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Abstract
Guided waves have attracted significant attention for non-destructive testing (NDT) and structural health monitoring (SHM) 
due to their ability to travel relatively long distances without significant energy loss combined with their sensitivity to 
even small defects. Therefore, they are commonly used in damage detection and localization applications. The main idea 
of incorporating guided waves in NDT and SHM is based on processing the received signals and appropriate interpreta-
tion of their characteristics. A great amount of research devoted to diagnostics of plate-like structures considers specimens 
with constant thickness, which significantly facilities the diagnostic process. In such a case the velocity is also assumed to 
be constant. However, the developed diagnostic methods should be applicable, especially for the structures exposed to an 
aggressive environment, excessive load, or unfavorable weather conditions, etc., when the probability of damage occurring is 
much higher. In such cases, the assumption about the uniform thickness alongside the propagation path cannot be applied in 
every case. Thus, the present study is focused on wave propagation in metallic plates with variable thickness. The results of 
theoretical, numerical and experimental investigations of antisymmetric Lamb mode propagation in aluminum plates with a 
sine-shaped surface are presented. In the first step, the influence of non-uniform thickness distribution on wave velocity has 
been described. Next, the inverse problem aimed at shape reconstruction based on time of flight (ToF) analysis and spatially 
varying wave velocity was solved and compared with the standard dispersion curve-fitting method.

Keywords Guided waves · Irregular plate · Numerical simulations · Experimental tests · CNC manufacturing

1 Introduction

Guided wave propagation in metallic plates has been 
extensively studied in the last years, as they are a promis-
ing method for noninvasive diagnostics [1]. In particular, 
wave-based methods are commonly used because of their 
ability to travel long distances without significant ampli-
tude reduction. Special attention has been paid to dam-
age detection and localization procedures for plates [2]. 
In many cases, the faulty region is localized based on the 
time lags between reflections captured by transducers in the 
network. Based on the ToF and propagation velocity the 
possible localizations of the damage can be determined [3]. 

The velocity of the guided wave can be established by solv-
ing the Rayleigh–Lamb equation and tracing the dispersion 
curves representing frequency–velocity relationships [4]. It 
is well-known that their shape strongly depends on mate-
rial parameters and plate thickness. In the majority of so far 
developed algorithms, the assumption about the homogene-
ity, isotropy as well as constant thickness is usually applied, 
which significantly facilities the description of considered 
phenomena and the proposed algorithm of damage detection 
and localization [5]. Usually, such an assumption is justified, 
because the variability of material parameters and geometric 
imperfections of healthily metallic structures are negligible. 
However, the developed diagnostic methods should be appli-
cable, especially for the structures exposed to an aggres-
sive environment, excessive load, or unfavorable weather 
conditions, etc., when the probability of damage occur-
rence is much higher. In such cases, the assumption about 
the uniform thickness alongside the propagation path cannot 
be applied indiscriminately in every case. One example is 
general degradation caused by a corrosive environment. The 
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general corrosion degradation leads to non-uniform thick-
ness reduction [6]. The incorrect assumption about constant 
wave velocity may lead to inaccuracies in damage detection 
and localization due to changes in the dispersion character-
istics. Another example, which should be considered taking 
into account the non-uniform thickness are structures cov-
ered with ice [7]. The thickness of the additional ice layer 
changes periodically and depends on region, temperature, 
and season. The structures strengthened with additional 
adhesive layers [8], or even the skeletal elements [9] tested 
using elastic waves also require rejecting the assumption 
about constant thickness. Thus, the development of the NDT 
method for Structural Health Monitoring (SHM) forced the 
need of considering wave propagation in specimens with 
more complex geometry.

In the literature the problem of wave propagation in struc-
tures with non-uniform geometry has been considered by 
many researchers ([10–18]). The ultrasonic mode conversion 
phenomena under waveguide thickness variation employing 
the hybrid boundary element method was considered by Cho 
[10]. The influence of the local thickness of the waveguide 
and the slope of the tapered plate on the modal conversion 
was investigated by Predoi et al. [11]. The behavior of guided 
waves in specimens with Gaussian variation of their section, 
located between two areas of constant thickness was ana-
lyzed by Marical et al. [12]. The Lamb wave reflection and 
transmissions from a plate step discontinuity were numeri-
cally determined as a function of incident mode, excitation 
frequency, type of thickness variation, and waveguide shape. 
Pageneux and Maurel [13] dealt with the theoretical analysis 
of wave propagation in specimens with varying thickness. 
They rearranged the equations of elasticity to derive the new 
system of coupled-mode equations describing wave motion 
in specimens with a thickness described by the Gaussian 
function. The characteristics and the generation mecha-
nism of the nonlinear symmetric Lamb mode propagating 
downslope in a plate with slowly linearly varying thickness 
were investigated by Hu et al. [14]. The phenomenon of 
mode conversion guided wave mode in plates with variable 
thickness was studied by El-Kettani et al. [15] and Nurmalia 
et al. [16]. Wave propagation in the tapered multilayered 
composite plate and the procedure of thickness variability 
determination using a combined method based on vibrom-
etry and a terahertz time-domain system was described by 
Moll et al. [17]. In the next stage, the wave-based damage 
detection and localization technique, which considered the 
adiabatic wave motion was developed [18].

Despite enormous effort devoted to the detailed descrip-
tion of wave propagation phenomenon in specimens with 
complex geometry, the problem of thickness variability 
assessment based on a limited number of ultrasonic measure-
ments has not been solved, yet. So far, mainly the dispersion-
curve fitting was applied to determine the average thickness 

[19]. Because the dispersive relationship between thickness 
and velocity is not linear, the average velocity cannot be 
used to determine the average thickness and this method is 
suitable only for specimens with uniform thickness. To the 
authors’ best knowledge the wave-based method of estima-
tion of the thickness variability of non-uniform structures 
has not been presented, yet. Meanwhile, the aforementioned 
paper by Moll [18] undoubtedly proved that irregular geom-
etry of the monitored structure has a great impact on the 
final results of the monitoring and diagnostic procedures 
(i.e., determined damage position).

The presented study is an essential prerequisite in the 
development of novel wave-based diagnostic methods appli-
cable to structures characterized by complex shapes with 
non-uniform thickness. As mentioned, taking into account 
the possible thickness variability is crucial in the case of 
specimens subjected to general degradation. From the 
engineering point of view, estimation of the minimal plate 
thickness alongside the propagation path is more important 
than average plate thickness, because it determines the load 
capacity of the entire structure. In the case of ice accretion 
monitoring, the maximal thickness of an additional layer is 
searched. To this aim, plate shape reconstruction is required. 
The numerical and experimental tests were preceded by 
theoretical analysis focused on the influence of thickness 
variability on wave propagation velocity. Next, the inherent 
issues associated with solving the inverse problem aimed 
at shape reconstruction based on wave propagation signals 
have been discussed. The standard approach to determining 
the exact thickness distribution would require considering 
the underdetermined system of equations, which is an ill-
posed problem [20]. Thus, the negligible changes in input 
data may produce large differences in the estimated thick-
ness variability. In this study, the different approach allowing 
for avoiding typical difficulties associated with inverse prob-
lems has been presented which is an original element of the 
paper. The proposed method is based on assumption that any 
surface can be approximated by a certain function. Instead 
of determining the exact geometry of the plate, only several 
parameters of the function describing plate geometry have 
been estimated. Such formulation significantly reduces the 
number of unknowns and in consequence facilitated solving 
the problem of plate shape determination. The correctness 
of the conducted reasoning has been verified during experi-
mental and numerical tests conducted on specially designed 
and prepared aluminum plates. Because the more complex 
thinning geometry is usually more complicated for analysis 
than tapered waveguides with abrupt thickness changes, the 
authors tested special plates prepared using computerized 
numerical control (CNC) manufacturing. Guided waves 
were propagated in four plates with a sinusoidal-shaped 
surface. The functions defining surface shape differed 
only in phase shift, which forced the thickness distribution 
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variability. On one hand, the smooth sine shape provided 
thickness variability and allowed for analysis of its influence 
on wave propagation velocity. On the other hand, it allowed 
for avoiding undesired effects related to localized stepped 
thickness changes. The additional advantage of considering 
the sine shape is the potential to transfer the idea to more 
complex structures. According to the Fourier theorem, each 
function can be expressed as a sum of varying sinusoidal 
components [21]. This study proves that it is possible to 
extract information about the parameters of a single sine 
component from the ToF of the guided wave, which allows 
concluding that also the geometry described by more com-
plex functions containing several sine components can be 
reconstructed in this way.

The average velocity of fundamental antisymmetric A0 
mode was used as an indicative parameter to evaluate the 
parameters defining plate geometry. One of the advantages 
of the proposed approach is the limited sensor network used. 
The theoretical analysis was conducted with the assumption 
that the wave is excited by a single actuator and received by a 
single sensor localized on both ends of the tested plates. This 
significantly facilities the diagnostic procedure and reduces 
the analysis time and the cost of the investigation. To dem-
onstrate the advantages of the novel method, in the first step 
the most common approach based on dispersion curve fitting 
was used to determine average plate thickness. The errors 
obtained using the two aforementioned approaches differ 
significantly in favor of rejecting the assumption about con-
stant thickness. The study involved experimental tests as 
well as the corresponding numerical simulations.

The paper is organized as follows. Section 2 contains a 
brief description of the influence of plate thickness variabil-
ity on wave propagation velocity alongside the propagation 
path. Section 3 presents the materials and methods used dur-
ing experimental and numerical analysis. Section 4 presents 
the results of solving the direct and inverse problem, while 
Sect. . 5 concludes the paper. The advantages, as well as 
the drawbacks and limitations of the proposed approach, are 
faithfully discussed.

2  Wave propagation in a plate with variable 
thickness

Wave propagation velocity in plates for particular wave 
modes can be easily predicted based on the dispersion 
curves which represent the solution of the well-known Ray-
leigh–Lamb dispersion equation [4]. However, this equation 
is valid only for plates with constant thickness, while plates 
characterized by non-uniform thickness require another 
approach. Let us consider the irregular plate, depicted in 
Fig. 1, divided into N divisions with a length Δl . The time 
needed to travel the distance Δl is equal to

where cgi is the group velocity determined for thickness di . 
The total ToF along the distance L is a sum of the particular 
times of flight along with the distances Δl:

while the average velocity alongside the distance L is 
described as

Based on the above equations, one can conclude that the 
average wave velocity does not depend on the exact plate 
shape, but only on the thickness distribution, which in turn 
implies that the plate shape reconstruction cannot be real-
ized using only wave velocity measured alongside the cer-
tain distance.

3  Experimental setup and data analysis

3.1  Plate shape design

In the following study, the plates with one surface flat and 
one surface described by sine function have been investi-
gated (Fig. 2). On one hand, the smooth sine shape of the 
plate surface provided thickness variability and allowed for 
analysis of its influence on wave propagation velocity. On 
the other hand, it allowed for avoiding undesired effects 
related to abrupt thickness changes. In the plate with stepped 
thickness, the additional reflections triggered by geometry 
irregularities and mode conversions would be observed 
which would require a more complex interpretation. Moreo-
ver, the histogram describing plate thickness distribution is 
much simpler in the case of the plate with stepped thickness.

(1)Δti =
Δli

cgi

(2)ToF =

N∑

i=1

ti =

N∑

i=1

Δl

cgi

=Δl

N∑

i=1

1

cgi

(3)
cg,mean =

L

ToF
=

L

Δl
n∑
i=1

1

cgi

=
N

n∑
i=1

1

cgi

Fig. 1  Plate with variable thickness—explanation of the symbols 
used in the text
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The upper plate surface has been described by the fol-
lowing equation:

where A is the amplitude, k is the wavenumber, φ is the 
phase shift and h0 is the initial plate thickness. All these 
parameters were established by taking into account the 
difference in wave velocity between particular plates as 
well as the technological possibilities, cost, and execution 
time of their manufacturing. We aimed to provide that the 
differences in the ToF will be observable while maintain-
ing manufacturing safety. The procedure of plate shape 
optimization is discussed in the following section.

The plates were manufactured using a special CNC 
milling machine. Their total length L was 400 mm and 
width W was 250 mm and these dimensions were dic-
tated by the size of the operating space. The thickness 
h0 = 10 mm was the trade-off between the mass of the 
specimen (the manufacturing process was much safer and 
more efficient for specimens with higher mass) and the 

(4)s(x) = A ⋅ sin (kx − �) + h0

theoretically determined differences in ToF (the greater 
differences were noted for smaller thicknesses).

Four different plates differing in phase shift were con-
sidered in this study. The � values were chosen by compar-
ing the average velocity calculated according to Eq. (2) in 
plates differing in phase shift � . Exemplary relationships 
between group velocities for 50 and 150 kHz and variable 
phase shift calculated for fixed parameters A and h0 or k and 
h0 are presented in Figs. 3 and 4, respectively. Based on 
the obtained results one can conclude that the relationship 
between wave velocity, geometric parameters of considered 
plates, and frequency is strongly nonlinear and difficult to 
predict. Maximizing the difference in wave velocity between 
tested plates for a certain frequency does not provide a high 
difference in velocity for the whole frequency range. Finally, 
we have decided to test plates characterized by phase shift 
�1 = 0 and �4 = � : in the first case, the plate is character-
ized by the convex shape, while in the second case, the plate 
is concave. It was expected that the significant difference 
between thickness distributions will result in a difference in 
propagation characteristics, which is additionally confirmed 
by the results presented in Figs. 3a and . Regardless of the 

Fig. 2  Photos of investigated 
plates

Fig. 3  Average group velocity for frequency of 50  kHz measured 
alongside the plate with surface described by Eq.  (4) for a) fixed 
parameters k = 0.01 [rad/mm] and ho = 10 [mm] and variable ampli-

tude A and phase shift φ; b) fixed parameters A = 7 [mm] and ho = 10 
[mm] and variable wavenumber k and phase shift φ 
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value of amplitude A, the maximum difference in velocities 
(Fig. 3) was observed for plates characterized by phase shifts 
� = 0.13� and � = 1.13� for 50 kHz and by � = 0.27� and 
� = 0.82� for 150 kHz. In addition, two intermediate cases 
for �2 = �∕3 and �3 = 2�∕3 were investigated (Fig. 4).

To determine the remaining parameters, the average 
velocities for variables A and k for all plates have been 

calculated and depicted in the form of 3D graphs. Figure 5 
depicts the exemplary results for 100 kHz; however, the 
observations made for other frequencies are similar. First of 
all, the differences in velocities for particular plates increase 
with increasing wave amplitude A. However, its upper limit 
was dictated by initial plate thickness h0 and the manufactur-
ing possibilities (the amplitude increase is associated with 

Fig. 4  Average group velocity for frequency of 150  kHz measured 
alongside the plate with surface described by Eq.  (4) for a fixed 
parameters k = 0.01 [rad/mm] and ho = 10 [mm] and variable ampli-

tude A and phase shift φ; b fixed parameters A = 7 [mm] and ho = 10 
[mm] and variable wavenumber k and phase shift φ 

Fig. 5  Average group velocity alongside the plate with surface described by Eq. (4) for variable amplitude A and wavenumber k and for selected 
phase shifts (plate #1: φ = 0 [rad], plate #2: φ = 1/3π [rad], plate #3: φ = 2/3π [rad] and plate #4: φ = π [rad])
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the decrease of the thickness in the thinnest cross section, 
which must be greater than the certain minimal value to 
maintain manufacturing safety).

In the case of parameter k, the greatest differences in 
velocities were noted for its lower range k ∈< 0.001, 0.01 > 
[rad/mm]. If the wavenumber is higher and the number of 
cycles along the plate is greater and the differences in thick-
ness distributions between the plates become less observ-
able. The differences in velocities are particularly visible 
for very small values of the parameter k (k = 0.001,0.002 
[rad/mm]). However, for such a small wavenumber (i.e., 
k = 0.001 rad/mm) and long wavelength, the plates were 
more like plates with linearly variable thickness. To main-
tain the clear and more complex sine plate shape, a higher 
value of k was set. Finally, the function describing the upper 
plate surface has taken the following form:

The plates’ geometry and histograms depicting thickness 
distributions are presented in Fig. 6. The histograms were 
performed for thickness measurements made with a step of 
 10–3 mm and the obtained values were grouped into 100 
bins. The vertical axis of the histogram indicates the fre-
quency of occurrence of the cross section characterized by 
a certain thickness.

3.2  Numerical modeling

Numerical plate models were developed using the commer-
cial software Abaqus. For accurate modeling of mechani-
cal guided wave propagation, the module Dynamic/Explicit 
was incorporated in this study. Three-dimensional models 
were built of eight-node brick elements with reduced inte-
gration (C3D8R). The transient wave propagation prob-
lem was solved with an integration step of  10–7 s, which 
was established by taking into account the Courant–Frie-
drichs–Lewy condition. To establish the finite element size, 
the simulations were preceded by a convergence study. The 
size of the elements did not exceed 1  mm3. The excitation 
was applied as a time-dependent pressure applied on the 
area corresponding to the area of the real piezo transducers. 
The numerical model with applied pressure is presented in 
Fig. 7. The excitation function was in form of a five-cycle 
sine modulated by the Hann window:

where f denotes the excitation frequency, p0 is the excitation 
amplitude, Tw is the Hann window length and nw is the num-
ber of time steps. Material parameters adopted in the model 

(5)s(x) = 7 ⋅ sin (0.01x − �) + 10 [mm]

(6)

p(t) =

{
0.5p0 sin

(
2� ft

(
1 − cos

(
2� ft

nw

)))
t ∈

[
0, Tw

]

0 t ≥ Tw

were as follows: elastic modulus E = 70 GPa, Poisson’s ratio 
v = 0.33 and density ρ = 2700 kg/m3.

The numerical simulations were performed for the 3D 
model, as the plain strain model would not provide the pos-
sibility to apply the excitation of the area corresponding 
to the actuator. Moreover, in the case of the 3D model, the 
reflections from boundaries present in experimental tests 
can be registered. Thus, the 3D model better reflects the 
actual experimental model. The accuracy of the numerical 
simulations has been proved by comparing the numerical 
results with experimental signals. The comparison is given 
in the further part of the paper.

3.3  Experimental setup

Guided waves were actuated and sensed by rectangular 
piezoceramic transducers with dimensions of 30 × 5 mm 
manufactured by Physik Instrumente. Using such kinds 
of transducers provides excitation of a straight wavefront, 
which in turn results in smaller inaccuracies in the ToF 
determination caused by imperfect transducers attachment.

The detail of the transducer attached to the plate surface 
is presented in Fig. 8a. To avoid non-perpendicular exci-
tation, the transducers were glued to the flat surface. The 
signals were generated and registered by oscilloscope and 
function generator Handyscope HS5 (TiePie Engineering). 
To improve the signal-to-noise ratio, the receiver was con-
nected to the high voltage amplifier PD200 (PiezoDrive 
Ltd, Shortland, NSW 2307, Australia), which transferred 
signals to a specially designed custom device Rammsbone 
described in detail in [22] (Fig. 8b). The excitation p(t) 
was defined as a five-cycle sine modulated by the Hann 
window. The measurements were made for frequencies 
from 150 to 300 kHz with a step of 10 kHz. In total 16 
carriers were used.

3.4  Data analysis

Recorded signals were processed in a MATLAB environ-
ment to extract the ToF for particular frequencies and to 
compare the velocities in various plates. The ToF was cal-
culated using cross-correlation of the received signal and the 
excitation function [23].

In the first step, we have considered the direct problem. 
The influence of plate geometry on wave propagation veloc-
ity has been investigated by comparing the numerical and 
experimental signals, as well as the values of the ToF for 
particular plates and frequencies (Sect. 4.1). In the next step, 
we attempted to solve the inverse problem aiming to deter-
mine the plate shape using wave propagation velocity as an 
indicative parameter (Sect. 4.2).
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Fig. 6  Geometry of analyzed plates and histograms depicting thickness distributions: a plate #1, b plate #2, c plate #3 and d plate #4
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4  Results

4.1  Dispersion curves and mode conversion 
analysis

Signal processing and results analysis were preceded by 
considering dispersion curves and wave mode conversion 
phenomenon. Alongside the propagation path, the value of 
the frequency–thickness product changes, and as it exceeds 
the cutoffs of higher order guided modes, new wave modes 
can be triggered. Because particular modes differ in veloc-
ity, which is a crucial parameter used in plate shape recon-
struction procedure, it is necessary to assess which modes 
can be excited in tested plates.

Figure 9 presents dispersion curves for aluminum plate, 
while Figs. 10 and  depict the mode conversions phenome-
non in two considered plates: convex plate #1 and concave 
plate #4, which are also two extreme cases in this study. 

For comparison, the analysis of mode conversion was 
made for the maximal and minimal frequency used in the 
experimental investigation ( fmin = 100 and fmax = 300 kHz). 
To indicate the cross sections, where mode conversion 
may occur, in the first step the function describing plate 
shape s(x) defined by Eq. (5) was multiplied by considered 
frequency ( fmin or fmax ). The frequency–thickness prod-
uct s(x) ⋅ f  was plotted by the black, solid line and com-
pared with dispersion curves plotted with dashed lines. 
Such comparison allows for indicating places, where the 
frequency–thickness product exceeds the cutoffs of par-
ticular wave modes. These places were marked with dots 
and the regions characterized by a various number of 
possible wave modes were marked with different colors. 
Exemplary, in Fig. 10a, the results for plate #1, frequency 
300 kHz and antisymmetric modes are presented. It can 
be seen that at the beginning (at the distance from 0 to 
93 mm) two wave modes can be excited (A0 and A1). 
In the middle part, where the plate thickness increases 

Fig. 7  Numerical model of 
plate#1 with applied pressure 
on the area corresponding to the 
area of the real transducers

Fig. 8  Experimental investigation: a the detail of the rectangular transducer attached to the plate surface and b the scheme of an experimental 
setup
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Fig. 9  Dispersion curves for aluminum plate (E = 70 GPa, v = 0.33 and ρ = 2700 kg/m.3)

Fig. 10  Determination of wave modes which can occur in a plate #1 and b plate #4 for excitation frequency of 300 kHz
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(93 mm to 221 mm), additionally, A2 mode may occur. 
However, when the plate thickness decreases it decays 
(221 mm to 390 mm) and finally, at the end of the plate 
only A0 may propagate (390 mm to 400 mm). As men-
tioned, the frequency of 300 kHz is the highest frequency 
used here, so the phenomenon is also the most complex 
for this case. Figure 11 presents the corresponding results 
for frequency fmin = 100 kHz. For this frequency, the phe-
nomenon is less complex and mode conversions almost 
do not occur.

The phenomenon of evanescence and reflection of higher 
order modes in places, where wave mode cutoffs are higher 
than plate frequency–thickness product has been described 
in detail in [15] and [16]. As the thickness is decreasing the 
higher order modes are reflected and propagate back along 
the plate or are converted into another lower order mode. 

Because the procedure of mode conversion analysis was 
performed for all plates and in each case, only S0 and A0 
modes are the only modes, which may propagate alongside 
the entire plates lengths, further analysis is focused mainly 
on these fundamental modes.

4.2  The influence of plate thickness variability 
on wave velocity

The comparison of experimental and numerical signals for 
three chosen frequencies (100, 150 and 200 kHz) is pre-
sented in Fig. 12. The beginnings of arriving incident waves 
are zoomed in the figure to demonstrate the order in which 
waves are registered by the sensor. The time course of the 
incident wave can be the result of interference of both sym-
metric and antisymmetric modes. However, the theoretical 

Fig. 11  Determination of wave modes, which can occur in a plate #1 and b plate #4 for excitation frequency of 100 kHz
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Fig. 12  Wave propagation signals obtained a experimentally and b numerically for exemplary frequencies of 100, 150 and 200 kHz
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reasoning presented in Sect. 2 is valid for all modes’ types. 
In every case, the consistency of the results is clearly visible 
and the order is the same for both experimental and numeri-
cal plates, which confirms the correctness of the statement 
about non-constant wave velocity in plates with non-uniform 
thickness. The relations between the amplitudes cannot be 
considered here, because it was strongly influenced during 
experimental tests by transducers attachment. Non-perfect 
transducers mounting together with non-uniform plate thick-
ness alongside propagation path caused triggering symmet-
ric S0 modes arriving before high-amplitude antisymmetric 
A0 mode. They are especially visible in plate #4, also in the 
case of numerical simulations. In experimental signals, the 
low-amplitude wave packet, which is E/M crosstalk has been 
identified and highlighted.

Figure 13 presents the experimentally, theoretically and 
numerically determined times of flight for investigated 
plates in the considered frequency range. In the case of 
the two first convex plates #1 and #2 ToF—frequency 
trend is upward. In the case of plate #3, which is a mixed 
convex–concave case, and concave plate #4 the downward 
trend is observed. Despite some discrepancies between 
the values, the trend is similar in each case. The differ-
ences in the ToF may result from inaccuracies in mate-
rial parameters determination as well as from geometric 
imperfections. Moreover, the Lamb dispersion equations 
are derived for the two-dimensional plane strain plate 
model. In the real case, the primary emitted waves mix 
with their reflections from side edges which may result 
in complex wave patterns and consequence hinders signal 
interpretation. In addition, also symmetric modes are trig-
gered and overlap with antisymmetric modes.

Fig. 13  ToF of antisymmetric A0 mode for varying excitation frequency in: a plate #1, b plate #2, c plate #3 and d plate #4
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4.3  Solving the inverse problem—plate shape 
determination

The next step of the investigation is to solve the inverse prob-
lem intending to determine the specimen shape based on 
wave propagation velocity. It must be mentioned here that 
the exact shape determination based only on average wave 
velocity alongside propagation path is not possible because 
the velocity is dependent only on thickness distribution. It 
means that wave velocity in two different plates but with 
the same thickness, the distribution would be the same. To 
indicate the possible difficulties related to this task, the fol-
lowing relation should be considered:

In the above equation, the matrix Ψ is a kind of dictionary 
containing the reciprocals of wave propagation velocities for 
incorporated frequencies and various thicknesses. Vector x 
contains the information about the distances characterized 
by certain thickness, while the outcome is vector t contain-
ing the measured times of flight. The length of the vector t is 
determined by the number of measurements (number of sig-
nals received for different frequencies). To take into account 
the possible inaccuracies in ToF determination, Eq. (7) can 
be reformulated as follows:

where � is the level of inaccuracy. Unfortunately, for accu-
rate determination of thickness distribution, the unknown 
vector x usually must contain a much greater number of ele-
ments than vector t, which in turn means that the solution 
of this problem requires solving an underdetermined system 
of linear equations. The optimal solution might be found by 
searching the highest of the lowest value of the appropriately 
defined objective function.

In this study, we present a different approach. Instead 
of searching for an optimal shape defined by a thickness 
histogram, which would be associated with a large number 
of unknown elements in x, the assumption that any surface 
can be approximated by a certain function has been applied. 
Instead of determining the exact histogram describing plate 
thickness distribution, only several parameters defining this 
function have been optimized. The results for two different 
cases differ in a number of unknown parameters defining 
the plate shape are presented. In the first stage, we assumed 
that the information about the sine shape of the plate surface 
and the parameter h0 is available, while the amplitude A and 
phase shift φ are unknown. Such an approach is justified by 
practical aspects. First of all, we can assume that the shape 
of the monitored structure can be approximated by a certain 
function type. The structural object subjected to general, 
i.e., corrosion degradation is characterized by a more or less 

(7)Ψx = t

(8)‖Ψx − t‖∞ ≤ �

non-uniform shape ([6, 19]), which can be approximated by 
the sine/cosine function (Fig. 14).

A similar case takes place in ice formation and its accre-
tion monitoring [7]. The initial thickness of the monitored 
structure is usually known to the investigator. These assump-
tions significantly facilitate solving the inverse problem, 
which can be formulated as follows:

where tt denotes the theoretical ToF for frequency f  deter-
mined for plate defined by parameters A and φ, while te is 
experimentally determined ToF.

In the next stage, the difficulty level of the considered 
inverse problem increased and it was assumed that any 
parameter defining plate surface was known, i.e., the ampli-
tude, wavenumber, initial thickness, and phase shift. The 
such analysis allowed to assess the effectiveness of shape 
reconstruction depending on the number of unknowns.

As mentioned above the experimentally determined ToF 
te differ from theoretical results tt mainly because of geo-
metric and material imperfections. However, the method 
of the ToF determination has also an impact on the final 
results [23]. To eliminate the systematic errors related to 
the adopted methodology, the minimal sum of residuals was 
calculated as the squared difference between the theoretical 
and measured derivatives of the tt and te was searched:

Such formulation of the problem allows for consider-
ing not the exact values but the relation between the ToF 
obtained for particular frequencies.

(9)min

(
j∑

i=1

||tt(A,�, fi) − te(fi)
||
2

)

(10)

Si =
d

df
tt(A,�, k, h0, fi) −

d

df
te(fi)

min

n∑

i=1

S2
i

Fig. 14  Irregular surface of the specimen subjected to corrosion deg-
radation
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It should be mentioned here that the zero amplitude 
entails uniform plate thickness, while the plates with linearly 
varying thickness can be approximated by a sine function 
with a low k value. Thus, the assumption about sinusoidal 
plate shape does not exclude the estimation of the thickness 
distribution of specimens characterized by less complex 
shapes. The solution of inverse problems was additionally 
preceded by determining the average plate thickness using 
a well-known approach based on fitting the theoretical dis-
persion curves, which was compared with exact and recon-
structed thicknesses in the further part of the paper.

4.3.1  Stage I: solving the inverse problem 
under the assumption of constant plate thickness

The method of rough plate shape evaluation based on wave 
velocity has been widely analyzed in literature [19]. It is 
based on fitting the theoretical dispersion curve to the exper-
imental velocities. The main assumption in this approach is 
that the average wave velocity can be used to determine the 
average plate thickness ha , while the possible variability of 
the geometric parameters is omitted. As mentioned, it may 
lead to an overestimation of the actual minimal thickness 
hmin , which is critical for the state of the entire structure. 
Therefore, for the level of thickness overestimation assess-
ment, solving the inverse problem has been preceded by 
determining the average plate thickness by dispersion curve 
fitting (Table 1). In each case (Tables 3, 5 and 7), the average 
plate thickness was compared with the minimum and maxi-
mum plate thickness hr

min
 obtained from the reconstructed 

plate shape.
To determine the average plate thickness ha , the minimal 

value of the following function was searched:

where j is the number of measured signals (frequencies), 
ct
g
 and ci

g
 is theoretical and experimental or numerical group 

velocity, respectively. The average thicknesses obtained for 
each plate based on experimental and numerical velocities 
are summarized in Table 1. In addition, the average thick-
ness calculated as

(11)1

j

j∑

i=1

(
ct,i
g
(h) − ci

g

)2

was added for comparison. The differences between 
experimental he

a
 and numerical hn

a
 average thicknesses are 

the result of outliers observed for lower frequencies (up 
to 160 kHz). For lower frequencies, the symmetric mode 
propagates faster than the antisymmetric mode. Due to mode 
conversion caused by irregular geometry, the symmetric 
mode is clearly visible in numerical signals and because of 
the relatively short propagation path, both modes A0 and S0 
interfere with each other. In consequence, the ToF for lower 
frequencies is characterized by significant inaccuracy, which 
in turn influences the average plate thickness determined by 
tracing and fitting dispersion curves. For higher frequencies 
A0 mode propagates faster than S0 mode, so the first peak 
is attributed to the antisymmetric mode which is considered 
here and the ToFs are characterized by higher agreement 
with theoretical predictions (see Fig. 13).

Nevertheless, in three cases (plates #1, #2 and #4) the 
average plate thickness ha calculated based on the plate 
cross-sectional area [Eq. (12)] coincides well with experi-
mentally determined average thicknesses. These findings 
suggest that the dispersion curve fitting can be potentially 
used as an additional step in the exact plate shape recon-
struction procedure presented in the next section. The aver-
age plate thickness determined for reconstructed shape 
according to Eq. (12) may be compared with the results of 
dispersion curve fitting.

4.3.2  Stage II: plate shape determination for two 
parameters unknown (amplitude, phase shift)

In the second stage, Eq. (10) was solved for pre-assumed 
initial thickness h0 and wavenumber k. The minimum value 
of S was searched for phase shift varying from 0 to 2π with 
a step of 0.01π, while the amplitude varied from 0 to 9 mm 
with a step of 1 mm. The upper limit of the amplitude was 
determined based on the initial plate thickness. The ampli-
tude cannot be greater than plate thickness, because it would 
entail zero or negative thickness, which has no physical 
sense.

(12)ha =
∫ L

0
s(x)dx

L

Table 1  Comparison of 
experimental and numerical 
average plate thicknesses 
determined based on fitted 
dispersion curves of A0 mode 
and average thickness of 
investigated plates calculated 
according to Eq. (12)

Specimen Experimental average plate 
thickness he

a
 [mm]

Numerical average plate thick-
ness hn

a
 [mm]

Average plate 
thickness h

a
 

[mm]

Plate #1 11.700 25.200 12.900
Plate #2 13.100 29.500 12.600
Plate #3 24.100 40.000 9.700
Plate #4 5.600 34.500 7.100
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First, the possibility of plate shape reconstruction has 
been verified numerically. The reconstructed plates’ shapes 
compared with exact plates are presented in Fig. 15, while 
the comparison of the parameters An and �n with the real 
values A and φ is summarized in Table 2.

The quality of the reconstruction is high which proves the 
correctness of the conducted reasoning. In every case, the 
shape type (concave or convex) has been recognized cor-
rectly. The amplitude was slightly overestimated but ΔA did 
not exceed 2 mm, while the greatest difference in determined 
and exact phase shift was noted for plate #4 and was equal 
to 0.2π. The discrepancies between numerically obtained 
shapes and the exact plates’ shapes can be attributed to the 

mixing of primary waves with their reflections as well as the 
triggered symmetric modes, which caused the difficulties in 
extracting the correct wave packet and influenced the time 
course of registered signals.

Table 3 contains the comparative analysis of minimal and 
maximal thickness extracted from reconstructed shapes and 
average thickness obtained from dispersion curve fitting ha 
with exact plate shape ( hmin , hmax ). The relative errors were 
also calculated for minimal and maximal thickness from the 
reconstructed shape hr

min
 and hr

max
:

(12)

Δmin

r
=
|||||

hmin − hr
min

hmin

|||||
⋅ 100% ,…Δmax

r
=
|||||

hmax − hr
max

hmax

|||||
⋅ 100%

Fig. 15  Results of the numerical investigation aimed to determine the shape of the plate with non-constant thickness: the comparison of exact 
plate shapes with determined based on the numerical ToF measurements for a plate#1, b plate#2, c plate#3 and d plate#4

Table 2  Comparison of exact 
and numerically determined 
amplitude and phase shift 
describing the sine-shaped plate 
surface

Parameters defining sine function

A [mm] An [mm] ΔA = ||A − A
n
||φ φn Δ� = ||� − �

n
||

Plate #1 7 9 2 0 0.024π 0.024π
Plate #2 7 9 2 0.33π 0.274π 0.056π
Plate #3 7 9 2 0.67π 0.55π 0.12π
Plate #4 7 8 1 π 0.8π 0.2π

Table 3  Comparison of the 
minimum and maximum 
thickness of numerically 
reconstructed plate, average 
thickness determined based 
on the ToF, with actual plate 
thickness

Actual mini-
mum thickness 
hmin

Actual maxi-
mum thickness 
hmax

h
r

min

[mm]
h
r

max

[mm]
Δmin

r

[%]
Δmax

r

[%]
h
n

a

[mm]
Δmin

a
[%] Δmax

a
[%]

Plate #1 4.702 17 3.70 19 21.32 11.76 25.20 435.94 48.24
Plate #2 3.938 17 3.20 19 18.74 11.76 29.50 649.11 73.53
Plate #3 3.000 17 1.00 19 66.67 11.76 40.00 123.33 135.29
Plate #4 3.000 15.3 2.00 18 33 17.65 34.50 105.00 125.49
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and for average thickness from dispersion curve fitting ha:

The maximum errors were highlighted. In almost every 
case the simplified and incorrect assumption about constant 
plate thickness when the averaged thickness was compared 
with actual plate dimensions ( Δmin

a
 and Δmax

a
 ) resulted in a 

maximum error. The assumption about uniform thickness 
and constant velocity has led to a significant overestima-
tion of minimum thickness, as well as the underestimation 
of the maximum thickness. The value Δmin

a
 reached over 

649%. From the engineering point of view, such significant 
thickness overestimation is a particularly unfavorable and 
dangerous situation, because it may result in a substantial 
overestimation of structural load capacity. One can conclude 
that the assumption about constant thickness in the case of 
the specimen with non-uniform thickness always leads to 
significant thickness over- or underestimation or both.

Estimation of the minimum and maximum thickness 
based on the reconstructed shape resulted in much lower 
errors, which demonstrates the utility of the proposed 

(13)

Δmin

a
=
||||
hmin − ha

hmin

||||
⋅ 100%,…Δmax

a
=
||||
hmax − ha

hmax

||||
⋅ 100%

approach. The highest error was noted for plate #3 when 
the minimum thickness was additionally underestimated. 
Despite the significant error value, this case clearly indi-
cates an important advantage of the developed approach 
to plate shape reconstruction. An assumption about non-
constant plate thickness has led to overestimation of maxi-
mum thickness and underestimation of minimum thickness, 
while the situation was exactly the opposite if the thickness 
was assumed to be constant. If the non-uniform plate shape 
was considered, even in the case of some inaccuracies in 
shape reconstruction, we were still on the safe side.

In the next step the experimental data were processed 
in the same way and the reconstructed plate shapes’ are 
given in Fig. 16, while Table 4 contains the values of the 
calculated amplitudes and phase shifts. In three cases the 
amplitude was overestimated by 2 mm, while the thickness 
of plate#4 was underestimated by 4 mm. The maximal 
difference between exact and estimated phase shift � was 
noted for plates #1 and #4 and was equal to 0.16π and 
0.15π, respectively. In total, the lowest quality of shape 
reconstruction obtained for plate #4 is also visible in the 
figure, but still, the clear concave shape has been detected.

Fig. 16  Results of the II stage of the investigation aimed to determine the shape of the plate with non-constant thickness: the comparison of 
exact plate shapes with determined based on the experimental ToF measurements for a plate#1, b plate#2, c plate#3 and d plate#4

Table 4  Comparison of exact 
and experimentally determined 
amplitude and phase shift 
describing the sine-shaped plate 
surface

Parameters defining sine function

A [mm] Ae [mm] ΔA = ||A − A
e
|| φ φe Δ� = ||� − �

e
||

Plate #1 7 9 2 0 0.16π 0.16π
Plate #2 7 9 2 0.33π 0.3π 0.03π
Plate #3 7 9 2 0.67π 0.75π 0.08π
Plate #4 7 3 4 π 1.15π 0.15π
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The comparison of extreme thicknesses indicates that in 
each considered case the highest inaccuracies were noted if 
the plate thickness was assumed to be constant (Table 5). 
Again the highest errors were highlighted with a grey col-
our. The maximum error was noted for plate #3 and was 
equal to over 700%. Moreover, the minimal thickness was 
overestimated. In the case of exact shape reconstruction, the 
maximum error was noted for plate #3 and was equal to 
67%. This value cannot be considered low, but the value 
of Δmin

a
 calculated or average thickness was not lower than 

148%, which means that taking into account the possibility 

of non-uniform thickness always resulted in more faithful 
results.

4.3.3  Stage III: plate shape determination for all 
parameters unknown

In the last stage, we assumed only the sine plate shape 
but the value of any parameter has not been established in 
advance. Despite that, the reconstructed plates coincide well 
with actual shapes (Fig. 17). For clarity, in Table 6 only 
the parameters obtained by solving the inverse problem and 

Table 5  Comparison of the 
minimum and maximum 
thickness of experimentally 
reconstructed plate, average 
thickness determined based 
on the ToF with actual plate 
thickness

Actual mini-
mum thickness 
hmin

Actual maxi-
mum thickness 
hmax

h
r

min

[mm]
h
r

max

[mm]
Δmin

r

[%]
Δmax

r

[%]
h
e

a

[mm]
Δmin

a
[%] Δmax

a
[%]

Plate #1 4.702 17 2.70 19 42.60 11.76 11.70 148.81 31.17
Plate #2 3.938 17 2.70 19 31.44 11.76 13.10 232.66 22.94
Plate #3 3.000 17 1.00 19 66.67 11.76 24.10 703.33 41.76
Plate #4 3.000 15.3 7.00 11.4 133 25.49 5.60 370 63.39

Fig. 17  Results of the III stage of the investigation aimed to determine the shape of the plate with non-constant thickness: the comparison of 
exact plate shapes with determined based on the experimental ToF measurements for a plate#1, b plate#2, c plate#3 and d plate#4

Table 6  Comparison of exact 
and experimentally determined 
parameters A, φ and k 
describing the sine surface of 
the plates (stage III)

Parameters defining sine function

Amplitude [mm] Phase shift Wavenumber Thickness 
[mm]

Ae ΔA φe Δ� k
e

Δk h
e

Δh

Plate #1 9 2 0 0 12 2 13 3
Plate #2 9 2 0.528π 0.198π 10 0 13 3
Plate #3 9 2 0.303π 0.367π 8 2 8 2
Plate #4 8 1 0.528π 0.472π 12 2 12 2
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the differences between calculated and exact parameters 
are presented. A particularly high agreement was obtained 
for plates #1 and #2. In both cases the amplitude was over-
estimated by 2 mm, the difference in phase shift does not 
exceed 0.03π, the wavenumber was overestimated by 2 or 
determined correctly, while the initial plate thickness was 
overestimated by 3 mm. In total, the reconstructed plates are 
characterized by a more convex shape than actual plates but 
it has not excluded the correct estimation of minimal plate 
thickness (Table 7).

5  Conclusions and discussion

In this study, the inherent dispersive properties of guided waves 
were used to determine the thickness variability of metallic 
plates. In the first stage of the investigation, the relationships 
between the ToF and thickness distribution of plate-like struc-
tures were derived and next were verified numerically and 
experimentally. The measurements were conducted on specially 
designed aluminum plates, which surfaces were defined by sine 
function varying in phase shift. Based on the presented results 
in this section, the important findings can be formulated.

First of all, the assumption about non-uniform plate thick-
ness provided that extreme thicknesses extracted from recon-
structed plate shape were much closer to actual extreme 
thicknesses than average thickness determined by disper-
sion curve fitting. The maximum relative error in the case of 
reconstructed shape was 67% and usually was significantly 
lower, while for dispersion curve-based average thicknesses 
the relative error reached over 700%.

The first stage of the study unambiguously proved that 
wave propagation velocity strongly depends on plate thick-
ness distribution and the commonly applied assumption that 
based on the average velocity used to estimate the average 
thickness leads to significant inaccuracies resulting in both 
large over- and underestimation of the exact plate thickness. 
Rejecting the assumption about constant thickness led to 
much better results. In the majority of cases, an assumption 
about non-constant plate thickness leads to an overestima-
tion of maximum thickness and underestimation of mini-
mum thickness, while the assumption about uniform thick-
ness results in the exact opposite situation, i.e., the critical 

minimum thickness determining the load capacity of the 
whole structure was overestimated.

Moreover, the proposed approach of searching for the opti-
mal parameters defining the function describing plate shape 
does not require a greater number of measurements than the 
standard curve-based approach and the investigations were not 
preceded by reference measurements and the curve calibration.

Second, the number of assumed unknowns did not entail 
the deterioration of the quality of plate shape reconstruc-
tion. The inaccuracies summarized in Tables 3 and  are 
similar (the maximum error is equal to 70–80%), while in 
the first case, two parameters (wavenumber and initial plate 
thickness) were known in advance. This is mainly because 
even an incorrect estimation of one of the searched param-
eters does not inextricably entail the deterioration of the 
reconstruction quality. The reconstructed shape presented 
in Fig. 17d does not coincide with the actual plate shape. 
However, it was still possible to determine the minimal and 
maximal plate thickness occurring along the propagation 
path. The only significant discrepancy is the location of the 
cross section with minimal thickness. Wrong estimation of 
any parameter describing plate surface excludes the possi-
bility to indicate the position of the thinnest or the thickest 
place, even if the thickness has been estimated correctly.

Despite the promising results, the proposed approach is not 
without any limitations, which should be considered in future 
studies. It should be noted that in the majority of cases the 
amplitude of the reconstructed plate was overestimated. In both 
cases, numerical and experimental investigation the recon-
structed amplitude was higher than the real amplitude. The 
similar errors in both cases suggest the presence of systematic 
error resulting from the selected method of ToF determination 
or/and the influence of edge reflections. The quality of shape 
reconstruction could be improved by the preceding choice of 
the favorable frequency range. Because the following study is 
the first step in the development shape reconstruction proce-
dure based on the ToF measurements, the authors presented 
the results for the whole used frequency range. However, the 
analysis of the outcomes indicated that the lower frequencies 
(up to 160 kHz in this case) may be associated with greater 
inaccuracies caused by interference of S0 and A0 modes. For 
higher frequencies when A0 is faster than S0 the inaccuracies 
caused by waves overlapping were significantly lower.

Table 7  Comparison of the 
minimal thickness of the 
reconstructed plate and actual 
minimal plate thickness (stage 
III)

Actual minimal 
thickness hmin

Actual maxi-
mum thickness 
hmax

Minimal thickness hr
min

 
(based on reconstructed 
shape)

Maximum 
thickness 
h
r

max

[mm]

Δmin
r

[%]
Δmax

r

[%]

Plate #1 4.7024 17 4.000 22 14.94 29.41
Plate #2 3.9380 17 4.000 22 1.57 29.41
Plate #3 3.0000 17 0.669 17 77.93 0
Plate #4 3.0000 15.3 4.000 20 33.33 30.72
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In both cases, the quality of reconstruction was the lowest for 
plate #4, which is also the only concave plate investigated here. 
The accuracy of shape reconstruction should be also considered 
in the context of the influence of plate shape and the possible 
evanescent modes. After reaching the thickness cutoff the adiaba-
tic mode may reflect or convert into a different guided wave and 
thus, the concave shape and decreasing thickness of plate #4 might 
influence wave propagation phenomenon and registered signals.

In addition, in real cases, the function describing plate surface 
may be more complex and would demand expression as a sum of 
varying sinusoidal components, rather than being expressed by 
a single sine component. Thus, future studies should be focused 
on determining the parameters (amplitude, phase shift, initial 
thickness, and wavenumber) of the dominating components in 
the frequency spectrum of varying plate thickness. In addition, it 
should be taken into account that thickness variability may occur 
only in a certain range, not along the whole propagation path. It 
would demand considering the superposition of two cases: plate 
with constant and variable thickness.
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