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Abstract

Remote medical diagnostic solutions have recently gained more importance due to global de-

mographic shifts and play a key role in evaluation of health status during epidemic. Contactless

estimation of vital signs with image processing techniques is especially important since it allows for

obtaining health status without the use of additional sensors. Thermography enables us to reveal

additional details, imperceptible in images acquired with standard visible light cameras, yet, low

resolution is its significant limitation. In the presented doctoral dissertation, original artificial intel-

ligence solutions were proposed based on performed analysis of innovative thermal image processing

methods using Deep Learning techniques for the needs of remote medical diagnostics. Possibility

of modifying architecture of deep neural network designed for classification of visible light images

in such a way that distribution of extracted features will be recreated enabling detection of facial

areas from low resolution thermal data was verified in conducted experiments. Effectiveness of the

proposed deep neural network architecture was demonstrated in practical applications, increasing

resolution of thermal images and leading to better image quality metrics in comparison to state-

of-the-art convolutional models, as well as increasing accuracy of facial areas detection, contactless

estimation of respiratory rate and person recognition.
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Streszczenie

Rozwiązania zdalnej diagnostyki medycznej zyskują na znaczeniu w świetle globalnych przemian

demograficznych, a także pełnią istotną rolę w ocenie stanu zdrowia podczas epidemii. Bezkontak-

towy pomiar parametrów życiowych z wykorzystaniem przetwarzania obrazów jest w szczegól-

ności istotny z uwagi na możliwość uzyskania informacji o stanie zdrowia bez użycia dodatkowych

sensorów. Termografia pozwala na pozyskanie danych niedostępnych przy użyciu kamer światła

widzialnego, jednakże jej istotnym ograniczeniem jest niska rozdzielczość rejestrowanych danych. W

ramach rozprawy zaproponowano autorskie rozwiązania sztucznej inteligencji na podstawie doko-

nanej analizy innowacyjnych metod przetwarzania obrazow termograficznych z wykorzystaniem

technik uczenia głebokiego dla potrzeb zdalnej diagnostyki medycznej. W przeprowadzonych bada-

niach zweryfikowano możliwość zmodyfikowania architektury głębokiej sieci neuronowej przez-

naczonej do klasyfikacji obrazow uzyskanych w promieniowaniu widzialnym w celu odtworzenia

rozkładu wydobytych cech i tym samym umożliwienia detekcji obszarow twarzy z niskiej rozdziel-

czosci obrazow termograficznych. Skuteczność zaproponowanej architektury głebokiej sieci neu-

ronowej została potwierdzona w praktycznych aplikacjach, umożliwiając zwiększenie rozdzielczości

obrazów termograficznych oraz ulepszenie metryk jakości obrazu w porównaniu ze stanem wiedzy w

zakresie modeli konwolucyjnych, a także poprawiając dokładność detekcji obszarów twarzy, bezkon-

taktowego pomiaru częstości oddychania oraz rozpoznawania osób.
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Chapter 1

Introduction

Recent advances in technologies and increased self-awareness of societies has revolutionized

current healthcare definition. Modern medical systems are expected to support and cover various

subsectors of medicine, e.g. computer-aided diagnosis, remote monitoring, therapy support, healthy

lifestyle tracking, security, and more. Hence, we can observe an increasing focus on Artificial In-

telligence (AI) studies and many of possible medical use cases have benefited by progress made in

Deep Neural Network (DNN) development, e.g. by supporting clinical decisions with predictions

obtained from AI algorithms [1].

Since images have one of the biggest contribution to overall Big Data resources [2], the majority

of solutions utilize computer vision and image processing algorithms. A key Deep Neural Network

(DNN) architecture that led to a breakthrough in image recognition studies is based on convolution

operations (Convolutional Neural Network (CNN)) [3] incorporating local connection patterns

shared between different locations in two dimensional data. Examples of medical solutions that take

advantage of CNN architecture are boundless, from breast cancer identification using mammograms

[4] or thermograms [5], lung [6, 7] and colon [8] cancer detection, bone scans analysis [9], eye

diseases detection [10], and more. AI is also widely used for improving quality and resolution of

medical images, so that the diagnosis may be more accurate, e.g. in microscopy [11], Magnetic

Resonance Imaging [12] or Computed Tomography [13]. AI-based medical market is expected to

further expand, covering more and more conventional approaches used so far.

At the same time, some concerns about possibilities of replacing physicians and fully automat-

ing diagnostic procedures arise since Deep Learning (DL) models work as black-boxes making

predictions that are difficult to justify. According to the research conducted by Ahuja A. [14], AI

will rather support and augment current professional diagnostic instead of being its substitution.

However, there are also other subsectors of medicine which allow for obtaining information about

health status without supervision of professional diagnosticians and specialized acquisition devices.

Those subsectors are mainly concerned around telemedicine solutions which aim at providing

health services at a distance. Such systems have mainly a support function, meaning that they are

designed to increase self-awareness of people and provide basic solutions for monitoring of health

status outside medical facilities. At the same time, they do not aim at replacing professional

diagnostic procedures. Therefore, there is a chance that AI will be widely used in remote medical

diagnostic sector.
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1.1 Artificial Intelligence in Medicine

Back in 2003, the U.S. government has already been spending $26B on healthcare Research and

Development and this growth is continuously progressing [15]. As presented in the market analysis

performed by Accenture [16], key AI-based healthcare applications can potentially save $150 billion

in annual healthcare expenses in the United States by 2026. Moreover, AI health market size is

expected to grow by 40 percent, raising from $600M in 2014 to $6.6B in 2021. This growth is already

visible in expansion of medical startups. The number of AI healthcare deals has grown more than 3

times from 2012 to mid-2016. Similar trend can be also observed in other countries, especially those

that are dealing with the problem of super-aged societies. A recent report conducted by Global

Market Insights shows that the global telemedicine market will expand from $38.3B valuation to

$130.5B by 2025 [17]. Indian and China telemedicine market is predicted to grow at 22.4% and

23%, respectively. Accenture research also specifies AI use cases that will lead to the best near-term

gains based on their application, likelihood of adoption and value to the health economy [16].

Figure 1.1. Participation of different AI use cases in the total healthcare near-term impact

The chart presented in Fig. 1.1 shows near-term value of these applications. $8B of future AI

value in the healthcare sector is represented by solutions focused on automated data reasoning,

creating a huge demand for innovative computer vision algorithms. What’s more, remote medical

diagnostics is projected to generate a second highest gain in the healthcare market in next few

years. Thus, we are mainly interested how AI can transform this sector and whether it can ease

accessing accurate information about primary health indicators without supervision to lessen a

burden on medical professionals. Specifically, we believe there is a need of expanding research on

remote diagnostics solutions to the thermal domain, as it can provide additional medical informa-

tion (temperature patterns can be used for pain analysis [18], sleep detection [19], evaluation of

facial muscle paralysis [20] or respiratory rate estimation [21]), while being insensitive to different

illumination condition and ensuring better privacy [22] than visible light data.
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1.2 Artificial Intelligence for Thermal Image Processing

Although development of image processing algorithms in visible light domain is more advanced

than in thermography, some studies targeting remote medical diagnostics using thermal data have

already been conducted. Proposed machine learning-based approaches address e.g. breast cancer

detection [23], face expression recognition [24], vital signs monitoring [25], and other applications.

Most of remote medical diagnostic studies require detection of human body parts and faces

in order to analyse changes present in those regions. Some accurate image processing algorithms

for thermal face segmentation have already been proposed in studies conducted by Marzec M. et

al. [26, 27, 28]. The work presented in [26] focused on detecting facial areas using anthropometric

measurements and relations between facial regions, while mitigating common problems occurring

in face segmentation tasks, e.g. various body poses, different scales and influence of background

objects. In later studies by Marzec M. et al. [27], the proposed facial pattern was further improved

to support various positions of eye regions and thereby increasing robustness to head rotations.

Bertozzi M. et al. [29] proposed to perform body detection by comparing prepared human model

with candidates generated as warm symmetrical objects, filtered from false positives using shape

information. Template-based techniques was also explored in [30] where persons were detected

using edge contour maps and Sobel filtering. Human shape information was further exploited in

study conducted by Wang W. et al. [30]. It has also been shown that valuable information for

locating objects in thermal data can be obtained from interest point detectors [31], Haar features

[32] or histograms of oriented gradient [33]. Body and face areas detection problem can also be

solved using machine learning algorithms. Human head proportions and neural networks were

utilized for facial areas segmentation in research conducted by Koprowski R. et al. [34]. Later, in

the study introduced by Marzec M. et al. [35], neural network was applied to classify eyes regions

pre-designated using information about brightness distribution (warmer spots in eye corners).

Despite producing satisfactory results, mentioned algorithms have one main disadvantage. They

require specified sets of features that characterize different classes of objects. Then, decisions are

made by correlating each feature with expected outcomes. Yet, an exact collection of features is

frequently hard to define and can change over time or vary depending on personal or environment

factors. As a result, machine learning solutions based on hand-crafted features work best in strictly

defined conditions and can’t generalize well to changing environments. Since remote medical di-

agnostics are performed without supervision, it is especially important to ensure that they are

robust to outliers in feature representations associated with various problems that may occur in

thermal imaging. Examples of some potential factors that may have influence of system accuracy

include lack of color and texture information that may impact visibility of features significant for

predictions, presence of thermal radiation reflections, low resolution leading to small spatial sizes

of interesting components, thus their similarity, and others.

DL mitigates some accuracy issues caused by different factors impacting descriptors of human

detection by providing ability to automatically learn representations given a set of training samples

instead of manually defining sets of features which describe various objects. As shown in [36],

thermal features of a face can be extracted using Deep Boltzmann Machine, outperforming previous

machine learning solutions based on hand-crafted features. Other DL architectures can also be

utilized for thermal image processing, as presented in preliminary studies on pedestrian detection

using convolutional model [37] or occupancy estimation with Recurrent Neural Network [38].
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1.3 Limitations of Existing AI Solutions

Although DL has addressed various problems of previous, more conventional machine learning

techniques, some limitations of existing neural networks are still valid for thermal image processing

applications. First problem is a lack of publicly available thermal datasets. One of reasons for recent

advances in Deep Neural Network (DNN) is Big Data trend [39], as providing models with enough

data to learn proper dependencies is a key for achieving human-like accuracy in image processing

tasks. This finding has been also confirmed for thermal images in a study presented by Kopaczka M.

et al. [25], who showed that Deep Neural Networks work well in thermal spectrum, but only when

appropriate training database is available. This problem can be solved by using an approach known

as transfer learning, which allows for utilizing weights of models optimized using one set of images

on a different one. Some attempts for making use of this approach in thermal images have already

been done. Abbott R. et al. [40] proposed to utilize features extracted from high resolution thermal

images in classification of low resolution thermal images. In this way, although lower quality data

were more blurred and less detailed, it was still possible to achieve high prediction accuracy, as

the network has already been aware of object characteristics that it learnt from images of higher

resolution. Yet, to the best of our knowledge, detailed analysis of making use of visible light data

features for thermal image processing hasn’t been conducted yet. We believe that this could be

beneficial, as much more samples are available for a visible light spectrum than for a thermal one

[41].

Secondly, it is worth noting that thermal images have different representation of features than

visible light data. Hence, a direct application of existing neural networks designed for extraction

of high frequency features may not produce satisfactory results. To mitigate a problem of a gap

between different imaging domains, Zhang T. et al. [42] introduced Generative Adversarial Network

(GAN) aimed at translating images between domains. However, visible light data acquisition is a

limitation for monitoring and diagnostic applications due to privacy concerns and thus translation

between domains is not applicable in such cases.

Furthermore, as mentioned in [43], common thermal data acquisition devices suffer from some

technical challenges, e.g. low resolution, poor Peak Signal-to-Noise Ratio (PSNR), reflections and

halos around objects with significantly higher/lower temperature. All of those factors affect also

shape information [30] leading to difficulties in classifying and detecting objects. Taking it into

account, we see the need to design and evaluate algorithm for thermal image enhancement that

would allow for eliminating those constraints and thereby increasing accuracy of remote medical

diagnostics.

1.4 Goal and Thesis of the Presented Doctoral Dissertation

In the view of foregoing, the presented work aims at designing novel methods of thermal image

processing using Deep Neural Networks in order to enhance their quality and thereby increase ac-

curacy of facial areas detection for the needs of remote medical diagnostic solutions. It’s important

to note that the goal is not to outperform other conventional image processing techniques used for

similar studies, but to verify applicability of DL to thermal image domain and propose innovative

DNN architectures for thermal image processing. The presented doctoral dissertation constitutes

an integrated synthesis derived from our studies published in a wide range of publications (specified

in Appendix A) and expands them by additional experiments on thermal image processing with
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DL. Following thesis were formulated as a part of research problems and evaluation conducted in

this study:

I) Architecture of Deep Neural Network designed for classification of visible light images can

be modified in such a way that distribution of extracted features will be recreated enabling

detection of facial areas from low resolution thermal data.

II) Proposed architecture of Deep Convolutional Neural Networks allows for increasing resolution

of thermal images leading to improvement of facial areas detection accuracy.

First thesis aims at verifying whether knowledge learnt for visible light data, characterized by a

presence of high frequency features, can be utilized for processing of thermal images that are more

blurred. In addition, we also want to evaluate if classification model, which produces a vector of

high abstract features that are mapped to output categories, can be modified during the inference

to restore features distribution. In this way, classification networks could be used for detection

of objects (in our case facial areas) without a need to retrain them. All experiments proposed

for verification of this thesis are conducted on low resolution thermal images in order to address

possible scenarios of remote medical diagnostics, where usually only low-cost sensors are available.

The second thesis follows-up on the first one by mitigating the problem of dealing with low

resolution data in telemedicine solutions. Specifically, we define criteria of neural network archi-

tecture that would allow for enhancing thermal images. In-depth analysis of different number and

placement of blocks used in CNN will be performed in order to find configuration of a model which

leads to the best image quality metrics for data restored from low resolution inputs.

Besides studies on proposed thesis, we perform additional experiments to evaluate whether

introduced techniques and solutions could be applied in potential practical applications of remote

medical diagnostics. Conducted benchmark evaluation will include different steps of end-to-end

vital signs monitoring solutions, i.e. person recognition, facial areas detection, contactless estima-

tion of vital signs and obtaining of other medically useful information from extracted vital signs

patterns in order to determine whether proposed solutions can lead to better accuracy of the whole

remote medical diagnostic pipeline. Defined thesis are further divided into detailed tasks, which

after completion will support the specified goal of the presented dissertation:

1. Critical analysis of state-of-the-art methods applied to object feature extraction, image clas-

sification and areas detection with special focus on AI algorithms

2. Acquisition of thermal databases used for training and evaluation of examined NNs

3. Facial features detection

(a) Evaluation of existing CNNs on collected datasets and verification of possibility to trans-

fer knowledge learnt on visible light data to thermal images

(b) Proposal and implementation of a novel flow in DL classification models enabling de-

tection of facial areas from low resolution thermal data

(c) Experimental analysis performed to compare obtained evaluation metrics for state-of-

the-art DL solutions and the proposed model.

4. Thermal data resolution enhancement

(a) Critical analysis of existing Super Resolution (SR) algorithms and their limitations for

thermal image processing
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(b) Proposal and implementation of a novel NN architecture designed specifically with ther-

mal data characteristic in mind in order to enhance image resolution

(c) Experimental analysis performed to compare image quality and AI evaluation metrics

for state-of-the-art DL solutions and the proposed model.

5. Proposal, design and evaluation of practical remote medical diagnostic applications based

on thermal image processing that could benefit from introduced DL techniques and neural

network architectures

6. Identification of future work directions and possible improvements of introduced solutions.

1.5 Organization of the Work

The rest of the work is organized into chapters addressing each of specified detailed tasks.

Chapter 2 introduces algorithms used for object detection, with a special focus on analysis of ther-

mal images of a face. Presented methods include techniques used for defining features acting as

descriptors of objects, followed by conventional image processing and machine learning approaches,

and finally more recent AI methods. In Chapter 3 we provide specifications of thermal datasets

acquired for enhancing thermal data and detecting areas usable for non-contact vital signs esti-

mation. All collected sets were obtained with possible scenarios of remote medical diagnostics in

mind in order to verify robustness of proposed methods for such applications.

The task of facial feature detection from thermal images is studied by us in Chapter 4. At first,

we evaluate performance of state-of-the-art neural networks on thermal data collected by us and

conduct experiments with transferring knowledge from visible light domain to thermography. Then,

we propose an innovative modification of deep classification models to restore features distribution

and detect facial areas from thermal images, reducing latency and improving model accuracy.

Finally, we provide details of experiments performed with novel DL architecture based on capsules,

what results in generating a solution insensitive to different body poses.

Chapter 5 contains details of in-depth analysis of existing Super Resolution solutions and their

applications, with the main focus on a thermal image domain. Moreover, a novel DNN architecture,

designed by us with thermal features characteristic in mind is introduced and compared with other

existing solutions on a wide set of thermal datasets, both publicly available and acquired by us. To

the best of our knowledge, this is the first attempt to design CNN specifically dedicated to ther-

mal image enhancement by addressing more distant dependencies between interesting components

caused by the heat flow in objects.

The next Chapter (6) focuses on evaluation of proposed DL detection and thermal image

enhancement models in possible non-contact vital signs monitoring applications. Various potential

steps of remote medical diagnostics i.e. person recognition, facial areas detection, and extraction

of vital signs are analyzed. In addition, we also perform further experiments with estimated vital

signs by analysing influence of emotional response on calculated respiratory and heart rates. Ideas

for future work and improvement of proposed algorithms are described in Chapter 7.

Finally, the work is concluded in Chapter 8, providing summary of achieved results with special

focus on confirming and verifying completeness of theses formulated in the presented dissertation.

Additionally, we also outline novel outcomes and innovative contribution to state-of-the-art tech-

niques of thermal image processing for the needs of remote medical diagnostics.
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Chapter 2

Detection of Facial Areas

2.1 Introduction and Overview

In medical applications, as well as other solutions that utilize image processing algorithms, it

is crucial to distinguish and recognize various regions of the object present in images or video

sequences. Some examples include breast cancer identification from mammograms [4] or thermo-

grams [5], lung [6, 7] and colon [8] cancer diagnostic, or bone scans analysis [9]. Remote medical

diagnostics can also benefit from such algorithms improving accuracy of e.g. processing of facial

areas [44] for vital signs extraction. Many of the mentioned practical problems could be solved

with detection and segmentation techniques that allow for identifying boundaries between image

regions and objects as a whole.

In this chapter, we introduce approaches commonly used for object classification, detection

and segmentation with a special focus on algorithms utilized for analysis of thermal images of a

face. At first we describe conventional image processing techniques that can be used for defining

boundaries between image regions, including algorithms based on differences among pixels present

in neighbouring areas (e.g. points, lines, and edges), followed by methods that use similarities of

image regions.

Then, we present more complex statistical and learning algorithms that take advantages of

data distribution or correlations with other samples from training sets. Described methods that

utilize various object features, e.g. defined manually, extracted with algorithms explained in the

first section, and finally also learn as a part of applied Artificial Intelligence (AI) pipeline to

perform data clustering, classification or detection. Specifically, we divide statistical and learning

methods into two categories. The first one uses predefined features and patterns. The second one

automatically extracts and adjusts feature representations by feeding algorithms with exemplary

labelled images in the training phase.

Finally, we introduce metrics commonly used for evaluation of Deep Learning (DL) models

including parameters utilized for classification, detection and inference performance. Results of

tests performed in the rest of the work will be assessed based on those metrics in order to verify

proposed dissertation theses.
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2.2 Conventional Image Processing Techniques

2.2.1 Discontinuities among Pixel Values

One of the traditional ways of image analysis in order to separate objects present in a video

frame (or a single image) is filtration and thresholding. Various studies have already been conducted

in this area. We will focus mainly on techniques applied to face and facial areas detection, as our

work aims at solutions of remote diagnostics using signals extracted from facial regions.

Edge and Line Detection

A common approach to facial areas detection is to take advantage of either a skin color, a specific

shape of extracted objects or both. Edge detection is often utilized to obtain shape information.

Sobel filtering is frequently used for this purpose, as presented by Huang et al. [45], who combined

Sobel techniquee with Two-Stage Multithreshold Otsu method for determining body areas or by

Singh A. et al. [46] in a study on face and eyes areas extraction.

Since many of medical images are characterized by complex shapes, that can’t be easily de-

tected using horizontal or vertical Sobel masks, a common approach is to approximate edges by

a combination of shorter horizontal and vertical components [47]. This process leads to accurate

results, but also may significantly increase the processing time. Another commonly used edge de-

tection algorithm is Prewitt operator, which has been proved to perform accurate segmentation

of facial areas from thermal images [48]. The best facial features can also be determined using a

group of edge detection filters, as presented in [49]. The combination of edge detectors applied

in the proposed study included Sobel, Prewitt and Roberts filters, what allowed for the accurate

background removal. Edge detection techniques can also utilize magnitude and gradient vector cal-

culated using horizontal and vertical derivatives. These partial derivatives are given by the average

of values of neighbouring pixels. In the Canny edge detection algorithm, the local maximum of the

gradient magnitude in the direction of the gradient defines edge pixels, what can be utilized for

facial expression analysis [50] or chin contour detection [51].

Processing of images acquired in visible spectrum of radiation can also be based on analysis

of one of their most important characteristic - color information. Previous studies proved that

it can be utilized for face detection task. Skin segmentation is often performed on pixel-by-pixel

basis, using specific chromaticity space to determine skin color ranges [52]. Yet, this method is

sensitive to changes in lighting conditions. Moreover, this approach can’t be directly utilized for

thermal imaging, as a very important difference of thermal images is that data obtained from

electromagnetic radiation with wavelengths longer than those of visible light, are not perceivable

as color to the human eye. A different range of electromagnetic spectrum wavelengths is captured

to form an image. This range is outside values that produce a chemical response in retina. In order

to produce data which will be perceived by humans, captured signals are converted to various

values of brightness, e.g. by using look up tables. Yet, this information can’t be considered as

representation of features itself, but rather as a generated visualization. Additionally, it’s worth

noting that features in thermal images are more blurred and contrast between adjacent regions

much lower than in visible light data characterized by high frequency components. This is caused by

heat flow between objects and thereby blending of temperatures of neighbouring objects visualized

in thermal imaging, leading to smoother boundaries between image components. This problem is

further described in the next chapter (Chapter 4).
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Points Detection

Detection of facial landmarks favors many applications, such as face recognition, tracking or

modelling due to ability of capturing and describing face characteristic. Thus, detection of facial

points is usually a first step in those applications. Yet, an important problem is that such landmarks

can drastically differ in terms of values distribution in the input data, thus it is necessary to add

a proper context to them, so that their interpretability will become feasible. This problem was

solved by Herpers R. et al. [53] with the means of basic filters operations that were: (1) searching

for predefined orientation and scale; (2) determining line orientation; (3) tracking the detected line

by moving the filter in the given direction. However,the performed experiments showed that if an

image is characterized by a low contrast, a person is wearing contact lens or if shadows disturb

facial areas, a detection of keypoints fail.

Various studies utilizing face landmarks detection have been conducted in visible light image

domain. Lai J. et al. [54] proposed a method for facial points detection using horizontal projection

of a binary image, which assumes that number of peaks in the projection corresponds to horizontal

location of each facial point. Another common approach is to take advantage of geometrical rela-

tions between landmarks to determine their location [55]. For example, the study presented in [55],

showed that detection of a mouth area can be simplified by analysing only a face region marked

under top, left and right sides of eyebrows.

Similar studies were also performed for thermal imaging. Marzec M. et al. [26] introduced a

face areas detection algorithm based on a head size, anthropometric measurements of facial areas

and relations between them (e.g. detection of a face symmetry axis, characteristic facial points and

regions). In further studies by Marzec M. et al. [27] the proposed face pattern was expanded to

support various possible positions of eye regions, improving robustness of the algorithm to head

rotations. Another group of solutions utilizing facial landmark detection are based on Interest Point

Detectors (IPDs). Dey T. and Deb T. [56] analysed the Features from Accelerated Segment Test

(FAST) Corner Detector on two face databases (IRIS [57] and UGC-DDMC [56]). Yet, although

the IRIS dataset contains thermal images as well, experiments were performed only on visible light

data.

IPDs could be also applied to thermal images. In our study focused on facial feature tracking

from thermal images of a size 320x240 pixels [58], we compared performance of 3 IPDs: SIFT[59],

SURF[60] and ORB[61]. The selection of these algorithms for our research was motivated by the

differences in characteristics of visible light and thermal data. Since utilized thermal images had

rather low resolution, facial features were represented by close contrast values. In addition, due to

heat flow in objects, regions present in thermal imagery are usually blurred with no clear borders

among different areas. Thus, utilization of brightness distribution or face geometry (as in many

studies on visible images) may not work. On the other hand, SIFT, SURF and ORB Detectors

have already been proved to provide excellent performance for selection of scale, geometric shape

and rotation invariant features [62], what turns out to be beneficial for dealing with thermal data

challenges as well. Conducted experiments showed that the displacement of the detected nose area

in comparison to the manually marked region was the smallest for SIFT (7.0±1.9%) and the biggest

for ORB (9.9±2.2%). For SURF it was equal 8.9±2.7%. As expected, for more intensive motion, the

accuracy was worse (biggest displacement) - turning head left (ORB 21.9±6.0%, SIFT 15.6±5.6%,

SURF 18.0±7.7%); turning head right (ORB 16.6±5.2%, SIFT 11.2±4.8%, SURF 14.6±6.7%). All

of the IPDs achieved real-time performance 23.9ms (ORB), 19.7ms (SIFT), 27.6ms (SURF).
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Thresholding

Thresholding allows for categorizing image components into groups using information obtained

from pixel intensities, e.g. values above (or below) a given threshold are preserved (or set as a new

value, e.g. white), while all others are assigned a different value, e.g. black. In this way, interesting

image components (foreground) may be segmented from all other objects (background). According

to the classification proposed by Sezgin et al. [63], thresholding can be divided into different

groups based on information they are exploiting, e.g. histogram characteristic (e.g. peaks), entropy,

object attributes (e.g. shape similarity), spatial correlation using e.g. probability distributions

(Otsu thresholding [64]), local pixel values or specific components of the image [65].

The more advanced versions of thresholding are often used to accommodate various illumination

conditions, i.e. adaptive thresholding. Whereas the basic thresholding utilizes the fixed value of the

threshold for all pixels, the adaptive thresholding changes it depending on the neighbouring pixel

intensities. As a result, it’s less prone to strong illuminations gradients or other lighting artifacts.

The robustness of adaptive thresholds was confirmed in study on face detection from complex

images [66] and facial features extraction in indoor and outdoor environments [54]. An iterative

thresholding has been also adapted to extract skin segments from skin probability maps [67].

The thresholding operation in thermal imaging can be based on utilization of 1) differences

in thermal emittance values between body and other objects (e.g. thermal emittance for skin

equals 0.98, for polished iron 0.1) and/or 2) differences in objects temperatures. The latter is

associated with the fact that human body has usually a higher temperature value (assuming

ambient temperature within the range of a room temperature) than other objects which do not emit

heat. Taking it into account, the face region can be easily detected by selecting intensities above

some specific pre-defined threshold value. Fig. 2.1 shows a thermal image of a face, which contains

much brighter components than the background. This difference has been also visualized on the

histogram in Fig. 2.2, that clearly presents two separate peaks, the one with higher values represents

a brighter region of a face, while the left hand side peak corresponds to background values. By using

specific threshold values, two areas can be easily separated. Due to ease of separating important

components from noise with thresholding, this operation is usually applied to thermal data in a

pre-processing step of other object detection algorithms. In our previous work, we demonstrated

that pattern matching and active contour face detection techniques can be simplified by extracting

a facial area from background data with the selection of the peak at the right-hand side on the

thermal image histogram (higher intensities values) [68] (see Fig. 2.2).

Figure 2.1. Visualization of differences between color intensities in a facial area and a background
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Figure 2.2. Histogram of a face image with two clearly distinguishable peaks, where the right hand

side peak represents the facial region

2.2.2 Similarities of Image Regions

Methods described in the previous subsection are used for region segmentation based on dis-

continuities among pixel intensities within those regions. Here, we will present algorithms that

utilize similarities of neighbouring areas/pixels within an image or similarities between pre-defined

patterns/sub-images and specific image areas.

Region Growing

The Seeded Region Growing (SRG) method utilizes similarity criterion which specifies whether

neighbouring pixels are similar to seed pixels pre-defined for each image region, e.g. nostril area. If

the neighbouring pixel is similar to the seed pixel, it is assigned to a corresponding image region.

Fan J. et al. [69] proposed to apply SRG to an automatic face detection task using centroids of

image regions obtained from color information as initial seeds. In addition, SRG was also utilized

for human segmentation based on seeds defined as detected facial regions. Presented method aimed

at performing semantic segmentation, meaning all segmented bodies/body parts were treated as

one entity, contrary to instance segmentation, which allows for distinguishing various instances

of each class. Our studies, though, assume the presence of a single person in a camera frame and

therefore we focus mainly on semantic segmentation. Multi-person environments will be considered

by us in a future work.

Region Growing (RG) approach has been also studied for face detection and recognition in

a thermal domain. Zheng Y. [70] presented a face recognition solution using region growing and

morphology operators to segment human bodies. Facial areas were detected using derivatives of

horizontal and vertical projections. Additionally, if a volunteer was wearing eyeglasses, they were

removed with RG before matching faces. In the work proposed by Cheong Y. et al., the Zhong’s

method was improved by using a hybrid approach with Otsu segmentation. As a result, the main

disadvantage of RG - the long processing time - was overcome [71].
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Quad-Trees

The results of Region Growing heavily depend on the selection of initial seeds. Another re-

gions similarity-based approach, known as Quad Trees, deals with this disadvantage by merging or

splitting disjointed regions that the image is divided into at the beginning. The Quad Trees parti-

tioning was used for fractal image coding in the face recognition study presented in [72]. However,

experiments performed on 180 grayscale images from 90 subjects showed that the accuracy of face

recognition is lower than for other iterative reconstruction methods and that the method should

be further developed.

Watershed

The intuition behind the Watershed algorithm is analogous to both RG and QT methods.

The advantage of the Watershed algorithms is that it allows for automatic selection of markers

corresponding to objects that we want to separate. Usually minima of images (called basins) are

selected as such markers. The Watershed method exploits topological characteristic of an image to

perform segmentation. It is done by flooding basins until all pixels (from foreground objects to be

separated) are flooded and created basins meet at watershed ridge lines. The Watershed algorithm

has been successfully used for human/face detection both in visible (for initial separation of image

regions later classified with neural network [73]) and thermal image (for objects contour completion

[74]) domains.

Patterns

Pattern matching approach, especially image correlation technique, is based on pre-defined tem-

plates that contain the same information as the target object to be detected. Many of the pattern

matching solutions utilize facial features previously extracted with, e.g. edge detection algorithms

[75, 76], color [77], or shape information [78] to build facial patterns. The study conducted by

Gao Y. and Leung M. used Line Edge Maps (LEM) constructed using Sobel detector to perform

line-based face coding [75]. Suzuki Y. and Shibata T. [76] developed Projected Principal-Edge

Distribution (PPED) used for building a face representation. The pattern matching algorithm

presented in [77] takes advantage of pre-built head models using color analysis and fuzzy theory.

Most of the studies on pattern matching techniques focus on visible light images and only a

limited number of methods have been proposed for thermal imagery. Seal A. et al. took advantage

of the Local Binary Pattern (LBP) to perform texture matching of thermal face images [79]. In

our previous work [68], we also evaluated accuracy of a pattern matching algorithm aimed at

detecting faces from thermal images and compared it with the Active Contour (AC) technique.

Active contour models, also known as snakes, are a subsection of pattern matching methods that

have been successfully applied to various computer vision tasks, including medical applications

[80]. The main advantage of active contours is their ability to dynamically adjust to an object

shape. Thus, they are often called deformable models.

Yet, the performed analysis showed that the AC algorithm is both slower and less accurate than

the pattern-matching technique on the collected thermal dataset. Furthermore, since face areas are

built from complex shapes, Snake model is frequently difficult to apply to the face detection task,

as it can only detect a single close contour. Some solutions to mitigate this limitation have been

proposed Wu h. et al. [81], but their accuracy was dependant on lighting conditions and body

poses.
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2.3 Statistical and Learning Methods

In this section we present another group of methods, which utilize correlations between differ-

ent inputs or probabilistic description of a sample (e.g. frequencies of feature occurrence). Such

techniques can learn mappings between inputs and expected outcomes (classification) or exploit

representations of samples to divide them into different categories (clustering). Since decision rules

used for making predictions can be adjusted based on cost of these decisions in order to find the

most optimal model, statistical and learning methods tend to lead to better accuracy and easier

adaptability than conventional image processing techniques.

2.3.1 Hand-crafted Features

Clustering

A separate group of image processing learning techniques are based on clustering algorithms,

which allow for separating images into groups and in this way detecting specific regions, e.g.

facial areas. K-means is one of the most popular clustering methods utilized for different image

processing tasks. The intuition behind K-means lies in an iterative selection of centroids for k output

categories. At first, centroids are chosen randomly and all samples are assigned to categories based

on a distance to a closest centroid. Then, centroids are updated by selecting a sample which is the

center of each created group, e.g. calculated as an average value of all group members. After that,

samples are reassigned to new groups based on distances from newly generated group centers. The

process is repetitively applied until none of examples changes its group.

Interesting clustering-based approach to face detection task has been proposed by Segundo P.

et al. [82]. In the presented study, authors divided image regions into two clusters: the facial area

(first) and the rest of data (second), i.e. background and other objects that were not considered

as Region of Interest (RoI). Although this approach turned out to efficiently extract faces from

background components, it required additional filtering operations for separation of the rest of a

body, e.g. neck or hair regions.

As shown in [24], K-means is also useful for processing of thermal images of a face. In case of

thermal data, facial areas detection can be done by utilization of information about image pixel

intensities. According to results presented by Trujillo L. et al. [24], the most significant areas are

those where we can observe strongest brightness changes. After extraction of those regions, K-

means clustering can be applied for dividing them into individual facial parts, e.g. eyes or nose

regions. Another application of k-means in thermal imaging focuses on face verification. Crespo D.

et al. [83] proposed to make use of Scale-Invariant Feature Transform (SIFT) descriptors, which are

invariant to image scale and rotation. After feature extraction, they were clustered using K-means

to build a representation of each person. The limitation of the presented study is sensitiveness to

facial poses, as facial temperature distributions is used for making predictions.

Classification

Viola Jones

Haar cascade-based Viola-Jones method [32] became very popular a few decades back and

turned out to be a huge breakthrough in the face detection and recognition field. P. Viola and

M. Jones managed to outperform previous solutions by introducing AdaBoost - a learning algo-

rithm for selecting best classifiers based on calculated Haar features extractors. Selected classifiers
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were consolidated into a cascade to form a final face detector. This approach significantly reduces

required computation and thus also processing time, as the final decision is positive only if de-

cisions of all previous classifiers are positive. Since invention of the Viola-Jones algorithm it has

been widely applied in various face detection studies, e.g. as a hybrid approach with the Canny

Edge detector [84]. Further improvements of the Viola-Jones method included for example the

replacement of classical Haar features with polygonal features [85]. The problem of annotating

objects with polygonal regions was solved by decomposing a rectilinear polygonal integral into a

finite sum of rectangular integrals. It has also been proved that replacement of a rectangular region

with a polygonal shape led to better accuracy of objects detection by eliminating the presence of

unwanted regions, e.g. background elements.

Viola-Jones algorithm has been verified in thermal image domain as well. Basbrain A. et al.

[86] experimented with different features (Haar, Histogram of Oriented Gradients and Local Binary

Patterns) in order to determine which ones are best for detecting faces from thermal images with

Viola-Jones algorithm. In addition, authors showed that proper image pre-processing is crucial for

accurate predictions. In our study focused on thermal face detection from sequences recorded with

a portable thermal camera [68] we also compared Viola-Jones approach with methods based on a

face geometric, i.e. pattern matching and active contour algorithms. According to achieved results

Viola-Jones algorithm produced detection accuracy of 90.5±4.34% at a shortest processing time

of 23ms. This outcome indicates the suitability of Viola-Jones method for real-time face detection

applications. However, it has been also shown that the presented approach is sensitive to movements

performed by volunteers.

Support Vector Machines

Support Vector Machine (SVM) is a supervised machine learning binary classification method.

During the learning procedure, training samples are represented as points in space, separated by

a hyperplane based on categories that they belong to. The goal of model optimization is to make

this gap as wide as possible. Classification of new samples is done by mapping them into the same

space and assigning to a category corresponding to the side of the gap that they occupy.

SVM has already been applied for facial areas detection both in visible light and thermal

spectrum. A very common approach is to make use of Principle Component Analysis as a feature

extractor and then divide produced representations into classes corresponding to different facial

regions using SVM [87]. Other studies proposed to utilize SVM with features defined using, e.g.

Gabor key points or Histogram of Oriented Gradients (HOG), showing improvement of 8.75% in

comparison with Principal Component Analysis (PCA) [88]. Gumus E. et al. [89] proved robustness

of Wavelet based SVM algorithm over other methods, i.e. distance classifier in a face recognition

task. In study conducted by Jee H. et al. [90], eye regions candidates were defined using color, edge,

and binary information and then classified using SVM. Comparison of SVM with neural network

has been also performed by showing a significant improvement of face classification accuracy for

SVM with Radial Basis Function (RBF) kernel, which allows for making predictions from data that

is not linearly separable [87]. RBF-based SVM has also turned out to be useful for discriminating

facial poses , what may be useful for face alignment in contactless vital estimation studies, since

in such cases a frontal pose is usually desired.

Thermal image detection task also benefited from application of SVM. Evaluation of various

face recognition algorithms in thermal imaging has been discussed by Floody D. et al. [91] resulting

in higher performance of SVM comparing to Local Binary Patterns (LBP) and Trade-off correla-

tion filters (TOF). SVM method with Haar-like features has been used in a research conducted by
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Wang S. et al. [92] and demonstrated high accuracy in an eye detection task. Similarly, Martinez

B. et al. [93] proposed to localize eyes and nose regions from thermal images using their represen-

tations defined with Haar features. To classify pixel clusters, SVM was utilized on image sub-parts

extracted using the sliding window approach. Analysis of possibility to apply SVM to infrared

images has been also analysed by Wang X. et al. [94] in a research focused on auto-localization of

a face, resulting in false negative error of 3.73% and processing time of 200-500ms. Contrary to

results achieved in visible light data [87], study on identification of thermal faces showed robustness

of SVM with linear kernel over radial kernels [95]. Yet, according to achieved results, high accuracy

is achieved only for fusion of visible and thermal features. The proportion of features proposed by

authors is 70% visual and 30% infrared, what indicates that higher resolution and presence of high

frequency data is essential for person recognition.

Although SVM leads to satisfactory results for many face detection applications, it may not

perform well for overlapping classes. Also, choosing a kernel function appropriate for a given task

is not easy. Very often linear kernels perform well, but then problems that are linearly inseparable

can’t be solved.

K-Nearest Neighbours

Another popular learning algorithm often used to solve classification and regression problems

is based on relations between training examples in the feature space. In a classification setting,

an output category is chosen as the most frequent class of k neighbouring samples. In case of a

regression task, the result is calculated as the average of those nearest neighbours. Due to utilization

of information from adjacent examples, this approach is known as k-nearest neighbours (kNN).

The effectiveness of kNN over SVM was proved in the study conducted by Parveen P. and

Thuraisingham B. [96] aimed at real-time face recognition from visible light data. Other face

classification, detection and recognition applications based on kNN have also been proposed. Some

examples used in visible light image processing include kNN classifiers based on eigen vectors

extracted from color components using PCA [97]. Zheng Y. et al. proved that combination of

visible and thermal modalities lead to reduction of false acceptance rates in a face recognition

system based on the kNN method [98].

A different study based on thermal image processing and kNN focused on recognition of facial

expressions using information about temperature differences [99]. However, the achieved recognition

rate of 61.62% isn’t satisfactory for medical applications especially requiring high reliability. Other

approaches utilized in thermal imaging made use of facial region histograms [100] or orthogonal

moments [101] utilized as features for kNN classifier.

Although kNN has been successfully applied for thermal face detection, its main drawback is the

selection of the number of nearest neighbours that should be taken into account for classification

decision. With the increasing k results are more stable but computational overhead increases. This

limitation is also valid for K-means algorithm (in case of K-means k meaning number of groups).

Thus, we should know beforehand how many regions are present in our data. This prerequisite

knowledge, e.g. of number of faces visible in a frame is very hard to define and that’s why k-

means-based solutions may not generalize well to new samples. As suggested by Park C. and Kim

H. it is beneficial to post-process outputs using e.g. edge detectors or color mapping in other to

reduce number of mis-classified pixels [102]. Yet, this can influence the processing time, what in

case of generating responses about health status may be crucial. There are also some empirical

approaches for determining the optimum number of categories/clusters, such as model fitting (e.g.

with mixture model) or visual techniques (e.g. elbow rule).
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Bayesian model

Bayesian model is a statistical technique which has been widely applied in literature for dif-

ferent image perception tasks and became a base for various medical detection and segmentation

algorithms. Key concepts of Bayesian algorithm is a knowledge about a priori probability specify-

ing a probability of samples belonging to each class and a conditional probability used to define a

probability that a value of a sample belonging to a given class will be in a given range. Bayesian-

based solutions have became popular for analysis of facial areas, e.g. in skin color models [103].

In order to determine skin/non-skin conditional probability density functions the authors of [103]

proposed to use normalized histograms of skin and non-skin pixels. The performed analysis of the

skin Bayesian model proved that its reliability is insensitive to different color spaces, e.g. RGB,

YCbCr, or HSV, as long as all channels are used. Nguyen D. et al. introduced face detection and lip

extraction technique with Bayesian theory [104]. In addition, authors proposed to use edge repre-

sentations for objects classification what lead to reduction of the model size 2417 times comparing

to previous Bayesian-based modeling approaches.

In thermal image domain, it’s also possible to make use of Bayesian classification method

by using information about temperature distribution. As specified in [105], the main advantage

that this solution possess over facial geometric-based approaches is higher permanency of used

features and proneness to changing illumination factors. In the presented approach face recognition

task was solved by estimating pose of a person and then matching extracted thermal points with

corresponding samples stored as templates in a database. In the study conducted by Gordon C. et

al. [106], Bayesian method was proved to outperform Viola-Jones algorithm on a thermal datasets.

Yet, the required step for achieving such results was to retrain a model on thermal data, as visible

light features could not have been transferred to thermal imaging. This indicates that there is

a huge demand for providing datasets of thermal images, what we address in Chapter 3. It has

also been shown [106] that the accuracy of face recognition using Bayesian classification applied

to visible light data and thermal images drops significantly if PCA is used. For more advanced

feature extraction methods, no such drop is observed. Taking it into account, we believe that proper

representation of data is crucial for final performance and there is a need to research solutions that

allow for automatic extraction of important facial features. Such techniques will be discussed by

us in a following section (Section 2.3.2). Moreover, Bayesian theory assumes that the probability

of distribution of all classes is known in advance. Although such probabilities can be estimated, in

many cases they are not known. As a result, it may not be suitable for real life problems.

Shallow Neural Networks

Although statistical methods, such as Bayesian model, are effective for different image process-

ing problems, they are not capable of providing optimal solutions for more complex tasks. One

of the reasons for this is the need to make assumption about a type of data distribution, as such

techniques make predictions by drawing samples from provided inputs. Neural Networks (NNs)

allow for finding generalizable data patterns directly from examples, so no assumptions have to be

made As a result NNs are more resistant to outliers, especially in case of unknown data nature or

missing values. This is a huge advantage, as extraction of data patterns allows for solving more

advanced image processing tasks.

Neural networks were inspired by biological neural system structure, thus they are composed

of connected group of neurons. Those connections are represented by weights, which are adjusted

to model the problem represented by provided data. While working with neural network, we can

distinguish two tasks. First one, training, aims at adjusting model weights, so that produced pre-
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dictions are as accurate as possible. In a supervised setting analysed by us, this is achieved by

feeding the network with training samples, producing outputs and comparing them with provided

labels. This procedure is repeated until a difference (e.g. defined by log loss function) between

outcomes and their corresponding expected values is minimal. After each feed forward pass, the

backpropagation algorithm is utilized to update the weights with respect to the calculated pre-

diction error. Once optimal weights are learnt, the network can be used for a second task, known

as inference. At this step, no more updates to the model are done and previously learnt network

parameters are used for calculating outcomes of new samples.

In this subsection, we focus on shallow neural networks, the ones that contain only a single

layer. The simplest form of neural network is known as a perceptron. As shown in Fig. 2.3, the

perceptron consists of multiple inputs connected to one output. The strength of each connection

is represented by weights, which are tuned during the training procedure. The final decision is

made using thresholding operation applied to the output calculated as a sum of all weighted

inputs. Logistic regression can also be modeled as another simple type of NN. In this case output

of the network is followed by logistic function which allows for converting produced scores into

probabilities of classes, as presented in Fig. 2.4.

Some attempts for utilization of linear regression for face recognition tasks have already been

made. Naseem I. et al. [107] proposed a modular linear regression classification algorithm which

mitigates the problem of facial features occlusion using novel Distance-based Evidence Fusion.

In a study on thermal face detector [108], different facial representations were constructed and

compared in order to define the best set of features for image analysis, i.e. Haar wavelet coefficients

and Local Binary Patterns. Classification was performed with a shallow NN, resulting in higher

detection accuracy for Haar wavelet feature extractor. As specified by authors, due to the use of

NN no prior knowledge of face geometry is required, but because of using hand-crafted features it

is applicable only to frontal views and constant backgrounds.

Figure 2.3. Simplest neural network architecture: perceptron

Main drawbacks of shallow networks are twofold. First, they can only be used for solving

problems with linear decision boundaries. Secondly, as shown by exemplary NN-based solutions,
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Figure 2.4. Logistic regression classifier

shallow models are not able to examine data directly. There is a need for defining sets of features,

e.g. edges extracted with Canny filter or Local Binary patterns that could be used for making

predictions by correlating them with expected outcomes. Both problems can be addressed by tech-

niques introduced with DL, e.g. representation learning, weight sharing and solutions for modelling

of non-linearities, explained in the following section.

2.3.2 Representation Learning and Modelling of Non-linearities

Motivation

Although shallow NN, e.g. perceptron or logistic regression can learn data patterns directly from

examples, usually the complexity of the network is not sufficient to model data representations.

Instead, features are manually designed, what requires a lot of effort and time. We may say that

those simple machine learning techniques are representation-dependant, as we have to define pa-

rameters important for a given task. For example, in logistic regression-based disease classification,

specialists have to define features specific for a given condition, as algorithm is not able to examine

provided images directly. Machine learning system can only learn how to make proper predictions

using correlations between features determined by a human and various observed outcomes. As

one may note, this is a huge disadvantage since many problems are frequently hard to described

with enough complexity using strictly defined knowledge. Moreover, choice of handcrafted features

meaningful for specific image processing task is not straightforward, as it requires correlation of

each feature with an outcome and very often results may be influenced by varying lighting con-

ditions or different personal factors, e.g. age or gender [41]. Although in many cases (especially

for strictly defined measurement conditions) handcrafted features are effective, the task of making

proper predictions becomes more difficult for complex inputs acquired in dynamic environments.

Selected features may also contain a lot of meaningless inputs and, as a result, solutions are not

optimal. There are different techniques for reduction of data dimensionality to preserve only most

essential features for a given prediction, e.g. PCA applied to find most optimal faces vectors [49].

Yet, finding the right set of features is still very challenging. One idea for mitigating this problem
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is to learn not only mappings between features and categories, but also data representation itself.

This approach of automatic extraction of features without human supervision or action and then

analysis of how they map to specific outputs is known as representation learning. One of the

main most developed in recent years techniques utilizing this approach is DL (DL). By learning

representations, Deep Neural Network (DNN) is able to acquire patterns from raw data which are

used for making predictions that may seem subjective.

Figure 2.5. Simplified visualization: sequence of simple nested mappings constructing a Deep Neural

Network, at each level more complex features are extracted

A Deep Neural Network (DNN) is a specific type of NN, which uses more layers, denoted as

hidden due to their placement between input and output layers. DL allows for reduction of data

variation and automatic generation of data representations by dividing the complex direct input-

output mappings into a sequence of nested mappings between respective representations extracted

from subsequent layers of the model (Fig. 2.5). As can be seen, a more sophisticated object can be

presented by combining features of complexity increasing at each layer, starting from e.g. points and

lines that are then formed into contours, object parts and finally a full image. The classic example

of DNN is a multilayer perceptron [39], which represent mapping of input to output values using

complex mathematical functions defined with a sequence of simpler ones. Since more complex

problems require execution of more instructions, it can be easily deduced that deeper networks

allow for achieving higher accuracy in various computer vision problems. Moreover, contrary to

shallow NN, deep models can solve problems with non-linear decision boundaries due to the use of

multiple layers and non linear activation functions. This feature makes them capable of modelling

complex real-world problems and achieving human-like performance.

Other key concepts used in DL are distributed learning and weight sharing. They assume that

features are shared across multiple possible samples (distributed learning) and across different

objects present within a single input (weight sharing). Thus, kernels with the same weights can

be applied to different locations of the input to produce accurate predictions (as specific objects

are built from similar lower-level representations, e.g. lines, edges, etc). As a result, very complex

problems can be realized by using reduced number of neurons. For example, suppose we would like

to perform emotion and gender (male vs. female) recognition. One way of achieving this would be

to use 2N neurons, each neuron per one possible combination (male-sad, female-happy, etc.), where

N represents number of emotions to be classified. Using the concept of distributed representation
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we will need 2+N neurons only, as neurons responsible for generating emotion representations are

able to learn from all inputs, not only from samples belonging to one gender.

By using representation learning and weight sharing approaches, DL eliminates a need for

defining any prerequisite knowledge, contrary to previously described learning methods. For ex-

ample, k-means algorithm applied to face detection task [82] require definition of a number of

faces. Frequently, such details are impossible to determine what results in system being not able

to generalize to new data. This problem is not valid if Deep Neural Networks are used, as they can

automatically adapt to data representation and extract patterns irrespective of their location or

number of instances.

Although DL has already been known for many years, only recently gained much more attrac-

tion. There are different factors that led to this progress. One of them is the big data trend which

allows us to provide models with enough data to learn proper correlations between inputs and

outputs. Another reason for DL being successful nowadays are much better hardware capabilities

with bigger storage and faster computation units, which make it possible to train deeper networks

that better represent processes of human brain neurons. Last but not least, recent advances in re-

search on neural networks has led to the development of much better regularization techniques, so

training of models became more feasible. All those aspects resulted in the huge progress in neural

network design, enabling various applications to achieve human-like perception performance.

Classification and Recognition

Since the reinvention of DL, the image classification research has significantly expanded, dou-

bling the size of models roughly every 30 months [39]. The architecture of neural network commonly

used for image recognition task is known as Convolutional Neural Network (CNN), as the basic

building block used in this structure is a convolution operation. Similarly to introduced earlier

edge detection filters, the convolution operation produces a single output for an input pixel by

calculating a weighted average of neighbouring values surrounding it (within a given window size).

The weights are automatically adjusted during the learning procedure, contrary to edge detection

masks which use pre-defined unalterable values for their kernels. Apart from convolution window

size, there are two main parameters associated with this operation. First of them is stride, which

specifies the number of pixels by which the kernel is moved across the input (see Fig. 2.6). The

second one, called padding, is used to define whether border pixels should be taken into account

(same padding) or should be skipped (valid padding). In case of padding set to same, the input

has to be surrounded with zeros in order to preserve the same output size as the input (number of

additional rows and columns up to the half of the convolution window size rounded down, so that

the border pixels are centered at the kernel, see Fig. 2.7).

The pioneer CNN network (named AlexNet after its inventor Alex Krizhevsky), which started

a huge breakthrough in image recognition, was built from only 5 convolutional layers [109] and still

showed that it’s capable of achieving record breaking results even for very complex data. Since then,

we have observed a revolution of network depth producing better accuracy with every additional

layer, e.g. VGG with 19 layers [110] reduced top-5 error by 9% or GoogleNet with 22 layers by 9.5%

comparing to AlexNet [111]. Later, it turned out that simple stacking of more layers is not enough,

as training become more complex because of the difficulties with propagating gradients through

the increased depth (vanishing gradient problem [112]). The solution to this problem came with

the invention of residual blocks. Authors of Residual Network (ResNet) architecture [113] proved

that a feedforward network with skip connections is easier to train, achieving state of the art

36

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Figure 2.6. Visualization of a stride parameter indicating a number of pixels by which convolutional

filter is moved across an input

(a) Padding valid (b) Padding same

Figure 2.7. Explanation of the padding parameter indicating a way how edge values are handled

during applying convolutional operations

performance in object classification task. Skip connections are those that skip one or more stacked

layers, implementing residual mapping. Moreover, they do not introduce additional parameters

and computational complexity remains constant. Since the introduction of residual network, this

idea has been widely applied for other computer vision tasks, including image enhancement [114]

and denoising [115].

The huge progress in Deep Neural Networks advances has led to significant improvement of

image recognition accuracy. Thus, DL (DL) started to be applied to various image perception

tasks, including face classification. CNNs have already been successfully used for distinguishing

facial from non facial images and pose estimation [116], facial points (nose tip and mouth corners)

classification [117], gender classification [118], or face verification and recognition [119]. Cheung B.

deterred automated systems by using CNN to recognize real facial images from generated avatars

[120]. The introduced convolutional network consisted of only 6 layers, producing accuracy of 99%

in ICMLA 2012 Face Recognition Challenge. In the study conducted by Anderson R. et al. [121]

the performance of state-of-the-art convolutional networks was compared in facial attractiveness
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classification task. As previously confirmed, the network with residual blocks outperformed other

solutions that were using just a stack of convolutional networks, i.e. VGG and Inception. In addi-

tion, authors also analysed the influence of applying Haar Cascades as the preprocessing method,

improving accuracy of both Inception v3 and ResNet50 models.

Although most of studies on CNN-based face classification focus on visible light data (as pre-

sented so far), some attempts to utilize CNNs for thermal face classification have also been made.

The superiority of DL-based techniques over methods based on manually selected features was

proved in the study conducted by Simon M. O. et al. [122], where CNN was used on the RGB-D-T

dataset. The optimized version of the GoogleNet network has been also used on thermal inputs for

person identification task [123]. Seo J. and Chung I. [124] made use of thermal data in order to

determine face liveness with a relatively simple network built from 4 convolutional layers. CNN-

based model has been also applied to the task of matching thermal images against corresponding

visible light data [125]. Another cross-domain face classification task was implemented with the

means of deep convolutional auto-encoders, showing the accuracy increase of 7% [126]. Non-linear

mapping between visible and thermal image modalities can be also realized with the means of deep

feed forward CNN, named Deep Perceptual Mapping (DPM) [127]. Biometric authentication also

benefited from the use of DL on thermal data. Grudzien A. et al. [128] explored the robustness

of siamese convolutional model built on top of the VGG network in the task of comparing two

samples against each other for verification purposes. Yet, the comparison to other, more recent,

CNN architectures, e.g. residual or inception blocks based, hasn’t been presented. Sayed M. and

Baker F. [129] proposed to determine person’s identity from thermal input using CNN. Due to the

use of thermal imaging, the proposed solution could be successfully applied to person recognition

at night in video surveillance systems. The next application of processing thermal facial images

with CNNs was introduced by Obi-Alago A. et al. in their study on face signature abnormality

classification [130]. Yet, the specifics of the network architecture were not given. Similar research

of face abnormality detection, specifically sobriety classification, was proposed by Menon S. et al.

[131]. The presented study was motivated by the algorithm for low resolution thermal face de-

tection proposed by us and described in details in Chapter 4. Yet, CNN was only used for face

classification without detection of its regions.

Detection and Segmentation

A common practice used in object detection is to determine the presence of each category

within selected bounding boxes using features extracted with convolutions. Thus, CNN blocks are

used as the backbone for feature extraction, on top of which additional operations are applied that

allow to determine probability of categories and adjust coordinates of an object location.

Over past few years, different DL-based object detection architectures have been invented,

proving their advantage over methods based on manually selected features, e.g. as presented in

[132], where authors showed that DNNs are better than Haar cascades for finding face orientation.

The pioneer work in CNN-based object detectors was proposed by Girshick R. et al. with the

introduction of Regions with CNNs features (RCNN) model [133]. The first consideration of how to

approach face detection using CNNs focused on the sliding window method and features extraction

at each window location [134]. However, as mentioned by the authors of RCNN, this leads to

many difficulties with determining the precise object position, as the receptive field after a few

convolutional layers is very large. Thus, the alternative is to use recognition using regions approach,

which takes advantage of pre-defined regions instead of checking for object presence at each window
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location. This approach was used in RCNN which at first generates category-independent proposals

of bounding boxes and then applies CNN to extract a fixed-length vector representing features

present in each proposed bounding box. Classification is performed with category-specific linear

SVMs, what is the main drawback of this architecture due to the decrease in a processing speed.

This limitation was mitgated by replacing SVMs with a fully connected layer (fc) in NN architecture

named Fast R-CNN [135]. In order to be able to make use of the fc layer, extracted features had to

be cast to fixed-length vectors. This step is achieved in Fast R-CNN with a RoI pooling layer. The

fc layer is then branched into two outputs: probability for each category produced using softmax

function and a second layer that produces four real-valued numbers corresponding to bounding

box coordinates.

Although the training and testing speed has been improved in Fast R-CNN comparing to

RCNN, both architectures have a significant limitation - a requirement of obtaining pre-defined

region proposals using a selective search algorithm. This problem was addressed by Faster R-CNN

[136], a model which utilizes a separate neural network aimed at generating region proposals,

in this way eliminating the time consuming selective search process. Further improvements to

object detection networks have been achieved by using a single CNN to obtain bounding boxes

and perform object classification within a single forward pass. This optimization turned out to be

crucial for real-time performance, as presented in some recent models, such as You Only Look Once

(YOLO) [137] or Single Shot Detector (SSD) [138]. The main difference of those architectures is

that they look at the whole image instead of only specific regions that have the highest probability

of containing the object. In YOLO architecture, an image is divided into a grid and bounding

boxes are generated for each cell within this grid. Then, the model outputs probabilities and offset

values for each bounding box. Finally, bounding boxes with probabilities above a specific threshold

are preserved and used to produce model outputs. In SSD network, a similar concept of defining

bounding boxes for the generated grid is utilized. The main difference from the YOLO model is that

SSD makes use of multi-scale feature maps to generate independent object detectors responsible

for localizing different scale objects. In this way, the accuracy of detecting objects of various sizes

is improved.

Another approach to object detection problem was proposed by Zhang Z. et al. in their research

on face detection and alignment [139]. The introduced framework was built using a unified cascade

of CNNs and multi-task learning (MTCNN - Multitask Cascaded CNN). In the first step, the

Proposal Network (P-Net) was used to produce bounding box candidates that were then fed into

the Refine Network (R-Net) for selection of the positive outputs. The last network in the cascade,

the Output Network (O-Net) aimed at producing positions of facial landmarks.

Similarly to the classification task, the majority of DL models have been evaluated on visible

light data only and only a few studies were conducted for thermal face detection. For example, the

robustness of MTCNN in the thermal domain was compared against two other landmark detection

models originally developed for visible light images: the Deep Alignment Network (DAN) and a

Multi-class Patch-based fully Convolutional Neural Network (PBC) [140]. The presented results

showed that the DAN architecture has the best ability to adapt to the thermal domain. However,

it has been also shown that even small errors in the face alignment lead to huge drop of recognition

accuracy. Since the number of studies on thermal face detection is limited, we focused on exploring

this area of research in our work to verify robustness of DL-based techniques in thermal imaging.

Some of our findings have been already published [58, 68, 41, 141]. We present details of those

studies and further expand them in the following sections of the dissertation.
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2.3.3 Evaluation of DL Models

After model training and adjustment of weights in such a way that produced predictions are as

close to provided labels as possible, performance of a network should be evaluated on previously

unseen data. In this way, we can estimate if a model was properly optimized and whether we can

trust produced predictions. In general, we can say that a goal of evaluation is to estimate the

generalization accuracy by testing networks on future (unseen/out-of-sample) data.

In order to provide quantitative analysis of a model performance, various evaluation metrics

are deployed. The choice of specific ones depends on a problem that a network is supposed to solve,

e.g. classification, regression, detection, etc. There are also some evaluation metrics which could

be applied to various tasks, e.g. sensitivity (recall), precision, specificity (true negative rate) etc.

In this section we will focus on describing metrics useful for machine learning problem evaluated

and addressed by us in this study. Since we are considering remote medical diagnostic applications,

some additional evaluation is required to determine if they could be run on target platforms which

are usually resource constraint devices. Thus, we also define metrics which specify processing

performance.

Classification

One of the most common evaluation metrics for classification problems is accuracy. This metric

indicates a ratio of correctly classified samples to an overall number of examples. For binary

classification problem it can be defined as:

Acc =
TP + TN

N
(2.1)

where TP is a number of True Positive predictions, TN is a number of True Negative Predictions

and N is a number of all examples in a test set. Accuracy is a relatively simple metric for determining

general model performance, yet it may be not sufficient, especially for problems where datasets are

imbalanced, meaning one class is much more numerous than the other. Class imbalance problem

is frequently an issue in medical databases often characterized only by a limited number of specific

condition representatives. Let’s assume we have a dataset with 10 positive cases and 90 negative

cases. Our classifier outputs negative decision for all examples, so the accuracy equals Acc =
90

90+10 = 90%. At first we may think that the achieved performance is very good, but in fact our

model is not useful at all. This problem is known as accuracy paradox and is a reason for a need

to make use of other metrics as well.

Taking it into account, accuracy should be always accompanied by other metrics that are

not sensitive to such problems. Evaluation parameters commonly used for classification tasks are

precision and recall. Precision, also known as positive predictive value tells us how many samples

from all positive predictions are in fact truly positive, what can be denoted as:

Prec =
TP

TP + FP
(2.2)

Recall on the other hand specifies sensitivity of a classifier, i.e. tells us how many samples from

all positive examples present in the test set the classifies was able to pick up. Thus, recall is also

known as true positive rate and is defined as:

Rec =
TP

TP + FN
(2.3)
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Detection

Since detection models aim at producing coordinates of objects’ positions apart from probability

of each region belonging to a specific category, evaluation applied to this task require metrics that

take into account a size and a placement of produced detections. Intersection over Union (IoU)

allows for making such comparison by analysing overlap and union areas between bounding boxes

(BB) detected by a model and their corresponding ground-truth (GT) examples marked manually

in test images:

IoU =
GT ∩BB
GT ∪BB

(2.4)

Fig. 2.8 illustrates this relation. IoU is a relatively simple, yet effective way for evaluation of

object detection models and will be used fr our studies described in the dissertation.

Figure 2.8. Visualization of the IoU metric used for evaluation of Deep Neural Networks

Another metric used for object detection evaluation is Average Precision (AP), which asso-

ciates model scores with detected bounding boxes and estimates performance at various level of

confidence. Before introducing details of AP, it’s important to take into account relation between

precision/recall and IoU threshold set to determine whether produced output is positive or neg-

ative. For example, if our model produces 10 outputs: 4 with IoU values equal 0.5 and 6 above

0.6. Setting threshold to a value > 0.5, would result in 4 boxes being false positives, while setting

threshold equal to 0.5 would produce 10 true positive outcomes. Following the Pascal VOC con-

vention [142], the final value of AP is calculated as average value of precision (if multiple values

are present, the maximum one is selected) for 11 predefined recall values: [0 : 1.0 : 0.1]:

AP =
1

11

∑
Recall∈{0:1.0:0.1}

Precision(Recall) (2.5)

The AP metric may be further extended by taking various IoU thresholds into consideration.

Different IoU values are used to determine whether detected object is true or false prediction, e.g.

if IoU threshold is defined at 0.5, then all results for which relation between overlap and union

areas is lower than that will be treated as false results. Hence, one can observe that the choice of

the IoU threshold will have influence on AP metric leading to more false positives or false negatives

outputs. The final detection evaluation metric is then formulated as mean value of APs for various

IoU thresholds and across all classes and is referred to as mAP - mean Average Precision.

Execution Time

Target platforms considered by us in the presented work include resource-constraint devices

which may be embedded in wearable equipment, such as glasses or watches (e.g. to support healthy
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lifestyle or perform diagnosis at a distance) or be a part of smart home infrastructure if applications

aim at providing home monitoring of human subjects. Taking it into account, in our research we also

measure inference and training time of proposed DL models in order to evaluate their applicability

to such systems. Training time is considered, because some future studies may include scenarios

where model is retrained directly on the edge device, e.g. to add a new person to a household

health monitoring system. Inference time is defined as a time of processing a batch of inputs in a

forward pass, while a training time is a sum of forward and backward pass.

2.4 Problems

Undoubtedly, the research on thermal face and areas classification and detection has signif-

icantly progressed over past few years and results are much more promising due to advances

introduced by DL. Yet, there is still a room for improvement in this area, as most of existing

solutions are designed specifically for visible light data that have a different representation than

thermal images. First of all, visible light sequences are characterized by the presence of high fre-

quency features, such as edges or corners, while thermal data are more blurred and a contrast

between adjacent regions is very smooth due to the heat flow in objects. Thus, the use of kernels

learnt (on visible light data) to extract high frequency features may not be sufficient for a thermal

domain. Secondly, even though availability of cost-efficient higher resolution thermal camera has

recently expanded, possibility of acquiring images of quality similar to ones obtained with visible

light cameras is still unachievable. Taking it into account, there is a need to improve resolution

of acquired thermal sequences in a post-processing phase. Another problem is a lack of publicly

available datasets that could be used for model training and very often, even if provided, they

do not contain proper annotations, what makes them unusable for supervised training without a

time-consuming effort of data preparation.

2.5 Summary

This chapter overviewed types of existing methods used for image classification and object

detection, with a special focus put on solutions applied to thermal imaging. The comparison of

techniques based on manually selected features and/or learnt mappings between inputs and outputs

to various latest DL architectures were also described. Finally, we identified problems related

to applicability of described solutions to thermal images. These problems are addressed in the

following chapters which cover detailed explanation of proposed novel DL techniques and NN

architectures designed for thermal data processing.
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Chapter 3

Datasets

3.1 Introduction and Overview

One of the reasons why Deep Learning (DL) became more approachable and easier for engineers

without an expert knowledge about artificial neural networks is the increased availability of training

sets. Certainly, some knowledge is still required to achieve a descent performance, but the task of

generating a successful DL model is easier with access to more data [39, 41]. This trend is clearly

visible in the growing number of samples included in publicly available datasets. Since 1990s sizes

of available training sets have expanded by few orders of magnitude, from MNIST (handwritten

digits) [143] and CIFAR10 (more complex data divided into 10 categories) [144] containing tens

of thousands of examples, to ImageNet [145] and ImageNet10k [146] sets which contain ten of

millions samples. Unfortunately, because of some limitations of thermal imaging, such as higher

cost of available cameras, availability of thermal datasets is much lower, e.g. IRIS Face Dataset

with 4k images [57].

Usually, the limited number of available images makes it difficult to train a very Deep Neural

Network (DNN) from scratch. Some techniques to address this problem have been already devel-

oped. Specifically, a widely used approach to transfer already learnt knowledge from one domain

to another is known as transfer learning. The intuition behind it is that some low level features

(corners, edges, basic geometric shapes) are common for various tasks regardless of a used domain.

Thus, we can restore weights already learnt on huge amount of data from lower level layers and

only retrain only a few top layers in order to adjust our model to a novel task. This technique was

further explored by us and described in details in Chapter 4.

In this chapter we focus on providing specifications of thermal datasets acquired by us to

verify possibility of applying DL algorithms to thermal data processing, specifically resolution

enhancement, detection of facial areas usable for non-contact vital signs estimation and evaluation

of other possible remote medical diagnostic applications. The motivation for our own databases

acquisition is threefold: 1) even with transfer learning some samples are still required to re-purpose

a model to a different task; 2) breathing activity must be recorded during obtaining sequences in

order to implement remote diagnostics solutions; 3) we haven’t found any thermal dataset which

contain samples in original raw format. Most of publicly available sets have been already converted

to standard image formats (e.g. 8-bit PNG), causing some loss of the precision, as raw thermal

data usually have higher bit resolution, e.g. 14 bits.
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3.2 Thermal Sequences Collection

Since we examine various remote diagnostics solutions based on processing of thermal imagery

in our work, we collected datasets taking into account different potential applications: evaluation

of possibility to apply DL algorithms t thermal data, facial features detection from thermal im-

ages, analysis of respiratory activity, and emotion recognition from changes in vital signs patterns.

Separate data collections scenarios were considered and applied in order to address each of these

solutions. This work mainly focuses on evaluation of DL detection and resolution enhancement

models and an effect of applying them in contactless vital signs monitoring solutions. In addition,

we also evaluate possibility to recognize emotions from extracted vital signs, as this information

may have a huge potential in medical applications for evaluating e.g. pain levels [18], facial paral-

ysis [20], or neuropsychiatric disorders [147]. Taking it into account, this section covers details of

data acquisition and post-processing procedures performed by us in order to prepare inputs for

evaluated applications.

3.2.1 Evaluation of DL Algorithms on Thermal Data

Imaging Hardware

The goal of our study is to evaluate existing DL solutions and propose novel neural network

architectures aimed at processing images acquired in thermal image domain, i.e. measurements in a

range of 8–12 µm (Long-Wave Infrared). In thermography, intensities of electromagnetic radiation

are represented as digital values that are then used to construct a final image by assigning grayscale

or indexed color intensities to digital values using e.g. color lookup tables.

The first database collected by us was used as a reference set, used for initial validation of

possibility to apply DL algorithms to thermal images. At a first step we focused on facial areas

detection from low resolution images without applying additional image enhancement techniques.

Since FLIR® Lepton camera was used for data acquisition (see Fig. 3.1), this set is referred

thereafter as Lepton-IE (initial evaluation).

The FLIR® Lepton module, was used in our research because of its huge potential in smart

home and remote healthcare applications that are the main focus of this work. A relatively low

cost (one tenth the cost of standard IR devices) and a small form factor of the device (a size

of a circuit board < 1cm2) allows for embedding it in existing devices, such as smartphones,

kitchen appliances or smart home infrastructure, enabling various medical diagnostics solutions,

e.g. estimation of respiratory rate using wearable devices [148] or multi modality-based elderly

monitoring platform [149]. A thermal sensor incorporated in the Lepton module records data at 9

FPS in 80 × 60 pixels spatial resolution in a 14-bit dynamic range.

Data Collection Procedure

Over past years DL has enabled various computer vision applications leading to human-like

accuracy in image classification, detection and segmentation tasks [39]. Since we are mainly inter-

ested in thermal image processing, as it allows for obtaining medical information not detectable

from visible light spectrum (e.g. breathing patterns), our first goal was to determine if Deep Neural

Networks could achieve high accuracy also for thermal imagery.

Our initial evaluation was related to possibility of detecting facial areas from low resolution

sequences. The low resolution is one of main aspects considered by us, because platforms targeted
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Figure 3.1. FLIR® thermal Lepton camera module of resolution 80x60 used for data collection

in our work (e.g. smart glasses developed for the eGlasses project [150]) have size limitations

and thereby allow for embedding only small thermal sensors into them. The examined wearable

platform setup is presented in Fig. 3.2.

Figure 3.2. Wearable platform developed for eGlasses project; photo of the dissertation author

Thermal images were collected at a distance of 1 meter from volunteers assuming their immo-

bility and frontal view of a face. During data acquisition we wanted to simulate possible scenarios

of an elderly person living alone, thus some background objects were present in recorded sequences,

as they would also appear in real-life conditions (e.g. displays, furniture, etc). Since indoor appli-
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cations are taken into account in the presented work, measurements were taken at an ambient

temperature of 23-27°C. The database was constructed by recording 60-sec sequences from 26

healthy volunteers (age: 26.8 ± 8.1), who were notified about a purpose of study and agreed for

taking part in it. To ensure data variability, only every ˜30th frame from all acquired sequences was

used for extraction of face and eyes areas, resulting in 624 images in each of those categories. For

a nostril area we wanted to obtain images with a clearly distinguishable temperature difference in

order to make sure that breathing patterns were recorded and reflected in pixel intensities changes.

Thus, more dense selection was utilized by preserving samples for every ˜2-sec periods (every ˜16

frame), resulting in 983 images in a nose category. All data was saved in 8-bit PNG format by

scaling full input data range to the full output range.

(a) Negative samples (other objects: display, windows, remote controller, hand)

(b) Positive samples (face images)

Figure 3.3. Examples of images acquired with the Lepton camera for our initial studies on evaluating

DL applicability to thermal data

In addition, a second dataset was acquired using the same Lepton camera in order to evaluate

possible limitations of contactless estimation of vital signs. 11 healthy volunteers of age 31.1±10.6

took part in experiments. In particular, the goal was to determine if movements performed by

subjects and/or diagnostician will have influence on accuracy of face detection. This database

referred to as Lepton-IE-M, meaning that was mainly used for initial evaluation (IE) of Motion

(M) influence on thermal image processing with Deep Neural Networks. Various possible scenarios

where motion content could affect quality of collected data were examined. At first, we wanted to

limit possible motion of volunteers by asking them to perform a specific task (silent text reading),

as it has been previously proved by us [151] that in this way subjects remain more still. Moreover,

such tasks are similar to those potentially applied in real-life applications of remote medical diag-

nostics, where health information is collected in a non-disruptive way during daily activities, e.g.

watching television, reading a book, etc. The second use case considered by us aimed at verifying

influence of small (almost involuntary) head movements. In this scenario volunteers were not given

any additional task, so theoretically motion content should be higher. In both first and second

case the camera was placed on a tripod to eliminate potential artifacts introduced by displacement

of acquisition device. Finally, we also wanted to examine a problem of movements performed by

diagnostician/specialists, e.g. when remote medical diagnostics is performed as a part of routine

physical examination or during admitting/monitoring patients in hospitals. In such cases, a camera
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could be embedded in a wearable platform, such as smart glasses. To simulate such use case, the

Lepton camera was placed on developed by us eGlasses platform - smart electronic glasses de-

signed to enable innovations in human-machine interaction studies by utilization of various sensors

(camera, optical sensors, etc.) [152, 153]). During data acquisition, glasses were worn by another

person, who was looking at examined subjects. Again, volunteers were not performing any addi-

tional task, so potentially both subject’s and diagnostician’s motion content should be present in

collected data. 25091 positive (face) cases and 25002 negative (other class: e.g. objects present in a

laboratory room) cases were extracted from all recorded sequences and saved as 8-bit PNG images.

Examples of saved frames are shown in Fig. 3.3.

3.2.2 Analysis of Facial Regions Detection and Extraction of Respira-

tory Activity from Detected Areas

Imaging Hardware

A database collected with the Lepton sensor (Lepton-IE) for initial evaluation of DL techniques

in a thermal domain was extended in order to apply it to other studies aimed at thermal image

super-resolution and contactless extraction of respiratory rates. Our main focus was to evaluate

possibility of detecting facial areas from extremely low resolution thermal images, where features

important for predictions may be blurred, making them almost indistinguishable. After region

detection, we wanted to verify if marked areas carry information useful for contactless estimation

of vital signs by analysing color changes within those regions.

Additionally, to preserve variety of data and ensure that algorithms don’t depend on one specific

representation, thermal image sequences were also acquired using another thermal sensor: FLIR®

SC3000, presented in Fig. 3.4. The FLIR® SC3000 thermal camera records temperature in a range

from 20°C to +80°C in a noise reduction mode at 30 Frames Per Second (FPS) in 320 × 240 pixels

spatial resolution. A default raw data format of this camera has resolution of 14 bits.

Figure 3.4. FLIR® SC3000 thermal camera used for data acquisition
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Data Collection Procedure

Before experiments, participants involved in the data collection process were informed about

the aim of the study and details about a data acquisition process. Signed informed consents were

obtained from volunteers who took part in experiments. All procedures were performed according

to information obtained from the regional, institutional Bioethical Commission. All experiments

were carried out in a laboratory room at the ambient temperature of 23 to 27°C.

For facial areas detection and respiratory rate analysis study, we collected data using both the

FLIR® Lepton and the FLIR® SC3000 cameras in order to compare whether a size of a focal

plane array has influence on accuracy of breathing rate estimation. Datasets collected for analysed

scenarios are hereafter referred as SC3000-ADRA and Lepton-ADRA databases (FLIR® SC3000

Areas Detection and Respiration Analysis and FLIR® Lepton Areas Detection and Respiration

Analysis, respectively).

The SC3000-ADRA database contains thermal sequences recorded for 40 healthy volunteers of

an age 34.11±12. The camera was placed on a tripod at a height of approximately 1.1m and at

a distance of 1.2m from participants’ heads. 2-min sequences (sampling frequency fs=30Hz) were

acquired for each volunteer while looking towards the camera. To obtain reference information

about a respiratory rate, participants were asked to point finger up while inhaling and down

while exhaling. The movement of a finger was visible in the recorded sequences and used in post

processing step to calculate the ground-truth number of breaths per minute for each person.

The second database, Lepton-ADRA, is a collection of 1-minute video sequences (sampling

frequency fs=9Hz) recorded for 31 healthy volunteers of an age 26±8.1. For data acquisition, the

thermal camera was placed on a tripod at a height of approximately 1.1m and at a distance of 0.5m

from participants’ heads. We decided to collect data at a shorter distance than for the SC3000-

ADRA database due to the much lower spatial resolution of the Lepton sensor. The ground-truth

respiratory rate data were obtained with the respiratory monitor belt (Vernier RMB). The belt

was strapped around a chest of a volunteer to collect a pressure during expansion and contraction

of a body during breathing activity.

Examples of samples from each dataset are shown in Fig. 3.5.

Image Post-processing and Datasets Sizes

At first we extracted frames from collected thermal sequences. The frame rate for the SC3000-

ADRA database was set to 30 FPS resulting in 3600 frames per volunteer (120-second recording per

person). To introduce data augmentation (which aims at increasing number of samples in acquired

dataset and thereby increasing data variety, what is potentially beneficial for model training)

images in the Lepton-ADRA dataset were up-sampled from 9FPS to 12FPS. Then, similarly to

the SC3000-ADRA set, recorded sequences were divided into single frames producing 720 samples

per person.

For implementations of the proposed DL algorithms we utilize standard libraries and frame-

works which by default support BMP, GIF, JPEG, or PNG image formats. Since, the raw data

format of data captured for both SC3000-ADRA and Lepton-ADRA databaseswas set to 14 bits,

acquired data had to be properly converted. The usual practice is to linearly down-scale raw data

to 8-bit image formats. We followed this approach, producing 144000 8-bit PNG images in the

SC3000-ADRA set (40 volunteers, 3600 frames per person) and 22320 8-bit PNG images in the

48

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


(a) SC3000-ADRA set, reference respiratory activity recorded with finger bend movement: finger up indi-

cates inhaling, down - exhaling

(b) Lepton-ADRA set, reference respiratory activity recorded with respiratory monitoring belt

Figure 3.5. Examples of images acquired for Facial Regions Detection and Extraction of Respiratory

Activity studies, respiratory activity can be seen by noticing differences in color intensities of

nostrils area between image pairs of each volunteer (especially visible in Lepton set, for which

camera was facing subjects upward)

Lepton-ADRA set (31 volunteers, 720 frames per person). However, this procedure may lead to a

loss of some important details due to the bit compression.

Thus, we additionally generated 16-bit PNG images from raw data by upscaling the bit-depth

from 14 to 16 to avoid contrast decrease. As a result, two additional sets were created with the same

number of examples, but higher bit resolution (144000 in SC3000-ADRA and 22320 in Lepton-

ADRA). In order to distinguish sets from each other, we use the following name convention: camera

name-abbreviation of target application-bit representation of produced images, i.e. SC3000-ADRA-

16 is a dataset collected with the FLIR® SC3000 sensor for studies on respiratory patterns analysis,

data saved as 16-bit PNG files.

Reference Thermal Dataset

In order to avoid experiments being biased towards data collected by us, we decided to use

publicly available thermal datasets as well. The IRIS [57] database consists of thermal and visible

light images acquired for 30 individuals. For each person about 176-250 images have been recorded,

11 images per various head rotation. Thermal images have been acquired using the Raytheon Palm-

IR-Pro camera with a spatial resolution of 320x240 pixels and stored as bitmap (uncompressed

image format) graphical files with a depth of 8-bits/pixel. Visible light images have been captured

using the Panasonic WV-CP234 camera with a 480TV lines horizontal resolution. Since our research

focused on analysis of DL techniques for thermal image processing, we utilized only the thermal

subset of the IRIS database (around 4190 thermal images).

Frames from the IRIS dataset can’t be used for estimation of vital signs because it contains
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only single frames not video sequences, so it’s not possible to analyse dynamic changes within facial

regions. Also, reference measurements of vital signs were’t obtained during IRIS data acquisition.

However, IRIS set can be used to verify accuracy and reliability of models aimed at resolution

enhancement, what will be presented in Chapter 5. The main difference between our datasets and

the IRIS database is that volunteers were asked to remain still while collecting our sequences.

During IRIS data acquisition subjects were performing subtle head movements (11 images for

each pose per person) and mimicking various emotions: angry, surprised, and happy. Examples of

thermal images from the IRIS dataset are presented in Fig. 3.6.

Figure 3.6. Examples of thermal images from the reference thermal IRIS dataset including different

head poses and facial expressions of volunteers

For facial areas detection studies, we also evaluated a possibility of transferring a knowledge

from a visible light spectrum to a thermal domain. For these experiments, commonly used visible

light image enhancement benchmark sets were applied. The Berkeley Segmentation dataset [154]

combined with the SPSR data [155] (referred hereafter as BSD+SPSR) was utilized for neural

networks training. The Set5 [156] was used for testing.

3.2.3 Emotions Recognition

Additionally, we wanted to evaluate other potential applications that could expand studies on

contactless breathing estimation. Specifically, we were interested whether extracted vital signals

could carry information about emotions which could be useful for other applications in remote

medical diagnostics, e.g. analysis of users’ satisfaction or mental health evaluation. Thus, we col-

lected a separate dataset with recorded reference emotional responses to analyse whether similar

states can be acquired from estimated vital signs.

Imaging Hardware

A multimodal input was analysed in the conducted emotion invocation study, i.e. heart rate

estimated using imaging photo-plethysmography [157] acquired with a standard webcam - the Log-

itech 9000 Pro camera (30 frames per second at 640x480 resolution) and respiratory rate extracted

from thermal sequences collected with the FLIR® Lepton camera. In this way, we were able to

evaluate whether there is a correlation between vital signs and different emotional responses. Both

invoked and simulated emotions were analyzed in our research. The motivation for our work, also
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presented in [158], was based on the fact that the use of bio-signals instead of facial expressions is

potentially very useful for emotion recognition task, as suppressing or masking biological responses

is very difficult.

Data Collection Procedure

Due to previous successful applications of emotion-stimulating videos for collecting natural

emotional responses [159] we decided to follow similar approach for data acquisition. Experiments

were performed on a group of 11 healthy volunteers, age 33.7±11.3. Data were collected simul-

taneously from both visible light and thermal cameras to ensure proper synchronization between

emotional responses estimated from extracted heart and respiratory rates. Devices were placed at

a distance of approximately 0.5 m form volunteers, who were asked to look towards the camera

and remain possibly still. Since the standard approach is to extract breathing signals by analysis

of temperature changes in a nostril area, the thermal camera was aiming at a volunteer upward at

an angle of 15° to make a nostril region more exposed.

An online questionnaire was used to introduce volunteers to details of the study and guide

them through experiments. Taking part in the experiment required selecting a checkbox in the

questionnaire with an agreement for data recording, otherwise sequences were not collected. At a

first step of the questionnaire we gathered information about participants’ age, diseases and ease

of getting nervous. The rest of the data acquisition process was divided into two sections. In the

first one participants were asked to imitate 4 emotions (neutral, joy, fear, disgust) for 1 minute,

with 2-minute relaxation pauses between each emotion. A counter was visible in the questionnaire

to help with time measurements. The participants were trying to simulate real emotions, not only

facial expressions. As a result we collected 240 seconds of visible light and thermal sequences (60

seconds per each emotion) and 360 seconds of recordings corresponding to relaxation intervals. In

this way we were able to determine whether there are differences between estimated vital signs for

different emotions. All sequences were saved in original raw data format. Datasets acquired at this

step are named Logitech900-ER-simulated and Lepton-ER-simulated for visible light and thermal

sequences, respectively. ER abbreviation corresponds to Emotion Recognition study.

During the second part of the data collection process, a series of videos was presented to

volunteers in order to invoke a real emotion. Selected vision stimuli included funny scenes from a

gym (joy), eating worms (disgust), a dark basement with ghosts (fear) and ill animals (sadness).

Similarly to the first part of the experiment, videos aimed at invoking emotions were separated

by neutral clips to introduce relaxation pauses, e.g. an empty road, an ocean, snails and clouds.

Since emotional response is highly dependent on individual perception, participants were asked

to match each clip with emotions that were in their opinion dominant during watching it. Each

emotion invoking video lasted 2 minutes, while each neutral video around 1 minute. As a result,

we collected 8 minutes of visible light and thermal sequences corresponding to invoked emotions

and 4 minutes of visible light and thermal recordings obtained during relaxation pauses (referred

thereafter as Logitech900-ER-invoked, Lepton-ER-invoked). Fig. 3.7 and 3.8 present examples of

visual light and thermal images collected while mimicking facial expression associated with different

emotions and while being exposed to visual stimuli in order to invoke a real emotion.
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Figure 3.7. Examples of facial expressions in visible light data (Logitech900-ER-invoked and

Logitech900-ER-simulated sets). From the left: neutral, fear, joy; top row simulated, bottom row

invoked emotions; facial expressions are much more distinct for simulated emotions; author of the

dissertation obtained permission for using pictures of selected volunteers in this work

Figure 3.8. Examples of facial expressions in thermal data (Lepton-ER-invoked and Lepton-ER-

simulated sets). From the left: neutral, fear, joy; top row simulated, bottom row invoked emotions;

as can be seen facial expressions are much more distinct for simulated emotions, in our studies we

will evaluate whether vital signs are also changed during various emotional states

3.3 Summary

This chapter overviewed details of thermal datasets collected and utilized by us to evaluate

DL models aimed at detecting specific facial areas and enhancing resolution of thermal sequences.

Both of proposed model architectures are explained in details in following chapters (Chapter 4 and

5). In this chapter a description of the publicly available IRIS database used as a reference set for

verifying accuracy of the designed super-resolution neural network was also provided. Finally, we

described the procedure of collecting data for emotion recognition studies that could be potentially

useful for remote medical diagnostics, as described in Section 6.3.
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Chapter 4

Proposed DL Methods for Facial

Features Detection

4.1 Introduction and Overview

As described in Chapter 2, a wide range of methods and algorithms for facial features detection

already exist and this subject has been studied in-depth in various applications. Yet, due to recent

advances in Deep Learning (DL) techniques and ability to achieve human-like performance using

recent neural networks, we are mainly interested in novel deep model architectures for the needs of

remote medical diagnostics. In such solutions, thermal imaging is often favoured over visible light

images due to privacy concerns and insensitivity to different illumination conditions.

Unfortunately, most of existing DL architectures are designed and tested on visible light images

only. The important research question is whether existing neural networks successful in visible light

domain can be directly applied to thermal imagery, which has different characteristics, i.e. contrast

between adjacent regions is smoother due to a heat flow between objects. Another potential problem

with thermal imaging is a limited number of samples that could be used for model training. Taking

it into account, in our study we evaluate performance of state-of-the-art neural networks in a task

of facial feature detection on thermal data collected by us. In this way, we verify whether similar

accuracy could be achieved in other image domains than originally assumed. Secondly, a transfer

learning technique, aimed at re-purposing already trained models to a novel task, is examined.

Specifically, weights of networks trained on visible light datasets are reused on thermal sequences

in order to determine whether it’s possible to distinguish other feature representation using kernels

trained to extract high frequency features (i.e. edge, corners, lines) present in visible light images.

Additionally, we propose a modification of existing DL classification models to restore features

distribution and detect facial areas without the need of providing bounding box annotations during

the training step. As a result, the time of data preparation, model training and inference can be

significantly reduced. The proposed model architecture is compared against Single Shot Detector

(SSD) network, commonly used for similar tasks [138].

Finally, we provide details of experiments performed with novel DL architecture based on cap-

sules instead of single neurons on our thermal datasets. Achieved results prove that this approach

is insensitive to body rotation, what we find very useful for various remote medical diagnostic

applications.
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4.2 Facial Features Detection

4.2.1 Transfer Learning

Problem Formulation

Although Deep Neural Network (DNN) is a learning method and should be able to generalize

well to thermal data, very often a worse accuracy is achieved by directly applying existing Convo-

lutional Neural Network (CNN) trained on visible light images to data from different wavelengths

of electromagnetic spectrum. This is caused by different characteristics of thermal imagery. A very

important feature of thermal data is smoothness between different components present in the im-

age, as shown in Fig. 4.1. Heat flow in objects leads to decreased values of temperature changes

between facial areas, what is represented as a lower gradient (smooth change of pixel values) among

adjacent image regions. This aspect of thermal imagery might have a huge effect on prediction ac-

curacy using models learnt to classify visible light images characterized by high frequency features,

such as sharp edges between object parts. Thus, training of a network on images from the target

domain is a necessity. However, for thermal imagery this is a challenging task due to much smaller

sizes of available datasets. This may have a significant influence on model accuracy, because one of

the main reason for recent successes of DL is the increased number of samples that we could feed

a model with, as explained in Chapter 3.

(a) Thermal image (b) Visible light image

Figure 4.1. Comparison of pixel values (blue plot) at the eye level marked with the black line.

Thermal and visible light image taken simultaneously using FLIR® One Gen 2 camera. Dynamics

of pixel values in the thermal image is much lower than in the corresponding visible light frame.

Luckily, some solutions for dealing with small database sizes already exist. One of them is trans-

fer learning, firstly described by Thrun in 1996 [160], a technique used for re-purposing a network

fully trained on some data to a novel task. Transfer learning approach has already been applied

to DNNs in a solution named Deep Convolutional Activation Feature (DeCAF) [161]. Authors of

DeCAF proposed to utilize weights of the model trained on ImageNet with 1000 categories in other

visual recognition tasks with different classes. The intuition behind transfer learning approach is

that kernels from lower level layers are trained to extract features common for various tasks, re-
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gardless of target categories, e.g. corners, edges, basic geometric shapes. Hence, weights of lower

layers in DL models don’t have to be retrained, but directly re-used for other classification task.

The re-purposing of a model is achieved by retraining only a fully connected layer (fc), responsible

for matching extracted features to output classes and optionally a few top layers before to improve

recognition accuracy. The transfer learning process is visualized in Fig. 4.2.

Figure 4.2. Visualization of the transfer learning idea on an exemplary schema of Convolutional

Neural Network. Weights of all layers remain untouched and are pre-loaded to a model responsible

for solving a novel task. Only final few top layers (usually final fully connected layer) is replaced

with a new one that corresponds to a new task (i.e. has different length as number of categories

may change) and re-trained.

Lately, some attempts have been also done for applying transfer learning to computer vi-

sion applications in medicine. The solution proposed by Wimmer et al. [162] focused on applying

CNN originally trained on ImageNet to endoscopic images of duodenum in Celiac Disease analy-

sis to extract feature vectors. A classification step, though, wasn’t solved by the neural network,

but using Support Vector Machines (SVM) algorithm. Lung pattern analysis was performed by

Christodoulidis et al. [163] with a knowledge acquired on six publicly available texture databases

and transferring it to lung tissue data.

Methodology

Inspired by existing studies on applying transfer learning to computer vision tasks in medicine,

our research aims at evaluating whether models trained on visible light data could be re-purposed

to perform facial area and features classification and detection from thermal sequences. To the best

of our knowledge, our study was a first attempt to the problem of re-purposing activation maps

retrieved from visible light data to a solution based on thermal images.

In our study [141], we evaluated classification model Inception v3 [164], proposed its modifica-

tion to restore position of facial areas and compared the introduced pipeline to the detection model

SSD [138]. Selection of those models was made taking into account their robustness in image recog-

nition tasks. The Inception model makes use of convolutional filters of different sizes in so-called

Inception modules to improve perception accuracy. In 2014 Inception won The ImageNet Large

Scale Visual Recognition Challenge (ILSVRC), achieving 3.58% top-5 error rate, what is a factor

of 5 less than Deep Neural Network predecessor AlexNet [109]. The reason for choosing SSD was

motivated by its better accuracy, performance and training simplicity comparing to previous object

detection models, as described in Section 2.3.2. Due to relatively small number of parameters and
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utilization of a single network for an end-to-end solution, they can be used on embedded platforms,

e.g. for autonomous driving [165]. This capability is also of a great interest to us because of target

devices for which we design our remote diagnostics solutions, i.e. home-based remote person moni-

toring platforms or wearable systems for assisted living [166]. Results presented for both Inception

and SSD were achieved on large-scale visible light datasets. Our study, though, focus on thermal

data processing, which present temperature distribution and its changes over time, and thus have

a different representation, as stated before. Therefore, networks have to be adapted to new data

to produce correct predictions.

Moreover, images are usually pre-processed before feeding them to models to further improve

prediction accuracy. Typically thermal data have a lower contrast than visible light data and

exhibit a blurring effect, what makes their interpretability difficult. A commonly used technique

for improvement of image contrast is histogram equalization, where we scale data distribution or

a part of it from one range to a full image range. Similar operation is performed for conversion of

raw thermal data to an output image range, i.e. a full raw data range is mapped to a full output

image range. Yet, simple scaling, especially when the output range has fewer bits than original

data, can lead to decrease of dynamics and contrast in a face region, as presented in Fig. 4.3. This

assumption was verified by us in [141], where we confirmed on data acquired from 26 volunteers

(Lepton-IE database, see Section 3.2.1) that automatic scaling of source values reduces the overall

contrast of an image (output contrast value of 0.20±0.03).

Figure 4.3. Thermal image of a face (cropped to a facial area) scaled from a full raw data range to

a full output image range resulting in a complete loss of facial features visibility

Hence, we applied a pre-processing algorithm to images before feeding data to the model.

Specifically we proposed to perform automatic fitting of Gaussian distributions to histogram data.

As can be seen in Fig. 4.4, plotted histogram consists of distribution that can be modelled by

two Gaussian bell curves. Since experiments were conducted in laboratory room with a controlled

temperature, lower than a human body temperature, we assumed that the peak with higher mean

corresponds to pixel values of facial areas. Thus, the right-side distribution was used to scale input

values (mean ± standard deviation) to the output image value range. After this operation, image

data interesting for us, previously characterized by close pixel values, was equally distributed,

resulting in a higher contrast between facial areas, as presented in Figure 4.5.

After data preparation, we adapted models to a new task of thermal images classification and

facial features detection. To avoid a need of performing a full network training from scratch, we
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Figure 4.4. Histogram plotted for raw values of a thermal image of a face from Fig. 4.3

Figure 4.5. Image from Fig. 4.3 after applying the proposed by us pre-processing algorithms, where

only pixel values of a facial area (right hand side Gaussian bell curve on Fig. 4.4) are re-scaled to

an output image range; we can observe that contrast between features was significantly improved

reveling specific facial regions

decided to evaluate the transfer learning approach and transfer knowledge learnt from visible light

data. The following steps were performed for the Inception v3 model:

1. Feature Extraction - we utilized already trained weights (on ImageNet) of the model to

extract feature representations from Lepton-IE dataset.

2. Fine Tuning - The final classification layer (Softmax operation) was replaced in the original

model with a new randomly initialized layer responsible for performing classification of facial

feature, i.e. eye and nose areas.

57

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


The default value of 4000 training steps and learning rate of 0.01 were used for the fine tuning

step. Due to the scenario utilized for Lepton-IE dataset collection, which assumed presence of other

objects in a background (typical scenario for an elderly person living independently), we decided

to perform experiments of facial features detection with this database. In this way, we were able

to examine conditions as close as possible to a target solution. As specified in Section 3.2.1, the

used dataset contained of 485 images of an ’eye’ category and 775 images of a ’nose’ category.

The re-training process involved an update of weights only for the added classification layer using

back propagation algorithm with batch gradient descent optimizer and average cross entropy loss,

defined as:

L =
1

N

N−1∑
n=0

Dn(S,L) (4.1)

where N is a number of samples in a batch, Dn is a cross-entropy function for nth sample, L is a

one-hot encoded labels vector, and S is a probability vector for output classes calculated using the

softmax function, which for cth class can be defined as:

Sc =
eyc∑ C−1

c=0
eyc

(4.2)

where yc is the cth class output score, which we want to turn into probability and C is the number

of classes. In our study we decided to use a smaller batch size of 100, because it has been proved

to lead to better generalization of models.

The same approach was applied by us in the study on face classification from complex back-

ground containing objects of temperature and shape similar to facial areas (e.g. measurement

devices, lamps, other body parts) [167]. The transfer learning approach was utilized to re-purpose

Inception model to binary classifier of thermal images (face vs other category). Furthermore, ad-

ditional experiments were performed by us to evaluate possible limitations of contactless vital

signs monitoring solutions. Specifically, we collected a dataset which allow for estimating influence

of movements performed both by subjects and diagnosticians on the accuracy of face classifica-

tion. Details about the acquired set, referred as Lepton-IE-M, were presented in Section 3.2.1.

The model was trained using the same hyperparameters as in [141] and is referred thereafter as

Inception-Lepton-IE-M.

To confirm more intense movement content present in scenarios where volunteers were not

focused on a specific task or when a camera was placed on a wearable platform, Sum of Absolute

Differences (SAD) per pixel was calculated. This metric has been previously proved to be successful

in estimating spatial-temporal activities in video inputs [168]. In addition, research on the effect

of subjects’ movement on accuracy of non-contact breathing rate estimation was also conducted

by us to determine how it affects smart home and telemedicine applications that we cover in this

work. More details and results of this study are presented in [151].

Results and Discussion

Table 4.1 presents evaluation metrics calculated on the validation part of the Lepton-IE set

for Inception and SSD DL models used for initial evaluation of face classification/detection task

in thermal images by transferring knowledge from visible light data. Results for the Inception

model are calculated for a classification task, our proposal of turning it into detection pipeline at

inference step is presented in details in the following section (Sec. 4.2.2), followed by comparison

of its performance to a detection network. Number of true positives (face classified as face) and
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false positives (other object classified as face) of Inception model re-purposed from visible light

data to the thermal Lepton-IE-M set are shown in Table 4.2. True positives calculated for each

data collection scenario separately, i.e. S1 - camera mounted on a tripod, volunteers focused on a

task, S2 - camera mounted on a tripod, volunteers performing small head movements, S3 - camera

mounted on wearable platform, volunteers performing small head movements, as explained in Sec.

3.2.1. In order to verify presence of higher motion content in scenarios 2 and 3, Sum of Absolute

Differences (SAD) per pixel metric was calculated (Table 4.3).

Experiments conducted for classification and detection Deep Neural Networks showed that it

is possible to re-purpose models trained on huge amount of visible light data to a novel task in a

different domain where only limited number of samples is available. Even though representation

of thermal facial features differ from those obtained in visible light, both models achieved very

high precision values by using transfer learning with only ˜2000 samples (Table 4.1: Inception

99.51%, SSD 91.44%). On the other hand, the recall of the SSD model was much worse due to a

big number of false negatives. A possible reason of this result is a huge similarity of facial regions

in low resolution images caused by feature blurring and thus low confidence of both classes. We

would like to address this problem in the next chapter (Chappter 5) by introducing thermal image

enhancement algorithm based on DL.

Table 4.1. Precision, Recall and mean Average Precision on the validation part of the Lepton-IE

set for Inception and SSD DL models used for initial evaluation of face classification/detection task

Metric Inception (classification) SSD (detection)

Precision [%] 99.51 91.44

Recall [%] 99.12 36.21

mAP nostril class 1 0.77 (IoU 0.5)

mAP eye class 0.98 0.36 (IoU 0.5)

Table 4.2. True positives and false positives for a face class of Inception model re-trained on the

acquired thermal Lepton-IE-M set

Prediction

Ground-truth

face
other

S1 S2 S3

face 89.2% 87.8% 82.5% 0.43%

Analysis performed for potential remote medical diagnostics scenarios confirmed that involun-

tary motion of volunteers can be reduced by focusing their attention on some tasks (SAD 0.26

for scenario 1 vs 0.28 for scenario 2). This is an important finding for design of contactless vital

signs monitoring solution which indicates that collection of measurement should happen during

some activities, as it allows for improving accuracy of face classification with DNNs. Number of

true positives in scenario 1 (a person focused on reading) was improved by ˜1.5% comparing to

the second use case where subjects were performing some small, almost involuntary movements.
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Table 4.3. Sum of Absolute Differences (SAD) per pixel for all 3 scenarios (S1, S2, S3) of possible

remote medical diagnostics (Lepton-IE-M dataset)

Subject

1 2 3 4 5 6 7 8 9 10 11 Avg

S1 0.19 0.18 0.35 0.34 0.26 0.24 0.23 0.22 0.20 0.26 0.36 0.26 ± 0.06

S2 0.22 0.21 0.34 0.38 0.26 0.27 0.29 0.39 0.21 0.29 0.25 0.28 ± 0.06

S3 0.48 0.51 0.41 0.56 0.38 0.45 0.43 0.37 0.30 0.40 0.36 0.42 ± 0.07

In addition, it has been shown that value of the SAD metric is much higher if both diagnostician’s

and subject’s motion is present in collected sequences. This relation has been also confirmed by

classification results produced by the Inception model. It can be observed that number of true pos-

itives drops significantly for scenario 3, where camera was mounted on wearable eGlasses platform.

Although overall system precision for scenario 1 is very high (99.5%), in order to enable various

possible remote medical diagnostic solutions (e.g. measurements done in a contactless way by a

specialist during annual health checkup or hospital visit), the presence of higher motion content

should be taken into account. One reason for lower performance in a presence of motion is a variety

of camera angles and body poses that a subject can be in. As a result, CNN which is sensitive to

object rotations may produce worse results. Some neural networks allow for mitigating this prob-

lem by introducing rotation-invariant architectures. More details about them and results achieved

by us using such solutions in thermal spectrum are presented in Section 4.3.

4.2.2 Restoration of Features Distribution

Problem Formulation

The use of transfer learning approach and retraining of the softmax layer allowed for obtaining

facial feature classification model in an easy, less time-consuming way when the number of thermal

samples was limited. Yet, the problem of getting coordinates for each facial region remained un-

solved. The results produced by the retrained Inception model contain only classification details,

i.e. probability of each class at the image level. To be able to design an automatic way of vital

signs extraction by analysis of color changes within facial regions, there is also a need to obtain

position and size of those regions.

Various studies on facial region detection from thermal images have been already conducted, as

explained in Chapter 2. Yet, many of them are based on hand-crafted representations what might

be a limitation of applying them in real life problems due to difficulties with defining universal

sets of features and sensitivity to changing measurement conditions. Moreover, some accurate

facial areas detection methods [26] use geometric details which often require the presence of face

boundary in a frame. In case of sequences cropped and zoomed to a middle part of face only (e.g.

while using frontal camera in smartphones), this boundary may not be visible affecting information

about anthropometric measurements and relations between facial regions. In such cases, DL-based

solutions are very useful as they allow for detecting specific areas regardless of the presence of

other objects. Since our proposed approach is based on DNN, the imitation of a lack of facial

boundary in a frame is not a concern. The standard DL-based solution to the task of facial areas
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localization is to use object detection networks. With the progress of DL, this problem has been

studied in depth and various detection architectures already exist, as described in Section 2.3.2.

Hence, in our study, we propose a different, novel approach to object detection by utilization of

classification models modified during inference. Since spatial distribution of features is restored

from CNN at a run time, there is no need for training model with region generation steps and thus

for providing datasets with bounding box annotations. As a result, the dataset preparation step

is simplified. Also, our proposed algorithm can be applied to any already trained CNN, not only

to the Inception model, providing very useful information about locations of classes what may be

utilized in various other applications as well, e.g. pedestrian detection in autonomous driving [165]

or person identification in smart home/office environment [169].

Methodology

To better explain the proposed modification of the classification model flow, we will start by

revisiting the architecture and basic building blocks of CNNs. In the simplest setting, CNN can

be visualized as a pyramid, as presented in Fig. 4.6. We start by feeding an input to the first

layer. In general let’s assume the input is represented as image data, so it has some width, height

and 1 or 3 channels depending on color space settings (e.g. grayscale has 1 channel, while RGB

has 3 channels). The input is then convolved with n number of filters, producing a deeper output

representation (the depth corresponds to the number of applied filters n). At the same time the

spatial dimension can be reduced by using stride above 1 or valid padding, parameters described

in details in Section 2.3.2, producing activation maps of smaller output size (Sout), defined as:

Sout = (Sin − Sk + 2p)/s+ 1 (4.3)

where Sin is the input size, Sk is the kernel size, s is a stride and p is a padding, equal 0 for

valid padding and 1 for same padding. Another option for spatial dimension reduction is a pooling

operation applied just after convolution.

Decreasing of width and height of representations at each step is not a necessity and various

other approaches have been already proposed, including downsampling later in the network to

increase network accuracy [170]. Here though, we focus on the most standard version of CNN ar-

chitecture, where at each hidden layer the depth is increased, while reducing the spatial dimension.

After the pyramid of convolution and pooling operations, a fully connected layer is usually utilized,

which maps extracted features to specific categories. Thus, the output is represented as a vector of

a length equal to number of categories, producing predictions at the image level, with the complete

loss of information about features distribution.

A key concept in turning classification models into a region detection pipeline lies in the removal

of the final pooling layer. In case of the Inception network, after passing data through all hidden

layers, the representation of a size 8×8×2048 (height x width x number of features) is produced.

The final pooling turns it into a 1-dimensional vector of features (length 2048) which are mapped

to output classes. Prediction is performed by selecting the maximum value from each of 2048

slices of a size 8x8. The intuition behind it is that the maximum value carries the most significant

information for the image, so it’s best to use it for classification. However, in this way we loose

localization information. Instead, we propose to preserve all 64 values (8 rows x 8 columns) from

each of 2048 slices and map it to specific regions of the image in order to produce class predictions

in various locations. At first, we feed an image into the model and run it through all layers except

the final pooling layer to produce the 8x8x2048 representation. The output feature map is then
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Figure 4.6. CNN can be visualized as a pyramid, after each convolution a depth of representation

is increased, while a spatial size is reduced due to applying pooling operation, stride and padding

divided into 64 vectors of a length 2048. At the same time, we divide the original image into an

8x8 grid with each cell corresponding to one of the produced vectors. The vectors are then passed

through the already trained final classification block (fully connected layer and softmax operation)

to output probabilities of all classes at the cell level. For each location i, j (row, column), the

output probability for class c is defined by the softmax function:

Si,jc =
ey

i,j
c∑ C−1

c=0
ey

i,j
c

(4.4)

In this way, we know which category has the highest probability at each grid location (i, j for

i ⊆< 0, 7 > and j ⊆< 0, 7 >). Neighbouring cells with the same output category can then be

merged to form bigger regions based on produced cell-level predictions. Fig. 4.7 presents face area

divided into the grid with cells corresponding to vectors acquired from the feature map before final

pooling and cells activated by each class.

Figure 4.7. Examples of images with cells activated by nose and eye classes; constructed grid of

cells correspond to feature map vectors acquired from the representation before final pooling

Highlighted areas were then post-processed in order to form final facial regions. Nostril and

eyes regions were constructed from merged cells by taking top left and bottom right corners of

boundary cells. Single (isolated from other groups) cells were skipped. The modified flow of the

Inception model is presented in Fig. 4.8. The proposed approach is also described using following

function in programming language Phyton:
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Listing 1. The proposed modification of the classification inference flow

1 import tensorflow as tf

2

3 def function calculate_cell_predictions(image):

4 """Calculates prediction for each cell in the input image grid.

5

6 Args:

7 image: input image data loaded into numpy array

8

9 Returns:

10 Dictionary with predictions for each cell

11 [row][column] = vector of a length corresponding to number of categories with calculated probabilities.

12 """

13

14 with tf.Session() as sess:

15 # Load trained graph from protobuf format

16 load_CNN_graph(file_path)

17

18 # Get necessary tensors

19 input_tensor = tf.get_default_graph().get_tensor_by_name("input:0")

20 extracted_features_tensor = tf.get_default_graph().get_tensor_by_name("mixed_10:0")

21 softmax_tensor = tf.get_default_graph().get_tensor_by_name("softmax:0")

22

23 # Obtain feature maps before final pooling

24 feature_maps_8x8x2048 = sess.run(extracted_features_tensor, feed_dict={input:image})

25

26

27 cells_probabilities = {}

28 for cells in feature_maps_8x8x2048:

29 for row in range(0, len(cells)):

30 for column in range(0, len(cells[x])):

31 cell = cells[row][column]

32 cell = tf.reshape(cell, (1, 1, 1, 2048))

33 # pool_3:0 is an input to the softmax

34 cell_prob = sess.run(softmax_tensor, feed_dict={"pool_3:0":cell})

35 cells_probabilities[row][column] = cell_prob[0]

36

37 return cells_probabilities

In order to evaluate our proposed approach, we compared it to the SSD model, described

in Section 2.3.2. SSD is frequently used for various computer vision applications because of high

accuracy and utilization of a single network for end-to-end detection pipeline. SSD, as the detection

DNN and similarly to our modified classification model, utilizes CNN to extract feature maps during

feed-forward pass. The difference lies in the rest of the network, where an auxiliary structure is

added to produce detections. This additional step requires data to have bounding box annotations

to learn the presence of objects at different locations and adjust scale and ratio of produced

locations to match the ground-truth bounding boxes.

Since the SSD network is also a DL model which requires a lot of data to learn how to extract

proper predictions and the size of our thermal database with annotated facial areas is limited (the

Lepton-IE set contains only 1260 train, 160 test, and 187 validation images), we utilized the transfer

learning approach, similarly as in the classification task. All weights of the SSD model trained on

visible light data except the final prediction layer were loaded into the network aimed at performing

thermal facial features detection. The train set was utilized to adjust weights of final layers, at first

randomly initialized to re-purpose the model to our application during 30000 training steps using

RMSprop optimizer [171], unpublished algorithm first proposed by Geoff Hinton in his ’Neural

Networks for Machine Learning’ course. All other hyperparameters were set to their default values,
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Figure 4.8. Proposed modification of the inference flow in order to restore distribution of features

from the classification model and detect facial areas

as specified in a TensorFlow model implementation 1.

Our proposed modification of the Inception model was also examined on the dataset collected

with possible scenarios of remote medical diagnostics in mind (Lepton-IE-M set used for evalua-

tion of motion influence). At this step, we utilized the Inception network already trained in our

experiments focused on evaluating possibility of transferring knowledge between image domains,

described in the previous section (i.e. Inception-Lepton-IE-M model was used). The model already

optimized on our thermal dataset was modified during the inference to restore distribution of fea-

tures and mark facial areas. In addition, we trained a second binary Inception classifier capable

of determining nostril areas from other objects. This network was optimized in the same way as

the Inception-Lepton-IE-M model using nose regions extracted from face images as one category

and frames of other objects as a second category. After localizing faces with the proposed modified

Inception flow, nostril areas were marked in detected areas using the same approach. Robustness

of the proposed solution was verified by calculating Root Mean Squared Error (RMSE) of average

pixel intensities in detected areas vs. regions marked manually by an expert. For correctly detected

areas, this error should be minimal. In order to verify this assumption we also compared RMSE

of average pixel intensities in a static location of face and nose (i.e. the same coordinates of facial

regions for the whole video sequence instead of adjusting them for each frame) with areas marked

manually by an expert. In this way, we were able to evaluate if motion has influence on signals

1https://github.com/tensorflow/models Accessed: 2017-05-01
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obtained from detected areas, i.e. in a case of a significant motion, areas important for signal ex-

traction may move out of the static region leading to big changes in average color values used for

vital signs analysis [172].

Results and Discussion

Evaluation metric calculated on the validation part of the Lepton-IE set for SSD network and

the modification of Inception model flow proposed to restore distribution of facial features and

perform detection of eye/nose areas are presented in Table 4.4. Both pipelines were re-trained

from networks initially tuned on visible light images to verify possibility of transferring knowledge

between domains, as explained in the previous part of experiments. Comparison is performed by

analysis of Intersection over Union (IoU) between areas detected with neural networks and regions

marked manually by an expert.

Table 4.4. IoU calculated for the proposed thermal feature detection method and the reference DL

architecture SSD

IoU

detected areas vs

manual annotations

Proposed method

(modified

Inception flow)

SSD

(all

results)

SSD

(False Negatives

not considered)

Eye area 0.53 ± 0.15 0.32 ± 0.38 0.84 ± 0.23

Nostril area 0.60 ± 0.18 0.55 ± 0.42 0.86 ± 0.05

Table 4.5. Time of a single inference and training pass for the proposed modification of Inception

model flow and the reference object detection SSD model

Platform
Proposed method

(modified Inception flow)
SSD

Inference - single pass [ms], batch size=1

Intel® Xeon® E5-2697v2 139 ± 23 (2% util.) 596 ± 39 (4% util.)

NVIDIA® DGX-1™ Station 62 ± 7 (5% util.) 531 ± 62 (4% util.)

Training - single pass [ms], batch size=32

Intel® Xeon® E5-2697v2 9513 ± 102 (45% util.) 7358 ± 180 (55% util.)

NVIDIA® DGX-1™ Station 201 ± 8 (50% util.) 167 ± 9 (50% util.)

Time of processing a given batch size of images for SSD network and the modification of

Inception model flow proposed to restore distribution of facial features and perform detection of

eye/nose areas is collected in Table 4.5. Inference time is presented as a forward pass, while the

training time includes both forward and backward pass. Batch size (number of samples processed

simultaneously in the same network pass) was set as 1 for inference taking into account target

applications based on real-time processing of collected sequences.
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Facial regions detected with evaluated Deep Neural Networks from the Lepton-IE dataset are

presented in: Fig. 4.9 - bounding boxes constructed from highlighted grid cells produced with the

proposed method and Fig. 4.10 - output areas of the SSD model. Nostrils were marked with red,

eyes with green and ground-truth annotations with blue colors. In a case of the Lepton-IE-M set,

experiments were conducted for nose and whole face regions. Results shown in Fig. 4.11 present

produced locations of those areas.

Figure 4.9. Facial areas detected with the proposed method based on the modified inference flow of

the classification model; left: image before bounding box post-processing; right: final constructed

boxes are marked in orange, blue areas show ground-truth annotations

Figure 4.10. Facial areas detected with SSD model; detected eye and nose regions are marked in

pink and green, blue boxes represent ground-truth annotations; please note lack of the right eye

detection (false negative) - this problem was very often experienced by us for SSD model trained

on thermal data
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Figure 4.11. Face (green) and nostril (blue) areas detected with the proposed DL-based method;

even for a higher motion content (camera placed on eGlasses) when only a part of a face was

visible, the model was still able to properly detect specific regions (e.g. 1st image in a 3rd row)

Our study focuses on contactless monitoring of human subjects in remote medical diagnostic

scenarios. Since vital signs are constructed by aggregating pixels intensities within detected facial

regions, we evaluated how motion affects signal constructed by averaging pixel values in face and

nose areas. For this, we utilized two types of regions: detected with the proposed model and static

region marked manually in a first frame of each volunteer’s sequence and applied to all remaining

frames. Location marked manually in each frame by an expert was used as a reference. Then, the

average value of pixel intensities within each of those 3 areas was calculated and analysed. A final

Root Mean Squared Error for each volunteer was produced by taking mean value of Root Mean

Squared Errors of each frame, i.e. errors between average value of pixels in the reference region and

corresponding average pixels value for detected/static locations. Results are presented in Table 4.6.
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Table 4.6. Root Mean Squared Error (RMSE) of average pixel values in the static (same location

for the whole sequence) and detected areas compared against areas marked manually by an expert;

results normalized by a color range; tests performed on the Lepton-IE-M dataset

RMSE for facial area

Subject
Detected location Static location

S1 S2 S3 S1 S2 S3

1 0.100 0.118 0.090 0.026 0.080 0.071

2 0.145 0.069 0.047 0.143 0.056 0.057

3 0.097 0.173 0.075 0.014 0.070 0.170

4 0.080 0.129 0.057 0.055 0.156 0.107

5 0.169 0.094 0.159 0.320 0.032 0.079

6 0.078 0.088 0.018 0.028 0.044 0.105

7 0.028 0.048 0.051 0.009 0.060 0.121

8 0.286 0.095 0.080 0.130 0.037 0.089

9 0.157 0.150 0.087 0.031 0.011 0.126

10 0.079 0.118 0.080 0.035 0.034 0.087

11 0.086 0.113 0.084 0.101 0.044 0.040

Avg.
0.119

± 0.069

0.109

± 0.035

0.075

± 0.035

0.081

± 0.092

0.057

± 0.038

0.096

± 0.036

RMSE for nostril area

1 0.238 0.336 0.197 0.257 0.210 0.260

2 0.307 0.224 0.132 0.347 0.231 0.248

3 0.295 0.285 0.168 0.349 0.294 0.181

4 0.318 0.106 0.149 0.335 0.107 0.116

5 0.049 0.096 0.162 0.071 0.031 0.170

6 0.152 0.136 0.081 0.195 0.151 0.082

7 0.104 0.143 0.176 0.067 0.145 0.167

8 0.090 0.115 0.095 0.206 0.036 0.152

9 0.152 0.066 0.083 0.130 0.148 0.093

10 0.079 0.102 0.106 0.092 0.022 0.107

11 0.153 0.149 0.102 0.068 0.058 0.055

Avg.
0.176

± 0.098

0.160

± 0.085

0.132

± 0.041

0.192

± 0.115

0.130

± 0.090

0.148

± 0.066
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The presented study aimed at proposing a novel method for modification of deep classification

neural networks at the inference time to restore spatial distribution of features and thus detect

facial areas that could be used for estimation of vital signs. Calculated values of the IoU metric

(Table 4.4) show that areas detected with the state-of-the-art SSD network are more precise but

only if false negatives are not taken into account (IoU for nostrils ˜0.86 vs. 0.60 for the proposed

method). However, if all outputs are considered, the proposed method produces almost twice as

good results for eye regions and 5% better results for nostrils than SSD. This is caused by the

fact that SSD is very sensitive to false negatives. In many input images, facial regions were not

detected by SSD model at all. As a result, we believe this method might not be appropriate for

remote medical diagnostics solutions, where detection of those areas is crucial to extract vital

signs. A possible reason for such results is similarity of facial areas and their low contrast in small

resolution thermal sequences, as presented in Fig. 4.12. We would like to verify this assumption

by increasing resolution of acquired sequences using DL. Details about those experiments will be

presented in the next chapter.

Figure 4.12. Enlarged facial features from thermal image acquired with the low resolution Lepton

camera (80x60)

Another important finding is that IoU was higher for nostril area than for eye area in case of

both models. We believe this could be caused by the use of imbalanced dataset, as ˜30% more

samples were used for the nostril class. This result is especially valid for SSD model, which turned

out to be sensitive to unequal distribution of classes within the used set. SSD predictions were

shifted toward the most common class, producing almost twice as high precision for nostril region

than for eyes. The proposed network modification turned out to be less prone to the class imbalance

problem. Yet, a significant limitation of the introduced method is a resolution of detected regions,

restricted by the number of cells in the constructed grid (corresponding to the size of the feature

map thus dependant on number of filters applied in all network layers). In some cases the location

of the detected area is correct, but it may be significantly smaller than the cell size or only a

small part of a facial region may be present is a cell, while most of it may occupy other cells. As a

result, more cells than required may be highlighted, leading to detection of inaccurate boxes, which

contain other objects or background elements as well. To mitigate this problem, a post processing

algorithm should be utilized to adjust borders of detected regions.

On the other hand, the proposed method posses some advantages over the examined SSD model
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which include simplicity of network training and fast inference time. First of all, feature distribution

can be restored at a run-time allowing for utilization of any already trained classification model.

There is no need for providing datasets with bounding box annotations for model optimization,

what is important in thermal image domain due to a limited number of publicly available thermal

image sets. Secondly, calculated image processing time (Table 4.5) proves the robustness of the

introduced method for live video stream processing. The proposed classification model modification

achieves ˜16 FPS on NVIDIA® DGX-1™ Station and ˜7 FPS on Intel® Xeon®, almost 10 and 4

times more respectively than SSD on the same platforms. Since the used thermal camera is capable

of acquiring 9 FPS, our solution is suitable for real time processing (for NVIDIA® DGX-1™ Station,

for Intel® Xeon® some frames could be skipped to match 7FPS). In addition, it has been shown

that utilization of compute resources is minimal (below 5% in all cases). Thus, the future work

can be twofold. We could either focus on improving processing time of single stream increasing

performance or simultaneously serve multiple models/subjects without impacting latency, e.g. in

a centralized health monitoring station.

Comparison of RMSE values between static and dynamically detected areas showed that the

size of the region has influence on results. In case of face region, errors were smaller when the static

location was used. Yet, for nose areas the results were opposite. Although volunteers were asked to

remain still, the presence of some involuntary movements is still possible. For bigger areas, this may

not influence results, but for smaller regions, it may result in interesting feature moving entirely

beyond the detected location. One solution to this problem is to detect dynamically interesting

regions in the first frame and monitor the motion content in the remaining ones, e.g. using SAD

metric as showed in the previous section (Section 4.2.1). If a bigger movement is detected, locations

could be re-adjusted using CNNs to improve accuracy of signals used for vital signs estimation.

4.3 Novel Architectures Insensitive to Body Rotations

Problem Formulation

Although results achieved for facial areas detection and transferring the knowledge from visible

light to thermal image domain were very promising, solutions presented so far were based on

the assumption that a person is looking towards the camera being as still as possible. We also

proved that more intense movement content affects the accuracy of areas detection [167] and

consequently the accuracy of non-contact vital signs estimation [151]. However, in order to make

remote diagnostics solutions convenient and unnoticeable by subjects during their daily activities,

it’s essential to provide algorithms insensitive to various body poses, e.g. tilting head, or lying

down. Scenarios, that do not impose specific behaviors on users, may lead to more trustworthy

results, as subjects behave more naturally often without noticing that the diagnosis is in progress.

Most of current object detection oriented solutions utilize CNNs due to their human-like per-

formance and capabilities to significantly outperform other machine learning techniques based on

hand crafted features, such as Viola-Jones algorithm [32]. Yet, convolutions have been also proved

to be sensitive to various data distortions, such as displacement of features or image rotations.

CNNs only look for the presence of features, they do not determine if spatial relations between

them are preserved, as presented in Fig. 4.13. Some solutions to deal with this problem have been

already proposed, including DL-based pipelines, e.g. Deep Dense Face Detector, which classifies a

face in different orientations [173] or facial landmark alignment [139], as well as pose estimation
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(a) Thermal image of a face (b) Thermal image with displaced facial features

Figure 4.13. Visualization of CNN limitation - lack of spatial relation between learnt features; image

with displaced features is still classified as a face, as CNN only looks for a presence of features, not

relations between them; categories produced with https://cloud.google.com/vision/

techniques [174] and methods based on the use of additional sensors [175]. On the other hand, such

solutions require additional memory and computational resources, what we would like to avoid due

to the target platforms that we address, such as smart home or wearable devices (e.g. eGlasses

[150]). That’s why algorithms optimized for resource-constrained inference are often preferred in

scenarios considered by us. Also, because of person’s data privacy, thermal imaging is usually a

better choice as it doesn’t reveal sensitive details of captured objects contrary to RGB data.

To the best of our knowledge, our work is a first attempt to apply a novel rotation invariant NN

based on capsules to thermal data. This evaluation is an important research in order to confirm

that architectures successful in visible light domain characterized by high frequency features can

be used for processing data from other lengths of electromagnetic spectrum.

Methodology

The same dataset as in the case of transfer learning and facial detection experiments was used

to compare capsule network and CNN (the Lepton-IE set acquired by us, see Section 3.2.1). Facial

images were extracted from recorded sequences, producing a set of 3256 samples (every ˜6th frame

was preserved to ensure uniqueness of images). Since collected images were the same as in our

facial areas detection study [141], there was a need to increase the visibility of specific face regions.

The contrast enhancement was solved with automatic fitting of Gaussian distributions to image

histogram and re-scaling of the values corresponding to the face area to the full image range,

the same as described in Section 4.2.1. To make the model more robust and suited for real-life

applications, we created additional 5 negative categories and collected samples for them using the

same Lepton camera module (computer mouse – 2855 images, projector - 2968, keyboard - 3086,

back of a head - 3083, hand – 3083; Fig. 4.14).

A testing set was created by randomly selecting 159 images from the face category. Original

images were kept as a baseline set for models evaluation. Then, distortions and image modifications

were introduced to all selected images in a post-processing phase to simulate various possible

scenarios of remote medical diagnostics (e.g. lying, tilting a head, etc) and verify robustness of

models to displacement of facial regions. Specifically, created categories include: (159 images in

each category) random displacement of facial features, random displacement of image quaters,

rotation 900, rotation 1800, rotation 450, as presented in Fig. 4.15. Selected and modified images
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were saved as a separate set and used only for a testing purpose, models were trained on original

(not distorted) images (remaining images after selection of 159 test samples).

Figure 4.14. Examples of images collected for negative categories; from the left: computer mouse,

projector, keyboard, back of a head, hand

Figure 4.15. Distortions and modifications applied to the Lepton-IE set to simulate possible sce-

narios of remote medical diagnostics and compare robustness of Capsule and Convolutional Neural

Networks in those use cases; from the left top row: random displacement of facial features, random

displacement of image quaters, rotation 900, rotation 1800, rotation 450

The main difference between CNNs and the capsule network is that the latter divides each

model layer into neurons grouped together into so-called capsules. Due to the use of the group

of neurons, input and output of each layer component is represented as a vector instead of single

scalar values, as in CNNs. Then, the Iterative Routing by Agreement (IRA) mechanism is used to

find the route between capsules which would lead to the best prediction. In previous studies, IRA

has been proved to be more effective than max pooling used in CNNs, as it looks for all correlations,

not only the most active feature within the given window. IRA is based on an iterative approach,

which at first passes the output O of a capsule i in a layer n (Oni ) to inputs I of all m capsules
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in the following layer (In+1
1...m). For all m capsules in the layer n + 1, total input to each capsule

(In+1
1...m) is calculated as a sum of prediction vectors u1...k from all k capsules in the preceding layer

weighted by the coupling coefficients c. Prediction vectors (u1...k) are calculated as the preceding

layer’s capsule’s output (Oni ) multiplied by a weight matrix (W). For the capsule i in the layer n

and the capsule j in the layer n+ 1, the total input to the capsule j is defined as:

In+1
j =

i=k∑
i=0

Oni Wi,jci,j (4.5)

Coupling coefficients are determined by IRA. The prediction vector which produces the largest

scalar product with the output of the next layer (On+1
i ) is selected (uz) and the coupling coefficient

of the corresponding capsule (Onz ) is increased in the top-down adjustment process in order to

indicate its higher relevance in calculating the output predictions. The probability of the object

represented by capsule j being present in the input is then given by a length of output vector of

this capsule (j):

On+1
j =

∥∥In+1
j

∥∥2
1 +

∥∥In+1
j

∥∥2 In+1
j∥∥In+1
j

∥∥ (4.6)

Figure 4.16. Iterative update of routing coefficients applied in Capsule Networks

The flow of the IRA approach is illustrated in Fig. 4.16. Step 2 shows the process only for the

first capsule in the second layer. For training of the capsule network we used default regularization

and hyper-parameters, as specified in [176]. To compare different variants of IRA, we tested 1, 3,

4 and 7 routing iterations in each case during 50 epochs of training.
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Results and Discussion

Table 4.7 presents comparison of accuracy achieved on the test subset of the Lepton-IE set by

Inception and Capsule Network with different number of routing iterations. Solutions considered

by us should be convenient and ensure constant monitoring of subjects. Thus, it is very important

to ensure that face areas are never missed even at the cost of some false predictions. In order to

provide better insight into performance of both networks and take number of false negatives into

account, we also calculated recall of examined models. Produced results together with confidence

score for face class are collected in Table 4.8. Examples of body positions in possible remote medical

scenarios are presented in Fig. 4.17, which includes visible light images and transformed thermal

data from the Lepton-IE dataset to visualize each of considered remote medical diagnostic scenario.

Accuracy achieved by capsule and convolutional-based networks in each use case is presented in

the Fig. 4.17 caption.

As presented in Table 4.7, the accuracy of convolutional and capsule-based networks (regardless

of a number of routing iterations) are on pair if original data with faces oriented in one direction

(vertically) are used. However, the rotation invariance of Capsule Network can be observed by

analysis of recall results calculated for modified images. Last three rows of Table 4.8 present

potential remote medical diagnostic scenarios for which accuracy of face classification should not

be impacted. Those cases include rotations by various angles which may simulate different body

poses during data acquisition, e.g. lying down (see Fig. 4.17). We can observe that Inception,

which uses convolution operations, is very sensitive to such modifications, leading to a significant

decrease of accuracy, e.g. for rotation of 450 the recall value is below 10%, while the corresponding

results for capsules are above 90%, and in the best case are close to 100%. This proves significant

advantage of using Capsule Network in applications where objects can have different orientations.

Similar analysis performed for modifications based on displacement of facial feature/image parts

showed that performance of both networks is not sufficient. Those modifications led to distortion

of faces appearance, so theoretically fewer faces should be detected, causing the recall values to

drop. This result is true for random displacement of image quaters for both Inception and Capsule

Networks. Yet, random displacement of facial features hasn’t resulted in a decrease of accuracy, still

predicting most of samples as faces. We believe that this may be again caused by low resolution of

acquired thermal images and high similarity of facial features. Since cost of higher quality thermal

sensors is still high, in the next chapter we will describe details of our novel Deep Neural Networks

proposed for generating super-resolved thermal data, so that lower resolution cameras can lead to

similar classification accuracy as in case where better sensors are used.

Table 4.7. Comparison of Inception and Capsule networks accuracy on the test subset of the

Lepton-IE database [%]

Inception

Capsule Network

routing iterations

1 3 4 7

98.91 99.92 99.85 99.88 99.66
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(a) Rotation 1800 - ac-

curacy for proposed cap-

sules 100%, CNN 9%

(b) Rotation 900 - ac-

curacy for proposed cap-

sules 78%, CNN 20%

(c) Rotation 450 - ac-

curacy for proposed cap-

sules 99%, CNN 84%

Figure 4.17. Examples of potential body positions in remote medical diagnostics solutions

Table 4.8. Comparison of Inception and Capsule networks on the test subset of the Lepton-IE

database [%]; top line: recall for a face class; bottom line: average confidence value of True Positive

samples of a face class [avg. % ± stdev]

Capsule Network

routing iterationsInception

1 3 4 7

baseline
94.68

96.04 ± 7.79

100

91.20 ± 1.35

100

79.64 ± 3.36

100

65.47 ± 4.73

100

58.93 ± 5.60

random displacement

of facial features

87.34

92.87 ± 7.66

99.28

89.94 ± 2.63

100

79.4 ± 3.36

99.36

62.00 ± 5.87

100

54.44 ± 6.80

random displacement

of image quaters

48.10

77.66 ± 19.20

54.43

79.2 ± 8.23

99.36

74.5 ± 5.54

48.30

45.43 ± 11.14

56.32

39.32 ± 10.58

rotation 900
20.25

69.37 ± 14.78

78.48

76.64 ± 7.89

67.72

57.27 ± 9.87

70.88

42.92 ± 12.08

82.91

38.55 ± 9.66

rotation 1800
83.54

85.79 ± 14.32

99.36

86.80 ± 4.10

96.83

67.92 ± 7.90

96.83

54.64 ± 9.29

98.73

47.97 ± 9.86

rotation 450
9.49

63.25 ± 9.41

100

83.42 ± 3.35

99.36

56.67 ± 6.82

91.14

43.08 ± 7.44

99.36

45.71 ± 6.76

75

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


4.4 Problems

Results of experiments performed for deep classification and detection models on thermal im-

ages proved that even with a limited amount of data, high prediction accuracy can be achieved

by transferring knowledge from other image domains. Thermal datasets collected by us contain

much fewer samples than publicly available visible lights sets, for which DNNs achieve human-like

performance. However, utilization of already adjusted weights and retraining of only the final clas-

sification component allowed for preserving high accuracy (above 90%) for face and facial areas

classification tasks.

(a) Eyes areas

(b) Nose areas

Figure 4.18. Facial features extracted from low resolution thermal images; one can note lack of

high frequency features and blurriness which makes it hard to distinguish facial regions, e.g. in eye

images only eyebrows are distinguishable

In addition, we showed how to provide automatic, rotation invariant solution for face classifi-

cation in possible scenarios of remote medical diagnostics by utilization of novel DL architecture

based on capsules. Due to the use of a single end-to-end neural network-based pipeline, the need for

additional pose compensation techniques with e.g. facial landmarks [139] was eliminated making

the solution more suitable for resource-constraint devices. Yet, although the proposed capsule-

based solution outperformed CNN on images at various rotations, it has been observed that image

distortions have more significant effect on prediction accuracy. In the case of completely deformed

faces constructed by facial features displacement, both CNN and capsule model still recognized

them as facial areas, what is incorrect. We believe that a likely cause of this result lies in the low

accuracy of acquired sequences (80x60 pixels). Worse image resolution might have led to wrong

generalization due to the blurring of features. For many samples from the Lepton-IE set, it is

difficult to distinguish specific face areas even for a human (see Fig. 4.18). Thus, it may turn out

that the model performs better if images of higher resolution are provided.
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On the other hand, the cost and physical size of higher resolution thermal sensors is still quite

high comparing to visible light cameras. Considering target platforms and applications that we

would like to address in this work, the goal is to deliver telemedicine solutions for low resolution

thermal images by analysing them and improving their quality using Artificial Intelligence and at

the same time avoiding the use of more sophisticated thermal devices. Taking it into account, we

propose to apply Super Resolution (SR) algorithms to acquired sequences in order to determine if

DL-based thermal image enhancement can lead to more exact detection of facial areas and, as a

result, higher accuracy of contactless vital signs extraction.

4.5 Summary

In this chapter we introduced novel methods and techniques which utilize DL models in order

to perform face and facial areas detection from thermal images. Performed evaluation proved

that even with the limited amount of data it’s possible to achieve high prediction accuracy by

utilizing the knowledge from visible light spectrum using transfer learning technique. Moreover,

an in-depth analysis of motion influence on face area classification accuracy was performed taking

into account various possible scenarios of contactless vital signs estimation. Sequences with higher

motion content led to worse accuracy, missing some true positives. Yet, we proved that motion can

be reduced by focusing person’s attention on some tasks and thereby improving system precision.

Additionally, we proposed an innovative neural network architecture aimed at detecting facial

regions without the need of annotating data with bounding boxes, what led to a significant decrease

of the inference time and improved the ease of model training. Also, it turned out that the intro-

duced detection pipeline outperforms existing object detection model due to being less sensitive to

false negatives and class imbalance problem, achieving IoU above 0.5 for all evaluated facial areas

in thermal images of a small spatial size (80x60). Conducted experiments and achieved results sup-

port the first thesis formulated in the presented doctoral dissertation which stated that architecture

of Deep Neural Network designed for classification of visible light images can be modified in such

a way that distribution of extracted features will be recreated enabling detection of facial areas

from low resolution thermal data. Since some previous studies on computer vision-based remote

medical diagnostics indicated the need for automatic localization of body parts and regions (i.e.

pulse estimation from a forehead [44]) , we believe that the proposed method can be very useful for

those applications by automating their pipelines. In addition, some standard medical procedures

can be speed up, improving quality of healthcare, e.g. the proposed detection model can be used for

person and object identification from graphical markers [153]. Due to the small physical size of the

used thermal camera sensor, it can be embedded in existing smart home/building infrastructure

and used for collection of human-related data in a non-disruptive way.

Finally, we presented details of capsule network and evaluated its performance on thermal

sequences to prove its robustness in different image domains, not only visible light data, as orig-

inally assumed. Limitations of presented methods (such as influence of low image resolution on

classification results) were identified. Although this chapter introduced a simple automatic image

pre-processing step, which led to improvement of facial feature representation and thus easier net-

work training (due to the presence of more distinct features), we believe that other techniques, e.g.

Super Resolution could be very beneficial for further accuracy increase. Studies on thermal image

enhancement and its applications are presented in details in following chapters (Chapter 5 and 6).
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Chapter 5

Proposed Model for Thermal

Images Resolution Enhancement

5.1 Introduction and Overview

Latest technological advances have led to increased availability of affordable, higher resolution

thermal cameras. FLIR®, the world leader in thermal imaging infrared cameras, have recently

introduced Lepton family sensors characterized by a small physical size (e.g. 10.5 × 11.7 × 6.4

mm) and much lower price comparing to other thermal acquisition devices (i.e. 200 USD). As

a result, enablement of various thermal imaging monitoring solutions, including remote medical

diagnostics, becomes more feasible and various studies in this area have already been proposed, e.g.

contactless monitoring of respiratory activity [148]. In spite of a more rapid progress in thermal

cameras development, our studies showed that image resolution is still not satisfactory and may

affect detection accuracy (see Section 4.3). One possible cause of this result is the blurring of

features present in thermal images and as a result their high similarity. Low resolution of facial

features could be a problem for determining Region of Interest (RoI) which represents respiration-

related color pixel changes due to the use of kernels learnt to extract high frequency components

[141]. Thus, resolution improvement using image processing techniques is of a high interest to us,

as it may have a positive effect on areas detection accuracy, while using the same imaging device.

The idea of enhancing image resolution, known as Super Resolution (SR), has been widely

studied and various techniques have been already proposed. Due to the progress in Deep Neural

Network (DNN) development, different architectures have been created, improving state-of-the-

art methods. Yet, most of proposed solutions are still focused mainly on a visible light spectrum

and direct application of those models to thermal data may not be satisfactory. Thus, in this

chapter we provide in-depth analysis of existing SR solutions and their applicability to thermal

domain. Then, we introduce a novel DNN architecture, designed by us with thermal features

characteristic in mind. To the best of our knowledge, this is the first attempt to design model

specifically dedicated to thermal image enhancement by addressing more distant dependencies

between interesting components caused by the heat flow in objects. The proposed model is verified

and compared with other SR models on a wide set of thermal datasets. In addition, we also

verify possibility of transferring knowledge by utilizing SR models pre-trained on visible light data.

Conducted analysis include e.g. determining the influence of temporal frames averaging and various

bit depths on Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index Metric (SSIM).
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5.2 Super Resolution

5.2.1 Objective

The aim of the Super Resolution (SR) method is to restore High Resolution (HR) data from

corresponding Low Resolution (LR) inputs. Specifically, if an output is restored from a single image,

the approach is called Single Image Super Resolution (SISR). In general, SISR is very challenging,

because various outputs can be produced from a single input The general formulation of Super

Resolution task is a solution to the ill-posed inverse problem, defined as:

X = (Y ~K) ↓s +n (5.1)

Ŷ = SISR(X) (5.2)

where K is the degradation operator, ↓s is down-scaling operation with a given scale s and

n is additional noise. Y is the original HR input and Ŷ is the restored HR data we want to

infer from LR input X by applying SISR model in order to achieve (in the best case) Ŷ = Y .

To alleviate this ill-posed problem of SISR, a prior knowledge is usually utilized to constrain the

solution space. The prior can be obtained by e.g. a) interpolating pixels values [177, 178, 179];

b) exploiting internal structure of an image based on self-similarity of recurring image sub-parts

[180], or 3) analysing correspondence between a pair of images with two different resolutions, i.e.

example-based algorithms [181].

One of the first method, which dates back several decades, was based on bicubic scaling [177].

Other techniques, where the prior knowledge is learnt using interpolation algorithms were proposed

by Zhang and Wu [178] using edge-guided information or by Romano et al. [179], who utilized local

sparsity-based modeling. Yet, this group of Super Resolution methods, known as interpolation-

based SISR utilize generic smoothness assumptions and do not discriminate between edges and

object parts. As a result, restored images may become blurred as all components are treated

similarly, what is a serious constraint of interpolation-based techniques.

Thus, more and more studies are being directed towards example-based solutions which satisfy

the prior knowledge by preserving consistency between LR and HR data pairs. The intuition behind

the success of example-based approach is that image pixels have less variability than a set of random

variables. During the training phase, we teach our algorithm how to restore image details using

corresponding image regions seen at lower resolution. Even though features are more blurred and

distorted in LR inputs, it’s easier for the model to learn those relations than if random data is

used.

Since the access to a perfectly synchronized acquired in the same conditions pair of LR and

HR images is usually limited, in a standard approach LR input (X) is generated synthetically

from collected HR image (Y ) using downscaling operation (↓) with a scale s, e.g. using bicubic

interpolation:

X = Y ↓s (5.3)

The LR image can either have a spatial size smaller than the HR sample (in this case its resolution

is truly lower) or it can be up-scaled again (↑) after downscaling (scaling twice with inverse scales,

e.g. 1/2 and 2):

X = Y ↓s↑s= Y ↑ 1
s
↑s (5.4)

In the latter approach, the generated LR image has the same spatial dimension as the original HR

pattern but its quality is degraded, as shown in Fig. 5.1. Then, the goal is to restore degraded image
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features and components, so that the output of SR is as similar as possible to the original HR data.

For image with a truly lower resolution, apart from feature restoration the applied algorithm has

to use an up-scaling operation in order to generate a higher scale image version. In this case, the

standard Convolutional Neural Network (CNN) pyramid architecture is not applicable, as pooling

and strides are common downsampling operations that would lead to decrease of a size instead of

increasing it. For such tasks a transposed convolution is usually utilized. Transposed convolution

is also known as deconvolution, what in fact is an incorrect name, as deconvolution is a signal

filtering operation to compensate for calculated convolution and transposed convolution is in fact

a convolution but with a transposed kernel matrix. However, the information lost after pooling

or stride may still not be completely recovered. Due to higher complexity of solutions based on

deconvolution, in this work we focus on enhancement of upscaled LR images, so that the size of

the image is already bigger and the only task is the restoration of features (pooling operation is

completely skipped and stride is set to 1).

Specifically, the solution S (e.g. neural network) characterized by parameters θ is applied to

the generated LR input X, restoring the HR image Ŷ . Parameters θ are adjusted in such a way

that the restored output is as close to the original HR data Y as possible. Since this is a regression

problem, the most frequently used estimator is the Mean Squared Error (MSE) metric, which

calculates distances (errors) between restored and original pixel values and squares them producing

the average over a set of all pixel errors. The goal is to find parameters θ∗, for which MSE reaches

its minimum:

θ∗ = argminθ(Y − Ŷ )2

argminθ(Y − Sθ(X))2
(5.5)

Figure 5.1. Example of thermal image of a face (on the left) and its corresponding LR version

generated by downscaling and then upscaling of an original image by a factor of 4

5.2.2 Evaluation of Resolution Enhancement Methods

As stated in the second thesis formulated in the presented dissertation, the aim of one of

the studied problems is to propose a novel thermal image enhancement method which allows

for increasing quality of collected sequences and thereby accuracy of remote medical diagnostic

solutions. In order to elaborate on the proposed solution, it’s important to evaluate it and compare
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results with other existing Super Resolution approaches. Two image quality metrics are usually

used for this purpose in image enhancement tasks.

The first metric, PSNR, is a ration between an original data and image that we want to

evaluate, e.g. a compressed frame, restored output, etc. The result of PSNR is specified in decibels.

The higher the value of PSNR, the better the quality of evaluated data. PSNR is calculated based

on the Mean Square Error (MSE), which is an inverse measure of enhancement quality, i.e. the

lower the error, the better the quality. MSE indicates the cumulative squared error between two

images (I1 and I2) of a size rows x columns, as:

MSE =

∑
r,c∈rows,columns

(I1(r, c)− I2(r, c))2

rows ∗ columns
(5.6)

PSNR represents a peak of MSE error:

PSNR = 10log(
R2

MSE
) (5.7)

where R corresponds to maximum fluctuation of input data, e.g. for 8-bit images R equals 255.

As can be deduced, PSNR specifies correlation between maximum power of a signal and power of

a noise leading to degradation and decrease of representation quality.

The second metric, SSIM, is used for evaluation of perceived quality of digital images and

videos. Equivalently to PSNR, SSIM allows for evaluating similarity between two inputs. Specif-

ically, a restored (previously compressed or processed in other way) input is compared with its

corresponding original version. Since SSIM uses perception information, it allows for obtaining ad-

ditional details to absolute errors produced by PSNR. Apart from evaluating decrease of quality as

observed changes of structure, SSIM also takes into account luminance and contrast components.

Thus, combination of PSNR and SSIM allows for getting complete information about performance

of image enhancement models. SSIM for 2 inputs I1 and I2 is defined as:

SSIM(I1, I2) =
(2µI1µI2 + c1)(2σI1,I2 + c2)

(µ2
I1

+ µ2
I2

+ c1)(σ2
I1

+ σ2
I2

+ c2)
(5.8)

where c1 and c2 are constants used for stabilization, defined as c = (kR)2, k equals 0.01 for c1
and 0.03 for c2. µ is the average and σ is the variance for a given input. σI1,I2 is the covariance of

two inputs.

5.2.3 Existing neural network-based Super Resolution Methods

The Super Resolution problem is a classical computer vision task and has already been studied

in-depth for various applications, including medical solutions e.g. computer-aided diagnosis (CAD)

for determining breast tumor [182] or reconstruction of computed tomography (CT) data [183].

As already mentioned, example-based method deal better with some limitations of interpolation

techniques, e.g. a tendency to generate overly smooth edges, especially for higher scale values. Thus,

approaches which utilize relations between a pair of images to train Super Resolution machine

learning algorithms have become more popular and they are also the main focus of our study.

This section overviews examples of such learning-based solutions. Specifically, we present state of

the art neural networks for which a pair of corresponding LR and HR images is used to optimize

network parameters θ such that the error between restored and the original image will be minimal,

as defined by Eq. 5.5
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Visible Light Data Processing

One of the first studies on utilization of neural networks for image enhancement focused on

image denoising, which solves a slightly different problem than Super Resolution as it tries to

recover a clean image from a noisy input X. For denoising, the ill-posed inverse problem of Super

Resolution, defined by Eq. 5.2, can be re-formulated to a simplified formula:

X = Y + n (5.9)

since the degradation operation K is skipped. Even before the reinvention of Deep Learning

(DL) in 2012 with AlexNet [109], CNNs have been used for image denoising [184]. Yet, as pointed

out by the authors, achieving better performance with increased number of layers may become

computationally intensive and back then not all efficient DL regularization techniques were known.

Image restoration with CNNs has also been described by Eigen D. et al. [185], where a neural

network with two hidden layers was used. Comparison with previous non-convolutional techniques

showed increase of PSNR by ∼ 0.9dB. Other, more classical machine learning algorithms have been

also adapted to remove noise from image data. Burger H. et al. [186] proposed to learn LR-HR

mapping with multi layer perceptron (MLP), showing that the large training set (>150k images)

is essential for achieving a decent performance. MLP has been also used on wavelet coefficients

instead of image data in the study presented by Zhang S. and Salari E. [187]. The motivation for

using wavelet coefficients lies in the fact that they can be treated as strong image priors what may

lead to better accuracy.

Recent techniques take advantage of more sophisticated neural network architectures. The

overview of various DNN-based SR techniques has been provided in [188]. Here, we describe in

details some key examples of such solutions. Cui Z. et al. [189] proposed a method based on non-

local self-similarity search (NLSS) process and collaborative local auto-encoders (CLA) stacked on

top of each other in order to perform a graduate upscaling of LR inputs. Due to the use of multiple

stacked CLAs, the model is referred to as Deep Network Cascade (DNC). The main drawback of

the proposed auto-encoder-based pipeline is the requirement to perform a separate optimization

of NLSS and CLA.

To overcome the disadvantage of the DNC pipeline, Dong et al. [190] proposed to obtain SR

output through a single end-to-end mapping that can be learnt by a single neural network. The

introduced convolutional-based architecture, known as Super Resolution Convolutional Neural Net-

work (SRCNN) turned to be a breakthrough in image enhancement techniques. SRCNN was shown

to form all operations usually performed in neural network-based Super Resolution task with con-

volutions. The only pre-processing performed before CNN is image interpolation to the size of the

HR data (as specified by Eq. 5.4). The prepared input is then fed into 3 convolutional layers per-

forming feature extraction (FE), non-linear mapping (NLM) and reconstruction (R), respectively.

At the feature extraction step, each LR patch is passed through convolutional filters to represent

them in a form of feature maps. Then, in the non-linear mapping phase each extracted vector

is mapped to another representation which conceptually is equivalent to a high-resolution (HR)

patch. Finally, the output is reconstructed by aggregating all produced HR patches. Although task

solved by each of those layer is different, it has been proved that representing all of them as a

convolutional layer is sufficient for accurate image restoration. Since then, the idea of using CNNs

for SR was constantly developed and led to design of various state-of-the-art solutions. Additional

experiments performed in SRCNN study, showed that the increased number of layers can lead to a

further accuracy improvement, what became a base for next CNN-based SR models. At first, Kim
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et al. [191] made use of the VGG-net classification model [110] to solve SISR, introducing Very

Deep Super Resolution (VDSR) network. In addition, the residual skip connection was applied

from the input to the output in order to correlate LR and HR data. The use of adjustable gradient

clipping, the strategy that helps with exploding gradient problem in DNNs, allowed for increasing

learning rates and at the same time convergence speed.

Further modifications proposed by authors of [191] included incorporation of recursive supervi-

sion to increase the network depth, without introducing new parameters and reduce the problem

of vanishing gradients [192]. The vanishing gradient problem is often present in a neural network

training process, especially for deeper architecture, where the gradient may be vanishingly small for

subsequent layers in the backpropagation step, leading to none or insignificant updates of weights.

The SR model presented in [192], called Deeply Recursive Convolutional Network (DRCN) led to

the improvement of PSNR by ∼ 1dB comparing to SRCNN. Recursive supervision is the approach

of applying the same convolutional operation multiple times in the non-linear mapping subnetwork

(name convention as defined by SRCNN), producing D predictions, all supervised during training.

The final output is produced as a weighted sum of outputs from all those D recursions. Additional

contribution to the recursive structure, made by Tai et al. [193], was based on the huge success

of residual network (ResNet [113]) in the image classification task. In ResNet, the use of residual

blocks with skip connections at all levels of the feature extraction step allowed for a significant in-

crease of the network depth while eliminating the vanishing gradient problem. Thus, more complex

representations were extracted, significantly increasing prediction accuracy. Tai et al. inspired by

those findings, proposed to apply a structure similar to ResNet to their Super Resolution CNN,

called Deep Recursive Residual Network (DRRN) [193]. Similarly to DRCN, DRRN proposed to

utilize recursions, but adopted additional residual connections with shared weights both in a global

and local manner. However, experiments performed by authors showed that the best performing

architecture didn’t use recursion at all and the final model consisted of residual blocks only.

A separate group of image enhancement techniques is based on generative models. Generative

Adversarial Network (GAN) [194] have recently gained a lot of popularity in various computer

vision tasks, also in medicine, e.g. for synthesis of missing PET and MRI data [195]. The idea of

this architecture is to use two separate neural networks. The first one, generator, has to create an

image as similar as possible to the real data. Then, the goal of a second network, discriminator,

is to determine whether the input image is real or generated. It turned out that this approach

can also be successfully applied to SISR task, synthesizing crucial image details that might be lost

because of downscaling, especially when big scale factors are used.

The SRGAN network proposed by Ledig C. et al. [196] allowed for successful restoration of

detailed components of the HR image, setting a new state-of-the-art performance even for bigger

scaling factors (4x). Other examples of GANs used for image Super Resolution include EnhanceNet

[197] aimed at automated texture synthesis instead of pixel values reproduction and SFTGan [198]

- the GAN network with Spatial Feature Transform modules based on affine transformation coef-

ficients. Hinton’s Deep Belief Network (DBN), generative model designed to learn the entire input

representation at each layer, has been also successfully used for SISR [199], showing an inference

time speed-up of 8 times for 2D data and of 200 times for 3D data, opening new possibilities for

various medical applications that usually operate on 3D volumes. Other examples of generative

models include autoregressive networks which produce a value for a current pixel using its preced-

ing left and top neighbour (so-called Pixel-CNNs). This approach has been utilized for SISR in the

network proposed by Dahl et al. [200].
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Thermal Data Processing

The main drawback of utilizing described models in our research on thermal image processing

is the fact that they were designed and tested only on visible light images. Although conducted

experiments prove their effectiveness and high accuracy of image restoration, direct application

of those solution to the thermal domain may not be sufficient due to a different characteristic of

thermal data. At the same time, only a limited number of studies focus on designing DL models

for the thermal domain. Most of existing methods for thermal data enhancement utilize machine

learning approaches, requiring the manual selection of a prior knowledge, what frequently is difficult

to achieve, as described in Chapter 2.3. The approach proposed in [201] utilized the Huber cost

function for defining the difference between HR and LR frames in combination with the bilateral

Total Variation as the prior. Other study, introduced by Kiran Y. et al. [202], utilized a simple

regression technique, where Matrix Value Regression Operator was used to learn mapping between

LR and HR patches. The work proposed by [203] made use of the rigid transformation matrix to

determine pixel shifts and rotations in order to produce geometric relation of LR images to the

reference data. After that, LR images were projected on HR grid and used for interpolation of

unknown data. An interesting approach to thermal SR was described by Almasri F. and Debeir

O. [204], who proposed to solve the problem of thermal resolution enhancement using fusion of

thermal and visual modalities. The method was compared with SRCNN and VDSR, showing

the improvement in PSNR metric on a dataset containing visible light data and their thermal

counterparts. Another solution which utilize visible light data as a guidance for thermal image

restoration was proposed by Chen X. et al. [205]. Both of those methods though, were based on a

strong correlation between visible light and thermal data, what requires the use of two synchronized

sensors and acquisition of two video streams simultaneously. Applications analysed by us require

a special attention to data privacy aspects and acquisition of visible light data is often undesirable

in such cases, e.g. in remote healthcare. Thus, the goal is to design a model which utilizes only

thermal sequences, what makes the fusion-based network inapplicable for our target solutions. To

address the problem of the lack of high frequency features in data reconstructed from LR thermal

inputs, Zhang X. et al. [206] combined a compressive sensing technique aimed at image resolution

enhancement with DNN applied on the produced output to reduce the noise. The results showed

the advantage of this approach over SRCNN, yet the method hasn’t been compared with more

recent Super Resolution architectures.

Another novel work on super-resolving thermal images was conducted by Kuang X. et al. the

same year as our study. The authors proposed a SISR technique based on combined CNN and GAN

models designed for thermal image enhancement [207]. The introduced pipeline was tested on visible

light dataset and thermal images collected from internet. We encounter two main disadvantages

associated with the presented study. First of all, no details about thermal images, e.g. bit-resolution,

data format, data acquisition process were provided, what makes it hard to evaluate the proposed

model. Moreover, although authors stated that existing residual and encoder-decoder-based Super

Resolution networks are not efficient on infrared images, they did not provide any quantitative

comparison with state-of-the-art models. The lack of this comparison makes it difficult to determine

whether the proposed CNN-GAN solution is more efficient in thermal domain, contrary to our work

[208] which provides the extensive benchmark evaluation of our model and a set of existing SR

networks, performed on publicly available thermal dataset (IRIS) and on thermal images acquired

by us. The neural network architecture introduced by us is presented in the following section.
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5.3 Proposed Network for Thermal Data Enhancement

Our work is one of the first attempts to the improvement of thermal image resolution with

Super Resolution Deep Neural Network specifically designed for infrared data without the use of

visible light features. The model introduced by us consists of a wider receptive field in the feature

extraction subnetwork. As a result, more distant relations between adjacent facial regions are taken

into account while building feature vectors representing HR image patches. This design is essential

for addressing the blurring effect of thermal images.

5.3.1 Problem Formulation

To better understand the novelty of the introduced thermal data-oriented neural network ar-

chitecture, let’s start with a formulation of the basic CNN-based SR network. neural network S,

characterized by parameters θ, produces a restored HR image Ŷ from a corresponding LR input X

(generated from the original HR data Y , as specified in Eq. 5.4) by performing a following sequence

of operations:

Ŷ = Fr(Fnlm(Ffe(X))) (5.10)

where FFE/NLM/R are subnetworks which realize feature extraction, non-linear mapping and re-

construction tasks, respectively. As showed in the pioneer work in this area [190], all those subnet-

works can be represented as convolutional layers with trainable weights WFE/NLM/R and biases

BFE/NLM/R matrices:

Ŷ =Wr ~ (σ(Wnlm ~ (σ(Wfe ~X +Bfe)) +Bnlm)) +Br (5.11)

where σ is the activation function applied after each convolution to introduce nonlinearities and the

symbol ~ denotes the convolution operation. Eq. 5.11 presents a general idea of CNN-based Super

Resolution model with one convolutional layer in each subnetwork. Thus, WFE/NLM/R correspond

to kFE/NLM/R kernels, each of a size widthFE/NLM/R x heightFE/NLM/R x channels
FE/NLM/R

,

producing kFE/NLM/R output feature maps after each step. Weights and biases form together

parameters θ (θ = {Wr,Wnlm,Wfe, Bfe, Bnlm, Br}) adjusted during network optimization in such

a way that the reconstructed output Ŷ = Sθ(X) is as similar to the original HR data Y as possible.

Our study utilizes the supervised learning, so original HR images Y1...N (where N is the number of

samples) are used as labels for corresponding reconstructed samples Ŷ1...N and the distance between

them is defined by the cost function represented as Mean Squared Error (Eq. 5.5) averaged across

all samples:

L(θ) =
1

N

N∑
i=1

(((Yi − Ŷi)2) =
1

N

N∑
i=1

((Yi − Sθ(Xi))
2) (5.12)

The goal is to minimize the cost function, i.e. favor higher PSNR, which is directly related to MSE,

as specified in Eq. 5.7.

According to previous studies, better performance is achieved with deeper architectures [192,

193], thus it’s beneficial to extend the basic form of CNN-based SISR described by Eq. 5.11 by

introducing more layers. On the other hand, increased number of parameters may have a negative

influence on the ease of network training and solutions may suffer from the vanishing gradient

problem. Our study addresses both problems by providing a deeper SISR model with weights

shared across both residual and recursive blocks. In addition, the proposed network is specially
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(a) Filters of a single convolutional block applied

to an input image

(b) Filters after 3 residuals (each consisting of 2

convolutions) with weights shared among residuals

Figure 5.2. Examples of filters learnt by a model aimed at solving Super Resolution task

designed with thermal data characteristic in mind, proving its advantages over other state-of-the-

art models introduced for visible light images. The introduced DNN architecture is explained in

details in the following section.

5.3.2 Proposed Network Architecture

Since our study focuses on evaluation of face hallucination solutions in thermal domain, the

main motivation for designing a novel DL model is to address different characteristics of visible

light and thermal images and reflect this discrepancy in the neural network architecture itself.

Main difference between images acquired for various ranges of electromagnetic radiation lies in

the information visible in this range. Heat flow in objects leads to the equalization of temperature

values at the boundaries of adjacent regions what is reflected by a low contrast between them in the

constructed thermal image, as shown in Sec. 4.2.1 (Fig. 4.3). As a result, a relatively small receptive

field, e.g. 3x3 after one convolutional layer in the feature extraction subnetwork of SRCNN may

not capture important distant dependencies between facial features within specific image regions.

This assumption can be proved by visualizing features extracted from thermal data using a single

convolution vs. a sequence of 6 convolutions. Fig. 5.2 presents examples of kernel weights learnt

after a various number of applied convolutional layers. It can be easily observed that the more

filters is used, the more complex features are extracted, what we believe is crucial for mitigating

the problem of more distant dependencies between facial regions in thermal imaging.

Taking it into account, the core idea of the introduced SR CNN is based on the widening of the

receptive field. However, as proved by previous studies [113] simple stacking of more layers is not

efficient and the network may suffer from the vanishing gradient problem. Therefore, our model

utilizes residual blocks, similarly to other SR CNN-based solutions [193, 209]. Yet, contrary to

them, we propose to apply residual blocks both in supervised recursions in the non-linear mapping

subnetwork as well as at the feature extraction step. In this way, we revisit the problem of combining
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recursions and residuals in a single SR CNN. We believe that previously this combination turned

out to be unsuccessful [193] due to the incorrect placement of those blocks. Our work [208] provides

in-depth evaluation of SISR architecture variants that differ in both location and number of each

block used for thermal image enhancement.

Residual block used in our model consists of two convolution operations, followed by batch

normalization and activation function σ. In DL solutions, a commonly used activation function is

ReLU (Rectified Linear Unit), defined as:

y(x) =

0, x < 0

x, x ≥ 0
(5.13)

The popularity of this function is caused by the fact that it’s nonlinear, so can be used for solving

complex problems, while its derivative is relatively simple, what makes the backpropagation easy.

The application of ReLU has been found very effective for various DNNs. Therefore, ReLU was

selected as the activation function at all steps in our network. We also proposed to use batch

normalization in residual units of our model [208]. This choice was motivated by the research con-

ducted by Ioffe S. and Szegedy C. [210], which proved that mitigating the problem of covariate

shift (distribution of inputs change with the change of network parameters optimized during train-

ing) by normalizing not only network inputs by also outputs of subsequent network layers is very

efficient in improving the ease of network training.

In case of the second convolution in the proposed residual block, the activation is applied after

summing up the main branch with the shortcut connection. The shortcut connection is a side

branch, skipping convolutional layers. A single residual block used in the proposed architecture is

presented in Fig. 5.3.

Figure 5.3. Residual block used in the proposed super-resolution neural network
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Output from the eth residual block (F (e)
fe ) can be defined as:

F
(e)
fe =

 σ(g
(e)
fe (Ife,W

(e)
fe ) + Ife), e = 1

σ(g
(e)
fe (F

(e−1)
fe ,W

(e)
fe ) + Ife), e ∈ (1, E〉

(5.14)

where Ife is the input to the feature extraction subnetwork, calculated as the result of applying

initial convolution on the generated LR input X:

Ife =W0fe ~X (5.15)

E is the number of residual blocks used at feature extraction step and g is a residual block which

consists of convolution operations described before, i.e.:

g
(e)
fe = g(x,W

(e)
fe ) =Wfe

(e)
conv2 ~ (σ(Wfe

(e)
conv1 ~ x)) (5.16)

The output from the last residual block of the feature extraction step is fed to the second

subnetwork aimed at performing non-linear mapping using the recursive approach. Contrary to

the DRCN network [192], we further widen the receptive field by using additional residual blocks

inside recursions. Thus, the output from dth recursion (F (d)
nlm) is simultaneously the output after

the last (U) residual block (F (d,U)
RES ) within this recursion (d), defined as a sum of the last residual

mapping g(d,U)
RES = g(F

(d,U−1)
RES ,W

(d,U)
RES ) and the input to this recursion Idnlm:

F dnlm = F d,URES =

g
d,U
RES(F

(d,U−1)
RES ,W

(d,U)
RES ) + I

(d)
nlm, U > 1

gd,URES(I
(d)
nlm,W

(d,U)
RES ) + I

(d)
nlm, U = 1

(5.17)

where d is the current number of the recursion (out of all D recursions), U is the number or

residuals in each recursion, residual mapping g(d,U)
RES is denoted in the same way as residuals in the

FE subnetwork, i.e. by Eq. 5.16 and input to the recursion d is specified as:

I
(d)
nlm =

 σ(W
(d)
0nlm

~ F
(e=E)
fe ), d = 1

σ(W
(d)
0nlm

~ F
(d−1)
nlm ), d ∈ (1, D >

(5.18)

As can be deduced from Eq. 5.17, at the non-linear mapping step we repetitively apply the same

set of operations, producing D outputs. Please note that for a single residual block in the recursion

(U = 1), the input to the residual mapping comes from the input to the whole recursion block

(I(d)nlm) instead from the previous residual. Each of outputs produced at the non-linear mapping

step represent some level of HR data reconstruction.

In the reconstruction subnetwork another convolution operation was applied to the constructed

feature maps:

F
(d)
nlm = σ(W0r ~ F

(d)
nlm), d ∈< 1, D > (5.19)

HR output is very similar to LR input except some fine, high frequency details. Thus, correlating

them together lead to very good restoration capabilities of the model as adjusting only some

components of an image is easier than generating them from random distributions. Taking it into

account, we added skip connections from LR input X to each of the result from the non-linear

mapping step:

F
(d)
nlm+X = F

(d)
nlm +X, d ∈< 1, D > (5.20)

Then, all of those outputs were passed to the reconstruction subnetwork, convolved with recon-

struction weight kernel (Wr) and used to form the final HR output (Ŷ ) as the weighted average of
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all predictions:

Ŷ = Fr =

D∑
d=1

w(d)σ(Wr ~ F
(d)
nlm+X) (5.21)

where w(d) is the weight associated with dth recursion, and Fr is the output from the reconstruction

subnetwork that is equivalent to the reconstructed HR data Ŷ . For simplicity of mathematical

formulations biases were skipped in all equations.

With the increased network depth, another problem appears. The number of parameters and

hence the model size rapidly grows, what leads to a more difficult optimization process. To deal

with the issue of the increased number of parameters, we proposed to use shared weights for all

residuals within both fe and nlm subnetworks:

∀ e∈<1,E>W
(e)
fe =Wfe ⇒Wfe

(e)
conv2 =Wfeconv2 and Wfe

(e)
conv1 =Wfeconv1

∀ u∈<1,U> ∀ d∈<1,D>W
(d,u)
RES =WRES ⇒WRES

(d,u)
conv2 =WRESconv2 and WRES

(u,d)
conv1 =WRESconv1

(5.22)

except initial convolution in recursions, i.e. W (d)
0nlm

. As a result, we only used 3 unique sets of weights

at the feature extraction step (one initial convolution W0fe and 2 convolutions in residual blocks

with weights shared across all residuals: Wfeconv1 and Wfeconv2), 2 unique sets at the non-linear

mapping step shared between all residuals and all recursions (WRESconv2 and WRESconv1), D sets

of weights for the initial convolution in recursions (W (d)
0nlm

), and one weight matrix for the recursion

subnetwork (Wr). For example, the total number of weight matrices for the model with 9 recursions

is 15, while the depth of the model might be much bigger, e.g. 27 levels (U = 9, D = 9, E = 9).

This significant reduction of the parameters number led to the generation of a compact model

(9MB), suitable for resource-constraint devices that are often used in remote medical diagnostic

applications.

Simplified equations describing the model, taking into account the weight sharing idea, can be

formulated as follows.

From Eq. 5.14 and Eq. 5.22:

F
(e)
fe =

 σ(g
(e)
fe (Ife,Wfe) + Ife), e = 1

σ(g
(e)
fe (F

(e−1)
fe ,Wfe) + Ife), e ∈ (1, E〉

(5.23)

From Eq. 5.17 and Eq. 5.22:

F dnlm = F d,URES =

g
d,U
RES(F

(d,U−1)
RES ,WRES) + I

(d)
nlm, U > 1

gd,URES(I
(d)
nlm,WRES) + I

(d)
nlm, U = 1

(5.24)

The network was optimized using the distance between the regressed HR image values and the

original HR data. Following the general SR CNN loss function (Eq. 5.12 and predictions produced

form applied recursions Eq. 5.21), the final loss can be defined as:

L(θ) =
1

N

N∑
i=1

(Yi −
D∑
d=1

w(d)σ(Wr ~ F
(d)
NLM+X))2 (5.25)

where N is the number of samples in each batch used for model training.

Since the model proposed by us uses residuals for calculating embeddings at the feature extrac-

tion step and for supervised recursive non-linear mapping we call it Deeply Residual Embedding

and Supervised-recursion (DRESNet).
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5.3.3 Comparison with Reference Models

To evaluate the model introduced by us for thermal image enhancement we selected two DL

SR CNNs with architectures closest to it: Deeply Recursive Convolutional Network (DRCN) [192]

and Deep Recursive Residual Network (DRRN) [193]. The graphical overview of the proposed

model and chosen state-of-the-art solutions which are based on similar image enhancement ideas,

but designed for visible light data are shown in Fig. 5.4. All weights captions in the DRESNet

model are consistent with symbols introduced in the mathematical formulation of the network.

Additionally, for all networks, the idea of weights sharing is visualized by using the same weight

labels for blocks with the same weights.

As can be deduced from the presented comparison of networks, the proposed model utilizes

recursive approach, similarly to DRCN. All produced recursions are supervised, what helps to deal

with the overfitting. Yet, there is an essential difference between those architectures introduced

by us to improve accuracy of thermal face hallucination using CNNs by better fitting thermal

data characteristic. This key idea was based on achievements in the image classification domain

which proved that deeper architectures can lead to better performance [39]. Thus, soon after

the introduction of SRCNN [190], which revolutionized SR techniques, the research was directed

towards models with more layers. In our case, the use of more layers lead to widening of the

receptive field and thus obtaining knowledge about facial features by making predictions from

more distant relations between them. The use of convolutional filters with the size bigger than 1x1

lead to increased size of receptive field with every additional convolution. Yet, simple stacking of

more convolutional layers is not beneficial and may cause gradient to vanish. Thus, we followed

a similar approach as ResNet [113] and introduced residual blocks to recursions. Since weights

between residuals are shared, as previously explained, the number of parameters remain constant,

what is beneficial for network optimization and the model size.

An attempt for combining residuals with recursions in a single network has been already made

in the DRRN model [193], presented in Fig. 5.4. However, according to the results presented by its

authors, the best accuracy was achieved for the configuration B1U25, meaning that only 1 recursion

with 25 residual blocks was used. Thus, we treat DRRN as the residual, non-recursive model, while

the DRESNet network, introduced by us, successfully applies residuals and recursions in a single

CNN by examining different configurations of the model, i.e. various numbers and placements of

each block, described in details in the following section. Secondly, contrary to DRRN, we propose

to share weights between all residual blocks across all recursions. DRRN uses weight sharing,

but only across residuals, each recursion utilizes a unique set of weights. Therefore, the number of

parameters in the non-linear mapping subnetwork of DRESNet is reducedD times comparing to the

same subnetwork in DRRN (where D denotes number of recursions). As proved by results presented

in [208] and described in Section 5.3.5, introduced modifications allowed for outperforming DRCN

and DRRN on examined thermal datasets.

5.3.4 Performed Experiments

Since the goal of enhancing thermal data is to generate higher resolution sequences that would

allow for improving accuracy of facial areas detection and non-contact respiratory rate estimation

from detected regions, the proposed method was evaluated on thermal datasets collected by us

with this application in mind (i.e. SC3000-ADRA, Lepton-ADRA 3.2.2). At first the model was

trained and evaluated on higher resolution images (320x240) from the SC3000-ADRA set. LR data
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(a) SRCNN

(b) DRCN

(c) DRRN

(d) DRESNet (ours), please note the use of more convolutions in the feature extraction part,

in this way the receptive field was widened to take into account more distant relations between

facial features in thermal images caused by image blurring (Enlarged version of the proposed

model in appendix)

Figure 5.4. Comparison of latest CNN-based SR models evaluated in the study with the proposed

network introduced specifically for thermal image enhancement; for all models the same number

of filters were used for a fair comparison; upper index ’d’ marked in red denotes blocks for which

weights are not shared across residuals/recursions
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was generated using a scaling factor of 2. Then, to confirm achieved results, similar analysis was

performed for lower resolution sequences from the Lepton-ADRA set (80x60). In the case of the

Lepton-ADRA dataset, we wanted to determine if extremely low resolution images will still allow

for proper image restoration. Thus, LR data was generated using scale 2 and 4 producing images

of 40x30 and 20x15 resolution, respectively. After that, to avoid being biased by dataset collected

by us, we evaluated the proposed SR DL model and compared it with other state-of-the-art models

on the publicly available reference datasets, described in details in Section 3.2.2. In this case, we

analysed three scenarios:

1. Models trained on thermal images from the IRIS dataset and evaluated on the IRIS dataset

2. Models trained on visible light data used for the SR task and evaluated on the IRIS dataset

3. Models trained and evaluated on visible light data usually used for the SR task.

In the case of scenario 2, we were able to determine if high frequency components present in

visible light images, that the model learns to restore, carry valuable information in thermal data

as well. Scenario 3 allowed us to compare the accuracy of the proposed network against existing

solutions using commonly utilized test set and determine whether DRESNet is also effective for

visible light data, which other models were designed for. Generating super-resolved visible light

sequences might also have a huge potential for remote diagnostics, e.g. non-contact heart rate

extraction [44]. Although those applications are not the subject of this work, we would like to

examine them in future studies. Details of conducted experiments on each dataset are presented

in following sub-sections.

SC3000-ADRA: Experiments with Different Windows of Temporal Averaging

Usually datasets used for object detection contain single images only, however, our data was

collected as video sequences in order to enable extraction of vital signs. Thus, there is a potential

of utilizing this feature for improvement of facial features representation. Temporal averaging of

neighbouring frames can be potentially used to remove random noise from collected data. The

possible source of the noise include acquisition device noise or influence of the environment. By

calculating the average of frames in a given window, those random changes could be smoothed,

preserving only important features. In order for this assumption to be true, data acquisition process

has to assume that participants stand still during sequence collection. Otherwise, not only noise

data but also facial features may become blurred. Although during our data acquisition procedure,

subjects were asked to remain still, it’s difficult to avoid involuntary motion completely. Some

of our previous studies were focused on performing analysis of motion influence on respiratory

rate analysis [151], where we proved that attention focusing tasks (e.g. silent reading during data

acquisition) have positive effect on reducing motion artifacts. The error for extracted breathing

rate during silent reading was 0.27 breaths per minute (bpm), around 5 times smaller than when

person was reading aloud. During saying sequences audibly, subjects had to catch breath and most

of them were trying to make a proper intonation what had influence on performed motion (it

was shown that motion content is higher in such sequences using the Sum of Absolute Differences

metric).

In this work, we wanted to estimate if temporal averaging helps with enhancement of thermal

sequences by preserving important details and blurring random data, even in scenarios where

higher motion content may be present. To perform such experiments, an average of W subsequent
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frames was produced and compared against results achieved for a single frame. The window size

was selected taking into account frame per second (FPS) parameter of the thermal sensor and an

average value of the respiration rate for an adult which is equal ˜12 breaths per minute (bpm) in

rest. Three different scenarios were tested:

1. W=1 - average operation not applied

2. W=7 - relatively small window to avoid influence of motion artifacts and respiratory events

3. W=30 - window size equal to number of frames collected during a 1-second period

4. W=90 - window size which covers each respiratory event, as for a respiratory rate of 12 bpm

inhalation/exhalation occurs every 2-3 seconds.

The same averaging operation was performed for 8 and 16-bit data, resulting in 1296 images in

each of 8 subsets. Some initial images for each volunteer were skipped due to body movements before

getting familiar with the procedure, from the rest of samples every 90 (the biggest window) frame

was used as a middle frame within each temporal averaging window. Subsets were named using the

following convention: bitwidth{8/16}-scale{S2}-window{W1/W7/W30/W90}. Prepared sets were

split into train, test and validation parts (70:15:15 proportion), to distinguish those sets from each

other, a proper name representing the purpose of the set was appended to the name, i.e. bit-

width{8/16}-purpose{train/val/test}-scale{S2}-window{W1/W7/W30/W90}. As previously ex-

plained in the SR objective subsection (Sec. 5.2.1), networks learn how to restore image by passing

LR frames through convolutional layers, enhancing it and comparing restored data with original

HR images. Therefore, after generating image sets, we had to prepare inputs for DL model train-

ing. LR images were modeled by downscaling and upscaling original HR frames with a scale 2, as

defined in Eq. 5.4. Examples of original HR images and corresponding LR samples for all window

sizes (8 bit-width data) are presented in Fig. 5.5. Fig. 5.6 shows images which represent difference

between the middle frame in each window and the calculated average frame. One can note that

with the bigger window size, body features become more emphasized.

The proposed SR model and state-of-the-art networks used as a reference (DRCN, DRRN)

were optimized using training subsets. The performance was being evaluated after each training

epoch using validation subsets. Models were trained on each generated dataset separately using

NVIDIA® DGX-1™ Station.

Conducted experiments focused on evaluating how many recursions and residuals in the intro-

duced DRESNet lead to best results in terms of PSNR and SSIM metrics and whether it’s more

beneficial to apply residuals inside recursions (what turned out to be unsuccessful in DRRN) or

before them in the feature extraction part (to address the problem of bigger distances between

interesting components in thermal images). Taking it into account, the number of each block was

randomly selected in order to find the most optimal configuration of the model. Following the

nomenclature introduced earlier (Section 5.3.2), let’s denote E as the total number of residuals in

the feature extraction subnetwork, D as the total number of recursions at the non-linear mapping

step and U as the number of residuals within each of recursion. Thus, tested configurations can

be represented as Dx.Ey.Uz, where x, y, z is the number of each D, E, U blocks, selected from

subsets D =< 1 : 9 : 2 >, E =< 1 : 9 : 2 >, U =< 1 : 9 : 2 > (< startvalue : endvalue : step >).

Hyperparameters tuning was performed using the random search approach on the configuration

similar to DRRN, i.e. E=0, D=1, U=9. For a fair comparison, the same hyperparameters were

applied for training all selected configurations, which were optimized using Adam optimizer [211]
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Figure 5.5. Examples of images from SC3000-ADRA-8; from the left: W1, W7, W30, W90; 1st row

volunteer 1 HR image, 2nd row volunteer 2 LR, 3rd row volunteer 2 HR, 4th row volunteer 2 LR

Figure 5.6. Difference between calculated average frame and the middle frame in each window; 1st

row volunteer 1, 2nd row volunteer 2

applied to the MSE loss function, defined by Eq. 5.12 in the backward propagation. The initial

learning rate was set to 10−2 and then reduced by an order of magnitude after 5 subsequent epochs

during which the validation error was not decreasing. In addition to the loss calculated for each

current batch, a value of the loss for previous batch was also taken into account in the parameters

optimization. This technique, known as momentum, has turned out to be beneficial in improving

accuracy of NN training. In our case, the momentum factor was set to 0.9, meaning that past gradi-

95

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


ents are included in the current update step with the weight of 0.9. Another regularization applied

by us aimed at decaying weights values and thus limiting them from becoming too large. This

was achieved by multiplying weights by 0.999 after each network update. Following [191], training

data were cropped to patches of a size 41x41 with a stride 21. All tested network configurations

used convolutional layers with 96 filters of a size 3x3 each. Weights of convolutional kernels were

initialized using He algorithm [212]. The training was stopped once the learning rate was smaller

than 10−5.

After all introduced DRESNet configurations converged, evaluation of resulting models was

performed on the test subset of the SC3000-ADRA dataset. Fig. 5.7 presents the values of the PSNR

for various DRESNet configurations. As can be seen, the best results were achieved for residuals

applied before recursions (D1, U = 0, E1). It turned out that the best PSNR and SSIM results were

achieved for 3 residuals in the feature extraction subnetwork and 9 recursions without residuals

at the non-linear mapping step. This finding proved the reason for unsuccessful combination of

residuals and recursions in DRRN as their model introduced residuals into recursions. We showed

that better results are achieved if the receptive field is at first widened at the feature extraction step

and then produced feature representations are converted to HR patches using recursions with the

simple stack of convolutions. Thus, in further experiments we utilized DRESNet with the D9.E3.U0

configuration, presented in Fig. 5.8.

Figure 5.7. Exemplary PSNR values for different DRESNet configurations

For DRCN and DRRN model training, TensorFlow implementation 1, recommended as an al-

ternative version of the original model code was used. All hyperparameters were set to their default

values, suggested by authors of those architectures, i.e. [192, 193]. Both networks were configured

with their default setting, i.e. 9 residuals without recursion in DRRN and 16 recursions in DRCN.

Yet, the number of filters in convolutional layers was modified to be consistent across all tested

models. Since, DRESNet uses 96 kernels for all convolutions, the same setup was used for DRRN

and DRCN. This modification was motivated by the fact that increased width of convolutions (i.e.

more filters) leads to better accuracy [190]. Thus, if networks differ in the number of filters, results

may be biased, leading to incorrect conclusions about the introduced architecture, number and

placement of residual/recursion blocks. Taking it into account, all tested SR models were using the

same number and size of kernels.
1https://github.com/LoSealL/VideoSuperResolution Accessed: 2018-10-10
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Figure 5.8. Final architecture of the proposed DRESNet model leading to the highest image quality

metrics (D=9, E=3, U=0); please note that non-linear subnetwork consists of recursive blocks

without residuals, instead residuals are placed in the feature extraction subnetwork what leads to

better restoration accuracy; upper index ’d’ marked in red denotes weights used in a specific block

that are not shared across recursions

Similarly to DRESNet, DRRN and DRCN were evaluated on the test subset of the SC3000-

ADRA dataset, using PSNR and SSIM image quality metrics. For experiments we used all gener-

ated sets of images, i.e. samples produced for different window sizes used in temporal averaging.

We also examined different bit-width of data to determine whether preserving original information

(instead of performing lossy conversion from original raw format to PNG images with lower bit

resolution) helps with restoration of facial components. Specifically, as explained in Section 3.2.2,

14-bit IR digital images obtained from Lepton camera were stored as both 8 and 16-bit PNG files

and compared in performed experiments. Results of the benchmark evaluation performed for all

three SR CNNs are presented in Section 5.3.5.

Lepton-ADRA and SC3000-ADRA: Experiments with Different Scaling Factors

After conducting initial experiments with data collected using FLIR® SC3000 sensor [208], we

wanted to determine if our solution would work for images with much lower spatial resolution, i.e.

80x60 vs 320x240. Hence, our next study [213] focused on enhancing thermal sequences acquired

with the FLIR® Lepton camera. Details about this dataset and parameters of the used thermal

sensor were presented in Section 3.2.2. Verification of the proposed novel NN SR architecture on a

second database allowed for limiting the possibility of results being biased towards only one set of

images.

In addition to using a lower resolution camera, we decided to evaluate the accuracy and ro-

bustness of DRESNET on images with extremely small spatial size by using bigger scaling factors

that in the previous work [208]. Specifically, we not only applied a scale factor of 2 to simulate

resolution degradation, but also a scale factor of 4. As a result, LR inputs to the model, produced

by downscaling original HR frames, had sizes of 40x30 and 20x15 for scales 2 and 4, respectively

in a case of the Lepton-ADRA set and 160x120 and 80x60 for scales 2 and 4, respectively in a
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case of the SC3000-ADRA set. Examples of produced 20x15 Lepton images (8-bit data) upscaled

back to the original size of 80x60 and corresponding original HR frames are presented in Fig. 5.9.

The blurring and loss of facial features is clearly visible in generated LR images. The goal of the

proposed SR model is to restore them, so that the produced outputs are as similar to the original

frames as possible.

Figure 5.9. Examples of HR samples from the Lepton-ADRA-8 set and corresponding LR images

generated with bicubic interpolation using scale 4; different interpolation techniques were used in

the dissertation for visualization of low resolution data purposes only, images of original resolution

were used in all experiments

Since previous experiments revealed that the best DRESNet configuration (residuals in the

feature extraction part instead of inside recursions at the non-linear mapping step) leads to the

best values of image quality metrics, we decided to utilize the same configuration in further studies

on the influence of scaling factor. At first, the constructed set was divided into two parts: I) data

used for training the proposed SR model (from first 15 volunteers), II) data (from the remaining

volunteers) which after enhancement with the trained SR network could be used for studies on the

influence of face hallucination on accuracy of respiratory rate estimation, described in details in

the next chapter (Chapter 6). The latter set was also used to evaluate the accuracy of the proposed

DRESNet network using PSNR and SSIM metrics.

To ensure high variability of data, so that the model will learn correct predictions and calculated

evaluation metrics will be meaningful, 20 images per volunteer were randomly selected for all three

parts of the dataset (total of 300 images). The same data split (15 volunteers for training, remaining

for testing) and random selection of frames was done for both 8-bit and 16-bit PNG images. LR

inputs for the model were prepared by downscaling and upscaling all images from the constructed

sets with a scale factor 2 and 4. After this step, 8 data subsets were created: 8-bit and 16-bit scale
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2 and scale 4 images used for SR model training (each set with 300 images - 20 images from 15

volunteers); 8-bit and 16-bit scale 2 and scale 4 images on which the model was evaluated (each

set with 320 images - 20 images from 16 volunteers). The nomenclature of those sets is specified as

bit-width{8/16}-purpose{train/test}-scale{S2/S4}, e.g. for 8-bit data used for evaluation, created

by downscaling images with a scale 4 the name of the subset is Lepton-ADRA-8-test-S4, for the

same configuration but used for training, the name is Lepton-ADRA-8-train-S4.

For the SC3000-ADRA dataset, similarly to the Lepton-ADRA set, 4 images from each of first

15 subjects were used for DRESNet optimization to obtain high variability of data. The rest of

sequences (from remaining 25 volunteers were utilized for RR estimation studies, described in the

next chapter, Sec. 6.3.2). The reason for selecting 4 images per person instead of 30 was motivated

by memory limitations of hardware used for training and since SC3000 frames have higher resolution

than Lepton ones, only limited number of samples were within this limit. We deduced that this

number of images is sufficient for CNN-based SR model training, as each frame is either way further

divided into smaller (41x41) overlapping patches using a stride of 21. Data preparation was the

same as in case of Lepton-ADRA set, resulting in 8 sets named SC3000-ADRA-bit-width{8/16}-
purpose{train/test}-scale{S2/S4}.

The proposed DRESNet model was trained on each set separately, using 10% of samples for

validation, which was performed after each training epoch in the same way as for experiments on

various averaging window sizes (Sec. 5.3.4). Also, the same hyperparameters as in those previous

experiments were utilized for model training (i.e. 41x41 patches extracted using stride of 21, Adam

optimizer with momentum set to 0.9, weight decay of 0.999, initial learning rate 10−2 decreased by

an order of magnitude every 5 epochs for which validation error was not decreasing). Trained models

were later used to enhance corresponding test sets, i.e. model trained on Lepton-ADRA-8-train-S2

was used to generate HR samples from the Lepton-ADRA-8-test-S2 set, etc. For all generated HR

frames, evaluation was done by calculating values of PSNR and SSIM metrics. Achieved results

are presented and discussed in the following section (Section 5.3.5).

Reference Public Datasets: Experiments with Deblurring

The last experiment performed by us involved the use of publicly available thermal dataset of

facial images - the IRIS database. All details, such as size of the set, data format, etc. were pre-

sented in details in Chapter 3. By using public data, we allow readers to verify their own solutions

against results achieved with the use of the proposed novel SR CNN dedicated to processing of

thermal images. Eventually, we would also like to make datasets collected by us publicly avail-

able. Currently we are working on preparing data structure and selecting a storage for collected

sequences. Instructions on how to access datasets will be placed in our repository containing all

data associated with our research on thermal image Super Resolution 1.

The IRIS dataset was randomly divided into training, validation, and test sets (8:1:1 split) and

used to optimize SR CNNs models. In this experiment DRESNet was compared against SRCNN,

DRCN, and DRRN using scaling factor of 2. In addition we also evaluated pixel-2-pixel Tensorflow

Generative Adversarial Network (GAN)2, referred thereafter as p2p, based on the image to image

translation idea [214]. It’s important to note that p2p network solves a separate problem from

the Super Resolution task. Deblurring aims only at mitigating a problem of alleviating effect of

convolution, while super-resolved images are also reversed versions of down-sampled data. Since

1https://github.com/akwasnie/Super-Resolved-Thermal-Imagery
2https://github.com/ceshine/pix2pix-deblur Accessed: 2018-12-29
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both of those task are exclusive, we wanted to compare them and evaluate whether deblurring also

helps with thermal data enhancement.

All models were trained on the NVIDIA® DGX-1™ Station. For DRESNet, DRCN, and DRRN

the same training procedure as in case of our thermal datasets was applied. SRCNN was optimized

using TensorFlow version1 of its original implementation and default hyperparameters [190]. As

explained earlier, the bigger filter width may increase network accuracy and thereby lead to false

assumption about other aspects of the network architecture. Thus, to ensure fair comparison with

other SR CNN models, the number and size of filters in convolutions was set to the same value

(96 filters of a size 3x3). For GAN p2p model training the default setting was applied.

After optimizing all DL networks on the training subset of the IRIS dataset, they were evaluated

on the test part of the same database. Yet, since most of the models, except ours, were designed for

visible light data, an interesting research question is whether the proposed by us novel SR solution

could perform equally well on visible light frames as on thermal sets. Taking it into account, all

models trained on the thermal dataset IRIS were also evaluated on the visible light Set5.

Furthermore, we studied the effect of utilizing knowledge learnt by models from visible light

data on thermal data resolution increase. Since the characteristic of images from different domains

varies, in theory worse results would be achieved by directly applying models trained on data from

one spectrum to the other. We wanted to verify this assumption by training all SR CNN networks

on the combined BSD and SPSR visible light databases and then calculating achieved metrics

on images from two different domains: I) test subset of the IRIS thermal set II) Set5 containing

RGB pictures acquired in visible light. Set5, BSD and SPSR are visible light benchmarking sets

commonly used for validating SR algorithms, previously described in Chapter 3, Section 3.2.2.

5.3.5 Results and Discussion

Image quality metrics: Peak Signal-to-Noise Ratio and Structural Similarity Metric calculated

for images from SC3000-ADRA-{8/16}-test-S2-{W1/W7/W30/W90} sets generated with Super

Resolution models are presented in Tables 5.1 and 5.2, respectively.

Table 5.1. Experiments with different averaging window sizes: Peak Signal-to-Noise Ratio (for facial

regions and frames as a whole) for generated 8 and 16-bit LR images and enhanced with DRCN,

DRRN or DRES(Net) (our) SR models (red - first best, blue - second best for each region and

within each averaging window separately)

SC3000-ADRA-8-test-S2-W1 SC3000-ADRA-16-test-S2-W1

region bicubic DRCN DRRN DRES bicubic DRCN DRRN DRES

eye 27.90

±0.10

29.86

±1.84

41.01

±1.81

43.87

±1.58

27.90

±0.11

51.29

±0.11

52.12

±0.34

53.06

±0.39

face 27.92

±0.10

30.28

±1.86

40.73

±1.65

44.20

±1.78

27.90

±0.05

51.31

±0.09

52.11

±0.53

53.88

±0.56

nose 27.93

±0.21

30.36

±1.52

41.72

±1.55

44.98

±1.86

27.89

±0.14

51.28

±0.13

52.13

±0.30

53.38

±0.63

1https://github.com/tegg89/SRCNN-Tensorflow Accessed: 2018-12-29
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frame 27.91

±0.16

31.49

±2.37

43.07

±1.06

47.49

±1.28

27.90

±0.11

51.29

±0.11

52.12

±0.39

53.36

±0.61

SC3000-ADRA-8-test-S2-W7 SC3000-ADRA-16-test-S2-W7

region bicubic DRCN DRRN DRES bicubic DRCN DRRN DRES

eye 27.88

±0.10

30.14

±2.73

41.94

±1.97

44.72

±1.70

27.89

±0.10

51.33

±0.26

52.12

±0.37

53.39

±0.46

face 27.90

±0.03

30.66

±2.30

41.22

±1.50

44.33

±1.64

27.90

±0.02

51.34

±0.16

51.95

±0.47

53.98

±0.48

nose 27.89

±0.14

30.36

±2.54

41.28

±1.71

44.57

±1.62

27.91

±0.15

51.32

±0.24

52.03

±0.26

53.11

±0.51

frame 27.89

±0.10

31.15

±2.67

43.18

±1.01

47.45

±1.21

27.90

±0.11

51.33

±0.23

52.05

±0.38

53.47

±0.58

SC3000-ADRA-8-test-S2-W30 SC3000-ADRA-16-test-S2-W30

region bicubic DRCN DRRN DRES bicubic DRCN DRRN DRES

eye 27.91

±0.11

29.44

±2.47

42.11

±2.16

44.85

±2.00

27.90

±0.02

51.33

±0.14

52.12

±0.32

53.44

±0.63

face 27.90

±0.02

30.59

±2.36

41.68

±1.72

44.49

±1.73

27.90

±0.02

51.35

±0.12

51.95

±0.39

54.28

±0.60

nose 27.89

±0.13

30.78

±2.93

42.59

±1.65

45.54

±1.93

27.91

±0.11

51.31

±0.14

52.09

±0.30

53.90

±0.77

frame 27.90

±0.10

31.51

±2.92

43.76

±1.18

47.69

±1.28

27.90

±0.09

51.33

±0.14

52.07

±0.34

53.78

±0.75

SC3000-ADRA-8-test-S2-W90 SC3000-ADRA-16-test-S2-W90

region bicubic DRCN DRRN DRES bicubic DRCN DRRN DRES

eye 27.89

±0.10

30.90

±3.32

43.77

±2.29

46.55

±2.08

27.91

±0.15

51.24

±0.21

52.22

±0.46

53.95

±0.82

face 27.90

±0.03

31.64

±2.81

42.84

±1.07

46.00

±1.77

27.90

±0.03

51.26

±0.18

52.02

±0.55

54.64

±0.77

nose 27.90

±0.11

32.34

±3.14

43.82

±1.86

46.54

±1.80

27.90

±0.13

51.26

±0.19

52.13

±0.44

54.13

±0.81

frame 27.89

±0.09

31.81

±3.09

44.62

±1.19

49.02

±1.25

27.90

±0.10

51.25

±0.20

52.14

±0.49

54.18

±0.85
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Table 5.2. Experiments with different averaging window sizes: Structural Similarity Index (for facial

regions and frames as a whole) for generated 8 and 16-bit LR images and enhanced with DRCN,

DRRN or DRES(Net) (our) SR models (red - first best, blue - second best for each region and

within each averaging window separately)

SC3000-ADRA-8-test-S2-W1 SC3000-ADRA-16-test-S2-W1

region bicubic DRCN DRRN DRES bicubic DRCN DRRN DRES

eye 0.71

±0.28

0.88

±0.04

0.98

±0.01

0.99

±0.00

0.71

±0.28

0.85

±0.04

0.97

±0.01

0.99

±0.01

face 0.64

±0.27

0.93

±0.01

0.98

±0.00

0.99

±0.00

0.64

±0.27

0.91

±0.01

0.98

±0.01

0.99

±0.00

nose 0.53

±0.39

0.92

±0.04

0.99

±0.01

0.99

±0.00

0.53

±0.39

0.90

±0.03

0.99

±0.01

0.99

±0.00

frame 0.64

±0.32

0.89

±0.06

0.98

±0.01

0.99

±0.01

0.64

±0.32

0.92

±0.01

0.98

±0.01

0.99

±0.01

SC3000-ADRA-8-test-S2-W7 SC3000-ADRA-16-test-S2-W7

region bicubic DRCN DRRN DRES bicubic DRCN DRRN DRES

eye 0.73

±0.25

0.96

±0.01

0.98

±0.01

0.99

±0.01

0.73

±0.25

0.94

±0.0.05

0.98

±0.01

0.99

±0.01

face 0.63

±0.26

0.96

±0.01

0.98

±0.00

0.99

±0.00

0.63

±0.26

0.96

±0.01

0.98

±0.01

0.99

±0.00

nose 0.50

±0.41

0.96

±0.01

0.99

±0.01

0.99

±0.01

0.50

±0.41

0.96

±0.01

0.99

±0.01

0.99

±0.01

frame 0.64

±0.32

0.89

±0.06

0.98

±0.01

0.99

±0.01

0.64

±0.32

0.94

±0.01

0.98

±0.01

0.99

±0.01

SC3000-ADRA-8-test-S2-W30 SC3000-ADRA-16-test-S2-W30

region bicubic DRCN DRRN DRES bicubic DRCN DRRN DRES

eye 0.70

±0.25

0.96

±0.01

0.98

±0.01

0.99

±0.01

0.70

±0.25

0.87

±0.06

0.98

±0.02

0.99

±0.01

face 0.61

±0.26

0.96

±0.01

0.98

±0.00

0.99

±0.00

0.61

±0.26

0.93

±0.01

0.99

±0.01

0.99

±0.00

nose 0.50

±0.36

0.98

±0.01

0.99

±0.01

0.99

±0.00

0.50

±0.36

0.91

±0.03

0.99

±0.01

1.00

±0.00

frame 0.62

±0.30

0.90

±0.06

0.98

±0.01

0.99

±0.01

0.62

±0.30

0.93

±0.01

0.98

±0.01

0.99

±0.01

SC3000-ADRA-8-test-S2-W90 SC3000-ADRA-16-test-S2-W90

region bicubic DRCN DRRN DRES bicubic DRCN DRRN DRES
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eye 0.75

±0.21

0.97

±0.01

0.99

±0.01

0.99

±0.00

0.75

±0.21

0.96

±0.03

0.99

±0.01

0.99

±0.01

face 0.64

±0.24

0.98

±0.00

0.99

±0.00

0.99

±0.00

0.64

±0.24

0.97

±0.01

0.99

±0.01

0.99

±0.00

nose 0.48

±0.37

0.98

±0.01

0.99

±0.01

0.99

±0.00

0.48

±0.37

0.96

±0.02

0.99

±0.00

1.00

±0.00

frame 0.65

±0.29

0.90

±0.06

0.98

±0.01

0.99

±0.01

0.65

±0.29

0.93

±0.01

0.98

±0.01

0.99

±0.01

Examples of thermal images from SC3000-ADRA-8-test-S2-W1 set are presented in Fig. 5.10.

Facial area in each image was enlarged to better show features representation in original data. Then,

a size of a region with chosen facial feature was further increased to visualize difference of feature

quality after applying various SR networks vs. LR image generated with bicubic interpolation.

Enlarged regions of original HR data were not presented intentionally, as a goal was to visualize

differences between LR and SR patches. As can be seen, visually there are no big differences

between applied models, but some improvement of features representation comparing to LR data

is visible. Comparison of eye and nose areas extracted from LR image (SC3000-ADRA-8-test-S4-

W1 set) generated with bicubic interpolation and its corresponding enhanced version (processed

with the proposed DRESNet network) are presented in Fig. 5.11 and 5.12, respectively.

Table 5.3 shows comparison of image quality metrics (PSNR and SSIM) calculated on both

datasets for different image scaling factors. Presented values include results for 8 and 16-bit LR

images generated with bicubic interpolation and then enhanced with the proposed thermal super-

resolution Deep Neural Network.

Relation between PSNR calculated for the reference thermal dataset IRIS and the number

of residuals applied to enhance thermal image resolution in feature extraction subnetwork of the

proposed SR model (DRESNet) is presented in Fig. 5.13.

Table 5.3. Experiments with different scaling factors: PSNR and SSIM for sequences downscaled

with bicubic interpolation using scale of 2 and 4 and then enhanced with the proposed SR DL

model (red - first best, blue - second best for each dataset, separately for SSIM and PSNR).

Dataset Method Bit resolution
Evaluation Metrics

PSNR SSIM

Lepton-ADRA-test-S2

bicubic
8 bits 41.82 ± 0.55 0.96 ± 0.01

16 bits 63.82 ± 0.73 0.99 ± 0.01

DRESNet
8 bits 43.21 ± 0.33 0.97 ± 0.01

16 bits 72.92 ± 4.47 0.99 ± 0.01

Lepton-ADRA-test-S4

bicubic
8 bits 39.91 ± 0.46 0.81 ± 0.11

16 bits 61.31 ± 0.69 0.99 ± 0.01

DRESNet
8 bits 42.18 ± 0.24 0.95 ± 0.01

16 bits 67.34 ± 5.83 0.99 ± 0.02
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SC3000-ADRA-test-S2

bicubic
8 bits 42.69 ± 3.36 0.81 ± 0.22

16 bits 68.98 ± 1.02 0.99 ± 0.01

DRESNet
8 bits 43.61 ± 0.18 0.96 ± 0.01

16 bits 70.05 ± 0.91 0.99 ± 0.01

SC3000-ADRA-test-S4

bicubic
8 bits 41.36 ± 2.30 0.79 ± 0.21

16 bits 65.74 ± 0.95 0.99 ± 0.01

DRESNet
8 bits 43.97 ± 0.22 0.96 ± 0.01

16 bits 66.50 ± 0.93 0.99 ± 0.01

Results of experiments with reference thermal and visible light data are presented in Tables

5.4, 5.5, 5.6. Image quality metrics (Peak Signal-to-Noise Ratio and Structural Similarity Index

Metric) collected in those tables allow to evaluate whether 1) performance of the proposed thermal

image enhancement model is sufficient also for other publicly available databases to ensure it’s not

biased toward our sets - Table 5.4; 2) features optimized on visible light images are transferable

to Super Resolution task applied to thermal data leading to satisfactory restoration accuracy, as

models were trained in visible light domain and then utilized for thermal image enhancement -

Table 5.5; 3) the proposed model is also applicable to visible light image enhancement, even though

its structure was designed with thermal image representation in mind - Table 5.6. In addition, we

also present results of deblurring algorithm and compare it with the proposed SR model in Table

5.4, since those tasks are exclusive and we believe they should produce similar results. Qualitative

results of applying tested and proposed SR Deep Neural Networks, as well as deblurring algorithm

on the same source image from the reference thermal database IRIS are presented in Fig. 5.14.

Table 5.4. Experiments with reference thermal dataset and deblurring algorithm: Peak Signal-to-

Noise Ratio (top row) and Structural Similarity Index Metric (bottom row) for the IRIS test subset

downscaled and then upscaled with a scale 2, all models trained on the IRIS training subset (red

- first best, blue - second best)

bicubic p2p-deblur SRCNN DRCN DRRN DRESNet

29.4 ± 0.13 30.10 ± 1.12 29.61 ± 0.36 31.33 ± 0.78 34.01 ± 0.41 34.93 ± 0.55

0.78 ± 0.02 0.83 ± 0.01 0.82 ± 0.02 0.88 ± 0.01 0.88 ± 0.01 0.893 ± 0.02

In-depth benchmark evaluation performed for various datasets proved that the proposed super-

resolution CNN leads to the increase of thermal image quality expressed by PSNR and SSIM

metrics. Comparison with other state-of-the-art solutions used for image enhancement (see Table

5.1 and 5.2) showed that the use of more blocks in the feature extraction subnetwork and thus

widening of the receptive field is beneficial in case of thermal data, where dependencies between

interesting components are bigger. The proposed DRESNet model outperformed other solutions by

a large margin. In the best case by 21.13 dB comparing to bicubic interpolation, 17.21 dB to DRCN

and 4.4 dB to DRRN. Calculated SSIM values showed advantage of the proposed architecture over

most of other models, except DRRN. It may be caused by the fact that additive noise is better
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(a) Original HR

data

(b) Generated

LR data

(c) Enhanced

with DRCN

(d) Enhanced

with DRRN

(e) Enhanced

with DRESNet

Figure 5.10. Examples of original HR thermal images from SC3000-ADRA-8-test-S2-W1 set, LR

samples generated with bicubic interpolation scale 2 and their enhanced versions produced using

evaluated SR models

Table 5.5. Experiments with reference thermal dataset and transfer of knowledge from visible light

images: Peak Signal-to-Noise Ratio (top row) and Structural Similarity Index Metric (bottom row)

for the IRIS test subset downscaled and then upscaled with a scale 2, all models trained on the

BSD+SPSR training subset (red - first best, blue - second best)

bicubic SRCNN DRCN DRRN DRESNet

29.4 ± 0.13 29.59± 0.32 29.63 ± 0.27 33.67 ± 0.37 34.29 ± 0.89

0.78 ± 0.02 0.81 ± 0.02 0.81 ± 0.02 0.87 ± 0.02 0.89 ± 0.02

reflected by PSNR metric and even in case of its small values, it may become exceedingly prevalent

in very small resolution data. This relation is not that clear in SSIM values.

Analysis of various window sizes used for averaging frames turned out to be beneficial for further

enhancement of low resolution inputs. The highest values of image quality metrics were obtained
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(a) scaled down (4x) with bicubic interpolation (b) after applying the proposed DRESNet model

Figure 5.11. Example of extracted eye area

(a) scaled down (4x) with bicubic interpolation (b) after applying the proposed DRESNet model

Figure 5.12. Example of extracted nose area

Table 5.6. Experiments with visible light dataset: Peak Signal-to-Noise Ratio (top row) and Struc-

tural Similarity Index Metric (bottom row) for the Set5 visible light data downscaled and then

upscaled with a scale 2, all models trained on the BSD+SPSR training subset (red - first best,

blue - second best)

bicubic SRCNN DRCN DRRN DRESNet

30.2 ± 0.13 32.35 ± 0.32 33.63 ± 0.27 35.50 ± 1.89 35.84 ± 1.86

0.82 ± 0.02 0.87 ± 0.02 0.89 ± 0.02 0.93 ± 0.05 0.94 ± 0.05
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Figure 5.13. Relation between Peak Signal-to-Noise Ratio (PSNR) and the number of residuals

in the feature extraction subnetwork (E) at a given number of recursions (D); configuration with

residuals placed inside recursions was also visualized to show that this setup is unsuccessful, as

proved in previous experiments (Fig. 5.7)

for big averaging windows (90 adjacent frames) in case of all tested Super Resolution models. This

result may indicate the need of applying additional pre-processing steps or focusing volunteers’

attention on some tasks (as showed in the previous chapter (Sec. 4.2.1)) in order to reduce motion.

Yet, it may be still difficult to completely avoid involuntary movements during data acquisition.

In such cases, an interesting research problem would be to make use of differential images (see Fig.

5.6) that would expose object features while blurring redundant background details.

Moreover, as can be seen in Tables 5.1, 5.2, and 5.3, the need of using original bit resolution is an

important finding of the presented work. We can observe gain of PSNR of at least 10% for sequences

converted to higher bit resolution (16 bits) from original 14-bit format. Lossy compression to 8-bit

PNG format led to decrease of image quality. In many cases, the difference of PSNR metric between

8 and 16-bit data was even higher, e.g. for window of a size 1, eye area the difference was ˜25%.

Higher bit resolution of images turned out to be beneficial for other models, as well. The difference

of PSNR between DRCN and DRESNet was reduced 5 times (from 15.36 dB to 2.97 dB) if 16-bit

sequences were used (window size 90). Similarly for DRRN, we noticed the reduction of PSNR

difference by around 10% comparing to 8-bit sequences. This finding proves requirement for one of

tasks defined in our study - the need of creating thermal image database with preserved original

raw data format. Thus, facial sets collected by us (see Chapter 3) may become a useful reference for

further studies on thermal image processing and we are planning to make them publicly available.

In addition, experiments performed for different scaling factors (Table 5.3) showed that SC3000-

ADRA set downscaled 4 times and then enhanced with Deep Neural Network produced even higher

PSNR and SSIM values than for scaling factor of 2. This result proves the high robustness of the

proposed SR model and confirms that it’s possible to learn efficient image restoration function

that would allow for improving image resolution even for inputs with a very small spatial sizes

and low quality. Therefore, theoretically low-cost thermal sensors can be used in remote medical

diagnostics leading to accuracy equivalent to the one achieved with more advanced cameras.
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(a) Original HR data

(b) LR data, scale 2, PSNR 28.45

(c) Enhanced with SRCNN, PSNR 29.16

(d) Enhanced with p2p deblur, PSNR 29.62

(e) Enhanced with DRCN, PSNR 31.86
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(f) Enhanced with DRRN, PSNR 34.05

(g) Enhanced with DRESNet, PSNR 34.25

Figure 5.14. Results of applying selected SR methods and deblurring algorithm (pix2pix) on the

same source image from IRIS set and calculated PSNR metric

Based on the quantitative analysis of different SR networks on reference thermal and visible

light databases, it was confirmed that increased number of convolutions in the feature extraction

subnetwork lead to the higher values of PSNR. Our proposed model achieved the highest values of

PSNR and SSIM metrics on IRIS (Table 5.4 and 5.5) and RGB Set5 (Table 5.6) databases, outper-

forming other state-of-the-art solutions. Also, our study showed that residuals can be successfully

used with recursions in a single CNN network. Previous attempts of combining these blocks in

DRRN [193] did not lead to the higher accuracy and the proposed solutions ended up using either

recursions or residuals, but not both of them at the same time. Our extensive benchmark evaluation

proved that the best results are achieved if residuals are placed before recursions, not inside them

as in DRRN. PSNR results of block placement analysis are also visualized in Fig. 5.13. As can be

observed, the increase of PSNR value is the highest for residuals applied before recursions (D=9,

U=0, increasing E). Even if only one residual is used in non-linear mapping subnetwork (U=1)

together with recursive blocks (D=9), PSNR values remain almost constant. This is an important

finding for designing SR Deep Neural Networks. The proper placement of specific blocks should be

carefully analysed to improve the image enhancement process.

Furthermore, experiments performed for networks trained on visible light images showed that

in the case of SR algorithms transfer knowledge from visible light spectrum is not sufficient. All

models trained on RGB images (BSD+SPSR set - Table 5.5) led to worse results of the PSNR

metric than models trained from scratch on thermal data (IRIS set - Table 5.4). This may indicate

that features learnt from visible light images are sufficient for performing image classification, as

shown in Chapter 4, but it’s not possible to restore proper representation of thermal regions which

lack in high frequency components present in visible light spectrum data.

Results produced by the GAN p2p network aimed at performing deblurring operation showed
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that its ability to restore thermal features is worse than for convolutional-based models by almost 5

dB comparing to the architecture proposed by us. Since GAN models are more difficult to train [39],

the limited amount of training samples may be a reason for overfitting and lack of generalization

to new samples, leading to worse image quality metrics. Taking it into account we would like to

perform more experiments with GAN-based super-resolution and deblurring models in order to

evaluate possibility of applying them to image domains other than visible light spectrum.

5.4 Problems

Apart from ideas for accuracy and performance improvement, discussed in the previous Section,

another issue associated with the selection of network structure was identified by us. Although

the achieved results are promising, we are aware of some limitations of the introduced thermal

image enhancement solution. First of all, the configuration of neural network was chosen from a

limited set of parameters in our studies [213, 208]. However, for such complicated architectures

this approach may not be efficient due to the confined number of possible combinations of utilized

building blocks. Thus, we would like to apply evolutionary algorithms that would generate the most

promising configuration by evolving the proposed neural network. Also, there are other techniques

that could help with model training and increasing its performance, such as gradient clipping or

data augmentation.

Furthermore, according to results achieved by state-of-the-art Super Resolution models on visi-

ble light data, image quality of data produced using GANs is better than if CNNs are applied. The

novel SR structure proposed by us was based on CNNs due to ease of training them comparing to

generative models. Yet, more and more studies have been recently focused on improving stability

of GANs [215], thus it’s important to analyse whether existing solutions are suitable for thermal

image processing and compare results achieved by them with the proposed DRESNet. Some pub-

lications already considered application of GANs to thermal image enhancement task [207], but

they lack a quantitative comparison of the proposed model with other SR networks. We would like

to perform such analysis in the future work.

Details about neuroevolution approach and explanation how it could be used for generation

and training of SR CNN model as well as the initial analysis of suitability of existing GAN models

to task of enhancing thermal images and other future work directions are provided in Chapter 7.

5.5 Summary

In this Chapter, we explained the objective of Super Resolution task and provided in-depth

overview of existing Super Resolution algorithms with the main focus on Convolutional Neural Net-

work based solutions. Presented DL models were analyzed in order to identify blocks and structures

that could be potentially useful for thermal image processing, taking into account differences in

representation of images between different domains.

After performed analysis, a novel Deep Neural Network designed for enhancing thermal im-

age sequences was introduced. Contrary to other state-of-the-art models, the architecture of the

proposed solutions was selected with the characteristic of thermal images in mind. Specifically, we

proposed to widen a receptive field, so that the model will be able to learn more distant relations

between facial region features that are observed in thermal imaging. Most of other solutions were
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designed for visible light images for which this problem is not valid since objects are represented

by high frequency components that can be easily extracted with smaller receptive fields.

The accuracy and robustness of the proposed SR model was verified on a wide range of ther-

mal and visible light databases, proving that the introduced architecture outperforms previous

solutions in the image enhancement task. Conducted experiments included evaluation of different

image downscaling factors, showing that image can be restored even from inputs as small as 20x15,

producing satisfactory values of image quality metrics. This opens a lot of possibilities for re-

mote medical diagnostic solutions that could provide non-disruptive way of monitoring health and

emotional status of people during their daily activities. In-depth evaluation performed on thermal

images with different resolutions and acquired with various thermal cameras prove the first part

of the thesis II defined in the presented dissertation, as it has been shown that the introduced

novel architecture of Deep Convolutional Neural Networks allows for increasing resolution of those

sequences, outperforming previous super-resolution methods.

The second part of the formulated thesis II specifies the need for evaluating whether resolution

of thermal images increased with the proposed DL model lead to improvement of facial areas

detection accuracy. Our motivation for those studies is based on the fact that some examples

of telemedicine solutions can potentially take advantage of more accurate localization of facial

features, e.g. proposed and studied by us non-contact estimation of vital signs [169, 172], person

identification [216] and emotion recognition from extracted video-based vital signs [158]. Next

Chapter (Chapter 6) is devoted to introduction and explanation of those ideas in order to evaluate

authenticity and genuineness of the second part of the thesis II.
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Chapter 6

Improvement of Contactless Vital

Signs Estimation

6.1 Introduction and Overview

The main goal of our work is to propose novel Deep Learning (DL) solutions for thermal image

processing in order to enable new innovative applications in the area of remote medical diagnostics.

The primary motivation for such studies is global aging and influence of latest inventions (i.e.

wearable devices, smart home infrastructure) on our lives. Global aging and demographic shift

in many societies (by 2030 there will be 3 times more super-aged nations around the world than

today [41]) has revolutionized the current healthcare definition and led to growing expectations of

healthcare providers to deliver solutions that would allow to perform some medical activities outside

professional institutions, preferably without any supervision, e.g. medical consultations, such as

melanoma detection [217]; virtual nursing [218]; remote person monitoring by collecting vital signs

[44, 172] or evaluating physiological state [219]; therapy support, such as phobias treatment [220].

On the other hand, increased self-awareness of societies and easier access to health monitoring

and tracking applications and devices steer the direction of a lot of studies towards Artificial

Intelligence (AI) driven telemedicine use cases. DL has enabled many of such solutions by providing

tools for generating predictions from various input sources (e.g. RGB cameras, microphones, low-

cost thermal sensors, etc.) with human-like accuracy. For example, nowadays smart watches allow

to track daily activities, measure basic vital patterns and has been proved to accurately detect

emergency situations [221]. Similar solutions could be also embedded into other devices within the

smart home infrastructure, e.g. smart home speakers reminding about regular exercises, or smart

kitchen appliances equipped with algorithms for suggesting proper nutrition, controlling diet and

improving eating habits [222] (e.g. to treat obesity or support diabetes monitoring).

Taking it into account, the next goal of our research was to evaluate proposed DL detection

and thermal image enhancement models in possible non-contact vital signs monitoring applications.

Specifically, we focus on estimation of Respiratory Rate (RR) from nostril areas by analysing pixel

values changes associated with temperature differences during inhalation and exhalation. Our pre-

vious studies of this problem were utilizing original resolution data and were making use of manually

marked facial regions [172, 151]. Here, we want to determine whether there is a relation between

PSNR (achieved by the proposed super resolution DRESNet model and other analysed state-of-

the-art networks) and accuracy of detecting facial regions that could be used for extraction of
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breathing patterns, e.g. nose area. Utilization of accurate object detection algorithm may allow for

implementing a fully automated remote diagnostic solution. Another application considered by us

focuses on non-contact extraction of vital signs. As presented in our research, we are particularly

interested whether thermal image resolution increased with Convolutional Neural Network (CNN)

could lead to more accurate extraction of a breathing rate. Conducted experiments include analysis

of different thermal datasets, scaling factors and respiratory rate estimators. Results achieved with

the introduced novel Deep Neural Network (DNN) architecture are compared against Eulerian

Video Magnification [223], color and motion magnification algorithm, applied in literature for am-

plifying heart rate and respiration patterns [224] Since we want to target applications of vital signs

collection during daily activities, such as reading a book, working at the computer, driving a car,

person identification may be essential for tracking changes in recorded patterns. Face recognition is

one of the most common computer vision approaches applieed to solve this problem. Taking it into

account, one of our studies [216] was aimed at evaluating whether DNN used for face recognition

will produce more accurate predictions if thermal sequences are first enhanced with the proposed

model. Finally, we also investigate possibility of extracting emotions from estimated vital signs,

as such information may be valuable for monitoring psychological status of people suffering from

neurological and psychological disorders or working under a stress [219].

6.2 Related Work in Thermal Domain

In this section we focus on providing a brief overview of existing image processing-based so-

lutions for non-contact estimation of RR. We also present some studies conducted on tracking of

facial areas used for respiratory signal extraction.

Non-contact estimation of respiratory patterns has a huge potential in various medically-

oriented applications, e.g. stress analysis of autonomous vehicles passengers [225], remote diag-

nostics with smart home platforms [226] or drones in areas with a limited walkable/driveable

access [227], vital signs analysis that could be applied to security applications, e.g. during border

control [228], infants monitoring during hospital visits, especially important for premature babies

[229], and many others.

Naturally, such solutions may strongly benefit from image processing techniques and as a result

limit the use of additional sensors, as compact cameras are sufficient for most of them. Moreover,

cameras could be potentially integrated into existing devices or home and other environments

infrastructure, allowing for monitoring of people in a non-disturbing way. Processing of thermal

image sequences for the needs of RR estimation has been already widely studied. Dilation-induced

changes of pixel values around the nose tip and associated with them breathing cyclic information

were also utilized for mental stress detection by Cho Y. et al. [230]. Sleep studies made use of

thermal-based airflow changes extracted in a non-contact way, showing a high detection accuracy

of apnea from recorded breathing activity [231]. Fei J. et al. [232] studied the influence of applying a

narrow bandpass filter to the proposed respiratory rate imaging system and proved its suitability for

an unobtrusive, desktop monitoring solution. Another photoplethysmography method was based

on a statistical algorithm and quasi-periodicity phenomenon of breathing signal (lower and higher

pixel values in data distribution corresponding to colder (inhalation) and warmer (exhalation)

temperature of air in the nostril area during respiration [233]. Similar approach was introduced by

Fei J. and Pavidis I. [234], where breathing signals were calculated from the nostril area, which

was detected and tracked over time with the probabilistic models.
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Later, Ruminski J. [235] proposed and evaluated a method for respiration rate and respiration

pattern extraction from thermal sequences recorded with a portable thermal camera. The pre-

sented study utilized the same sensor as was used for collecting datasets presented in this work

(Chapter 3, FLIR® Lepton camera) due to its relatively low cost and small spatial size which

makes it possible to embed it in wearable platforms, such as developed by us eGlasses device [150].

Achieved results confirmed possibility to obtain reliable breathing signals from low resolution ther-

mal sequences, however, as mentioned by the author, some motion artifacts may significantly affect

results. Therefore, automatic detection of nostril region is important for eliminating such noise.

In fact, image processing-based vital signs estimation is typically a multi step procedure, where

at first a Region of Interest (RoI), from which the signal is extracted, is either detected automati-

cally of marked manually. Since breathing is associated with exchange of air, a commonly used RoI

is defined at a nostril or a mouth area. Various techniques for tracking of RoI in thermal infrared

imaging have been already proposed in literature. Zhou Y. et al. introduced an algorithm based on

combination of a particle filter with probabilistic templates, producing a tracker which is insensi-

tive to positional and physiological changes [236]. The tracking of nose area proposed in [237] was

based on human face physiology and selection of salient features using temperature information.

Other methods which adopt assumptions concerning facial geometry were also evaluated [26, 27]

After RoI selection, pixel values within the detected region are aggregated to produce single

value, representing a given frame. Collections of those values over time form a signal which cor-

responds to color changes and thereby local temperature changes. Filtering and processing of the

constructed signal gives us information about respiratory rate. There are different methods of de-

termining the main frequency of such periodical signals, referred to as RR estimators. They can

be based on estimating the dominating peak frequency, number of zero-crossings or number of

signal peaks. More details about frequency estimators analysed in this work are provided in RR

estimation methodology subsection (Sec. 6.3.2).

Studies introduced in [235] were continued by us in further research [172], where we compared

different respiratory rate estimators and analysed machine learning methods for facial feature

tracking. Haar-cascade and interest point detection-based algorithm, originally proposed by us in

[58], were analysed in various scenarios (considering person’s movement) in order to determine its

applicability to non-contact RR estimation. Although the displacement of the detected area from

its ground-truth position was satisfactory for Harris and SIFT detector, the produced error was

dependant on different poses of the subject. Also, as mentioned by Marzec M. et al. [26] other

disturbances (haircut, background objects) may also influence detection accuracy.

According to in-depth analysis of various detection algorithms presented in Chapter 2 this

finding holds true for most of methods based on hand-crafted features. This is one of the reasons

for recent advances in DL, which does not require pre-defined representations of objects, but

instead is able to automatically extract them from complex background, at different angles and

lighting conditions [39]. Thus, we are mainly interested in DL-based algorithms for detection of

facial regions useful for RR estimation. It has been already proved that region from which vital

signs are extracted is crucial for the resulting accuracy [172]. Also, according to previous studies,

motion magnification techniques, e.g. Eulerian Video Magnification [223], lead to the increased

performance of heart rate evaluation even at a very long distances from camera (> 6m) [169]. Yet,

to the best of our knowledge, evaluation of super resolution algorithm in the context of improving

accuracy of facial feature detection, especially in thermal imaging, hasn’t been performed yet.

In addition, we go one step further and use deep enhancing models for improving results achieved
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by deep object detection models. Specifically, our contribution lies in evaluation of existing and

proposed by us Super Resolution (SR) Convolutional Neural Network (CNN) for improvement

of state-of-the-art DNN aimed at detecting facial areas and computer vision algorithms used for

extracting respiratory patterns.

6.3 Practical Applications of the Proposed Methods

In this section an in-depth evaluation of the DL model proposed for enhancing thermal data

for practical remote medical diagnostic applications is performed. Achieved results are compared

against accuracy produced with the use of previously presented in literature techniques aimed

at performing similar tasks, i.e. super resolution and deblurring of thermal sequences, as well as

magnification of vital signs patterns.

6.3.1 Facial Areas Detection

Objective

Temperature changes and resulting pixel values variations corresponding to vital signal are

particularly visible in specific facial areas, e.g. breathing is associated with changes of inhaling/ex-

haling air temperature. Hence, as previously mentioned, RoI detection is usually a first step in

non-contact vital signs extraction. This task may be challenging in thermal imaging because of

features blurring and relatively low spatial resolution of available image acquisition sensors. Ac-

cording to our previous work [141, 167], even with the use of Deep Neural Networks, which have

been proved to achieve human-like accuracy in computer vision tasks, the achieved accuracy of

facial regions recognition was limited (Intersection over Union (IoU) of 0.32±0.38, 0.55±0.42 for

eyes and nostril areas respectively). We believe that a possible reason for such results are similarity

of different facial regions due to their blurring, as previously presented in Fig. 4.18. Therefore, the

improvement of detection accuracy can be potentially achieved by improving resolution of collected

sequences. In our studies [208], we evaluated the influence of thermal data enhancement (and corre-

sponding image quality metrics: PSNR and SSIM) on the accuracy of facial feature detection with

SSD - a Deep Neural Network, successfully used for similar tasks but in the visible light domain.

The architecture of SSD object detection model was previously explained in Section 2.3.2.

Methodology

In previous chapter (Chapter 5) we explained methods proposed by us for image enhancement

and evaluated them using various datasets in the audited thermal domain. At this step of our

research we utilize generated by us super-resolved data to verify if increased resolution helps with

producing better accuracy of facial areas detection. Experiments conducted on thermal datasets

(SC3000-ADRA, Lepton-ADRA, IRIS), using the proposed SR network (DRESNet) and other

state-of-the-art DNNs resulted in generation of 33 thermal data models. Specifically, following

models were produced (nomenclature from Sec.5.3.4):

A) Datasets: SC3000-ADRA-8/16-test-S2-W1/W7/W30/W90; models: DRESNet, DRCN, DRRN

B) Datasets: Lepton-ADRA-8/16-test-S2/S4; models: DRESNet

C) Datasets: IRIS-test-S2; models: DRESNEt, SRCNN, DRCN, DRRN, p2p-deblur.
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Detection model applied in this study requires object coordinates for training. Utilized thermal

databases are missing such annotations, thus, there was a need for creating them. Since manual

data annotation is a time-consuming process and we wanted to perform experiments to verify the

assumed correlations between features resolution and accuracy of their detection, we selected two

databases as representatives for initial tests: SC3000-ADRA collected by us and publicly available

IRIS. Lepton-ADRA datasets was skipped as it was used only for the proposed model training to

verify the repeatability of achieved results on different dataset than in the original research where

DRESNet was proposed by us[208]. To prepare data for facial feature detection training, test subsets

of both databases were at first enhanced with the trained SR and deblurring models, producing

hallucinated images of a face (e.g. SC3000-ADRA-8-test-S2-W1-DRESNet is a set produced by

enhancing data from SC3000 sensor with 8 bit-width, test subset of ADRA dataset, scale of 2,

temporal averaging window of 1, using DRESNet model). Evaluation of produced results was

conducted by using PSNR and SSIM image quality metrics in order to compare them later with

values of IoU of detected facial regions.

Bounding boxes representing eye and nose regions were marked manually in original HR data

and applied to LR and SR frames. It’s important to preserve the same locations of annotations

to perform a fair comparison, as in the case of annotating LR data separately by an expert,

lack of facial features may be unwittingly taken into account and resolution degradation may be

compensated by providing different coordinates of facial areas. The same may happen for super-

resolved data, which may provide more accurate facial feature representations leading to more exact

annotations. To avoid being biased by those issues and properly determine if resolution degradation

has influence on feature representation, the same annotations were used for both enhanced and

degraded frames. It was possible since loss of resolution was simulated by downscaling and upscaling

of original HR data and produced LR images had the same size as hallucinated ones. Annotated

sets were again divided into train, validation and test parts using a split of 70:15:15 to optimize

object detection model. Each set from SC3000-ADRA-{8/16}-{test}-{S2}-{W1/W7/W30/W90}-
{DRESNet/DRCN/DRRN} and IRIS-{test}-{S2}-{DRESNet/SRCNN/DRCN/DRRN/p2p}, was

used to train a separate detection model in order to analyse relation between achieved image quality

metrics and accuracy of facial feature localization.

Super-resolved frames were produced from test subsets of each database in order to measure a

true performance of SR networks. Yet, as a result, produced enhanced sets had limited number of

samples (test set consists of ˜194 images that were further divided for object detection optimization,

leaving only ˜136 images for training). Due to this limitation, learning models from scratch is

impossible and commonly used method is to apply transfer learning, as proposed in our previous

work [141, 141], explained in Chapter 4. For this experiment, we decided to follow the same

approach and tune model previously trained on bigger dataset to super-resolved sets generated

with DL networks analysed by us. For transferring knowledge about features representation, a

publicly available checkpoint 1 of Inception-based SSD300 detection model [138] trained on a huge

amount of visible light images from COCO dataset [238] was used.

Selection of SSD network was motivated by its high accuracy comparing to other DL-based

detectors, e.g. mAP of SSD300 fine-tuned on VOC2007 and VOC2012 datasets (07+12) is 79.6,

while for Fast R-CNN it’s 70 [239]. Although results are on pair with faster R-CNN (mAP of

78.8), we decided to use SSD due to its relatively simpler structure comparing to other detection

1https://github.com/tensorflow/models/blob/master/research/objectdetection/g3doc/detectionmodelzoo.mdAccessed :

2018− 11− 01
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networks. SSD does not need to generate object proposals at a run time, since bounding boxes of

different aspect ratios and scales are produced at training step. During the inference, presence of

each object within boxes is determined by assigning scores. After that, coordinates of boxes are

adjusted using non-maxima suppression algorithm. This structure makes SSD suitable for real-time

applications, what is very important for our target solutions where we want to track vital signs

of persons during daily activities even at larger distance assuming the subject may be in motion

[169]. Details about comparison of object detection architectures were provided in Section 2.2.2.

At first, a random search technique was applied using original HR data to find the best hyperpa-

rameters for SSD model training. Then, the same configuration was applied to all object detectors

optimized on LR sets (SC3000-ADRA-{8/16}-{test}-{S2}-LR, IRIS-{test}-{S2}-LR) and halluci-

nated sets (SC3000-ADRA-{8/16}-{test}-{S2}-{W1/W7/W30/W90}-{DRESNet/DRCN/DRRN}
and IRIS-{test}-{S2}-{DRESNet/SRCNN/DRCN/DRRN/p2p}) produced by enhancing corre-

sponding LR data. Final set of hyperparameters consists of 40k training steps using batch size

32, initial value of learning rate 4.00e−3 and is decreased by a factor of 5.00e−2 every 5k steps.

Once all detection models were trained, images from test parts of sets were feed into the models,

predicting locations of eye and nose regions. Achieved results were evaluated by calculating IoU

values between all output bounding boxes and their ground-truth locations. Achieved outcomes

are presented in the following subsection.

Results and Discussion

Figure 6.1 presents relation between IoU metric (average for all detected regions) and () image

quality metric (average for all ground-truth areas) for all averaging window sizes (i.e. data produced

with models: SC3000-ADRA-{8/16}-{test}-{S2}-{W1/W7/W30/W90}-{DRESNet/DRCN/DRRN}).
Facial areas were detected using SSD models from sequences with both enhanced and decreased

resolution. PSNR was calculated for all super-resolved frames and LR images (downscaled and

then upscaled using bicubic interpolation). IoU for detected facial regions for all sets from SC3000-

ADRA-{8/16}-{test}-{S2}-{W1/W7/W30/W90} are collected in Table 6.1.

Table 6.1. IoU for detected facial regions for all SC3000-ADRA-{8/16}-{test}-{S2}-
{W1/W7/W30/W90} sets; (red - first best, blue - second best for each region, separately for

each averaging window size)

SC3000-ADRA-8-test-S2-W1 SC3000-ADRA-16-test-S2-W1

region orig. bicub. DRCN DRRN DRES orig. bicub. DRCN DRRN DRES

eye 0.90

±0.03

0.79

±0.12

0.91

±0.02

0.90

±0.04

0.91

±0.03

0.91

±0.03

0.85

±0.08

0.91

±0.03

0.90

±0.04

0.91

±0.04

face 0.84

±0.06

0.33

±0.38

0.83

±0.05

0.83

±0.05

0.84

±0.06

0.80

±0.20

0.62

±0.29

0.83

±0.07

0.83

±0.61

0.84

±0.06

nose 0.83

±0.06

0.31

±0.38

0.84

±0.06

0.83

±0.07

0.85

±0.08

0.85

±0.08

0.59

±0.35

0.84

±0.08

0.85

±0.07

0.86

±0.07

avg. 0.86 0.48 0.86 0.85 0.87 0.85 0.69 0.86 0.86 0.87

SC3000-ADRA-8-test-S2-W7 SC3000-ADRA-16-test-S2-W7
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region orig. bicub. DRCN DRRN DRES orig. bicub. DRCN DRRN DRES

eye 0.95

±0.03

0.57

±0.34

0.95

±0.02

0.95

±0.03

0.95

±0.02

0.95

±0.02

0.88

±0.09

0.94

±0.03

0.95

±0.02

0.95

±0.02

face 0.82

±0.08

0.32

±0.37

0.81

±0.08

0.81

±0.08

0.83

±0.06

0.82

±0.06

0.48

±0.39

0.75

±0.27

0.81

±0.8

0.85

±0.07

nose 0.86

±0.05

0.45

±0.39

0.87

±0.06

0.86

±0.06

0.88

±0.06

0.86

±0.05

0.65

±0.25

0.86

±0.05

0.86

±0.6

0.87

±0.05

avg. 0.88 0.45 0.88 0.87 0.88 0.88 0.67 0.86 0.85 0.89

SC3000-ADRA-8-test-S2-W30 SC3000-ADRA-16-test-S2-W30

region orig. bicub. DRCN DRRN DRES orig. bicub. DRCN DRRN DRES

eye 0.95

±0.02

0.83

±0.10

0.94

±0.02

0.95

±0.03

0.94

±0.03

0.94

±0.03

0.89

±0.05

0.94

±0.03

0.94

±0.03

0.94

±0.04

face 0.80

±0.09

0.45

±0.33

0.80

±0.10

0.80

±0.08

0.81

±0.09

0.81

±0.09

0.48

±0.34

0.82

±0.07

0.80

±0.80

0.81

±0.08

nose 0.80

±0.08

0.70

±0.21

0.81

±0.07

0.81

±0.10

0.80

±0.09

0.82

±0.07

0.62

±0.32

0.82

±0.09

0.80

±0.10

0.81

±0.08

avg. 0.86 0.66 0.85 0.85 0.85 0.86 0.66 0.86 0.84 0.85

SC3000-ADRA-8-test-S2-W90 SC3000-ADRA-16-test-S2-W90

region orig. bicub. DRCN DRRN DRES orig. bicub. DRCN DRRN DRES

eye 0.88

±0.04

0.76

±0.11

0.89

±0.05

0.89

±0.04

0.89

±0.04

0.89

±0.04

0.84

±0.09

0.90

±0.05

0.88

±0.05

0.89

±0.04

face 0.78

±0.20

0.22

±0.36

0.78

±0.19

0.77

±0.20

0.78

±0.20

0.78

±0.20

0.44

±0.39

0.77

±0.19

0.72

±0.26

0.83

±0.07

nose 0.84

±0.10

0.34

±0.39

0.81

±0.07

0.84

±0.07

0.83

±0.09

0.82

±0.09

0.79

±0.06

0.83

±0.07

0.83

±0.08

0.81

±0.08

avg. 0.83 0.44 0.84 0.83 0.84 0.83 0.69 0.83 0.81 0.84

IoU for eye and nostril classes detected with SSD model from LR data (generated with bicubic

interpolation, scale 2) and then further enhanced with evaluated state-of-the-art networks and

the proposed thermal SR model (DRESNet), as well as with deblurring p2p GAN are collected in

Table 6.2. The presented results were produced for the reference IRIS thermal dataset IRIS-test-S2.

Qualitative of applying SSD model on the same image from IRIS-test-S2 enhanced with different

SR methods are presented in Fig. 6.2.

Although experiments described in the previous chapter confirmed that the introduced super-

resolution model outperforms other DL networks in a task of thermal image enhancement, eval-

uation whether better image quality metrics have influence on accuracy of facial areas detection

remains a very important question in the research on remote medical diagnostic solutions. This

section focuses on making assessment of this relation.
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Figure 6.1. Relation between IoU metric (average for all detected regions) and PSNR image

quality metric (average for all ground-truth areas) for all averaging window sizes on SC3000-

ADRA-{8/16}-{test}-{S2}-{W1/W7/W30/W90}-{DRESNet/DRCN/DRRN} sets; for simplic-

ity set names are shortened to changing parameters only, i.e. {8/16}-{W1/W7/W30/W90}-
{DRESNet/DRCN/DRRN}

Table 6.2. IoU for eye and nostril classes detected with SSD model from LR and enhanced thermal

data (red - first best, blue - second best for each region separately)

SSD trained on: eye nose

IRIS-test-S2-bicubic 0.67 ± 0.22 0.56 ± 0.32

IRIS-test-S2-DRESNet 0.72 ± 0.18 0.69 ± 0.21

IRIS-test-S2-DRCN 0.61 ± 0.20 0.60 ± 0.18

IRIS-test-S2-DRRN 0.68 ± 0.25 0.66 ± 0.33

IRIS-test-S2-SRCNN 0.59 ± 0.28 0.64 ± 0.22

IRIS-test-S2-p2p 0.68 ± 0.21 0.69 ± 0.16

Based on IoU values calculated for SC3000-ADRA (Table 6.1) and reference thermal set IRIS

(Table 6.2) we can conclude that image enhancement is crucial for improving accuracy of facial

areas detection. All applied super-resolution models allowed for increasing IoU by at least 15%

comparing to LR bicubic images. In the best case (SC3000-ADRA-8-test-S2-W90,), the accuracy

of face area detection after enhancing image with DRESNet in terms of IoU was improved by

0.56 comparing to corresponding low resolution image. The improvement was also very significant

for other facial regions, e.g. nostril detection improved by 0.49 and eyes area improved by 0.13.

This finding supports the second part of thesis II which states that increased resolution of thermal

images lead to improvement of facial areas detection accuracy.

For the reference IRIS set (Table 6.2) we also observe improvement of detection accuracy, but
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(a) Original HR data (b) Enhanced with SRCNN

(c) Enhanced with p2p-deblur (d) Enhanced with DRCN

(e) Enhanced with DRRN (f) Enhanced with DRESNet

Figure 6.2. Facial regions detected with SSD model in the same image (IRIS) enhanced with

different SR methods. Detected categories were marked as follows: eye - light green, nose - yellow.

the difference between LR and super-resolved images is smaller. The possible reason for this result

is that IRIS set was collected in more dynamic conditions where motion content was higher. Thus,

images might already have worse resolution leading to worse performance overall. IoU results are
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also on pair with image quality metrics calculated for different image enhancement models in the

previous chapter (Table 5.1 and Table 5.3). The proposed DRESNet model led to the best image

quality metrics and data enhanced with this model resulted in the best detection accuracy results

(for SC3000-ADRA-16-test-S2-W7 average IoU of 0.89; on IRIS set the best IoU was produced for

eye area - 0.72).

However, other evaluated SR DL models achieved very close IoU results to those produced by the

introduced by us thermal data oriented network. As can be seen in Fig. 6.1, after reaching a specific

level of PSNR (˜30dB), detection accuracy remains constant regardless of further improvement of

image quality. The same conclusion can be made for different sizes of averaging windows and data

bit resolutions. Even though better quality was achieved by preserving original data bit resolution

and reducing background noise using average of 90 subsequent frames (as presented in Chapter

5), no significant gain of IoU was achieved. This can be caused by the fact that universal learning

models are capable of learning complex mapping functions equally well as single ones. For example,

let’s say the model is optimized for a detection task D, using super-resolved data S(x), where x is

an input image, i.e. it learns the mapping defined as D(S(x)). Theoretically, the same model should

be able to achieve similar accuracy if provided with enough samples of lower quality data D(x).

Yet, according to IoU results calculated for LR bicubic data, for images with lower quality and

thereby lower values of PSNR (in our case below ˜30dB but this can vary between databases),

image enhancement is crucial for increasing IoU values. A possible reason for this finding is very

smooth representation of facial features in thermal images, which after downscaling are even more

blurred. It’s worth noting that CNN-based models utilize high frequency features for making pre-

dictions. Thus, it might be difficult for the network to correctly adjust region coordinates, if borders

of specific areas in downscaled thermal images are completely distorted. This assumption was con-

firmed by IoU values calculated for low resolution data generated with bicubic interpolation for

both SC3000-ADRA (Table 6.1) and IRIS-test-S2 (Table 6.2) sets. In the worst case (8 bit bicubic

data from SC3000-ADRA, window size 1 or 7), IoU was below 0.5 (corresponding PSNR values in

this case were below 28 dB - see Table 5.1). In this case, inputs had spatial size of 160x120 (320x240

downscaled with a factor of 2). We believe that very low values of PSNR indicate the complete

lack of meaningful facial features representations, leading to poor detection accuracy. What’s more,

scenarios considered by us very often utilize even smaller inputs, e.g. Lepton 2 camera produces

inputs of a size 80x60. Taking it into account, there is a need for enhancing such sequences in order

to accurately extract regions important for vital signs estimation. On the other hand, for bigger

inputs and higher PSNR values, the model is able to learn correct mapping regardless of the small

differences in image quality metrics. Thus, after SSD reached its saturation level (Fig. 6.1, SSD

maximum IoU of 0.85 [138]), no significant improvement of detection accuracy was observed even

with increasing PSNR values.

Results produced by the GAN p2p network aimed at performing deblurring operation also

proved its efficiency in improving the detection accuracy. For the nostril area, the IoU metric

for images enhanced with the p2p was better than for the DRRN model and the same as for the

proposed DRESNet, as presented in Table 6.2. Yet, it is important to note that deblurring mitigates

the problem of reversing the convolution, while super-resolved images are the reversed version of

down-sampled inputs, so the problems that they solve are exclusive. Potentially they could be

applied together to further increase the performance. This experiment will be performed by us in

next studies, as explained in Chapter 7. Also, other GAN-based SR models will be evaluated on

the collected thermal data.
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6.3.2 Respiratory Rate Estimation

Objective

Resolution enhancement is especially desired in healthcare industry, due to possibility of reveal-

ing details and components important for making diagnostic decisions that are usually not visible

when using lower quality data. Also, it can limit the need of purchasing more expensive acquisition

devices or help in cases where better devices are simply not available, e.g. images related to patho-

logical anatomy [240]. Thus, producing the same quality of data as if a higher resolution device

was utilized with software-enhanced resolution is one of the gals of this dissertation. Undoubt-

edly, higher resolution of images can ease their analysis in various medical imaging procedures

[241, 183]. Yet, a very interesting research question is whether image enhancement can also help

in telemedicine and remote medical diagnostic applications, where usually only standard webcams

or low resolution thermal sensors are used.

Some algorithms for magnifying subtle intensity variations corresponding to signals represent-

ing vital signs have already been proposed in literature, e.g. Eulerian Video Magnification [223].

According to previous studies [224] it’s possible to utilize such algorithms for vital signs enhance-

ment. Yet, there are some problems with those techniques. First of all, they rely on strictly defined

image priors or hand-designed features, so magnification may lead to excessive blurring especially

when motion is very small. Secondly, they are constrained to a specific frequency spectrum, so

unless the frequency is known, they are inapplicable.

Therefore, DL solutions are becoming more popular, as they allow for automatic knowledge

extraction and learning of inputs representation. Oh T. et al. [242] proposed to apply Deep Con-

volutional Neural Network for motion magnification and evaluated its robustness on visible light

images. In our study, we want to verify if similar approach would work equally well for thermal

data. Specifically, our studies focus on evaluating whether resolution of thermal sequences, acquired

in possible remote healthcare scenarios, affects the accuracy of respiratory rate estimation by com-

paring data enhanced with deep CNNs with original high-resolution and generated low-resolution

frames.

Our contribution to the state-of-the-art is threefold: (a) we evaluate whether resolution of

thermal sequences enhanced with Deep Neural Networks leads to increased accuracy of non-contact

RR extraction in comparison to estimation from data of original resolution (analysis is performed

on two thermal datasets to avoid being biased by a specific data distribution); (b) achieved results

are compared against Eulerian Video Magnification algorithm previously proved in the literature

to be successful for vital sign pattern magnification; (c) extensive benchmark evaluation covers

various RR estimators, data aggregation operators, as well as different input data parameters,

such as scaling factors and pixel values bitwidth.

Methodology

Since target applications analysed by us focus on non-contact vital signs estimation, only

datasets with thermal sequences coollected by us are applicable to our study. Other databases,

i.e. IRIS, containing images as single frames could not be adapted due to the lack of temporal

information utilized for signal construction. Thus, for this experiment we utilized Lepton-ADRA

and SC3000-ADRA databases. Another important aspect of data preparation and pre-processing

is the fact that a continuous sequence of thermal frames collected for each person is needed to

extract RR and evaluate its to relation PSNR. Since SR models are trained on images from both
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datasets, it’s important to make sure that samples from training subset are separate from samples

used for inference and networks evaluation. This problem is already solved, as in our experiments

with different scaling factors (see Section 5.3.4) data were divided into training and test sets

based on volunteers’ ids (first 15 volunteers used for models training, data of remaining kept aside

for evaluation and further experiments). Thus, at this step models already trained for previous

experiments were used (i.e. 8 DRESNet models: SC3000-ADRA-8/16-test-S2/S4-DRESNet and

Lepton-ADRA-8/16-test-S2/S4-DRESNet).

Accuracy of all those models was evaluated by feeding all LR frames from thermal sequences

recorded for remaining subjects, generating restored HR version of them and comparing produced

results with original HR data using PSNR and Structural Similarity Index Metric (SSIM). En-

hanced frames were then combined back into sequences with the same frame per second (FPS)

value and processed to extract RR. Estimated values of the vital signs are compared against the

same metrics obtained for original high resolution inputs and low resolution recordings generated

with bicubic interpolation.

Non-contact estimation of basic vital signs has revolutionized conventional medical procedures,

which involve the use of electrodes placed on a body. As already mentioned, previous studies

showed that RR can be accurately obtained from very low resolution (80x60) sequences [235]. In

our work we were mainly interested whether estimation accuracy can be further improved if vital

signs are estimated from sequences super-resolved with the means of Deep Neural Networks. Two

respiratory rate estimators: eRRsp and eRRas, previously verified by us in [172], are analysed in

conducted experiments, also described by us in [213].

Estimator eRRsp assumes that a signal representing respiratory activity dominates in the sig-

nal spectrum and thereby a RR value can be estimated by obtaining the frequency value of the

dominating peak. Yet, this may result in unreliable estimation, as even for signals other than vi-

tal sings, such as noise, a maximum value in the frequency domain can be retrieved leading to

false outcomes. In the second estimator, referred to as eRRas due to the use of auto-correlation

spectrum, a relation between a periodic signal and its auto-correlation sequence is utilized. This

relation is based on the fact that the auto-correlation sequence has the same cyclic characteristic

as its corresponding periodic signal. Thus, analysis of the auto-correlation sequence in different

time spans can be used for calculation of RR values.

Our work focus on providing and improving solutions of remote medical diagnostics. Possible

scenarios considered by us include non-contact estimation of basic vital signs in emergency rooms,

principal care doctors’ offices, as well as in smart homes for e.g. monitoring of infants, disabled

or elderly people. To ensure fast responses and provide convenient solution, the acquisition time

shouldn’t be very long. Therefore, short data segments (300-400 frames) were utilized for signal

extraction. Initial 50-100 samples of each sequence were skipped to reduce possible motion artifacts

that usually are present at the beginning of data collection [172].

In order not to introduce additional factor that could influence results, we used RoI marked

manually by an expert, instead of using object detection models. Combination of both algorithms

in a single RR estimation pipeline will be explored by us in future work. The same regions were

applied to all three types of sequences, i.e. original HR data, HR data downscaled and upscaled

to simulate LR inputs, produced LR sequences enhanced with the proposed SR CNN. Then, the

raw breathing signal was produced by aggregation of intensity values within the marked area. Two

different aggregation operations were examined by us: skewness and averaging. Regions utilized for

RR estimation were different depending on the applied aggregation operator. For the skewness, it
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has been already proved [172] that extracted waveforms don’t depend on the specific location and

size of the area, as long as a whole nose is covered. On the other hand, averaging of pixel values

leads to the smoothing and blurring what has a negative impact on visibility of changes related to

respiratory patters. Thus, if averaging operator is used, the region has to be marked more carefully

and cover a smaller region, e.g. nostrils only. Differences in region selection taking into account

applied aggregation operation are presented in Fig. 6.3.

(a) Skewness aggregation

(b) Average aggregation

Figure 6.3. Selected RoI and extracted raw RR signal. Skewness aggregation is less prone to the

specific location of nostril area used for RR extraction, thus selected region can be bigger. For

average operator, it has to be more exact.

Values obtained by aggregating pixels values within the marked RoI over a sequence of samples

resulted in the construction of a raw signal which was then filtered with a moving average and

4th order Butterworth filters. For the high pass Butterworth filter the threshold frequency equals

0.125Hz. Applied methods were previously verified in our studies [151, 172].

After that step, multiple RR values for each volunteer were obtained, i.e. RR estimated from

original HR input, from generated LR data and from super-resolved sequence. Thus, it was possible

to compare the influence of resolution enhancement/degradation on the accuracy of RR estimation.

Since the RoI remained the same for all sequences (per volunteer) we were able to evaluate whether

vital signs estimated with the image processing techniques are sensitive to image blurring and en-

hancement of facial features. All calculated RR results were compared against the ground truth RR

measurement using Root Mean Square Error (RMSE) metric. Reference RR values were obtained

with the Vernier respiratory monitor belt (for Lepton data) and with the manual calculation of a

number of finger movements performed by a subject corresponding to inhalation/exhalation events

(for SC3000 data), as explained in Chapter 3.

In order to evaluate the robustness of the proposed SR-based RR estimation approach, achieved

results were compared with values achieved for algorithms previously proposed in literature for

magnification of vital signs patterns. Specifically, Eulerian Video Magnification (EVM) [223] was

applied to test sequences from both datasets in order to enhance pixel color changes across time

associated with respiratory signals. In case of Lepton database images had to be upscaled before

feeding them to EVM algorithm, as the EVM tool 1 utilized by us for color changes magnification

requires inputs with spatial resolution above 100x100.

1https://lambda.qrilab.com, Accessed: September 2018
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EVM algorithm is based on spatial decomposition of input sequence into different frequency

bands. After that, all bands are processed using temporal filtering and then magnified to reveal

changes invisible to a naked eye, e.g. blood flow or vein movements. Magnified signals are added

back to the input video to form the final output. Two parameters of EVM are adjustable: filtering

frequency range and magnification factor. Based on the fact that a standard respiratory rate of

an adult fluctuates between 10-20 breaths per minute (bmp), the filtering frequency was set to

0.16-0.33 Hz. Magnification factor was set to 20, since our previous studies [151, 169] proved high

estimation accuracy using this value. Following the chosen filtering frequency (and the standard

RR value for an adult), the color change should be observable in every ˜3-second time spans. Fig.

6.4 presents nostril areas extracted from each middle frame in such windows. It can be observed

that intensities vary across them due to differences in temperature of inhaled and exhaled air.

Figure 6.4. Every ˜45th frame (inhalation/exhalation event can be observed every ˜3 seconds,

FPS=15) extracted from SC3000-ADRA-8-test sequence magnified with EVM; inhaled air is colder,

thus nostrils have darker color; exhaled air is warmer (heated by body), thus nostrils are lighter

Results and Discussion

Figure 6.5 illustrates the same frame from the Lepton-ADRA-8-test set after various modifi-

cations, i.e. original, after bicubic interpolation with different scales and then processed using the

motion changes magnification algorithm EVM and the proposed thermal SR model DRESNet.

Similar results but from SC3000-ADRA-8-test set are presented in Figure 6.6.

Error of respiratory rate estimations between reference value and values obtained with the de-

scribed image processing algorithms and two respiration rate estimators: eRR sp and eRR as are

presented in Table 6.3. Influence of different scaling factors on the estimation accuracy was com-

pared. Also, the proposed thermal image enhancement model was compared with results achieved

for original data and sequences with breathing patterns magnified using Eulerian Video Magnifi-

cation (EVM) [223].

Analysis performed for various datasets in the remote RR estimation study revealed some limi-

tations of utilized methods. Although for SC3000-ADRA-test-S2 data enhanced with the proposed

DRESNet model RR was estimated with an error of 2.94 breaths per minute (bpm), for most of

considered use cases the RR was much higher (close to 5 bpm), what is not acceptable in profes-

sional medical applications. On the other hand, the aim of this study was to investigate whether a

use of super-resolved sequences allow for improving accuracy of contactless vital signs estimation,

not to outperform existing RR estimators.
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(a) Original HR data (b) Eulerian Video Magnification

(c) Bicubic interpolation scale 2 (d) super resolved using DRESNet scale 2

(e) Bicubic interpolation scale 4 (f) super resolved using DRESNet scale 4

Figure 6.5. The same frame from Lepton-ADRA-8-test set processed with techniques evaluated in

the study of respiratory rate evaluation; please note that although bicubic images were completely

blurred, the proposed SR model was able to restore facial features from those samples (especially

for scale 4, where restoration was done from 20x15 inputs); restored facial features are distorted

but allow for determining locations of different facial regions
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(a) Original HR data (b) Eulerian Video Magnification

(c) Bicubic interpolation scale 2 (d) super resolved using DRESNet scale 2

(e) Bicubic interpolation scale 4 (f) super resolved using DRESNet scale 4

Figure 6.6. The same frame from SC3000-ADRA-8-test set processed with techniques evaluated

in the study of respiratory rate evaluation; please note that restored features are characterized by

more clear boundaries between facial regions
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Table 6.3. Root Mean Square Error between reference RR values and RR values estimated from

original, LR and enhanced thermal sequences from SC3000ADRA and Lepton-ADRA sets for

different scaling factors using two respiration rate estimators: eRR sp and eRR as. Raw pixel

values inside manually selected regions of interests aggregated using average (Avg.) or skewness

(Skew.) operators (red - first best, blue - second best for Lepton and SC3000 images separately)

Dataset Method Bits

RR Estimator

Aggregation Operation

eRR sp

Avg.

eRR sp

Skew.

eRR as

Avg.

eRR as

Skew.

Lepton-ADRA-test-S0

orig.
8 bits 4.97 6.28 15.61 12.80

16 bits 5.15 6.35 5.68 7.39

EVM*
8 bits 5.58 7.04 9.40 11.94

16 bits 5.58 6.81 7.98 11.28

Lepton-ADRA-test-S2

bicubic
8 bits 5.66 7.21 9.14 7.96

16 bits 4.93 7.20 8.08 7.77

DRESNet
8 bits 4.89 5.64 4.95 6.21

16 bits 4.93 6.72 6.29 7.41

Lepton-ADRA-test-S4

bicubic
8 bits 5.61 7.64 8.57 7.90

16 bits 6.40 7.32 8.37 7.34

DRESNet
8 bits 4.96 5.93 7.41 12.25

16 bits 4.89 6.10 10.31 8.00

SC3000-ADRA-test-S0

orig.
8 bits 3.48 3.59 17.19 11.06

16 bits 3.61 5.61 12.11 14.72

EVM
8 bits 5.00 6.15 5.98 7.82

16 bits 4.56 6.09 5.84 7.65

SC3000-ADRA-test-S2

bicubic
8 bits 6.35 6.04 17.05 11.26

16 bits 5.91 8.46 34.43 14.52

DRESNet
8 bits 2.94 2.46 5.56 4.27

16 bits 4.09 3.59 8.39 8.90

SC3000-ADRA-test-S4

bicubic
8 bits 5.73 8.23 17.05 11.65

16 bits 5.73 6.32 14.31 11.35

DRESNet
8 bits 3.48 5.11 13.36 12.12

16 bits 3.48 5.38 14.48 14.61

* Lepton dataset upscaled to 100 x 100 due to requirements of the EVM tool
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According to results presented in Table 4.6 the goal of the presented work was achieved, as for

both datasets the smallest RMSE values were produced if thermal sequences were at first super-

resolved using DRESNet model. Furthermore, the proposed approach allowed for outperforming

not only LR bicubic sequences, but also original high resolution data, e.g. RMSE for inputs as

small as 80x15 enhanced with DRESNet (Lepton-ADRA-test-S4) was smaller than for original

80x60 images (Lepton-ADRA-test-S0) - RMSE equals 4.89 vs 5.15 for eRRsp avg. aggregation.

Similarly for SC3000 sequences, RMSE was reduced by 0.13 bpm for scaling factor of 4 and 16-bit

data and by 0.54 for 8-bit and scale 2. Also, for scaling factor of 2, DRESNet allowed for achieving

the lowest values of RMSE regardless of applied RR estimators and aggregation operators. For

scaling factor of 4, this conclusion is valid in case of eRRsp estimator, as it has been shown that

eRRas estimator is very sensitive to areas selected for signals extraction. As a result, it was very

difficult to obtain accurate RR values, what led to inconclusive results. More experiments with this

estimator should be performed in future work.

Also, it’s worth noting that the number of samples used for RR estimation has a direct influence

on the accuracy. Since applications considered by us involve vital signs calculation during physical

exam or remote monitoring of subjects during daily activities, the number of utilized samples was

limited in order to verify whether short data acquisition time allow for accurate measurement of

RR. Utilization of shorter data collection process is also beneficial for limiting possible motion

of volunteers. In case of Lepton-ADRA set (sampling frequency fs=12) we utilized 300 samples

(Nsamples) from acquired sequences, while for SC3000-ADRA database (fs=30) 400 samples were

used. Therefore, the frequency resolution defined as:

δf =
fs

Nsamples
∗ 60 (6.1)

equals 2.4bpm and 4.5bpm for Lepton-ADRA and SC3000-ADRA, respectively. Increasing number

of samples at the same sampling frequency will lead to decreasing of δf and thus more accurate

measurements. On the other hand, we want to utilize small measurement windows (small N) to be

able to provide information about vital signs without delays caused by long data acquisition process.

Moreover, the presented study was based on manual selection of RoI used for signal extraction.

However, as shown in our previous studies on extraction of average pixel values from areas detected

with DL networks, more accurate signals can be obtained for dynamic areas locations in case if

their spatial size is relatively small, e.g. for nostril area (see Section 4.2.2). Taking it into account,

in future work we would like to combine the proposed RR estimation method with facial areas

detection using Deep Neural Network, described in the previous section (Sec. 6.3.1). Additionally,

we would like to propose and evaluate networks that would allow for detecting areas, where vital

signs are the most accurate instead of using pre-defined facial regions, such as nostrils. Some

preliminary work in this area has been already proposed by us [?], however we would like to

further investigate this idea.

Another limitation of conducted experiments are strictly defined measurement conditions that

might be difficult to achieve in real-life scenarios. The best results are achieved if nostrils are clearly

visible in a frame [172] showing differences of temperature between inhaled and exhaled air used for

RR estimation. Even though we assumed simple data collection process (i.e. person looking towards

camera no necessarily tilting head backward and no additional data pre-processing algorithms,

such as motion/lighting compensation), it would be useful to perform similar experiments for

sequences that contain possible higher motion content and better simulate possible scenarios of

remote medical diagnostics.
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Similarly to research conducted for facial areas detection from thermal image sequences (Section

6.3.1), utilization of higher bit resolution data turned out to be beneficial for RR estimation

accuracy for both LR bicubic images and sequences enhanced with EVM. This finding further

supports the need for preserving original raw formats of acquired data instead of using lossy

conversion to 8-bit image formats. For analysed SR models the positive influence of 16-bit format

on RR estimation accuracy is not that clear. We believe that it may be caused by the fact that both

8-bit and 16-bit models were trained using the same hyperparameters and training termination

procedure, while 16-bit images were more detailed. As a result, 16-bit Deep Neural Networks

might have overfitted to the training part of utilized databases, resulting in worse generalization

capabilities. This problem will be also investigated by us in future work.

Comparison with state-of-the-art vital signs patterns magnification algorithms showed the ro-

bustness of the proposed SR model over them. Specifically, 8 and 16-bit sequences downscaled

2-times and then enhanced with DRESNet resulted in smaller RMSE values for both eRRsp and

eRRas estimators. Furthermore, for most of super-resolved inputs 4 times smaller than sequences

magnified with EVM, RR estimation accuracy was also better. Taking into account the size of those

downscaled images (20x15), we believe that the proposed method has a huge potential in remote

person monitoring solutions allowing for initial estimation of health status at e.g. long distances,

where interesting RoI occupy only a small part of a frame [169] or using very small thermal sensors

embedded e.g. in wearable devices, such as developed by us smart glasses [150]. Also, improve-

ment of thermal image resolution using image processing techniques can enable various innovative

remote medical solutions, which were previously difficult to achieve due to e.g. higher cost, lower

availability and bigger sizes of suitable thermal cameras, e.g. driver’s drowsiness detection [243].

6.4 Other Relevant Applications

Here, we focus on evaluating other relevant applications of the proposed model which could

be integrated into potential remote diagnostics solutions. At first, we perform experiments with

DL-based face recognition models from thermal data previously enhanced with the introduced

SR network. In addition, other application that could possibly benefit from the proposed resolu-

tion enhancement model and transferring the knowledge from other image domains is described.

Specifically, we describe how to recognize emotions from extracted in a non-contact way vital

signs. Preliminary work in this area has been already proposed by us and described in [158]. In

this Section, we will specify methodology applied by us to perform emotion recognition from vital

signs and provide ideas for improvement of the proposed method with the means of Deep Neural

Networks.

6.4.1 Face Recognition

Objective

In order to make remote medical diagnostic solutions more intelligent, context information

about subjects should be retrieved. Possible ways of obtaining this information include the use

of graphical markers, as proposed by us in our previous study [153], as well as direct processing

of recorded video sequences to recognize objects, persons or performed actions. However, a few

important concerns are associated with the use of visible light data. First of all, algorithms are

usually sensitive to changing lighting conditions , especially when traditional machine learning
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algorithms are used, which require definition of specific feature sets characterized by different

representation depending on the lighting [68]. Some solutions have been proposed to address this

problem. Kalaiselvi P. and Nithya S. [244] suggested to define features that are insensitive to

different illumination conditions, Huang F. and Bian H. [245] introduced illuminance-invariant

face recognition system by using contrast equalization and Gamma correction. It has been also

shown that utilization of different color spaces, e.g. HSV may reduce the influence of poor lighting

condition on authentication accuracy [246].

This, on the other hand, lead to an increased computational complexity of the whole pipeline,

what may impact performance and responsiveness to incoming events , since remote diagnostics

solutions are usually resource constraint due to the target deployment platforms, e.g. Internet of

Things (IoT) devices, wearable solutions, or Systems on a Chip (SoC). Thus, more studies are

focused on DL models optimization. We also showed how to quantize state-of-the-art classification

models in order to reduce processing time and model size without impacting accuracy [247].

Yet, some problems with the use of visible light data, such as privacy and data security concerns

remain unsolved. Those issues are especially important in medical applications due to a high

sensitivity of collected data and possibility of revealing private information if diagnostic solutions

are an integrated part of a smart home infrastructure, e.g. used for fall detection in bathroom.

In such cases, thermography is often preferred due to the way of how images are constructed, i.e.

high level features are more blurred and it’s difficult to identify a person even with a naked eye as

objects are represented by temperature distributions.

On the other hand, recent advances in Deep Neural Networks (DNNs) allowed for achieving

human-like accuracy in various computer vision tasks [39]. Taking it into account, it’s important to

verify if a person can be recognized from thermal images if DL-based models are used. Moreover,

we also evaluate if resolution enhancement/degradation has influence on the accuracy of person

recognition by utilization of thermal image sequences (from both Lepton and SC3000 datasets)

super-resolved with the proposed DRESNet model. As far as we are concerned, our work is a first

attempt to evaluate effect of increased thermal image resolution on robustness and accuracy of

person recognition.

Facial embeddings used for subject identification are extracted with Convolutional Neural Net-

work from all three types of inputs, i.e. downscaled with bicubic interpolation, original HR frames

and LR data enhanced with our SR model. In this way, we are able to evaluate influence of image

resolution on biometrics representation generated with DL techniques. Results of this study were

presented by us in [216].

Methodology

The first step in person recognition pipeline requires cropped facial areas that could be used

for building representation of each person. To detect faces, we followed similar approach as in our

previous experiments (Sec. 6.3.1) and utilized SSD DL model. Transfer learning technique proposed

in Chapter 4 for improvement of accuracy was used to re-purpose model previously trained on

visible light data to thermal datasets. For this experiment only 8-bit width data from SC3000

was used, preserving every 180th frame to ensure high variability of facial representations. As a

result, subset of SC3000-ADRA contained of 766 images grouped into 40 categories corresponding

to volunteers’ for whom data was obtained. This set will be thereafter referred as SC3000-FR (Face

Recognition). As a second, reference database we decided to utilize IRIS set (4190 images divided

into 30 subjects) in order to make sure that results are not biased towards one set and to provide
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comparable metrics, since IRIS is publicly available. This set is referred to as IRIS-FR. All images

were manually annotated with bounding boxes corresponding to location of facial regions.

A separate SSD model was trained for each dataset using hyperparameters configuration verified

by us in our previous work [167, 208] using 70% of images from each set for training, and 15%

for validation and testing. Trained networks were evaluated on test subsets using IoU metric,

representing ratio of similarity between manually marked ground-truth area and detected face

coordinates. Results showed that model trained on SC3000 set is more accurate (84.1 ± 6% vs

79.4 ± 14% on IRIS). Thus, it was used to crop faces from both sets. From all extracted regions

we randomly selected 20% to generate profiles of each volunteer using face recognition model, the

remaining part was preserved for evaluating accuracy of the proposed pipeline.

The convolutional-based FaceNet model [248] was applied to build personal profiles. The output

of this model is represented as a vector containing 512 features that uniquely characterize each

person from the dataset. A larger embedding vector was selected, because it has been showed that

it allows for capturing more subtle facial differences and thus leads to higher recognition accuracy.

A checkpoint of the FaceNet model, previously trained on data from visible light spectrum was

directly applied to thermal data without additional re-training. In this way, we wanted to determine

whether model learnt to extract high frequency features present in RGB images will produce

representations of thermal images sufficient for person recognition task.

The final representation of each person was build by calculating average of vectors produced for

all profile images of this subject (20% of all frames) and saved in a database for future reference.

Every time a new frame is collected by a system, it is fed to the same model for extraction of

current embedding that is then compared against all stored users’ profiles in order to perform

person identification. Comparison of feature vectors (current one vs. all stored profile) was done

with two methods: Support Vector Machine (SVM) with linear kernel and Euclidean Distance

between two vectors. The selection of linear kernel was motivated by the fact that linear SVM is

faster and performs very well if a number of samples is relatively small, while a number of feature

within each sample is larger. In this case, mapping to a higher dimensional space is not necessary,

as performance would remain constant.

To evaluate influence of resolution degradation on the proposed method, additional sets were

created from the constructed SC3000-FR and IRIS-FR sets. At first images were downscaled and

upscaled with a scale 2 to produce LR versions of original data. Then, DRESNet models with

configuration and hyperparameters verified by us in previous experiments were optimized on those

sets to learn kernels which would allow for restoration of facial features. Trained models were

used to generate super-resolved facial images. All created sets, i.e. LR images: SC3000-FR-S2,

IRIS-FR-S2 and corresponding restored HR outputs: SC3000-FR-DRESNet, IRIS-FR-DRESNet

were processed to build users’ profiles and evaluate face recognition pipeline in the same way as

described above for original HR data. Results produced for all subsets were compared in order to

determine if different resolution of thermal images affects possibility of identifying subjects.

Results and Discussion

Accuracy of person recognition from generated set of images is presented in Table 6.4. For

testing 80% of images from each subset was used. The rest 20% was utilized to create users’ profiles

that new images are compared against during verification process. We also collected accuracy for

images downscaled 4 times to evaluate influence of resolution degradation on person identification.
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Figure 6.7 presents embedding vectors produced with Face Recognition Deep Neural Network

for images from SC3000-FR (first 10 volunteers). In addition to images used for accuracy calcula-

tion (LR with scale 2), we also included representations of lower resolution frames (scale 4 and 8)

to visualize effect of resolution degradation on classes separability. Reduction of high dimension-

ality was done with t-Distributed Stochastic Neighbouring Entities (t-SNE) technique. Graphs in

Fig. 6.8 and 6.9 show relation between resolution degradation/enhancement and accuracy of face

recognition using Euclidean distance between extracted embeddings on IRIS-FR and SC3000-FR

datasets, respectively.

Table 6.4. Accuracy of person recognition from test subsets of SC3000-FR and IRIS-FR datasets

(80% of all images used for testing, the remaining 20% was used to generate embeddings represent-

ing users’ profiles in a database)(red - first best, blue - second best for each dataset separately)

SVM with linear kernel

Dataset SC3000-FR IRIS-FR
PPPPPPPPPPtest

profiles
orig. S2 S4 DRESNet orig. S2 S4 DRESNet

orig. 99.5 - - - 82.14 - - -

S2 - 99.17 - - - 81.33 - -

S4 - - 96.36 - - - 74.01 -

DRESNet - - - 99.33 - - - 81.87

Euclidean distance

Dataset SC3000-FR IRIS-FR
PPPPPPPPPPtest

profiles
orig. S2 S4 DRESNet orig. S2 S4 DRESNet

orig. 99.66 - - - 63.48 - - -

S2 - 98.67 - - - 58.01 - -

S4 - - 90.42 - - - 57.68 -

DRESNet - - - 98.84 - - - 60.85

The aim of the study presented in this section was twofold. First of all, we wanted to determine if

representation of facial features in thermal images allows for accurate person recognition. Produced

results showed that it is possible to identify subjects from a group of 40 (SC3000-FR) and 30

(IRIS-FR) volunteers with accuracy above 74% using SVM classifier and subjects’ representations

created with Deep Neural Network FaceNet. Moreover, in case of our dataset those results were

much better. Even for the smallest input size (80x60) the recognition accuracy was very high (Table

6.4 96.36%). It turned out that the use of Euclidean distance for person recognition from thermal

data depends on the dataset characteristic. As shown in Table 6.4, our dataset produced similar

results regardless of the used classifier, while accuracy for IRIS database differs significantly for

Euclidean distance comparing to SVM, resulting in ˜20% worse performance. It’s important to note

that SC3000 sequences were collected by us in strictly defined conditions, i.e. volunteers asked to
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(a) Original size (b) Bicubic interpolation 50%

(c) Bicubic interpolation 25% (d) Bicubic interpolation 12.5%

Figure 6.7. 2D visualization of embedding vectors produced by Face Recognition NN from images

of a) original size, b) S2, c) S4 and d) S8 for volunteers 0-9 from SC3000-FR test set

remain still with a face placed towards the camera. In this way, possibility of a noise presence was

reduced. IRIS set, on the other hand, was collected for different facial expressions and poses, thus

contained more variability what can lead to worse recognition accuracy. In future studies, we will

examine influence of motion and different body poses on person recognition task.

Furthermore, it has been proved that high recognition accuracy can be achieved with a very

limited number of samples used for generating users’ profiles. A proportion of 2:8 (users’ profiles:

testing set) was selected in the performed experiments, resulting in only 4 images from the SC3000

and 42 images from IRIS used for extracting facial embedding. Yet, the use of DL model for

generation of users’ profiles allowed for selecting proper representation that could uniquely describe

each person. In our study we decided to use linear kernel. This choice was justified by different

factors. First, linear kernels are often preferable with small number of feature vectors and relatively

big amount of features within each vector. Secondly, as can be seen in Fig. 6.7, which presents

clusters of extracted embeddings, multiple users’ representations can be linearly separated with

one-against-one approach. This characteristic of utilized data allowed for using linear kernel and

thus preserving simplicity of the solution.
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Figure 6.8. Relation between resolution degradation/enhancement and accuracy of face recognition

using Euclidean distance between extracted embeddings on IRIS-FR

Figure 6.9. Relation between resolution degradation/enhancement and accuracy of face recognition

using Euclidean distance between extracted embeddings on SC3000-FR

Calculated accuracy values proved the robustness of the selected kernel, however, we would

also like to explore how other kernels affect recognition results from acquired thermal sequences in

future work. Another important finding of the presented work is related to the idea of transferring
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knowledge between image domain. As previously proved in our studies on facial feature detection

(Chapter 4) it is possible to re-purpose deep models trained on visible light data to a novel task in

thermal spectrum by utilizing learnt feature representation and optimizing only final classification

layer of the network. In experiments presented here, we made use of the same approach and

generated thermal embeddings of faces using FaceNet optimized on visible light images. Even

though data from both domains have different characteristic, it was still possible to build facial

representations that uniquely present each volunteer and achieve high recognition accuracy, as

presented in Table 6.4.

The second goal of conducted face recognition experiments is even more important in the context

of the presented doctoral dissertation as it allows for verifying the applicability of the introduced

super resolution model in other practical applications than the one proposed in thesis II. In all

evaluated cases it has been proved that super-resolution leads to increase of person recognition

accuracy. However, this gain is higher for scenarios where overall recognition accuracy was lower.

For example, for SVM classifier, the performance was improved by less than 1%, what is almost

negligible and could have been caused by some random errors.

On the other hand, for IRIS-FR set and Euclidean distance, the accuracy increased by ˜3%.

This finding can be also observed by analysis of Fig. 6.8 and 6.9. The increase of recognition

accuracy is clearly observable for IRIS-FR database, while for SC3000-FR the increase is minimal.

A possible reason for this result is different characteristic of both sets. Our sequences produced

very good results for both LR and HR images, so it was very difficult to further improve them

with enhanced data. Yet, for datasets like IRIS where motion content is higher, it turned out that

improved image quality is beneficial for person identification task. Considering real-life scenarios

of remote medical diagnostics, we should assume that presence of motion is inevitable, especially

for solutions that will be used without super-vision of a third person, e.g. remote monitoring of

vital signs in smart home environment [235, 44] or detection of dangerous health-states in drivers

[19]. In such cases, as shown by results on IRIS-FR set, utilization of data enhancement algorithms

may be crucial.

It has been also confirmed that decrease of resolution results in decreased recognition accuracy

(e.g. 90.42% for SC3000-FR-S4 vs 99.66 for original SC3000-FR inputs). Fig. 6.7 shows influence

of image resolution on users’ representations separability. Clusters can be easily obtained in case of

original high resolution data, but they start to overlap for downscaled images, making classification

much more difficult. Thus, utilization of super-resolution algorithms might be required in order to

achieve satisfactory performance for very low resolution images in scenarios where target devices

impose requirements on spatial size of used sensors (e.g. thermal cameras embedded in wearable

devices). Our future work will focus on performing more experiments with different datasets which

contain very low resolution sequences (e.g. 80x60 data from Lepton camera). In addition, we will

also examine scenarios where subjects are performing different head and body movements in order

to verify our assumption that SR helps to improve person recognition accuracy from data that

contain more dynamic content.

Although achieved results are satisfactory, we are aware of some limitations of the presented

study. Data utilized for method evaluation was gathered during a single data collection procedure.

As a result, images use for generating users’ profiles and for testing the proposed solution were

uniform. A very interesting research question is whether similar accuracy could be achieved for se-

quences collected over longer period of time. This problem should be further explored and analysed

in future studies.
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6.4.2 Emotion Recognition

Objective

Remote medical diagnostic solutions usually utilize facial areas for extracting information about

well-being and state of health [249] The main reason for using face is that it is a highly sensitive

part of a body , which can reveal many important details about medical conditions of subjects.

Face can be analysed over time e.g. to obtain basic vital signs, e.g. heart rate [44] and respiratory

rate [235] or evaluate motor skills of facial muscles in paralysed patients [20], as well as using static

images. Applications of the latter are usually associated with non-verbal cues that utilize emotion

recognition for e.g. pain level estimation [18] or sentiment analysis [250].

Emotion recognition is usually done by analysis of facial expressions. In visible light domain

this problem has been widely studied, using various techniques including machine learning [251],

and DL models [252] proving high detection accuracy. One of the reasons of the majority of stud-

ies being conducted in visible light is that representations of various facial expressions is clearly

distinguishable when high frequency features are present (see Fig. 6.10a).

(a) Visible light image (b) Thermal image

Figure 6.10. Images acquired simultaneously for invoking fear emotion using visual stimulus

Thermal data, on the other hand (see Fig. 6.10b), record temperature distribution of a facial

region instead of its geometric. Solutions which utilize features designed for visible light spectrum,

i.e. shapes, edges, points and other appearance information may fail to correctly recognize emo-

tions from thermal images. That’s why emotion recognition studies in the thermal image domain

received less attention that similar work in the visible light spectrum. Wang S. et al. [253] proposed

to use Boltzmann machine for emotion recognition using features learnt from forehead, eyes and

mouth regions. Liu Z. and Wang S. [254] utilized histograms of temperature differences between

subsequent frames in the recorded thermal sequences . Various techniques based on machine learn-

ing algorithms have been also studied, e.g. using linear discriminant analyses [255]. Nevertheless,

analysis of facial expressions from thermal images is more difficult due to two main factors. First of

all, geometric features are more blurred when temperature distribution of a face is used. Secondly,

various diseases and external environment conditions may affect representation of facial expression

by changing distribution of temperatures, e.g. paralysed muscles may have different temperature

than fully functional ones [20]. Another motivation for our work is the fact that some correlations

between stressful situations and temperature distributions in a body have been already discovered

[256]. Thus, potentially, it is possible to determine emotional response using signals extracted from

thermal image sequences by analysis of color changes within specific facial areas over time.
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Taking it into account, we propose to analyze emotional responses from detected vital signs.

Some attempts to this problem have been already done by Yin Z. et al. [257], who proposed

to make use of various physiological signals (e.g. electroencephalogram EEG, electrocardiogram

ECG or electromyogram EMG signals) to evaluate and identify emotions. Guo H. et al. [258] also

made use of ECG data. In another research, heart rate and skin conductance were measured to

distinguish neutral, positive and negative feelings [259]. By using physiological states, predicted

results may be more reliable as masking or suppressing of biosignals is much harder than changing

facial expressions. Moreover, it can be used when subjects are not able to communicate emotions

in other ways, e.g. infants or paralysed people. We follow similar approach and propose to use

respiratory information for emotion analysis. Yet, contrary to [257, 259], biosignals utilized by us

are extracted in a contactless way from video sequences (as previously described in Section 6.3.2)

instead of using external sensors. In addition to respiratory rate, we also determine whether heart

rate changes with emotions and how it correlates with extracted respiratory rate. In this way, our

solution can be applied in various remote diagnostic scenarios in a non disruptive way, without

forcing any action from users, such as placement of electrodes or attachment of external devices.

Methodology

In the view of foregoing, our study presented in [158] focused on determining whether vital

signs (heart and respiratory rate) extracted from recorded sequences can be used for analysis

of emotional responses. Specifically, we evaluated how those parameters change for imitated and

video-invoked emotions and what conditions should be met to design provide remote diagnostic

solution which makes use of emotional responses of monitored subjects.

For this study, we utilized datasets collected simultaneously with thermal and RGB cameras in

order to make use of multimodal responses associated with emotions. Vital signs were estimated

in a contactless way by processing recorded sequences (respiratory rate from thermal data, heart

rate from visible light data). Furthermore, facial expression were detected from RGB frames using

Microsoft Emotion Cognitive Service (MECS) 1. The output from MECS is represented as a vec-

tor containing confidence levels corresponding to various emotions: anger, contempt, disgust, fear,

joy, neutral, sadness, surprise. In addition, perceptible emotional response was collected using an

online questionnaire (described in details in Chapter 3), as a type of an experienced emotion is

an individual matter. As a result, we were able to evaluate correlation between facial expression,

estimated physiological signals and the real emotion experienced by volunteers and noted by them

in the survey. Details about data collection were presented in Chapter 3. According to the nomen-

clature specified in this chapter, databases are referred thereafter as Logitech900-ER-simulated,

Lepton-ER-simulated, Logitech900-ER-invoked and Lepton-ER-invoked, where first part of the

name corresponds to the used sensor, second means Emotion Recognition (ER) study and the last

indicates if emotion was invoked with visual stimuli or simulated by a participant.

Vital signs were estimated from short fragments of recorded sequences to ensure a fast response

provided to a user in target applications (˜400 samples from thermal data and ˜500 subsequent

RGB frames). In order to accommodate possible inertia of expressed emotion, vital signs were

estimated twice: from the beginning and the end of each recording. Respiratory rate (RR) of

each volunteer was extracted using the same method as in the study on resolution influence on

the accuracy of RR estimation (Sec. 6.3.2). For this experiment, we were dynamically selecting

aggregation operator leading to best estimation result (average, variance or skewness). Also, only

1http://azure.microsoft.com/en-us/services/cognitive-services, Accessed: September 2018
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the best performing RR estimator according to our previous work [172] was applied, i.e. estimator

based on frequency of the dominated peak in the frequency spectrum eRRsp.

Heart rate (HR) was obtained from recorded visible light sequences in a similar non-contact

way by analysis of color changes within manually marked RoI. As presented in literature [44] and

proved by our previous studies [169], the best results are achieved for signals extracted from a

forehead area using YUV color space. Thus, sequences were at first converted using H264 codec

and transformed to YUV color space. Having target platforms with limited compute resources in

mind, images were downscaled to 800x600 and a frame rate was reduced to 15 frames per second

(FPS). Then, RoIs were selected to cover forehead regions for all participants, instead of nostrils as

in case of RR estimation. Examples of areas marked for both vital signs are presented in Fig. 6.11.

After that, raw signals were constructed by averaging pixel values within marked forehead areas

and filtered with a band pass Butterworth filter (frequency bandwidth between 0.67Hz and 4Hz),

as verified in [21]. Finally, the same estimator as for RR was used for calculation of a pulse rate.

Examples of raw heart rate and respiratory rate signals are shown in Fig. 6.12. Due to poor lighting

conditions in some recorded RGB sequences, frames from only 6 volunteers contained information

usable for HR estimation. Thus, HR was calculated only for those participants. In future work, we

are planning to acquire sequences for more volunteers, making sure facial region is sufficiently lit.

(a) RoI for heart rate estimation (b) RoI for respiratory rate estimation

Figure 6.11. RoIs used for vital signs estimation during invoked joy emotion

(a) Heart rate

(b) Respiratory rate

Figure 6.12. Examples of raw signals extracted from selected RoIs (presented in Fig. 6.11)
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Results and Discussion

Values of respiratory rate estimated from collected thermal sequences for emotions simulated

(S) by volunteers (Lepton-ER-simulated) and for responses invoked (I) by video stimulus (Lepton-

ER-invoked) are presented in Table 6.5. Corresponding results for pulse rate were collected in Table

6.6. To accommodate for eventual inertia of emotional response, vital signs were estimated from

selected beginning (B) and last (L) samples of collected sequence.

Table 6.5. Respiratory rate estimated from beginning (B) and last (L) samples of thermal sequences;

S - simulated, I-invoked, tp - technical problem during data collection, fb - face turned away

S:neutral S:joy S:fear S:disgust I:neutral I:joy

Subject B L B L B L B L B L B L

1 21.6 20.3 18.9 21.6 21.6 21.6 16.2 17.6 21.6 18.9 tp tp

2 20.3 20.3 18 19.8 18.9 18.9 24.3 25.2 18.9 18.9 28.4 20.3

3 18.7 22.9 21.6 21.6 18.9 18.9 19.8 18.0 18.9 21.6 17.6 17.6

4 11.7 10.8 14.7 16.7 16.2 16.2 16.2 14.4 16.2 14.4 17.2 14.9

5 13.5 13.5 16.2 16.2 12.2 12.2 14.9 13.5 12.2 15.9 tp 15.1

6 21.6 22.7 21.6 23.1 22.2 22.2 17.3 20.9 22.2 14.3 21.6 20.3

7 14.4 13.1 14.4 14.4 tp tp 12.6 14.4 tp tp 22.9 16.2

8 18.5 18.5 14.0 15.8 27.0 27.0 24.0 27.7 27.0 18.9 21.6 22.7

9 14.4 12.6 21.6 21.6 11.2 11.2 14.4 21.6 11.2 11.2 17.6 18.9

10 18.0 18.0 18.0 19.8 17.6 17.6 19.8 21.6 17.6 17.6 21.6 18.9

11 21.6 21.6 21.6 19.8 17.6 17.6 21.6 20.3 17.6 17.6 18.9 18.9

I:neutral I:disgust I:neutral I:fear I:neutral I:sad

Subject B L B L B L B L B L B L

1 18.9 21.6 16.2 17.6 18.9 21.6 17.6 21.6 18.9 20.3 21.6 21.6

2 18.9 17.6 18.9 17.6 18.9 14.9 23.4 fb 21.6 23.0 20.3 fb

3 18.9 19.8 20.3 18.9 16.2 18.9 20.3 20.3 18.9 17.6 16.2 20.3

4 15.1 14.7 14.0 10.8 11.9 14.4 15.1 15.1 12.1 10.8 13.5 14.9

5 12.1 13.5 13.5 16.2 12.1 13.5 15.8 fb 12.1 13.5 12.2 13.5

6 16.2 15.4 14.4 30.6 12.9 12.9 18.0 21.6 18.0 14.4 17.1 17.8

7 12.6 12.6 13.5 16.2 12.6 12.6 14.9 13.5 10.8 10.8 14.4 14.4

8 14.5 14.5 20.1 19.8 21.6 18.0 27.0 23.6 14.4 12.6 25.2 25.2

9 16.2 16.2 14.9 14.9 14.9 14.9 14.9 16.2 13.5 14.9 16.2 16.2

10 18.0 18.0 18.0 18.0 15.0 19.8 18.0 16.2 18.0 18.0 18.0 18.0

11 12.1 12.1 16.8 15.6 17.6 17.6 19.8 18.0 16.2 18.0 18.0 19.8

141

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Table 6.6. Heart rate estimated from beginning (B) and last (L) samples of visible light sequences;

S - simulated, I-invoked, tp - technical problem during data collection, fb - face turned away

S:neutral S:joy S:fear S:disgust I:neutral I:joy

Subject B L B L B L B L B L B L

6 59.8 59.8 57.1 59.5 61.7 59.4 59.6 61.7 59.9 57.8 66.7 62.0

7 57.2 56.6 69.4 72.0 66.9 66.9 66.9 70.2 61.7 59.1 72.7 88.2

8 84.6 85.0 90.0 91.6 82.8 88.2 88.2 90.0 82.8 81.0 87.2 79.3

9 59.4 57.6 82.8 84.6 63.0 64.8 64.8 59.9 57.7 57.7 61.2 66.6

10 75.3 76.9 74.9 75.3 76.8 79.9 80.4 81.0 76.5 79.2 80.5 82.9

11 73.4 70.6 76.8 70.7 75.8 80.1 78.6 71.4 75.5 72.2 75.0 75.9

I:neutral I:disgust I:neutral I:fear I:neutral I:sad

Subject B L B L B L B L B L B L

6 61.7 59.1 64.1 59.5 57.9 60.0 61.2 59.5 59.8 59.8 59.9 62.7

7 57.7 59.5 69.5 63.1 55.9 55.9 57.7 57.7 55.8 59.8 57.6 59.0

8 90.0 77.4 86.5 81.1 82.9 89.2 75.7 72.1 82.8 81.7 70.2 70.2

9 61.2 77.4 63.0 63.0 59.4 61.2 63.0 61.2 59.4 61.7 59.5 58.7

10 78.0 78.9 84.1 81.7 85.4 81.4 80.4 83.7 80.4 80.6 82.9 81.3

11 73.1 79.0 78.2 77.2 82.3 76.1 75.2 83.2 72.1 80.2 73.7 75.3

Table 6.7. Emotions self estimated by volunteers and collected using the questionnaire filled out

during data collection

Video number: pre-defined emotion

Subject 1:neutral 2:joy 3:neutral 4:disgust 5:neutral 6:fear 7:neutral 8:sad

1 neutral joy neutral disgust neutral fear neutral sad

2 neutral joy neutral disgust neutral fear neutral sad

3 neutral neutral neutral disgust neutral fear neutral neutral

4 neutral joy neutral disgust neutral joy neutral sad

5 joy joy neutral disgust neutral fear neutral sad

6 neutral joy neutral disgust neutral fear neutral sad

7 neutral joy neutral disgust neutral neutral neutral neutral

8 neutral joy joy disgust neutral fear joy sad

9 neutral joy neutral disgust neutral joy neutral sad

10 neutral joy neutral neutral neutral neutral neutral sad

11 neutral neutral neutral disgust neutral fear neutral sad
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Emotions specified by participants in the online questionnaire as dominant during watching

each video stimulus are collected in Table 6.7. In addition, we also wanted to evaluate whether

facial expression corresponds to actual emotion felt by volunteers and with relations indicated by

changes in vital signs. Thus, Microsoft Emotion Cognitive Service was utilized in this study to

extract emotions from visible light images by classifying facial expressions, as already mentioned

in Methodology Section. The most dominant emotion for each volunteer while watching different

videos and percentage of frames in which it was detected is presented in Table 6.8.

Table 6.8. Facial expression detected from RGB frames using Microsoft Emotion Cognitive Service

(MECS). For each subject and video the most frequent emotion was noted, followed by a percentage

of frames in a sequence, where this emotion was dominant

Video number: pre-defined emotion

Subject 1:neutral 2:joy 3:neutral 4:disgust 5:neutral 6:fear 7:neutral 8:sad

1
neutral

100

joy

74

neutral

100

disgust

71

neutral

100

neutral

99

neutral

100

neutral

100

2
?

78

joy

72

?

51

neutral

77

neutral

72

?

46

neutral

89

?

78

3
neutral

100

neutral

93

neutral

100

neutral

88

neutral

100

neutral

92

neutral

100

neutral

99

4
neutral

96

neutral

82

neutral

89

neutral

71

neutral

95

neutral

91

neutral

85

neutral

93

5
neutral

93

neutral

64

neutral

99

neutral

93

neutral

97

neutral

49

neutral

89

neutral

82

6
neutral

100

joy

92

neutral

100

neutral

78

neutral

100

neutral

98

neutral

100

neutral

100

7
neutral

100

joy

89

neutral

100

joy

59

neutral

100

neutral

98

neutral

100

neutral

100

8
neutral

96

neutral

65

neutral

100

neutral

61

neutral

100

neutral

71

neutral

100

neutral

96

9
neutral

100

joy

58

neutral

100

joy

64

neutral

56

neutral

80

neutral

100

neutral

98

10
?

68

?

53

neutral

100

neutral

68

?

51

?

57

neutral

50

?

55

11
?

62

?

85

neutral

55

?

74

?

53

neutral

70

neutral

95

neutral

87

To compare values of vital signs and estimate which one is potentially more dependant on

emotional responses, a relation between calculated pulse and respiratory rates was plotted in Fig.

6.13 for joy and neutral responses for volunteers 6-11. Since, we believe emotional response is
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an individual matter, we also presented relationship between vital signs for two chosen subjects

during watching videos aimed at simulating joy and neutral responses (see Fig. 6.14). Changes in

estimated vital signs during transitions from various emotional stages invoked with video stimulus

are shown in Fig. 6.15 and 6.16 for pulse and respiratory rates, respectively.

Figure 6.13. Relation between vital signs for stimulation video 2: joy (triangle) and neutral videos

(squares) for volunteers 6 to 11

Figure 6.14. Relation between vital signs for stimulation video 2: joy (square) and neutral videos

(triangles) for 2 chosen subjects (subject 7 and subject 10)
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Figure 6.15. Changes in estimated pulse rate values during transition from emotions invoked by

video stimulus for subjects S06-S11

Figure 6.16. Changes in estimated respiratory rate values during transition from emotions invoked

by video stimulus for subjects S06-S11

This study focused on evaluating influence of emotional states on vital signs. Performed exper-

iments included scenarios for both invoked and simulated emotions. Vital signs were obtained in

a contactless way from facial regions, as presented in previous Section (Sec. 6.3.2). According to

users’ responses collected in Table 6.7 we can observe that volunteers claimed to feel emotions quite

consistent with assumptions made by us while selecting video stimulus. However, as can be seen

from Table 6.8, facial expressions detected from visible light sequences don’t correspond to those
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responses, resulting in neutral output in most of the cases. This result clearly indicates the need

for obtaining information about emotions from inputs other than facial expressions. Therefore, we

believe that utilization of vital signs is very beneficial, allowing for getting reliable response, as

masking vital patterns is very difficult.

The threshold for indicating the observable change of vital signs between different emotional

states (δf) was set to 1.8, following the finite frequency resolution of obtained signals, defined in

the same way as in our previous experiments, i.e. with Eq. 6.1. Since visible light sequences were

sampled with frequency 15Hz and 500 frames were used for estimation, δf = 15
500 ∗ 60 = 1.8 beats

per minute. Similarly for thermal data collected with frequency of 9Hz and 300 samples used for

estimation, δf = 1.8 breaths per minute. Thus, we believed this value is a safe threshold for making

valuable conclusions about influence of emotions on vital signs.

Analysis of vital signs data collected in Table 6.6 and 6.5 prove the existence of changes in

heart rate and respiratory rate values during transitions between different emotional states. This

finding is also visible in visualization of vital signs differences presented in Figures 6.15 and 6.16.

Analysis of plotted graphs confirm that change of emotions is an individual issue and different

changes were observed for different subjects. On the other hand, we can also see that respiratory

rate show more clear distinction between different states than the heart rate and some results

are consistent among volunteers. For example, in 4 cases the biggest RR change was observed for

transition either between neutral and joy or joy and neutral states. Differences in heart rate are

more aleatory. 2 subjects reacted with the biggest HR change for joy, 2 for disgust and 2 for fear

emotion. For invoked joy emotion, 67% of cases resulted in respiratory rate difference higher than

1.8 bpm comparing to its previous value during neutral stimulus. Taking into account the average

RR value for all neutral states, this difference was higher than 1.8bpm in almost all cases (89%).

Other emotions depend heavily on the individual. Figure 6.14 shows that for volunteer 7 there

is a clear distinction in pulse and respiratory rate values between joy and neutral states, while

for volunteer 10 the differences are much smaller and estimated values are closely aggregated.

Therefore, we believe that the proposed solution is more suitable for detecting general categories

of emotional states, e.g. in a binary classification of positive vs negative response rather than

predicting specific outcomes, such as fear, disgust, joy, etc.

According to Fig. 6.13, it can be noted that respiratory signals lead to better separation of

evaluated emotions than the pulse rate. Yet, it is still an individual matter and it’s difficult to define

a general rule for emotion recognition. Also, some subjects can perform dynamic movements in

different emotional stages that would lead to some problems with signal acquisition, e.g. invisibility

of facial regions. In order to increase system robustness, additional motion compensation and/or

gaze and face detection algorithms should be introduced to detect the moment when interesting

facial region disappeared from the field of view. Due to high influence of personal features and

behaviour on achieved results, we believe that the proposed system should be tuned separately for

each volunteer and learn his/her patterns in order to make valuable decisions in the future.

It’s important to note that the proposed emotion recognition study is only preliminary and

neither image enhancement nor emotion classification was performed with the use of AI. Yet,

in the future work we would like to focus on integrating the proposed method with DL and

evaluate possibility of improving recognition accuracy, e.g. by classifying emotions from vital signs

patterns using Recurrent Neural Network or obtaining predictions from super-resolved sequences.

Although results are promising, we still observe dependence of results on the subject and our initial

conclusions should be further confirmed in future experiments.
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6.5 Summary

In this chapter we presented examples of applications which benefited from the proposed DL

techniques and models verified and designed specifically for thermal images. Experiments performed

for facial areas detection showed that image enhancement is crucial for improving accuracy of the

system. Evaluated super-resolution models allowed for increasing IoU by at least 15% comparing

to LR bicubic images. In the case of using the network proposed by us, the accuracy gain was even

higher. Face area detection after enhancing image with DRESNet (window size 90) was improved by

56% comparing to corresponding low resolution image. The improvement was also very significant

for other facial regions, e.g. nostril detection improved by 49% and eyes area improved by 13%.

This finding supports the second part of thesis II which states that increased resolution of thermal

images lead to improvement of facial areas detection accuracy.

Furthermore, we also proposed and discusses possibilities of applying the introduced network in

other applications potentially useful for remote medical diagnostic systems. Experiments performed

for contactless respiratory rate estimation and face recognition using enhanced thermal sequences

proved the robustness of the introduced SR model and its positive influence on resulting accuracy in

analysed scenarios. Since the proposed SR network allows for improving methods used at different

stages of remote person monitoring, i.e. person recognition, facial areas detection and vital signs

estimation, we could potentially build a very accurate medical diagnostic system allowing for

obtaining user-specific vital signs patterns during daily activities.

Additionally, we described details of preliminary study conducted by us for the task of emotion

recognition from physiological signals estimated using image processing techniques. Potentially,

the introduced work could also take advantage of image enhancement techniques, as more accurate

estimations of vital signs can improve detection of emotional responses. This problem will be

studied by us in future work.
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Chapter 7

Future work

7.1 Introduction and Overview

Extensive benchmark evaluation performed for proposed novel thermal image processing Deep

Learning (DL) approaches and practical remote diagnostic solutions, which utilize designed neural

network architecture exposed some limitations of introduced techniques that we would like to

address in future work. In this chapter, we will focus on providing ideas for improvement of the

proposed Super Resolution Model.

Furthermore, we will suggest an innovative approach to neural network design using evolu-

tionary algorithms that could ease the search for the optimal architecture. Other methods for

enhancing thermal imagery in order to increase accuracy of contactless medical diagnostics will

be also described. According to remote diagnostics solutions verified by us (see Chapter 6), the

designed Super Resolution (SR) model helps with improving performance of applications which

utilize image processing algorithms. Yet, we only examined a limited set of such scenarios. Thus, at

the end of the chapter, we will provide an overview of other remote computer vision-based medical

solutions that could potentially benefit from higher image resolution increased with the means of

the proposed image enhancement method.

7.2 Improvements of the proposed Super Resolution Model

The idea of improving DL techniques and methods proposed by us for thermal image analysis

can be treated as a double entendre. First of all, due to a huge interest and thereby very fast

progress in Artificial Intelligence (AI) research, new ideas for network design and training are being

continually introduced to the state-of-the-art knowledge. Although, results proved high accuracy

of the designed super resolution model, we would like to examine other techniques which have been

developed in DL area to examine if performance can be further improved.

Secondly, presented studies have been performed only in an experimental setup. To make sure

that proposed algorithms are suitable for production-ready solutions a more in-depth analysis

should be conducted bearing in mind possible factors that could influence results. Both aspects of

network improvements are discussed in this section.
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7.2.1 Architectural and Optimization Changes

Removal of Batch Normalization

One of architecture changes that we want to explore in further studies is removal of batch

norm layer. Currently, the best performing DRESNet architecture normalizes outputs of each

convolutional layer in the feature extraction subnetwork. This design decision was inspired by

studies conducted by Ioffe S. and Szegedy C. [210] and authors of the ResNet model [113], which

proved that training time can be reduced, while improving network accuracy if normalization is

included in the architecture itself.

Batch normalization can be better understood by revisiting the process of network training.

Before introduction of this operation, the only normalization performed during network training

was introduced to network inputs, e.g. z normalization, also known as data standardization, defined

as:

xout =
xin − µ

σ
(7.1)

where xout is a new value of each input xin, µ is a mean value of a batch and σ is a standard

deviation of a batch. Yet, as can be noted during NN training we also observe changes in inputs

distribution at a layer level due to adjustments of weights. As a result, lower learning rates lead

to better performance, since steps used for network optimization are less prone to those changes.

This problem is referred to as covariate shift and as proposed in [210] can be solved by performing

normalization of each layer inputs. Batch normalization extends the Eq. 7.1 by introducing two

parameters (β and γ) learnt separately for each level:

xout = γ(
xin − µ

σ
) + β (7.2)

It’s worth mentioning that in case of images, every pixel is treated as an example. Thus, the mean

value (µ) and the standard deviation value (σ) are calculated over N ∗W ∗H samples, where H and

W are image height and width and N is a number of images in a batch. As shown by [210], batch

normalization approach reduces possibility of exploding and vanishing gradients and eliminates a

need of applying some other techniques, e.g. dropout, as it already acts as a regularization method.

On the other hand, as shown by Lim B. et al. [209] in their Enhanced Deep Residual (EDSR)

Super Resolution network, removal of batch normalization layers is advantageous in case of regres-

sion tasks, such as Single Image Super Resolution (SISR). The goal of SISR is to restore image

features by performing image-to-image mapping instead of building abstract representations used

for classification, as it is in a case of ResNet. Therefore, if input and output of the network is

highly similar and correlated, batch normalization can lead to decrease of performance. Taking it

into account, we would like to evaluate accuracy achieved by DRESNet if batch normalization is

not applied.

Width and Size of Convolutional Kernels

Second limitation of the proposed SR thermal data-oriented model is a number and a size of

filters. In order to ease the training procedure by keeping a number of parameters at minimum,

we only tested configurations where all convolutions were using 96 filters of a size 3x3. Yet, as

shown in studies performed with SRCNN [190] (pioneer Convolutional Neural Network (CNN) SR

network), we can observe performance gain for networks with bigger convolution width (the term

width corresponds to the number of filters used within each convolution). Other state-of-the-art
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SR models also took advantage of this finding, introducing 128 (DRRN [193]) or even 256 filters

(DRCN [192]). On the other hand, utilization of more filters comes at a cost of processing time,

what can be especially important for our target applications, often limited in terms of available

computational resources. In such cases, it may turn out that smaller network width is preferable,

since achieved accuracy is still satisfactory while keeping higher restoration speed (as proved by

DRESNet which outperformed other networks in performed experiments using only 96 filters).

Another aspect of convolutional filters design is associated with their size. It has been also shown

by SRCNN that larger kernels allow for increasing model accuracy [190]. The intuition behind

applying bigger masks for feature extraction lies in utilization of richer structural information.

At the non-linear mapping step it’s also beneficial as bigger filters allow for utilizing more distant

neighborhood relations. Yet, similar results may be achieved by using residuals and recursions with

shared weights, as proposed in DRESNet. Convolution filters larger than 1 × 1 applied iteratively

lead to widening of the receptive field and thus achieving comparable effect as in a case of bigger

kernels. Contrary to bigger filters though, residuals and recursions with shared weights do not cause

expansion of parameters number, what allows for keeping small network size. Yet, the interesting

research question is whether combination of bigger filter size and convolutions used recursively

will lead to even better results than with the proposed DRESNet configuration. The choice of

network width and filters size should always involve analysis of a trade-off between inference time

and restoration accuracy. It would be useful to perform such comparison in future studies.

Gradient Clipping

Potential improvements could also target the training procedure itself. According to previous

studies on Convolutional Neural Networks [39], deeper architectures lead to better performance.

However simple stacking of more layers is not efficient, as it may result in vanishing/exploding

gradient problem. Various techniques to address this problem have been already proposed and

also introduced by us in the proposed SR model, e.g. use of specific activation functions, such as

ReLU [260] which allow for selecting features better for image recognition; applying supervision

to recursion to make backpropagation of gradients easier [192]; utilization of residual blocks [113];

previously described batch normalization [210]; specific weight initializer, e.g. He algorithm [212].

There is also one more very effective approach, which haven’t been tried by us so far. This

technique, known as gradient clipping, was proposed a few years ago in the study on recursive neural

networks [261]. The basic rule of gradient clipping is based on clipping the gradient value whenever

it exceeds a fixed threshold. This simple, yet very effective strategy, turned out to be crucial for

network convergence using Stochastic Gradient Descent Optimizer. Later, gradient clipping has

been also shown to improve training procedure of SR convolutional networks by possibility of

using higher learning rates (VDSR [191] applied 4 times smaller learning rate than SRCNN, while

producing even better results). Although the usage of gradient clipping is still limited in CNNs,

as it was originally designed for recurrent networks, we would like to examine how our proposed

network saturates when clipping strategy is utilized.

7.2.2 Production-ready Solution

This aim of this work was to propose novel Deep Neural Network (DNN) architectures that

would allow for accurate processing of thermal sequences for remote medical diagnostic solutions.

Conducted experiments were established on strictly defined conditions of data collection process,
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e.g. person looking towards the camera, controlled laboratory environment, etc. Some initial studies

for evaluation of proposed techniques in practice have been also proposed and described. Specifi-

cally, one of databases (see Section 3.2.1) was collected with thermal camera mounted on a wearable

device (eGlasses platform [150]) to simulate eventual influence of physician’s movement on possi-

bility to detect facial areas. Experiments performed with this set were described in Section 4.2.1.

Yet, a more detailed experiments in challenging environments and real life setting are necessary

in order to ensure the software is reliable and production-ready. One of the factors that should be

considered is deployment of models on target platforms. All of presented results were produced by

performing an offline testing, meaning that datasets were collected in one step and then processed

on a separate device, i.e. desktop PC, laptop or NVIDIA® DGX-1™ Station equipped with four

GPU Tesla V100 cards, dedicated to processing of DL workloads. In order to accurately evaluate

utilization of computational resources, verify if size of models is optimal and make sure that

responses from system are returned to users with acceptable latency, end to end solution should

be run directly on smart glasses or other resource-constraint device that is usually used in smart

home environments or telemedicine systems. Inference time should be measured as a time required

by the device to process a sequence of thermal images collected using camera connected to the

platform and return results of estimated vital signs. It should be also verified if model and a

sequence of frames needed for performing medical diagnostics are within the memory capacity

offered by the device. Examples of latest embedded AI computing platforms and AI accelerators

include NVIDIA© Jetson 1, Intel© Nervana Neural Network Processor 2, or Intel© Movidius 3.

Another important aspect that should be verified involves definition of measurement conditions.

In real life scenarios distance between subjects and camera, body position and other settings vary.

Performed tests were conducted on different databases collected using numerous acquisition devices

in order to provide reliable conclusions. However, to confirm results, test sets should be acquired

in different conditions and environments to determine if trained networks can generalize well and

aren’t biased towards previously utilized datasets.

It would be also beneficial to provide algorithmic redundancy to increase reliability of response.

Although we identified the configuration of DRESNet that leads to the best restoration accuracy

in Chapter 5, other structures may turn out to perform better in different scenarios. Numer-

ous configurations of the proposed SR model could be used for resolution enhancement and then

respiratory rates could be obtained with different estimators (e.g. all estimators utilized in exper-

iments described in Section 6.3.2) simultaneously. After that, results may be combined to build

algorithmic-redundant software and assess the overall reliability of the system. It is also important

to specify clear terms of use and indicate that results produced by the proposed solution are not

professional medical diagnosis and should be consulted with specialists.

In order to perform analysis of practical applications of introduced DL thermal image processing

techniques for the needs of remote medical diagnostics, users’ ratings should be collected after

testing proposed neural networks, e.g. using a questionnaire. Collected responses should contain

information about a number of trials needed to obtain the measurement, time spent on data

collection and processing, a number of failed attempts, and general rating indicating out of the

box experience, ease of use, clarity of instructions and interfaces. To perform such evaluation,

specific usage scenarios should be prepared and conducted on a bigger group of volunteers.

1https://www.nvidia.com/en-us/autonomous-machines/embedded-systems, Accessed: February 2020
2https://www.intel.ai/nervana-nnp/nnpi, Accessed: February 2020
3https://software.intel.com/en-us/movidius-ncs, Accessed: February 2020
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7.3 Optimal Architecture Design with Neuroevolution

One of the presented dissertation theses aimed at verifying whether introduced novel Deep Neu-

ral Network architecture allow for thermal image enhancement and thereby improvement of facial

areas detection accuracy in order to provide more reliable non-contact vital signs diagnostic solu-

tions. Experiments conducted on various datasets proved this statement and resulted in proposal

of the best configuration of convolutional-based Super Resolution (SR) model which outperformed

other state of the art networks (see Chapter 5 and 6).

In our experiments conducted for thermal data enhancement the best performing neural network

architecture was selected by randomly applying various number of residual and recursion blocks

to all proposed subnetworks of the SR model (i.e. feature extraction, non-linear mapping and

reconstruction), training them and comparing image quality metrics (Peak Signal-to-Noise Ratio

(PSNR) and Structural Similarity Index Metric (SSIM)). In total more than 60 configurations

were evaluated. Although this approach allowed for in-depth analysis of placement and number of

utilized blocks leading to best image reconstruction results, outperforming other state-of-the-art

solutions. Yet, the process of finding the best architecture was very time-consuming and doesn’t

guarantee that the best configuration has been found, since parameters were chosen from limited

sets of recursive and residual blocks (as presented in Section 5.3.4). Taking it into account, it would

be beneficial to take advantage of other approaches used for generation of optimal neural network

structures.

Neuroevolution is one of such solutions. It is based on stochastic search methods and operate

on a population of genotypes mapped to neural network structures evolved to find the best model

fitness. Neuroevolution has been first proposed for generation of Artificial Neural Networks in 2009

[262] and has recently gained a lot of popularity in DL studies [263] . Evolutionary algorithms pos-

sess some advantages over other commonly used optimization algorithms, e.g. back-propagation.

First of all, parameters of neural network can be encoded in genomes and evolved during train-

ing based on applied evaluation metrics. It has been shown that such approach is more effective

than optimization using cost functions and allows for finding better performing network in fewer

computational cycles [264].

Moreover, it is also possible to combine neuroevolution algorithms with learning methods in

order to provide solutions that can dynamically adapt to various environmental changes [265].

Evolutionary algorithms can be also utilized for hyperparameters search. While using conventional

learning algorithms, initialization of hyperparameters may have a significant influence on final

model accuracy. Thus, various techniques have been proposed to improve state-of-the-art results,

e.g. He [212] initializer. Yet, as proved by research conducted on evolution-driven supervised learn-

ing [266], a very promising results can be achieved if initial parameters are find with evolution

algorithms and then network is optimized in a conventional way, e.g. using back-propagation.

Inspired by those findings, we are interested whether neuroevolution could help with evolving

super resolution thermal data-oriented architecture that will result in better resolution enhance-

ment than proposed, found with random search, but still fixed topology. Detailed description of

various approaches for evolving neural networks has been provided by Floreaon D. et al. [262].

We are planning to evaluate them in future studies in order to propose other configurations of the

introduced DRESNet architecture.
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7.4 Other Algorithms used for Image Enhancement

In the presented dissertation, we focused on improving quality of thermal data using Super

Resolution Deep Neural Networks. Experiments performed for target remote medical diagnostic

solutions, described in Chapter 6, showed that image enhancement has a positive effect on facial

areas detection and extraction of vital signs by analysis of pixel intensities changes (within detected

regions). Yet, it is important to note that Super Resolution algorithms solve a specific problem of

image quality degradation, defined by Eq. 5.2, i.e. reversing the effect of data down-scaling.

Hence, there are also other operations that lead to degradation of image quality and as a

result may negatively affect computer vision-based telemedicine solutions. Some examples of such

problems include influence of noise or blurring of features present in collected samples. All of those

degradation effects can be mitigated by solving ill-posed inverse problems, similarly to super-

resolution approach. Yet, each of them is slightly different, e.g. denoising focuses on restoration of

a clean image from noisy inputs, deblurring aims at alleviating effect of convolution between sharp

data and blurry kernel, etc. Therefore, we can treat all of those tasks as exclusive problems.

According to our studies, described in Section 5.3.4, conducted on collected low resolution

(80x60) thermal dataset, Generative Adversarial Network (p2p-deblur) designed as image-to-image

translation solution performing deblurring operation produced image quality metrics close to the

proposed SR convolutional network. Potentially, restored high resolution outputs could be further

improved by combining solutions for reversing different degradation algorithms in a single pipeline.

Various techniques for blur removal have been already proposed, including solutions based on

image priors [267], conventional machine learning algorithms [268], and recently also Deep Neural

Networks, e.g. Sun j. et al. [269] proposed to use a simple CNN structure to predict motion kernels.

After that, Markov random field model was applied to estimate motion blur field and remove it

using deblurring based on patch-level image priors. More recent studies showed that deblurring

can be also solved with GAN [270], similarly to the p2p deblurring network evaluated in our work

(see Chapter 5).

An interesting research question is what is the purpose of residual blocks in embedding sub-

network learnt by the SR model. Those blocks may act as either image pre-processing, e.g. un-

sharp/deblur or as feature extraction operations. In the first case, unsharp masking may be realized

by introduction of additional convolutional blocks, as presented in Fig. 7.1.

Figure 7.1. Unsharp operation can be realized by applying a sequence of convolution operations,

where 1x1 convolution models unsharp masking kernel with weights learnt during model training

instead of their manual selection as in a standard approach
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It’s worth noting that such structure is equivalent to a simple unsharp model (see Fig. 7.2) for

which the output is restored as:

xout = xin + (xin − xblurred)~K (7.3)

where K is the kernel for unsharp masking, which can be modeled by convolution operation.

Figure 7.2. Steps of unsharp operation

Visualization of final weights of convolutional operations in the unsharp block may be useful

for determining whether they in fact act as image pre-processing or as extraction of features. Such

experiments may be also performed by analysing feature maps instead of image data, as shown in

Fig. 7.3

Figure 7.3. Unsharp operation applied to feature maps extracted after first convolution

On the other hand, if more experiments are conducted, it may turn out that the proposed

DRESNet model is sufficient for reversing all discussed degradation operation at once. The reason

for this assumption is that theoretically a universal DL model can learn a single function SR(x)

equally well as combination of functions SR(DN(DB(x))), where SR denotes super resolution,

DN denoising and DB deblurring applied to an image x. Yet, more tests should be performed to

confirm this hypothesis. Especially, we would like to further reduce image quality by introducing

additional noise and/or convolving images with blurry kernels. Data augmentation introduced

in this way may allow for training universal thermal image enhancement solution, significantly

improving image quality metrics.

As another aspect of future work on SR model architecture, we would also like to evaluate other

SR networks on thermal data, e.g. Generative Adversarial Networks, which have recently gained a

lot of attention due to achieving very promising results in various computer vision tasks, including

super resolution of visible light images [196].
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7.5 Other Potential Applications

In Chapter 6 a detailed analysis of exemplary remote medical diagnostic solutions based on

the proposed DL ideas (i.e. transferring knowledge from visible light domain and enhancement of

thermal images) was presented. Conducted experiments showed that accuracy of such solutions can

be improved with AI. In this way, we proved that introduced neural network techniques and novel

architectures are suitable for practical remote healthcare monitoring applications, what confirmed

theses proposed in the dissertation.

We also identified a wide range of other potential use cases which could benefit from DL

approaches described in this study. Although those applications are not the subject of this work,

we would like to examine them in the future work. First of all, research on producing hallucinated

visible light images is much more advanced than similar studies in thermal domain. Many artificial

neural networks have been proved to restore very accurate versions of original high resolution data

due to ability to learn high frequency representations of such images, as discussed in Section 5.2.3.

Thus, generating super-resolved visible light sequences might also have a huge potential for remote

diagnostics, e.g. non-contact heart rate extraction [44]. Initial evaluation of such solution has been

discussed by McDuff D. [271]. We would like to verify it and compare with the network proposed

by us for thermal image enhancement.

Secondly, evaluated applications may be also deployed in other markets, apart from telemedicine.

A very interesting potential solution would be to utilize discussed algorithms for security purposes.

Recent epidemic treats has caused a great commotion all over the world. Researchers are look-

ing for novel health state evaluation techniques that would allow for making fast decisions about

necessary treatment. By using image enhancement and vital signs magnification techniques, it is

possible to estimate vital signs at longer distances, as showed in our previous work [169]. Taking it

into account, proposed SR network could be deployed at border control and security checkpoints

in order to improve accuracy of vital signs estimation or body temperature pattern analysis and

reduce the risk of infection spreading by taking immediate medical actions.

Moreover, acquired and enhanced sequences could be also processed in order to recognize emer-

gency situations or detect violent behaviours by e.g. performing action recognition [272]. In this

case, examples of scenarios include fall detection applications deployed in smart homes [273], driver

sleep alerts using different temperatures around the nose and mouth areas [19], crowd density clas-

sification in order to identify potential [274] security treats at airports and other public places, etc.

The number of potential applications is countless and we believe that as long as image processing

algorithms are used, techniques evaluated in this study and proposed neural networks could lead

to improvement of the accuracy of such solutions. We would like to expand our research in this

area and verify robustness of designed models for other potential applications.

7.6 Summary

This Chapter overviewed ideas for improving proposed AI algorithms in two ways: a) by mod-

ifying the introduced architecture using latest advances in DL; b) by utilization of other learning

methods that enable more efficient search for optimal network architecture. Moreover, we also

suggested other potential applications that could benefit from the use of the proposed AI model.

Factors that should be considered in order to make the analysed solutions production ready were

also presented and discussed.
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Chapter 8

Conclusion

8.1 Summary

In the face of demographic transformations happening at a global scale, vision of healthy lifestyle

and medical services is going to diverge from its current definition. This progress can be already

observed in development of more advanced data processing systems and more intelligent devices

equipped with algorithms capable of providing information about our state of health, such as

wearable devices [150, 275] or kitchen appliances suggesting proper nutrition [222]. It has been

also shown that contactless estimation of fundamental vital signs important for indicating various

health problems is possible by analysis of pixel intensities changes in specific body regions [44, 235]

even at long distances [169] if vital signs patterns are properly magnified and enhanced. Yet, based

on conducted analysis of state-of-the-art solutions utilized for improvement of quality of collected

data and detection of areas useful for contactless extraction of vital signs, we realized that the

majority of studies focus on visible light data only. It is important to note though that images

obtained in various domains have different characteristic and frequently solution developed for one

imaging domain may not be directly applicable and transferable to other representations. Since

thermal data is of interest in computer vision-based remote monitoring systems due to ability of

providing additional medical information (temperature patterns can be used for pain analysis [18],

sleep detection [19], evaluation of facial muscle paralysis [20] or respiratory rate estimation [21]),

while being insensitive to different illumination condition and ensuring better data privacy, we

believe there is a need of expanding research on such solutions to the thermal domain.

The presented doctoral dissertation focused on proposal of novel Deep Learning (DL) based

solutions and Neural Network architectures that would improve state-of-the-art knowledge in the

area of thermal image processing. Our main goal was to design algorithms that would lead to better

accuracy of possible remote medial diagnostic applications. In-depth analysis of state-of-the-art

architectures allowed for determining drawbacks of those networks for processing of thermal images

which have different characteristic than visible light ones. In order to mitigate identified limitations,

we proposed innovative modifications of existing solutions and novel Deep Neural Network (DNN)

architectures more suitable for thermal images. To evaluate recommended approaches, datasets of

thermal sequences were collected using different imaging sensors from more than 70 volunteers in

total taking into account examples of target remote medical diagnostic applications, e.g. estimation

of respiratory rate, emotion analysis studies, facial areas detection and deployment of proposed

algorithms on wearable devices.
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In addition, tests were also performed on publicly available datasets to avoid results being

biased by our sets. Experiments conducted for all databases proved that introduced solutions

outperformed algorithms used so far for solving the same tasks. Specifically, we modified the original

flow of the Inception [111] model in a way that classification task was turned into detection during

the inference time. Using the proposed solution, we observed a significant improvement of facial

areas detection from low resolution thermal images in comparison to state-of-the-art network,

i.e. precision improved by 8% and recall improved by 63%. Modification introduced during the

prediction time allowed for eliminating the need of providing bounding box annotations and led

to reduction of the processing time - ˜16FPS for a single image stream utilizing only ˜5% of the

resources on NVIDIA® DGX-1™ Station vs. ˜2FPS for state-of-the-art SSD model.

It has also been showed that the proposed thermal image enhancement method lead to improve-

ment of accuracy of existing algorithms applied for contactless vital signs estimation. According

to achieved results, accuracy of respiratory rate estimation using super resolution thermal model

is comparable or better than for results achieved with 4 times bigger inputs (Root Mean Square

Error for inputs of a size 20x15 pixels, enhanced with proposed DRESNet equals 4.89 vs. 5.15 for

original data and 5.58 for other magnification algorithms - Section 6.3.2). The same finding holds

true for person recognition studies, as it has been proved that person identification accuracy can

be improved by more than 8% for images as small as 60x80 if their quality is enhanced with the

proposed neural network.

This opens a lot of new possibilities for modern healthcare systems which could benefit from

DL-based image processing techniques without the need of providing better quality, more expensive

sensors. Conducted experiments allowed for determining the configuration of DL models leading

to the best image quality metrics by evaluating different number and placement of residual and

recursive blocks within feature extraction, non-linear mapping and reconstruction subnetworks.

Although presented results are very promising, we are also aware of some limitations of the intro-

duced methods and discussed them in details in Chapter 7, providing ideas for future studies and

improvements.

Based on performed analysis, we believe that the goal of the presented dissertation was achieved.

Conclusions of conducted studies were summarized in each Section, underlying innovative results

which proved theses formulated in the presented doctoral dissertation. Specifically, Sections 4.2.1,

4.2.2, and 4.3 allowed for justifying first thesis statement:

I) Architecture of Deep Neural Network designed for classification of visible light images can

be modified in such a way that distribution of extracted features will be recreated enabling

detection of facial areas from low resolution thermal data.

Sections 5.3, 5.3.2, 5.3.4, 5.3.4, 5.3.4, and 6.3.1 demonstrated correctness of the second thesis:

II) Proposed architecture of deep Convolutional Neural Networks allows for increasing resolution

of thermal images leading to improvement of facial areas detection accuracy.

Finally, in sections 6.3.2 and 6.4.1 we also showed that other algorithms used in remote medical

diagnostic solutions, i.e. contactless estimation of vital signs and face recognition, can also benefit

from applying thermal image enhancement model introduced in experiments performed to prove

the second thesis.
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8.2 Novel Outcomes

Extensive benchmark evaluation conducted in the presented doctoral dissertation in order to

prove, explain and elaborate on formulated theses resulted in following original, high-impact and

cutting edge outcomes:

1. Limitations of existing image processing methods for facial areas detection in thermography

were identified in the critical analysis of state of the art techniques (Chapter 2.

2. New databases that could be used for training of DNN for facial area detection were collected

using different thermal acquisition devices (Section 4.2.1).

3. Convolutional Neural Networks and other novel DL architectures insensitive to body rotations

were proved to accurately detect facial areas from thermal images (Sections 4.2.1 and 4.3).

4. Possibility of transferring knowledge from visible light data to thermal images in order to

improve detection accuracy was verified using Deep Learning models (Section 4.2.1 and 6.3.1).

5. Innovative structure of Convolutional Neural Network leading to restoration of features dis-

tribution to determine coordinates of facial areas used for contactless vital sign estimation

was proposed, implemented and evaluated. (Section 4.2.2); comparison of the proposed solu-

tion with state-of-the-art detection model showed improvement of performance and reduction

of training time.

6. Novel DNN architecture of Super Resolution model for enhancing thermal images was pro-

posed, designed and implemented. The introduced innovative architecture is a first attempt

(to the best of our knowledge) to address thermal data characteristic by widening of the

receptive field, to take into account more distant relations between facial components due to

heat flow in objects. Comparison of the proposed neural network with other existing image

enhancement DL models proved its superiority on different thermal datasets (Chapter 5).

7. Experimental analysis of proposed DL techniques and neural network structures showed their

robustness in potential practical applications of remote medical diagnostics and other relevant

use cases (Chapter 6).

Summing up, in our opinion the aim of the presented dissertation was achieved. Innovative

methods of thermal image processing using Deep Neural Networks in order to enhance their quality

were proposed. Evaluation performed with the introduced techniques proved the increase of facial

areas detection accuracy, what is beneficial for the needs of remote medical diagnostic solutions.

Theses formulated in the dissertation were confirmed, showing their authenticity and genuineness.

Novel outcomes were achieved and published in a wide range of publications, which are summarized

in Appendix A.
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Appendix B

Super Resolution architecture

Figure B.1. Proposed CNN for thermal image enhancement
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