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Thermally activated persulfate-based Advanced Oxidation 
Processes — recent progress and challenges in 
mineralization of persistent organic chemicals: a review 
Shirish Sonawane1,2, Manoj P Rayaroth1, Vividha K Landge2,  
Kirill Fedorov3 and Grzegorz Boczkaj3,4   

Thermally activated persulfate (TAP) finds application in 
Advanced Oxidation Processes for the removal of pollutants 
from contaminated water and soil. This paper reviewed the 
various cases of TAP in the environmental remediation. The 
pollutants such as individual pharmaceuticals, biocides, cyclic 
organic compounds, and dyes are considered in this review. It 
is interesting to note that most of the organic compounds 
undergo complete degradation at a high temperature of 70°C 
with a first-order reaction kinetics. The influence of operating 
parameters such as temperature, persulfate concentration, 
initial pH, and degradation behavior in the presence of natural 
water constituents are also discussed. In addition, several 
processes to reduce the temperature of TAP are highlighted. 
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Introduction 
The industrial and domestic wastewater contains 
number of pollutants, while many of them are persistent 

to the single treatment techniques. Advanced Oxidation 
Processes (AOPs) are one of the key methods for the 
treatment of wastewater containing recalcitrant pollu-
tants [1,2]. Currently, big attention is made on persul-
fates (S2O8

2-, PS) based AOPs [3–9]. This type of 
oxidants demands effective activation (Eq. 1) to produce 
radical species which are able to degrade persistent or-
ganic pollutants. The commonly used activators are 
acoustic (US) and hydrodynamic cavitation (HC), tran-
sition metal ions and related catalyst, carbon-based cat-
alyst, UV light, alkaline and thermal activation  
[4,5,10–17].  

S2O8
2- + heat/UV/US → 2SO4

•-                                              (1)  

Often simple PS activation method which can be im-
plemented on a large-scale basis is highly required. In 
this regard, thermal activation of PS has high potential of 
applicability. 

Thermally-activated persulfates for the 
removal of organic contaminants 
Thermal activation is one of the simplest and an effec-
tive method for PS activation to generate reactive spe-
cies [18]. Since the bond energy of peroxide (O–O) in PS 
is 140–213.3 kJ mol−1, a thermal activation at a tem-
perature of > 30°C is sufficient to break the OeO bond 
for the generation of sulfate anion radicals (SO4

•-) (Eq. 
2) [4]. These SO4

•- radicals can be further converted to 
hydroxyl radicals (•OH), which are also an effective 
species (Eq. 3) [19]. The generation of SO4

•- and •OH 
radicals can be represented as given below:  

S2O8
2- + heat → 2SO4

•- [30°C < T < 90°C]                                (2)  

SO4
•- + H2O → SO4

2- + •OH + H+                                         (3)  

Reaction described by Eq. (3) is a slow process 
(< 2 × 10−3 s−1) under normal condition; however, the 
thermal processes enhance the conversion of SO4

•- to  
•OH. Therefore, the advantage of the thermally acti-
vated PS (TAP) is the involvement of selective reactive 
species, SO4

•- and nonselective reactive species, •OH. 
Furthermore, the evolution of these reactive species 
depends on the pH of the solution. The speciation of the 
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radical species revealed that the SO4
•- species are the 

predominant species formed at pH < 7, whereas both 
SO4

•- and •OH are present when the pH is increased to 9  
[20]. The alkaline pH favors •OH in the reaction 
medium as the major species. The studies also reported 
that among the various peroxide-based oxidants, PS is 
very common in thermal activation processes  
[6,8,15,21,22]. 

Parameters affecting the degradation of 
organic pollutants in wastewater and soil 
TAP method has been tested for a number of pollutants 
ranging from chlorinated solvents to the emerging con-
taminants. The removal of various pollutants using TAP 
and the parameters studied in the processes are given in  
Table 1. 

Analysis of the collected data suggests that the most of 
the degradation processes follows the pseudo-first-order 
kinetics. Fan et al. reported the degradation of sulfa-
methazine using TAP. The complete degradation of the 
pollutant was observed in 120 min of treatment at 60°C  
[23]. TAP method has been reported for various re-
calcitrant pollutants like sulfachloropyridazine, p-ni-
trophenol, phenol, benzoic acid, ibuprofen, parabens, 
phthalates, perfluorooctanoic acid, atrazine, diuron, and 
dinitrodiazophenol (Table 1). Waldemer et al. reported 
similar techniques for the removal of chlorinated 
ethenes (tetrachloroethene (PCE), cis-1,2-di-
chloroethene (cis-DCE), trans-1,2-dichloroethene (trans- 
DCE), and trichloroethene (TCE)), rapid removal was 
observed in 60 min of the treatment. Complete removal 
was reported for almost all the tested pollutants [25]. 

Along with removal of organic pollutants the TAP has 
also proven to be effective for removal of total organic 
carbon (TOC). Luo et al. have studied the removal of 
Congo red (CR) dye via TAP and reported around 98% 
decolorization along with 84% TOC removal [53]. 
Amasha et al. reported the effect of initial PS con-
centration ([PS]0) on TOC removal during degradation 
of nonsteroidal anti-inflammatory drugs using TAP 
process. The increase in mineralization with increasing 
[PS]0 was observed with maximum TOC removal of 75% 
at 60 min was treatment at 60°C and [PS]0 = 5 mM [55]. 
Similar trend in mineralization was also reported by  
Dominguez et al. with [PS]0. They have also noted the 
enhancement in extent of mineralization with increasing 
temperature [56]. However, with increasing tempera-
ture, an increase in cost of process along with un-
productive decomposition of PS is also inevitable (See 
Section Temperature). Moreover, in most of the cases 
such as degradation of propranolol, antipyrine, methyl 
and ethyl parabens (EtP), diuron, triclosan, only about 
10–25% TOC removal was reported with TAP. On the 
contrary, 90–100% degradation was noted for the 

aforementioned contaminants [24,27,29,39,41]. This in-
dicates that the contaminant’s degradation is sub-
stantially faster than their mineralization, which implies 
that the by-products generated are resistant to PS oxi-
dation. But, upon the application of one or two activators 
along with heat for PS activation tremendous enhance-
ment in rates of contaminant degradation and miner-
alization was reported, thereby addressing the issue of 
contaminant mineralization. Rayaroth et al. have at-
tempted the degradation of reactive black 5 using a 
sulfidized nanoscale zerovalent iron and combined sul-
fidized nanoscale zerovalent iron–PS system. The results 
indicated that, when only sulfidized nanoscale zer-
ovalent iron was used 25% degradation and 10% TOC 
removal was obtained. Whereas, 100% degradation and 
90% TOC removal was achieved with combined sulfi-
dized nanoscale zerovalent iron–PS system [57]. Zhang 
et al. noted 85.81% TOC removal using thermal and 
metal ions co-activated PS used for degradation of p- 
nitrophenol [45]. 

The PS dosage is also an important parameter that can 
affect the quality of treated water and the operating cost 
of TAP. Thus, for the practical application of TAP it is 
necessary to use the optimized PS dosage in accordance 
with the reaction stoichiometric efficiency (RSE). The 
RSE is defined as the number of moles of organic pol-
lutant degraded divided by the number of moles of PS 
consumed and often plays an important role in the 
evaluation of the oxidation efficiency for TAP [53].  
Amasha et al. have studied the degradation of keto-
profen using TAP ([PS]0 = 0.25–5 mM). They have ob-
tained maximum value of % RSE to be 33.2% at [PS]0 
= 1 mM and T = 60°C. They noted significant decrease 
in % RSE with increasing [PS]0 above 1 mM. Also, the 
efficacy of TAP system was found to be higher than 
Fe2+/PS system and lower than UV/PS system [55].  
Ghauch et al. have used RSE to determine whether 
acidic, neutral or basic pH condition is the optimum for  
degradation of ibuprofen using TAP. The results have 
shown that the optimum ibuprofen removal was ob-
tained at neutral pH (RSE = 0.65) followed by pH = 9.0 
(RSE = 0.25) and pH = 4.0 (RSE = 0.09). This higher 
RSE at neutral pH of 7.0 suggests that the produced 
SO4

•- are directly used for oxidation of ibuprofen 
through electron transfer or H-abstraction via indirectly 
produced •OH. Lowest RSE implies that the very few 
SO4

•- produced through acidic catalysis are involved in 
the oxidation of ibuprofen and the rest reacts with 
phosphate or with each other. In case of pH 9.0, some of 
the SO4

•- produced reacts with hydroxyl species in-
creasing PS consumption which in turn results in lower 
IBU degradation [30]. In another study, Ghauch et al. 
suggested that the RSE values evaluated at similar op-
erating conditions for various pollutants can also help in 
the interpretation of the kinetics law and the role of 
dissolved species involved in the oxidation mechanisms. 

2 Sulfate radical based advanced oxidation processes for environmental decontamination  
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As lower RSE values can indicate lower consumption of 
PS towards pollutant degradation resulting in lower re-
action rate constants and vice-a-versa [37]. This high-
lights that the estimation of RSE is an important aspect 
for the degradation of organic pollutants with TAP. 

Temperature 
The critical parameter in this process is temperature. In 
most of the studies, the temperature was varied from 20 to 
70°C; however, most effective processes were reported for 
temperatures of at least 60°C [58]. Higher temperature 
causes high abundancy of reactive species as well as in-
creases the reaction rate for the interaction of reactive 
species with pollutants [18]. However, high temperature of 
treatment increases energy consumption. Thus, for the real 
applications, most of the studies were performed in tem-
perature range of 40–60°C [59]. The temperature effect is 
also useful in the calculation of activation energy using the 
Arrhenius equation (Eq. 4) [34,51].  

ln kobs = lnA – Ea/RT                                                           (4)  

In this equation kobs is the rate constant obtained from 
the pseudo-first-order kinetics, A is the pre-exponential 
factor, Ea is the activation energy, R is the universal gas 
constant and T is the temperature. As given in Table 1, 
the calculated Ea for the PS oxidation of pollutants was 
in the range of 95–180 kJ mol−1 [34–36,39,51,58]. 

Moreover, raising the temperature not only results in ex-
cess consumption of energy but also leads to some side 
reactions due to the unproductive decomposition of PS. 
Dominguez et al. state that the PS activation takes place by 
two parallel reactions; 1] the reaction resulting in the for-
mation of SO4

•– (Eq. 2), and 2] the unproductive decom-
position of PS as given in Eq. (5) [3,56]. 

S O + H O 2H + 2SO +
1
2

O2 8
2

2
+

4
2

2 (5)  

Goulden and Anthony and Dominguez et al. have reported 
that, the higher temperatures favors the rate of PS decom-
position over that of PS oxidation as the Ea for PS decom-
position was estimated as 128.48–140.16 kJ mol−1 whereas 
Ea for oxidation of pollutants by PS was found to be  
102.4–115.72 kJ mol−1 [56,60]. 

Initial pH 
pH is another important parameter in any oxidation 
process. Under acidic pH, the H+ ions react with PS to 
generate more easily oxidizing species, SO4

•- as given in 
the Eqs. (6) and (7) [52].  

S2O8
2- + H+ → HS2O8

-                                                         (6)  

HS2O8
- → SO4

•- + SO4
2- + H+                                               (7)  T
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As can be seen from Figure 1, the major reactive species 
involved under acidic pH is SO4

•-. On the other hand, 
when the pH is increased in such cases, the decom-
position of PS decreases which can affect the degrada-
tion rate [18]. The high pH range accelerates the 
conversion of SO4

•- to •OH and the removal rate de-
pends on the reactivity of pollutants towards •OH and 
the stability of •OH at alkaline pH conditions [52]. 
Being a selective oxidant, electron transfer is the main 
reaction of SO4

•- [23]. This is clear in the case of Bi-
sphenol S, where the higher degradation was observed at 
acidic pH and decreased with an increase in pH [47]. On 
the other hand, •OH reacts nonselectively preferentially 
via addition to C]C double bonds, electron transfer and 
H-abstraction from CeH, NeH, or OeH bonds. Fur-
thermore, the ionization and speciation of pollutants also 
played an important role in the degradation of pollu-
tants. For instance, sulfamethazine, pKA values at 2.79 
and 7.45 for the amine group and NH group of sulfo-
namide group, respectively. The protonation at the 
amine group restricted the delocalization of lone pair of 
electrons from through the aromatic rings and reduced 
the reactivity towards the electrophilic reactive species  
[23]. In contrast to this, the oxidation was enhanced by 
the electron-withdrawing effect on aniline by the de-
protonation of NH of sulfonamide group. In the case of 
roxarsone (ROX), it has three pKa values such as 3.45, 
5.95 and 9.15 for arsenic and hydroxyl groups, respec-
tively. The electron density around the aromatic ring 
increased with the increase of pH due to the deporta-
tion. These factors increased the removal efficiency by 
facilitating the reaction with reactive species [35,41]. 

The difference in the degradation of selected con-
taminants at varying pHs is given in Figure 1. 

Applicability of the thermally activated 
persulfates in real systems 
Many real samples contain several organic matrices and 
inorganic ions in large amounts which affects the re-
moval of pollutants due to the scavenging of the reactive 
species by the ions [61]. For example, the bicarbonate 
ions and organic matrix inhibited the removal of pollu-
tants due to the scavenging of the reactive species by the 
ions as presented in Eqs. (8)–(10) [5,18,47].  

SO4
•- + CO3

2- → SO4
2 + CO3

•-, k = 6.1 × 106 M-1 s-1                   (8)  

SO4
•- + HCO3

− → SO4
2 + HCO3

•, k = 1.6 × 106 M-1 s-1               (9)  

HCO3
•↔ H+ + CO3

•-                                                          (10)  

In addition, many other adverse effects of the inorganic 
ions on the degradation of pollutants in TAP were also 
observed. The chloride and bicarbonate ions, decreased 
the degradations for the pollutants such as bisphenol S  
[47], BPA [50], simazine [42], losartan [33], carbamaze-
pine [31], thiamethoxam [38], etc. However, in the case 
of triclosan, ROX, chloroxylenol an inhibition in the 
degradation was observed at the lower concentration of 
Cl- ion and an increase in the concentration enhanced 
the degradation [32,35,41]. The Cl- ions scavenge the 
reactive species to form reactive chlorine species such as 
Cl• (E0 = 2.4 V), and Cl2

•- (E0 = 2.4 V) and HOCl (E0 

Figure 1  

Current Opinion in Chemical Engineering

Reactive species involved in the TAP method under varying pH and their reaction towards model compound.   

6 Sulfate radical based advanced oxidation processes for environmental decontamination  

www.sciencedirect.com Current Opinion in Chemical Engineering 37( 2022) 100839 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


= 1.48 V) (Eqs. 11–14) which are having lower reactivity 
compared to the oxygen species. This reaction inhibited 
the degradation of the target pollutants. On the other 
hand, high concentration of Cl- increases the con-
centration of reactive chlorine species in the medium. 
This may enhance the degradation of the pollutant. The 
inorganic ions like nitrite ions affect the transformation 
of phenols, as it forms nitro derivatives of the parent 
pollutants [62,63]. It is reported that nitrite ions in PS- 
based degradation processes generates a variety of toxic 
nitro-products [64]. Thus, it necessitates the considera-
tion to appropriately address this kind of processes. 

Wang et al. investigated the influence of Br- on the 
degradation of diethyl phthalate (DEP) [44]. The pro-
cess resulted in the formation of brominated disinfection 
by-products (Br-DBPs) such as dibromoacetonitrile and 
bromoform in the presence of Br- ions and natural or-
ganic matter (NOM) in the solution. However, only 
bromoform was detected in the absence of NOM. The 
reactive bromine species formed by the scavenging re-
action of Br- and the reactive species (SO4

•– and •OH) 
are capable to react with the phenolic group of the 
parent compound, intermediate by-product, and NOM 
to form Br-DBPs (Eqs. 15–21) [44,65,66].  

SO4
•– + Cl- → SO4

2 + Cl•                                                    (11)  

Cl• + Cl- →Cl2
•                                                                 (12)  

Cl2
• + Cl2

• → Cl2 + 2Cl-                                                     (13)  

Cl2 + H2O → HOCl + H+ + Cl-                                            (14)  

SO4
•– + Br- → SO4

2 + Br•                                                    (15)  

OH- + Br• → HBrO-•                                                          (16)  

Br• + Br- → Br2
•                                                                (17)  

Br2
• + Br• → Br2 + Br-                                                        (18)  

2Br2
• → Br2 + 2Br-                                                              (19)  

2Br• → Br2                                                                       (20)  

Br2 + H2O → HOBr + H+ + Br-                                            (21)  

Another issue associated with the degradation of pollu-
tants in the PS-based processes is the interferences from 
the mineralized nitrogen species. It is observed in the 
case of ROX, which contains nitro-group in the struc-
ture. In this case, nitro-group initially undergoes deni-
tration processes to release the nitrite ion in the solution. 
These nitrite ions further scavenge SO4

•- radicals in the 
medium to form nitrite radicals (Eqs. 22 and 23), which 

can react with the target pollutants to form the nitro- 
products [63].  

NO2
- + SO4

•- → NO2
• + SO4

2- k = 8.8 × 108 M-1 s-1                   (22)  

NO2
- + •OH → NO2

• + -OH k = 8.8 × 1010 M-1 s-1                    (23)  

In the same way, the organic matrix such as humic acid 
contains many electron-rich centers [55]. The bimole-
cular rate constant for the reaction of organic matrix with 
reactive species is 2.35 × 107 M-1 s-1 and 3 × 108 M-1 s-1 

respectively for SO4
•- and •OH. Therefore, the reactive 

species can be directed towards these species instead of 
the pollutants. Another possible effect of NOM is their 
ability to adsorb the pollutants through complexation 
reaction. This may reduce their availability in the reac-
tion medium for the reaction with the reactive species  
[66]. As a result, the degradation of the pollutants can 
decrease to a large extent in the case of TAP process. 

Synergistic application of thermally activated 
persulfate with other activators 
Further research is being carried out to enhance the 
performance of TAP to implement the process to the 
contaminated soil sites and wastewater streams. 
Recently, application of more than one activator along 
with the heat to activate the PS is reported. Although 
TAP is an efficient process, the use of combined/hybrid 
processes can change the pathway of pollutant decom-
position, mineralization, and, therefore, the toxicity of 
the transformation products [33]. The alkalies, Fe2+ 

metal ions, catalysts, cavitation, binary oxidants, etc. are 
some of the recent approaches employed to enhance the 
removal efficiency of TAP [21,59,67,68]. Can-Guven 
et al. have studied the possibility of sequential treatment 
methods such as coagulation and TAP process for the 
treatment of landfill leachate. PS-peroxide (PS/PO) 
binary system had been used in this study and offered 
98% of chemical oxygen demand (COD) removal, which 
is far better than the individual system. The TAP with 
binary system generated abundant of reactive oxidation 
species such as •OH and SO4

•- [67]. Checa-Fernandez 
et al. attempted treatment of real soil contaminated with  
hexachlorocyclohexanes (α-HCH and β-HCH) using 
combined thermal and alkaline activation of PS. At the 
optimized operating conditions of pH > 12, simultaneous 
addition of PS and NaOH, 50°C, PS = 40 g L-1, liquid/ 
soil ratio = 2, NaOH/PS = 2 and 100 rpm, they have 
achieved 100% conversion of α-HCH while 81% con-
version of β-HCH with a dechlorination degree of 94% 
in 3 days. [69]. Further, Garcia-Cervilla et al. have stu-
died the remediation of soil contaminated with lindane 
via alkaline activated PS. Around 70–96% conversion of  
chlorinated organic compounds was reported after 21 
days with 400 mM PS and 400 mM NaOH. Also, the 
presence of oxidation by-products such as chlorinated or 
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aromatic organic compounds was not detected [70]. This 
suggests that the synergistic activation of PS by alkali 
and temperature can be opted as an effective method for 
the remediation of HCHs in the soil. The cavitation is an 
emerging method for the activation of several oxidants, 
including PS [16,71]. A high temperature obtained near 
the collapsing cavitation bubbles is sufficient for the 
pyrolytic cleavage of the water molecule to the re-
spective reactive species as well as thermal-activation of 
oxidants. Lebik-Elhadi et al. performed the degradation 
of a pesticide, thiamethoxam using the combination of 
thermal and ultrasound activation for PS (US-TAP). It 
provided complete removal of the pollutants in 60 min  
[38]. However, the energy requirement for TAP is lesser 
as compared to the US-TAP system. The activating 
nanomaterial, MnO2 in conjunction with TAP has been 
tested for the removal of organic contaminants. The 
system was highly effective for the removal of con-
taminants (heterocyclic groups, aniline, carboxyphenyl 
and azo benzene) irrespective of its structure. An im-
portant advantage of MnO2-TAP system is that it can be 
operated at a temperature of 50°C [59]. The combina-
tion of US, TAP, and an Fe containing material 
Fe3O4@AC have further resulted in the reduction of the 
operational temperature to 30°C with a complete re-
moval of organics. In this case, the predominating form 
responsible for degradation was singlet oxygen, 1O2 [68]. 
The temperature could also be reduced with the use of 
carbon catalysts in the TAP system. The temperature 
promoted the water oxidation on the surface of carbon 
catalyst [72]. The pretreatment of per-
fluorooctanesulfonic acid contaminated soil with alkali 
resulted in the enhancement of the removal in TAP 
process [73]. 

Though TAP and TAP along with other PS activators 
has proven to be efficient in terms of pollutants and 
TOC abatement, the feasibility of using a method in the 
oxidation of wastewater as an alternative to the other 
traditional and advanced treatment methods is de-
termined by the evaluation of cost based on the elec-
trical energy and oxidizing agent consumption [74]. A 
common approach to calculate the energy requirements 
of physicochemical processes is the calculation of energy 
per order (EEO). EEO defines the energy required to 
reduce the concentration of an organic pollutant by and 
order of magnitude in one cubic meter of wastewater  
[33]. In line with this the efficiency of the TAP or TAP 
hybrid systems can be evaluated through TOC removal 
and pollutant degradation, the electrical energy con-
sumed, PS consumed, and total cost. Ioannidi et al. [33] 
have showed the cost effectiveness and feasibility of US- 
TAP process for the removal of losartan present in en-
vironmental water matrices. They have noted a promi-
nent effect on the removal of losartan especially in 
various water matrices with US-TAP. The synergy be-
tween the processes is likely due to the additional 

generation of reactive species from the direct sonolysis 
of water and PS and the thermal decomposition of pol-
lutants in the cavitating bubbles. The competitive EEO 
of 3.981 × 103 kWh/m3/order for the decomposition of 
500 μg/L losartan in wastewater was reported by Ioannidi 
et al. [33]. Whereas, the EEO reported by Patidar and 
Srivastava for the degradation of ofloxacin with only US 
was 28.572 × 103 kWh/m3/order, with US/UV/H2O2 was 
3.942 × 103 kWh/m3/order and with US/UV/H2O2/TiO2 
was 1.191 × 103 kWh/m3/order [75]. This implies that if 
PS is co-activated with heat, US and metal nanoparticle 
catalyst the dramatic decrease in EEO and increase in 
TOC removal and pollutant degradation can be 
achieved. However, application of US requires large 
amounts of energy, making it viable only in particular 
cases. An alternative to the US is the use of HC , which 
has significantly fewer energy needs and allows easier 
scaling up compared to conventional ultrasonic chem-
istry [16]. Yabalak has estimated the electrical energy 
consumption for the remediation of agrochemical was-
tewater with TAP as 529.5 kWhm−3 and stated its com-
petitiveness in comparison with various AOPs [74].  
Ushani et al. have mentioned that the PS activation with 
Fe2+ can be more significant than other transition metals. 
As the application of naturally found iron minerals for PS 
activation has shown significant reduction in the cost to 
37 000 $ per year with 75% efficacy [9]. Further, Zhou 
et al. have shown that the sludge dewaterability of 50% 
was obtained with only •OH and SO4

•-, whereas, its 
combination with Fe0 resulted in the 29% saving of the  
expenses ($155 600 per year) in comparison with the 
conventional Fenton process [76]. Based on the reports, 
the TAP and TAP hybrid processes were found to be 
feasible on the basis of cost required for the requirement 
of oxidizing agent and its primary treatments. However, 
the energy requirement for the process is considerable to 
overcome hazardous effects of micropollutants. 

Conclusion and future prospective 
Thermally activated PS is one of promising possible al-
ternatives to classic AOPs to degrade the persistent or-
ganic pollutants. Lower temperature values below 60°C 
are preferable in order to avoid large excess of energy for 
heating. In most of the cases, the extent of pollutant 
degradation is brought above 90%, in some cases the 
degradation efficiency even achieves the complete mi-
neralization. The concentration ratio of PS to organic 
pollutant seems to be needed in the range of 20–500. It 
needs to be further optimized based on the organic load. 
Values below five are preferred to name the process 
economic in relation to oxidant usage and costs. The 
presence of bicarbonates and chloride anions have un-
favorable effect and very few cases reported the favor-
able impact on degradation kinetics. In many papers this 
aspect was not studied. It limits the spectrum of data 
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obtained from presented studies, as sometimes chloride 
ions were reported to improve the degradation in AOPs. 

Moreover, presence of nitrite ions causes generation of 
nitro-products and many brominated disinfection by- 
products in the presence of NOM. Thus, the water 
constituent should be monitored before the real scale 
application and proper measures should be taken to re-
duce the formation of toxic by-products. Another im-
portant challenge in the real application of TAP is the 
requirement of the high temperature input. The authors 
should address the aspects of energy/heat recovery from 
discharged effluents to improve energy balance. 
However, the addition of nanomaterials in the TAP 
process can reduce the temperature requirement to 
30–50°C. Therefore, such kind of techniques will be 
more suitable for the treatment of organic pollutants 
contaminated site. 
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