem 1 in [65]). The following theorem is the main result of [54]

Theorem 3. Let P be a strongly constrictive stochastic operator on L1(µ). Then
there exist finite sequences of densities g1, g2, . . . , gr and nonnegative functions
0 ≤ h1, h2, . . . , hr ≤ 1 such that for any function f ∈ L1(µ) there is

lim
n→∞

‖Pn(f −
r∑

j=1

(
∫

X

fhjdµ)gj)‖1 = 0.

Moreover, the densities g1, g2, . . . , gr have pairwise disjoint supports and Pgi = gα(i)

for some permutation α of the set of indices {1, 2, . . . , r}.

Therefore, the iterates of any strongly constrictive operator P admit a decomposi-
tion Pnf =

∑r
j=1(

∫
X

fhjdµ)gαn(j) +Rnf , where ‖Rnf‖1 → 0 (this property is called
asymptotic periodicity).

This result served as a stepping-stone for several later papers ([36,83,93,107,108]).
We will mention some of them. First of all, let us call a linear operator P : X → X,
where (X, ‖ · ‖) is a fixed Banach space, strongly (uniformly) constrictive if, as above,
there exists a norm compact subset F ⊂ X such that for every vector x from the unit
ball B1(X) there is limn→∞ dist(Pnx,F) = 0 (limn→∞ supx∈B1(X) dist(Pnx,F) = 0,
respectively). It turns out (see [9]) that if (X, ‖ · ‖, | · |) is a Banach lattice and T is
a positive contraction, then uniform constrictivity is equivalent to quasi-compactness
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of T and to the convergence of Tnd (for some d) in the norm operator topology to
a finite dimensional projection. Let us recall that an operator T is quasi-compact
if it can be approximated in the operator norm by compact operators or if there
exists a linear compact operator Q : X → X such that for some power n there is
|||Tn−Q||| < 1. As far as strong constrictivity is concerned, several generalizations of
[54] were obtained instantly (compare [9,36,75,92,104]). We emphasize [11] (see also
[74]), where the effect of asymptotic periodicity was obtained for strongly constrictive
linear operators acting on ordered F-spaces with the Riesz Decomposition Property.

An essential extension of the notion of strong constrictivity is due to J. Komornik,
who in [44] defines a stochastic operator P : L1(µ) → L1(µ) to be weakly constrictive
if there exists a weakly compact subset F ⊂ D such that limn→∞ dist(Pnf,F) = 0
holds for all f ∈ D. In [44] it is proved that weakly constrictive stochastic operators
are strongly constrictive and therefore asymptotically periodic.

Another notion (see [46, 48]) useful in studying asymptotic behaviour of iterates
Pnf of a stochastic operator P is known as quasi-constrictivity. Namely, P : L1(µ) →
L1(µ) is called quasi-constrictive (or smoothing) if there exist a measurable set C of
finite measure µ and constants κ < 1, δ > 0 such that for any density f ∈ D there
exists an integer nf such that ∫

E∪Cc

Pnfdµ ≤ κ

whenever n ≥ nf and µ(E) ≤ δ. A. Lasota and J. Komornik obtained, in [46]:

Theorem 4. A stochastic operator P : L1(µ) → L1(µ) is asymptotically periodic if
and only if it is smoothing.

Let us call a stochastic operator P uniformly smoothing (cf [12]) if there exist a
measurable set C of finite measure µ, natural number n0 and constants κ < 1, δ > 0
such that for any density f ∈ D there is sup

µ(E)≤δ

∫
E∪Cc Pn0fdµ ≤ κ. It was proved in

[12] that a stochastic P is uniformly smoothing if and only if it is quasi-compact (and
therefore uniformly constrictive).

Another generalization of constrictivity has been recently applied in papers [94–
96] to the problem of supercyclicity. Namely, a power bounded operator T acting
on a Banach space (X, ‖ · ‖) is said to have an occasionally attracting compact set
F ⊂ X (called an occasional constrictor) if for each vector x ∈ B1(X) there holds
lim infn→∞ dist(Tnx,F) = 0. It follows from [96] that a stochastic operator P (ge-
nerally any positive linear contraction acting on a Banach lattice) is asymptotically
periodic if and only if it has an occasional constrictor.

In paper [59], A. Lasota and J. Myjak addressed the problem of genericity of
stochastic operators possessing strictly positive invariant densities. We recall that a
subset of a metric space is residual if its complement is contained in a set of the first
Baire category. A property is said to be generic or generically satisfied if the elements
enjoying it form a residual subset. The semigroup S of all stochastic operators on
L1(µ) has been studied quite comprehensively in this regard (see [8, 38–40]).

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


402 Wojciech Bartoszek

In [59] the following was proved:

Theorem 5. The set S∗ of all stochastic operators on L1(µ) which are asymptotically
stable and have strictly positive densities is a residual subset of S with the operator
norm topology.

Papers [14, 88] contain further generalizations. Using the notion of uniform
ε-overlapping, W. Bartoszek proved in [14] that S∗ is an operator norm dense
and strong operator Gδ. On the other hand, in [88] R. Rudnicki provides a gen-
eral technique for category-type results in subsemigroups of Banach algebras. In-
teresting results concerning genericity of chaos for piecewise monotone transforma-
tions of the unit interval were obtained by J. Piórek in [85], after discussions with
Professor Andrzej Lasota as mentioned in the paper. Finally, we mention T. Szarek’s
paper [98] as it exploits two different ideas coming from A. Lasota (cf. [67]). Namely,
using the technique of lower bound and the Fortet-Mourier norm it is proved that the
set of asymptotically stable (in this norm) Markov operators having invariant measure
with a full support and zero Hausdorff dimension is generic. We hope that the studies
of A. Lasota on asymptotic behaviour of Markov operators on Polish (in general
non-σcompact) spaces with applications to fractals will be addressed elsewhere, by a
specialist more involved in this subject (we merely mention [42,60,61,64,82,97,99]).

4. MARKOV MODELS OF A CELL CYCLE

All the projects and papers of Professor Andrzej Lasota stemmed from practical needs.
Many of his papers on stochastic operators include sections devoted to applications.
To A. Lasota, stochastic operators (which may be formally treated as abstract linear
positive operators acting on AL Banach lattices L1(µ)) appeared to be a perfect tool to
build biological models of proliferating cell populations. Describing these phenomena
with stochastic kernels, A. Lasota and M.C. Mackey in [55] originated a long series
of interesting papers where biology and pure mathematics intertwine. We recall that
a kernel stochastic operator P : L1(µ) → L1(µ) is defined as

Pf(x) =
∫

X

k(x, y)f(x)dµ(y),

where k : X × X → R is a stochastic kernel, i.e., k is jointly measurable on X × X
and satisfies k(x, y) ≥ 0 and

∫
X

k(x, y)dµ(x) = 1 for every y ∈ X. After some
time (compare contributions by O. Arina and M. Kimmel [3], again A. Lasota and
M.C. Mackey [57], J. Tyrcha [102], G.F. Webb and A. Grabosch [105]) A. Lasota and
K. Baron published paper [7], where they extracted the mathematical core of above
mentioned models. Namely, stochastic operators P : L1([0,∞)) → L1([0,∞)) used
there are defined by kernels of an abstract form

k(x, y) =

{
− ∂

∂x H(Q(λ(x))−Q(y)) if 0 ≤ y ≤ λ(x),
0 otherwise,
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where functions H,Q, λ : [0,∞) → [0,∞) are assumed to be absolutely continuous.
Moreover, they satisfy the following conditions: H(0) = 1, lim

x→+∞
H(x) = 0, H is

nonincreasing, Q(0) = λ(0) = 0, lim
x→+∞

Q(x) = lim
x→+∞

λ(x) = +∞, and Q, λ are
nondecreasing. These Volterra like operators will be denoted by LMT.

Papers [31] and [7] are devoted to asymptotic properties of iterates of such ope-
rators. They summarize, unify and finally generalize results of J.J. Tyson and
K.B. Hannsgen (cf. [100] and [101]) and J. Tyrcha [102]. A. Lasota and H. Gacki
proved in [31] that

Theorem 6. If an LMT operator P : L1([0,∞)) → L1([0,∞)) satisfies

lim inf
x→∞

H(x) > 1

then P is asymptotically stable.

After three years, in A. Lasota and K. Baron’s paper [7], there appeared:

Theorem 7. If P is a LMT kernel operator and there exists an α ∈ (0, 1] such that∫ ∞

0

xαh(x)dx < lim inf
x→∞

((Q(λ(x)))α −Q(x)α)

then the operator P has a stationary density.

Before formulating another result from this paper, we recall that a stochastic
operator P : L1((X,

∑
, µ)) → L1((X,

∑
, µ)), where (X, d) is a locally compact Polish

metric space and
∑

is the Borel σ–algebra on X is called sweeping if for any density
f ∈ D and any compact subset K ⊆ X there is lim

n→∞

∫
K

Pnfdµ = 0.

Theorem 8. If P is a LMT kernel operator satisfying

sup
x≥x0

((Q(λ(x)))β −Q(x)β <

∫ ∞

0

xβh(x)dx < ∞

for an x0 ≥ 0 and β ≥ 1 and
∞∫

Q(λ(x0))

h(x)dx > 0, then P is sweeping.

Nevertheless, the question of the behaviour of iterates Pnf has not been answered
satisfactorily. There were several more papers devoted to this class of operators
(see [49, 58, 72, 87, 107]). J. Komornik and I. Melicherčik proved (see [47, 73]) that
for the class of LMT operators the so-called Foguel alternative holds (i.e., such an
operator either possesses an invariant density or it is sweeping). Step by step, we
have arrived (cf. [16]; see also [13] and [15]) to the final form. Namely, if P is a LMT
operator then for every f ∈ L1([0,∞)) and compact subset K ⊂ [0,∞) there holds
lim

n→∞

∫
K

Pnfdx =
∫

K
Sfdx, where S : L1([0,∞)) → L1

fix([0,∞)) is the projection onto
the sublattice of P invariant functions. In other words, LMT operators are always
weak* asymptotically stable. Moreover, Pnf converge strongly on L1(F ), where F
stands for the center of an operator P (we recall that the center of a stochastic
operator is the union of all supports of invariant densities).
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5. STOCHASTIC OPERATORS ON NONCOMMUTATIVE SPACES

We conclude the article by mentioning a few relatively fresh noncommutative results
directly linked to some ideas from Andrzej Lasota works. Before we reach this point,
we must realize that in some applications, describing stochastic/statistical evolution of
the system, requires more than objects and theories like density functions, probability
measures or spaces L1(µ), L∞(µ). Of course, we have in mind quantum physics.
Classical probability is replaced by its “noncommutative” counterpart build on C*
algebras (specifically von Neumann algebras) and W ∗ algebras.

For the sake of completeness of this section, we add that asymptotic properties
of iterates of generalized stochastic operators acting on ordered vector spaces with
norm which is additive on positive elements have been studied by Sh.A. Ayupov,
T.A. Sarymsakov and N.P. Zimakov ([5, 91]). For more detailed accounts concerning
general quantum dynamical systems, we refer the reader to books [1, 4] and [21].

In order to show how the theory discussed above may be adapted to a new environ-
ment, we will briefly introduce necessary notions. Let us start with a background for
the most classical von Neumann model of quantum mechanics based on the so-called
Schatten classes (a primer for modern models of quantum dynamical systems).

Let (H, 〈·, ·〉) be a separable (infinite dimensional) complex Hilbert space. As
usual, the norm is denoted by ‖ · ‖ and the Banach algebra of linear and bounded
operators on (H, ‖ · ‖) is denoted by L(H). The operator adjoint to A ∈ L(H) is
denoted by A∗. An operator A ∈ L(H) is called Hermitian if A = A∗, i.e., 〈Ax, y〉 =
〈x,Ay〉 holds for all x, y ∈ H. Moreover, if 〈Ax, x〉 ∈ [0,∞) holds for all x ∈ H
then we say that A is positive. Clearly, positive operators on H form a cone in
L(H), denoted by L(H)+. Each Hermitian operator A may be uniquely decomposed
as A = A+ − A− (with A+A− = A−A+ = 0), where A+ and A− are called a
positive and negative part of A respectively. By |A| we mean A+ + A−. Obviously,
|A| ∈ L(H)+ and it is called a modulus of A. The modulus may be equivalently
introduced as |A| =

√
A∗A. Having the cone, we introduce in L(H) a partial order

as follows: A ≤ B if and only if B − A ∈ L(H)+. It is well known that L(H)
endowed with this order is not a (vector) lattice and it does not satisfy the so-called
Riesz decomposition property. A general bounded operator A may be written as
A = B + iC = (B+ − B−) + i(C+ − C−), where both B,C are Hermitian. Let us
recall that A ∈ L(H) is compact if A(xn) has a (norm) convergent subsequence for
each bounded sequence xn ∈ H (or, equivalently, when A is a norm operator limit
of finite dimensional operators). The ideal of compact operators on a Hilbert space
plays an important role (it is denoted by C0). We say that an operator X ∈ L(H) is
trace-class if for each orthonormal basis e1, e2, · · · ∈ H there is

∑
j=1

〈|X|ej , ej〉 < ∞.

The trace is defined as
∑
j=1

〈Xej , ej〉 and it is denoted by tr(X). Then the functional

X → tr(|X|) = ‖X‖1

defines a norm (stronger than the operator norm). The trace-operators form a two
sided ideal in L(H), which is called the Schatten class 1 and is denoted by C1. The
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trace norm is complete on C1. It may be easily verified that whenever H is not finite
dimensional, C1 is not closed in the operator norm in L(H). It is well known that
by dual operation 〈A,X〉 =tr(XA), where A ∈ C0 and X ∈ C1, the adjoint space to
(C0, ‖ · ‖) may be identified with (C1, ‖ · ‖1). Further, the dual space to (C1, ‖ · ‖1) is
(L(H), ‖ · ‖) (denoted in this context as C∞) with dual operation 〈X, B〉 =tr(BX),
where B ∈ C∞ and X ∈ C1. In particular, C1 is not reflexive. The space C1 is
commonly seen as the noncommutative counterpart of the `1 space. Since the oper-
ators of finite rank are norm dense in C1, and the Hilbert space H is separable (by
our assumption), C1 is separable too. The following additivity property (like in the
Banach lattice L1(µ)) of norm ‖ · ‖1 is preserved

∀X1,X2∈C1 ( X1, X2 ≥ 0 ⇒ ‖X1 + X2‖1 = ‖X1‖1 + ‖X2‖1).

A positive operator X from C1 is called a state if tr(X) = 1 (they obviously play
the role of classical densities). The set of all states is denoted by S. It is easy to verify
that S is a convex and closed subset of C1, in the weak topology (hence, for the both
operator and trace norms). Direct verification proves that the set is not closed in the
weak* topology (if dim H = ∞). A bounded linear operator P : C1 → C1 is said to be
positive if P (C1+) ⊆ C1+. A positive operator P is called stochastic (Markovian) if for
every X ∈ C1+ there is ‖P (X)‖1 = ‖X‖1 (equivalently, we may say that P (S) ⊆ S).
The set of all stochastic operators on C1 is denoted by S.

Let us give a few examples of stochastic operators. Given a unitary operator U ,
define P (X) = U∗XU and Q(X) = UXU∗. Clearly, both P and Q are stochastic.
Moreover, they are invertible isometries. Let V be a linear contraction (onto) of H
such that V ∗ is isometric. Similarly as above, we define R(X) = V ∗XV . It is easy
to check that R is stochastic (non-invertible in general). It follows that any convex
combination ∑

j

αjPj +
∑

k

βkQk +
∑

l

γlRl

is stochastic as long as αj , βk, γl ≥ 0 and
∑

j αj +
∑

k βk +
∑

l γl = 1. A slight
modification gives

∫
P (s)dν(s) ∈ S, whenever each P (s) is in S and the integral over

a probabilistic measure ν is properly defined. The following theorem (see [18], where
we use the technique of lower bounds) is fundamental for genericity of mixing.

Theorem 9. Let P be a stochastic operator on C1. Then the following conditions are
equivalent:

(i) there exist a one-dimensional projection QX∗ ∈ S (i.e., QX∗(X) = tr(X)X∗ for
some X∗ ∈ S) and constants C > 0, 0 < a < 1 such that

|||Pn −QX∗ ||| < Can for n ∈ N,

(ii) there exists a one-dimensional projection QX∗ ∈ S such that

lim
n→∞

|||Pn −QX∗ ||| = 0,
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(iii) for each ε > 0, there exists an index n0 such that for all X1, X2 ∈ S there holds

||Pn0(X1)− Pn0(X2)||1 < ε,

(iv) there exists an index n0 such that

λ = sup
X1,X2∈S

||Pn0(X1)− Pn0(X2)||1 < 2.

We say that a stochastic operator P ∈ S is norm mixing (uniformly stable) if one
of the conditions of the above theorem is satisfied for some n and some ε < 2. The
family of all norm mixing stochastic operators is denoted by Snm. A state X ∈ S is
strictly positive if for each nonzero x ∈ H there is 〈Xx, x〉 > 0 (or, equivalently,
the eigenvectors of X span the whole space H, or X is “1-1”). The set of all strictly
positive states is denoted by S+. The set of all norm mixing stochastic operators
possessing a strictly positive invariant state is denoted by Snm+. It was proved in
[18] by W. Bartoszek and B. Kuna that

Theorem 10. The set Snm+ is a dense Gδ subset of S in the norm operator topology.

In comparison with the norm topology, stochastic operators with iterates con-
verging to one dimensional projections form a meager set in the strong operator
topology (compare [39]). If there exists X∗ ∈ S such that for all X1 ∈ S there holds
limn→∞ ‖Pn(X1) − X∗‖1 = 0, then the operator P is called strong operator topo-
logy (s.o.t.) mixing (asymptotically stable). The set of all s.o.t. mixing stochastic
operators is denoted by Ssm. We say that a stochastic operator P on S is almost
mixing in the strong operator topology if for each pair of states X1, X2 ∈ S there is
lim

n→∞
‖Pn(X1)− Pn(X2)‖1 = 0. The set of all almost mixing operators is denoted by

Ssam. It is proved in [18] that

Theorem 11. The set {P ∈ Ssam : P has no invariant state} = Ssam \ Ssm is
a strong operator topology dense Gδ subset of S.

We conclude the paper with a very brief discussion of recent papers which deal
with lower/upper bound, smoothness techniques or asymptotic stability/periodicity
of stochastic operators on preduals M∗ to von Neumann algebras.

In [2,26] and [27], the authors extend the notion of constrictors beyond Banach lat-
tices. In [28] E.Yu. Emel’yanov and M.P.H. Wolff adopt constrictivity and smoothness
to stochastic semigroups defined on M∗. They study the structure of attractors under
a specific property (strong normality) of cones, mainly for stochastic operators de-
fined on C* algebras and preduals of von Neumann algebras. Whenever T is a positive
constrictive operator on M∗ with a constrictor of the form [−y, y] + κB1(M∗), with
κ ∈ [0, 1) and some y ∈ M∗+, T is weakly almost periodic (in particular, the Cesaro
means 1

N

∑N−1
j=0 T j converge in the strong operator topology). These four articles are

summarized in [30]. Several results about Cesaro (mean) ergodicity, asymptotic sta-
bility, smoothness, constrictivity and asymptotic periodicity of stochastic semigroups
on preduals of von Neumann algebras are obtained.
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The so-called Dobrushin coefficient of ergodicity (related to Doeblin property or to
the uniform ε -overlapping condition) is used in [79,80] and [81] to obtain a criterion
for the asymptotic stability of stochastic operators on L1(A, τ) spaces associated with
finite von Neumann algebras or finite Jordan algebras. We also mention a paper [43]
by A. Katz, who studied asymptotic stability of iterates of automorphisms of an
arbitrary von Neumann algebra.
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