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Abstract 

Geometrically nonlinear FEM analysis of multilayered composite plates and shells is 

performed in order to resolve the stability problem of the structures being under the 

influence of temperature field. The Riks-Wempner-Ramm algorithm with a specially 

modified multi-choice unloading condition has been implemented in authors’ numerical 

code. As the representation of multilayered medium the Equivalent Single Layer 

approach with the First Order Shear Deformation kinematics is employed. The 

effectiveness of the proposed model is examined in numerical examples with reference 

solutions available in the literature. Presented study proves that the proposed approach 

can be very effective in the analysis of stability of thin-walled thermally loaded panels.  
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1. Introduction 

Multilayered structural materials like sandwich or composite laminates perfectly suit 

the demands for the application in thin-walled structures, which in natural manner are 

sensitive to instability effects. This paper concerns with the stability analysis of 

multilayered panels subjected to thermal loadings. The most popular approach in the 

analysis of structural instability is the linear analysis performed by solving a linearized 

eigenvalue problem. In this sense the buckling of thermally loaded composite plates 

and shells was considered within the framework of FEM modeling in [1, 2, 3, 4]. 

Matsunaga [5] examined the thermal buckling of laminated composites with power 

series expansion method. Approaches based on eigenvalue problem solution usually do 

not reveal the post-critical behavior, although Sita Thankam et al. [6] computed the 

post-critical temperatures by appropriate scaling of the first eigenmode. Nevertheless, 

such analyses are suitable only if the assumptions of linear work regime in the pre-

buckling range are satisfied [7]. Otherwise, strategies taking into account the 

geometrically nonlinear effects must be employed, as an example the thermal or 

thermo-mechanical stability analyses of composite panels performed with the 

perturbation method by Shen [8, 9] or with the extended Galerkin method by Hause and 

Librescu [10, 11]. An interesting analytical approach was presented in [12], where the 

governing equations of the large deformation theory were handled with trigonometric 

power series expansion and the resulting nonlinear algebraic equations were solved by 

gradual step-by-step increase of thermal stresses to determine the unknown parameters. 

In [13] the non-linear differential equations are linearized and resolved by making use 

of Chebyshev polynomials. 

There is a long record of successful applications of FEM analyses in the stability study 

of composite plates and shells. In contradiction to the analytical and semi-analytical 

approaches FEM does not impose any limitations as regard the geometry and boundary 
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conditions regularity, especially if more sophisticated shell theories are employed [14]. 

Except for the solving of the linearized eigenvalue problem the computations are often 

performed with static geometrically nonlinear incremental or dynamic explicit 

algorithms [15]. The explicit method is more robust in local buckling analyses [15], 

however, it does not control the equilibrium conditions, thus the user must take 

particular care of a proper choice of the analysis parameters. 

In the present study, the static incremental analysis is performed. Such approach 

requires a proper path tracing method [16]. The load control strategy seems to be the 

simplest choice but it has a very limited applicability [17] in the stability analysis of 

thin-walled structures. The displacement control algorithms [18, 19] are more useful 

but they also fail when the turning point occurs on the equilibrium path for the selected 

control parameter. The arc-length control method is commonly recognized as the most 

effective technique for tracing complicated equilibrium paths. One should realize that 

due to various possible types of constraint equations there is a variety of arc-length 

control algorithms [20]. The arc-length methods are very powerful in tracing 

complicated equilibrium paths with various load limit or turning points, thus the post-

critical paths can be determined without any major problems [21, 22, 23, 24, 25, 26]. 

However, to investigate the bifurcation instability, more sophisticated path tracing 

algorithms are necessary to determine the path direction in the arc-length methods (see 

e.g. papers by Feng et al. [27, 28, 29] for the case of mechanical loading and Parente et 

al. [24] for thermal influences). Very often such problems can be resolved in a 

simplified manner by imposing geometrical imperfections e.g. in the pattern of an 

eigenvalue mode, providing the tracing of an approximate secondary path [15, 27]. 

Nonetheless, such an approach is justified only for the cases with a linear response of 

the structure up to the bifurcation point. The fulfillment of this condition is strongly 

dependent i.a. on the material orthotropy determined by the material orientation in 
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subsequent layers [31]. Another way to trace the secondary paths is the application of 

additional small perturbation forces which are removed from the model after the 

solution quality change is detected, and the switching to the exact secondary path can 

be obtained in the subsequent unloading process [32]. In this paper, a similar method to 

the latter one is employed with such a difference that the loading process is continued 

after the elimination of the perturbation forces [25, 26]. It will be shown that such a 

tactic can be also very efficient. 

 

2. Multilayered shell model 

Among all possible approaches used in the modeling of multilayered media the most 

reasonable concept applicable in the analysis of entire shell structures is the Equivalent 

Single Layer (ESL) model [33, 34]. In such a concept which is employed in the present 

study the multilayered plate or shell is reduced to the two-dimensional reference 

surface with statically equivalent stiffness of the multilayered cross-section. It provides 

significant decrease of computational costs when compared with more advanced 

models like layer-wise or three-dimensional descriptions [33]. The transfer of the local 

equilibrium equations given in terms of continuum stress and strain measures to the 

cross-sectional level requires proper assumptions, very often imposed on the 

displacement unknowns. Due to a significant shear deformability of typical composite 

materials the models should take into account the transverse shear effect. Depending on 

the polynomial degree used in the description of the displacement distribution in the 

thickness direction one can distinguish the group of the First Order Shear Deformation 

(FOSD) and the group of Higher Order Shear Deformation (HOSD) models. Although 

in all of the FOSD models the transverse deformation profile is described by a linear 

function, the authors talk intentionally about the group of these models, since various 

variants of typical for these approaches shear correction methods can be adopted [35, 
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36]. It can be shown, that the usage of FOSD theory with a proper shear correction 

technique leads to very good results [37]. Due to their earlier positive experience the 

authors employ the FOSD model in the present study on thermally loaded plates and 

shells. 

2.1 Shell kinematics 

The detailed description of the assumed shell kinematics can be found in [25, 26]. 

Therefore, only the final formulas are presented in this paper. The Greek indices are 

equal to 1 or 2, whereas the Latin ones are 1, 2 or 3. The curvilinear coordinates of the 

shell 1 2 3, ,θ θ θ are implemented with 1 2,θ θ  being the mid-surface coordinates and 3θ  

standing for the transverse normal coordinate. Moreover, the left superscript indicates 

the configuration in which the value is obtained, while the left subscript describes the 

configuration the value refers to. Precisely the superscript m and subscripts arising in 

the following mean: the actual configuration (m=t=1), the unknown configuration 

(m=t=2) and the reference configuration (t=m=0), since the Total Lagrangian 

description is employed. 

Due to the presumed inextensibility of the fiber in the transverse normal direction the 

displacement field is described by 5 independent parameters: 

(0) (1) (0)
1 2 3 1 2 3 1 2 1 2 3 1 2

3 3( , , ) ( , ) ( , ), ( , , ) ( , ) .m m m m m constα α αυ θ θ θ υ θ θ θ υ θ θ υ θ θ θ υ θ θ= + = =  (1) 

The bending strains at any point of the shell are related to the two-dimensional strain 

measures as follows: 

( )
(0) (1) (2)21 2 3 1 2 3 1 2 3 1 2

0 0 0 0( , , ) ( , ) ( , ) ( , ),m m m mE E E E= + +αβ αβ αβ αβθ θ θ θ θ θ θ θ θ θ θ  (2) 

where the two-dimensional strain measures are obtained from the following strain-

displacement relations 
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(0) (0) (0) (0) (0) (0) (0)

0 3 3

(1) (1) (1) (0) (0) (1) (0) (1) (0)
0 0

0

(0) (1) (0) (1)
0 0

3 3

(2) (1)
0 0

0

2 ,

2

,

2

m m m m m m m

m m m m m m m m m

m m m m

m m

E

E b b

b b

E b b

= + + +

= + − − + + +

+ +

= − −

δ
αβ βα αβ δα β α β

λ λ δ δ
αβ β α α β α λβ β λα δ α β δ β α

λ λ
β λ α α λ β

λ δ
αβ α λ β β

ϕ ϕ ϕ ϕ ϕ ϕ

υ υ ϕ ϕ υ ϕ υ ϕ

ϕ υ ϕ υ

υ
(1) (1) (1) (1) (1)

0 0 .m m m m mb b
  

+ +   
  

λ δ λ
δ α α λ β δ α λ βυ υ υ υ υ

 (3) 

The analogously relations valid for the transverse shear can be written as: 

(0)
1 2 3 1 2

0 3 0 3( , , ) ( , ),m mE E=α αθ θ θ θ θ  (4) 

where the two-dimensional strain measures result from: 

(0) (1) (0) (0) (1)

0 3 32 .m m m m mE = + + λ
α α α α λυ ϕ ϕ υ  (5) 

The r.h.s. terms in (3) and (5) are obtained from: 

(0) (0) (0) (0) (0) (0) (0) (0) (0)
0 0 0

3 3 3 3

(1) (1) (1) (1) (1) (1)
0

3

, , , ,

, , .

m m m m m m m m m

m m m m m m

b b b

b

λ δ δ δ
αβ α β αβ α λ α α β β β

λ δ δ
αβ α β α λ α β β

ϕ υ υ ϕ υ υ ϕ υ υ

ϕ υ ϕ υ ϕ υ

= − = + = −

= = =

 (6) 

The vertical lines in (3) and (6) stand for the covariant differentiation of displacement 

vector components. 

2.2 Governing equations 

In the state of equilibrium the balance between the internal and external virtual works is 

satisfied: 

( )( )
0

2 2 2 1 2 0
0 0 0 0, mn mn mn

i e i mech mech th mn
V

W W W S S S E dVδ δ δ δ= = + −∫  (7) 

Since the mechanical loads are not considered in the present study, the external work 

term in (7) is equal to zero. The internal work is expressed in terms of strain and stress 

measures valid for the Total Lagrangian description. The 0 mnEδ is the variation of the 

components of the Green-Lagrange strain tensor, 1
0

mn
mechS are the mechanical stresses 

accumulated during the incremental process, 0
mn
mechS stands for the increment of the 

mechanical stresses and 2
0

mn
thS  are the thermal stresses in the unknown configuration. 
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After the pre-integration in the thickness direction in (7) we can calculate the increment 

of mechanical resultant forces:  

{ } { }

{ }
{ }
{ }
{ }

[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]

(0,0) (0,1) (0,2)

3 3 3 3 3 3 3 20
(1,0) (1,1) (1,2)

0
3 3 3 3 3 3 3 2

0 0 0 (2,0) (2,1) (2,2)
0

3 3 3 3 3 3 3 2
(0,0)

0

2 3 2 3 2 3 2 2

0

0

0

0 0 0

mech

mech

mech mech mech
mech

mech
A

A B D

B D E

D E F

S

× × × ×

× × × ×

× × × ×

× × × ×

 
   
   
     = ⇔ =    

  
  
  
 

N

M
S H E

B

Q

{ }
{ }
{ }
{ }

(0)
0

(1)
0

(2)
0

(0)
0

ε

ε

ε

γ

 
 
  
 
 
 
   

, (8) 

and the resultant thermal forces:  

{ } { }

{ }
{ }
{ }
{ }

{ } { }

{ } { }

{ } { }
{ } { }

(0,0) (0,1)2
0 3 1 3 1

(1,0) (1,1)2 (0)
02 2 3 1 3 10 0 0 (1)2 (2,0) (2,1)
0

3 1 3 1

2 1 2 1
0 0 0

th th th

th
th th

th th

th
th th

A B

TB D
T

D E

× ×

× ×

× ×

× ×

  
  
        = ⇔ =           

   
      

N

M
S H T

B
. (9) 

The components of the strain sub-vectors on the r.h.s. in (8) are the 2-dimensional 

strain measures as displayed in equation (2) and (4), whereas the temperatures (0)T  and 

(1)T  in (9) are the measures of the uniform heating and thermal gradient, respectively 

[26].  

The components of the sub-matrices of the constitutive matrix 0 mech  H  in (8) are 

calculated as follows: 

( ) ( ) ( )
2 2 3 43 3 3 3 0 3

2

2
0 3

2

, , , , 1, , , , , , 1, 2,3

, , 4,5

H

ij ij ij ij ij ij
H

H

Aij ij
H

A B D E F c d i j

S c d i j

θ θ θ θ µ θ

µ θ

−

−

   = =    

  = = 

∫

∫

 (10) 

where ijc are the elements of the layer constitutive matrix defined for the transversely 

isotropic material transferred into the global coordinate system θ1-θ2-θ3 [26]. The oµ  

term is the determinant of the shifter tensor [25, 26]. The components of the sub-matrix 

need to be corrected by the shear correction factors k13 and k23 [25, 26]. They are 



8 
 

evaluated numerically, separately for each transverse shear plane, following the concept 

proposed by Whitney [35] and extended later on by Figueiras and Owen [36]. 

Similarly, the elements of constitutive sub-vectors 0 th  H  in (9) result from the 

following formulas: 

( ) ( )
2 2 33 3 3 3 0 3

2

, , , 1, , , , 1, 2,3

h

i i i i i
th th th th th

h

A B D E c d iθ θ θ θ µ θ
−

   = =    ∫  (11) 

where i
thc  are the components of the thermal constitutive vectors of each material in the 

stacking sequence of layers transferred to the global system θ1-θ2-θ3 [26]. 

 

3. Path tracing method 

The incremental equation which is to be solved has a form: 

( ) ( ) ( )1 2 2 1 1, , ,th REF th th REFT T∆ ∆ = ∆ −λ λK q q F q F q , (12) 

where K , thF  and F  are the global tangent stiffness matrix, thermal load vector and 

balanced force vector, respectively. All the terms are dependent on the actual 

displacement 1q  and in addition, K  and thF are concurrently functions of the 

temperature in the unknown configuration, since REF max initT T T∆ = −  is the total 

temperature applied to the structure on the leading surface [26] and 2
thλ  is the load 

parameter in the unknown configuration (t=2). To trace the equilibrium path of the 

structure, the Riks-Wempner-Ramm (RWR) algorithm [38] is adopted. The increment 

and iteration numbers are distinguished with the use of two superscripts, whereas the 

left one stands for the increment number (n) and the right one signifies the number of 

the iteration (i). In each step of the analysis the following equation of spherical arc-

length control method must be satisfied: 

( ) ( ) ( )2(0) (0) (0) 2Tn n n n
th ds∆ ∆ + ∆ =λq q , (13) 
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where ds is the arc-length parameter. During the iteration process the solution is 

corrected according to: 

( ) ( 1) ( )

( ) ( 1) ( )

,
.

n i n i n i

n i n i n i
th th th

−

−

= +

= +

δ

λ λ δλ

q q q  (14) 

The corrections ( )n iδq  and ( )n i
thδλ in the RWR algorithm are searched in the tangential 

direction to the preceding approximation: 

( ) ( )( 1) ( ) ( 1) ( ) 0
Tn i n i n i n i

th th
− −∆ + ∆ =δ λ δλq q . (15) 

One has to stress that at the beginning of each incremental step the sign of the initial 

load parameter increment has to be determined. Therefore, the equation (13) has to be 

supplemented by an additional unloading condition. In the present study two conditions 

are implemented. The first one, signified as ICRIT=0, states, that the sign of the load 

parameter increment is equal to the sign of the global stiffness matrix determinant, i.e.: 

( ) ( )(0) ( 1) ( 1)sgn sgn , ,n n n
th th REFT− −∆ = ∆λ λK q  (16) 

The second one, indicated as ICRIT=1, assumes that the direction in which the new 

step should proceed is determined by the direction obtained in the previous step [26]. 

The final formula for a sign of the load parameter increment has a form: 

( ) ( ) ( )( )(0) ( 1) ( 1)sgn sgn
Tn n n n

th REF th
− −∆ = ∆ ∆ + ∆λ λq q , (17) 

with n
REF∆q  calculated in step n for to the total applied temperature [26]. 

 

4. Numerical examples 

To show the efficiency of the proposed formulation several numerical examples are 

considered. The FE discretization was performed with the isoparametric doubly curved 

Serendipity type 8-node shell elements utilizing the uniformly reduced integration 

technique (8URI) [25, 26, 39]. If appropriate strength data are available, an additional 
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study of failure initiation is made in accordance with the Tsai-Wu criterion, whereas 

stresses are obtained at the Gauss points matching the 2x2scheme of  integration.  

4.1 Sandwich plate 

This example was originally proposed in [40] and later on it was analyzed in [2]. The 

buckling temperature of a uniformly heated quadratic (A=B) sandwich plate with aspect 

ratio A/H=20 is considered (Fig. 1a). The angle α in Figure 1 determines the fibers 

reinforcement direction. All four edges are simply supported with the translations fixed 

in three directions. The outer faces of the plate are made of a laminate and the core is 

composed of the honeycomb structure. The parameterized material data of the laminate 

are: Ea/Eb*=19, Gab/Eb*=0.52, Gbc/Eb*=0.338, νab=0.32, th
aaα / 0

thα =0.001, th
bbα / 0

thα =1, where 

a and b denote the fiber direction and the direction perpendicular to the fiber, 

respectively. The core material data are determined as follows: Ea/Eb*=3.2·10-5, Eb 

/Eb*=2.9·10-5, Gab/Eb*=2.4·10-3, Gac/Eb*=7.9·10-2, Gbc/Eb*=6.6·10-2, νab=0.99, 

th
aaα / 0

thα = th
bbα / 0

thα =1.36. The coefficient 0
thα  is the normalization measure of the thermal 

expansion coefficient and Eb* is the Young’s module of the faces’ material in the 

direction perpendicular to the reinforcement. The stacking sequence of the sandwich 

layers is following ([0˚/90˚]5, core, [90˚/0˚]5). 

Due to the symmetry conditions the structure bifurcates at a specific critical 

temperature. The attractiveness of this particular example consists in an existence of the 

three-dimensional reference solution [40]. The normalized results are presented in a 

form of the coefficient λT, whereas λT= 0
thα Tcr. Assuming that Ho symbolizes the 

thickness of a single face, H is the total sandwich thickness and m =Ho/H, 5 laminations 

are studied, described by m equal to 0.025, 0.05, 0.075, 0.1, or 0.15. The mesh of 10x10 

8URI elements was used in the analysis. The uniform heating was modeled as a very 

small thermal gradient, i.e. of the rank Tbottom/Ttop=0.999999, in order to obtain the 
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critical temperatures. In such a case the choice of the unloading condition is irrelevant. 

The graphs in Figure 2 display the comparison of the present results with the 3D 

solution given by Noor et al. [40] (3D) and the 2-dimensional ones obtained in [2] with 

the use of FOSD and HOSD models. The results obtained with the HOSD model are in 

very good agreement with the 3D solution [40]. In the contrary, the critical 

temperatures resulting from FOSD model [2] tend to disagree with the Noor’s solution 

as the parameter m increases. One can suppose that this is due to the inappropriate 

values of the shear correction factors employed in [2] (k=5/6). Therefore, in the present 

study two analyses were made: with the use of the imposed value k=5/6 (present 

k13=k23=5/6) and the values obtained numerically (present k13<>k23). It can be seen 

that the usage of shear factors given not a priori leads to solutions which are close to 

the 3D ones; nevertheless, the results from the computations performed with k=5/6 

agree with that obtained with the FOSD model [2]. This confirms that the present 

model with shear correction factors evaluated numerically can be competitive to the 

HOSD model.  

4.2 Cylindrical cross-ply shell 

A cylindrical cross-ply [0˚/90˚]s shell under uniform temperature rise, as proposed in 

[22, 23], is considered. The geometry of the panel is defined by A=B=Rφ, φ=15˚, 

A/H=200 (Fig.1b). The edges of the shell are simply supported being not free to 

translate in any direction. The layers are made of material with the following data: 

Ea=138GPa, Eb=8.28GPa, Gab=Gac=Gbc=6.9GPa, νab=0.33, th
aaα =0.18·10-61/˚C, 

th
bbα =27·10-61/˚C, Xt=Xc=1263MPa, Yt=33.7MPa, Yc=207MPa, Ss=57.3MPa, where Xt, 

Xc are the tensile and compressive strength in the direction a, Yt, Yc are the analogical 

parameters in the direction b, and Ss is the shear strength in the layer plane. In the 

present analysis, the mesh of 10x10 8URI elements was adopted. Figure 3a depicts the 

comparison of the reference solution with the present results obtained with the use of 
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two different unloading conditions. By selecting ICRIT=1 the whole path in the range 

of analyzed temperatures can be found. The discrepancies between the present and 

reference results [22, 23] can be caused by a different type of composite modeling in 

these two approaches. In the opposite, if ICRIT=0, severe convergence problems arise 

at about 260˚C, suggesting an existence of a bifurcation point in a vicinity. To find the 

post-critical path the additional study was performed with small perturbation forces, 

which were removed from the model after the quality change of the solution as 

compared with the primary path was detected. The magnitudes of the applied forces 

were of the level corresponding to deflections not bigger than 0.001H. Since the 

location of the imperfection forces was not obvious it was determined by a trial and an 

error method. The chosen points and the obtained results are depicted in Figure 3a and 

3b. The force located at point E on the symmetry axis along the height of the panel did 

not change the solution. However, all other forces, applied separately or 

simultaneously, caused the solution conversion to the same post-critical path (imp A, B, 

C, D and A-D). One has also to stress that the perturbation force located at point D, i.e. 

on the other side of the symmetry axis than the other forces, causes the deformation 

which is the mirror pattern of the deformation induced by forces at points A, B, C or all 

forces applied simultaneously (Figure 3b). The detected bifurcation point is 

symmetrical and unstable what is clearly demonstrated on the basis of the 

circumferential translation of the central point of the shell (Figure 3b). Finally, it is 

worth mentioning that the strength analysis performed according to the Tsai-Wu 

hypothesis showed no failure in the range of studied temperatures. 

4.3 Cylindrical angle-ply shell 

 A cylindrical angle-ply composite shell under uniform temperature rise as proposed in 

[21] is analyzed. The following geometric data are assumed: A=B=Rφ, R/A=5, 

A/H=200 (Figure 1b). All four edges of the panel are fixed against the translations in 
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three directions and rotations about the normal lines to the edges. The material 

properties of layers are the same as in the example 4.2. The fibers orientation varies in 

the stacking sequence according to an acute angle 67.5˚, i.e. [67.5˚/-67.5˚/…]. The 

influence of the number of layers N is studied, whereas N takes the values N=2, 4 and 

8. The present study shows that the successive doubling of N value above N=8 does not 

change the solution and therefore this value can be treated as an infinite one (N=8=∞). 

The mesh of 12x12 8URI elements was used in the analysis. During the incremental 

process the unloading condition ICRIT=1 was employed. For the sake of the failure 

initiation examination, the top and bottom layers were divided into two sub-layers, 

while the outer ones had the thickness 0.01H. One has to stress here, that in [21] the 

location of stress control points is not described in details. 

One can deduce that the reference solutions [21] were obtained by taking advantage of 

symmetry conditions. In the case of the shells made of 2 and 4 layers a half of the panel 

was studied, whereas only a quarter of the structure was analyzed in the case of 

N=8=∞. In the present study, however, the whole panels were considered in order not 

to impose only symmetrical deformation patterns. Moreover, one has to notice that the 

considered angle-ply lamination scheme which is unsymmetrical with the reference to 

the shell mid-plane disturbs the symmetry of the problem. The comparison of the 

present results with the reference solutions [21] is illustrated in Figure 4. A very good 

agreement is observed for N=2 and N=4. However, significant quality discrepancies are 

detected in the case of a shell composed of 8 layers, if series ‘N=8’ and ‘Huang N=inf. 

(1/4)’ are compared. Therefore, an additional analysis was performed with the use of 

double symmetry conditions. The obtained series is marked as N=8 (1/4) in Figure 4. It 

is comparable with the reference solution obtained by Huang et al. [21]. This proves 

that the use of biaxial symmetry conditions in this example is evidently incorrect. The 

strength analysis indicates that the failure arise in the bottom layers at temperatures 
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TTW=247˚C, TTW=282˚C and TTW=288˚C for N=2, 4 and N=8=∞, respectively. In [21] 

the following failure temperatures resulting from the Tsai-Wu theory for each number 

of layers are reported: TTW=255˚C, TTW=250˚C, TTW=230˚C. The observed 

disagreements can be caused by various reasons like other finite element types and a 

different distribution of stress recovery points as discussed in [26]. In the case of shell 

with N=8=∞ the disagreement results obviously from the symmetry conditions imposed 

in [21]. This supposition can be partially supported by the fact, that in the present 

analysis of a quarter of the panel the detected failure temperature has a value 

TTW=222˚C, which is comparable with the reference one [21]. 

4.4 Spherical cross-ply shell 

This example is taken after [21]. A spherical shell under uniform temperature 

distribution is considered. The following geometrical data are assumed: A=B, R/A=10, 

A/H=100 (Figure 1c). All four edges are fixed against three translations and the 

rotations about the normal lines. The panel is un-symmetrically laminated, i.e. 

[0˚/90˚/0˚/90˚], and the layers are made of the material with the following parameters: 

Ea=76GPa, Eb=5.5GPa, Gab=Gac=2.3GPa, Gbc=1.5GPa, νab=0.34, th
aaα =-4·10-61/˚C, 

th
bbα =79·10-61/˚C, Xt=1400GPa, Xc=235MPa, Yt=12MPa, Yc=53MPa, Ss=34MPa. 

In the present analysis, the whole panel was modeled with the mesh of 12x12 8URI 

elements. Figure 5 illustrates the comparison between the present and reference results 

[21], which are very close to each other. The behavior of the shell is stable in the 

considered range of temperatures. The further load increase was not continued in [21], 

probably because of the material failure taking place at TTW=121˚C. 

The additional parametric study was performed in order to check the influence of the 

fibers arrangement in the sequence of layers and the following schemes were adopted: 

[45˚/-45˚/45˚/-45˚], [30˚/-30˚/30˚/-30˚], [15˚/-15˚/15˚/-15˚], [0˚/0˚/0˚/0˚]. The 
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results are presented in Figure 5. The fibers arrangement influences the stability 

behavior of the shell in a significant manner. With the decrease of the angle α the 

behavior of the structure becomes explicitly non-linear and if α is small, the shell 

undergoes a snap-through instability (Figure 5). In all cases besides the orthotropic one 

[0˚/0˚/0˚/0˚] the selection of the unloading condition is irrelevant. However, the use of 

ICRIT=0 in the analysis of the orthotropic shell leads to oscillatory problems, as shown 

in Figure 5. To detect a possible bifurcation point and a secondary path additional study 

with small perturbation forces was carried out but no other solution was obtained than 

the primary path. Presumably, the tracing of secondary path is in this case hampered 

due to a possible very close proximity of bifurcation and load limit points. The strength 

study was made in the middle of each layer’s thicknesses. Table 1 includes the obtained 

failure temperatures and failure location. The material of shells [15˚/-15˚/15˚/-15˚] and 

[0˚/0˚/0˚/0˚] starts to fail after the passing of load limit point. In [21] the failure 

temperature obtained for [0˚/90˚/0˚/90˚] lay-up according to the Tsai-Wu theory was 

TTW=115˚C, which is close to that obtained in the present study. Comparison of the 

results achieved in the analyses of [0˚/90˚/0˚/90˚] and [45˚/-45˚/45˚/-45˚] shells 

suggests that the behavior of these panels is the same. One has however to stress that 

the deformation of the cross-ply shell is bisymmetrical, whereas in the case the angle-

ply lay-up [45˚/-45˚/45˚/-45˚] a skew symmetry of deformation pattern is observed 

[25]. 

Table 1. Failure temperatures and failure locations of considered spherical shells 

Layers arrangement Failure temperature Failure location 

[0˚/90˚/0˚/90˚] 121˚C Bottom layer 

[45˚/-45˚/45˚/-45˚] 123˚C Bottom layer 

[30˚/-30˚/30˚/-30˚] 102˚C Top layer 

[15˚/-15˚/15˚/-15˚] 44˚C Bottom layer 

[0˚/0˚/0˚/0˚] 36˚C Bottom layer 
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5. Conclusions 

An effectiveness study of the proposed FEM model for multilayered composite plates 

and shells under the temperature influence was presented. The multilayered shell body 

was considered as an equivalent single layer with the average resultant stiffness of the 

multilayered cross-section, whereas the first order shear deformation theory kinematic 

assumptions were taken into account. The authors focused on the thermal stability 

problem which was analyzed on the basis of the geometrically non-linear incremental 

approach. In the analysis the authors’ own numerical code was employed. Special 

attention was paid to the proper path tracing method. It was shown that the most 

powerful technique, namely the arc-length method, required a proper unloading 

condition deciding whether the load should increase or decrease.  The specially 

proposed multi-choice condition enabled to find primary paths if the previously 

obtained direction was followed (ICRIT=1) or to detect the bifurcation points if the 

sign of the stiffness matrix determinant was controlled (ICRIT=0). Moreover, the 

secondary paths were also traced in the study by employing load imperfections. The 

adopted conditions itself are widely described in the literature [24, 27, 28, 29 ], being 

examined there in the analysis of isotropic structures only. This work extends their 

application onto the analysis of multilayered media. Admittedly, Lee et al. [22] and Oh 

et al. [23] adopted also a similar approach as (ICRIT=1) in the cylindrical arc-length 

method to trace the equilibrium paths of multilayered shells, but they did not 

investigate the bifurcation points and secondary paths as it was done in the present 

study. In the authors’ opinion the multi-choice formulation of the unloading condition 

provides a more detailed stability analysis than the single condition application itself. 

One has also to stress, that in the presented approach the primary paths can be followed 

without utilizing of any simplifications as for example symmetry conditions, which, as 
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it was shown, should be used with a particular care in the analysis of multilayered 

media. 

 

Additionally, a simultaneously failure initiation analysis was carried out according to 

the Tsai-Wu hypothesis. The strength analysis had a passive character, i.e. the stiffness 

parameters remained constant regardless the eventually detected failure. Moreover, the 

temperature dependency of material parameters was in the model ignored. On the basis 

of the representative numerical examples it was shown that the stability problems were 

very essential in the load capacity analysis of thin panels and that the proposed path 

tracing algorithm was very effective. The authors hope to extend the presented model 

in further investigations taking into account the thermal degradation of material 

parameters and stiffness reduction according to the detected failure mechanisms. 

ACKNOWLEDGEMENTS 

The first author acknowledges financial support from the National Centre for Research 
and Development of Poland under grant “Fobridge”, PBS1/B2/6/2013. 
 
REFERENCES 

1. Lee J. Thermally induced buckling of laminated composites by a layerwise theory. Comput Struct 
1997;65:917-922. 

2. Kant T, Babu CS. Thermal buckling analysis of skew fibre-reinforced composite and sandwich plates 
using shear deformable finite element models. Compos Struct 2000;49:77-85. 

3. Kabir HRH, Askar H, Chaudhuri RA. Thermal buckling response of shear flexible laminated anisotropic 
plates using a three-node isoparametric element. Compos Struct 2003;59:173-187. 

4. Lal A, Singh BN, Kale S. Stochastic post buckling analysis of laminated composite cylindrical shell panel 
subjected to hygrothermomechanical loading. Compos Struct 2011;93:1187-1200. 

5. Matsunaga H. Thermal buckling of cross-ply laminated composite shallow shells according to a global 
higher-order deformation theory. Compos Struct 2007;81:210-221. 

6. Sita Thankam V, Singh G, Venkateswara R, Rath AK. Thermal post-buckling behaviour  
of laminated plates using a shear-flexible element based on couple-displacement field. Compos Struct 
2003;59:351-359. 

7. Koiter WT. Discussion “The Linearization of the Prebuckling State and Its Effect on the Determined 
Instability Loads” (by Kerr AD, Soifer MT. ASME J. Appl. Mech 1969;36:775–783) ASME J. Appl. 
Mech 1970;37:882-883. 

8. Shen HS, Lin ZQ. Thermal post-buckling analysis of imperfect laminated plates. Comput Struct 
1995;57:533-540. 

9. Shen HS. Thermal postbuckling behavior of imperfect shear deformable laminated plates with 
temperature-dependent properties. Comput Method Appl M 2001;190:5377-5390. 

10. Hause T, Librescu T. Non-linear response of geometrically imperfect sandwich curved panels under 
thermomechanical loading. Int J Nonlinear Mech 1998;33:1039-1059. 

11. Librescu L, Hause T. Recent developments in the modeling and behavior of advanced sandwich 
constructions: a survey. Compos Struct 2000;48:1-17. 

12. Zakeri AA, Alinia MM. An analytical study on post-buckling behaviour of imperfect sandwich panels 
subjected to uniform thermal stresses. Thin Wall Struct 2006;44:344-353. 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


18 
 

13. Shukla KK, Nath Y. Analytical solution for buckling and post-buckling of angle-ply laminated plates 
under thermomechanical loading. Int J Nonlinear Mech 2001;36:1097-1108. 

14. Chróścielewski J, Kreja I, Sabik A, Witkowski W. Modeling of composite shells in 6–parameter nonlinear 
theory with drilling degree of freedom. Mech Adv Mat Struct 2011;18:403-419. 

15. Kobayashi T, Mihara Y, Fujii F. Path-tracing analysis for post-buckling process of elastic cylindrical shells 
under axial compression. Thin Wall Struct 2012;61:180-187. 

16. Waszczyszyn Z. Numerical problems of nonlinear stability analysis of elastic structures. Comput Struct 
1983;17:13-24. 

17. Kundu CK, Han JH. Nonlinear buckling analysis of hygrothermoelastic composite shell panels using finite 
element metod. Compos Part B 2009;40:313-328. 

18. Joshi RM, Patel BP. Nonlinear thermoelastic response of laminated conical panels. Struct Eng Mech 
2010;34:97-107. 

19. Marcinowski J. Large deflections of shells subjected to an external load and temperature changes. Int J 
Solids Struct 1997;34:755-768. 

20. Carrera E. A study on arc-length-type methods and their operation failures illustrated  
by a simple model. Comput Struct 1994;50:217-229. 

21. Huang NN, Tauchert TR. Large deflections of laminated cylindrical and doubly-curved panels under 
thermal loading. Comput Struct 1991;41:303-312. 

22. Lee JJ, Oh IK, Lee I, Yeom CH. Thermal post-buckling behavior of patched laminated panels under 
uniform and non-uniform temperature distributions. Compos Struct 2002;55:137-145. 

23. Oh IK, Lee I. Thermal snapping and vibration characteristics of cylindrical composite panels using 
layerwise theory. Compos Struct 2001;51:49-61. 

24. Parente EJr, de Holanda AS, Afonso da Silva SMB. Tracing nonlinear equilibrium paths of structures 
subjected to thermal loading. Comput Mech 2006;38:505-520. 

25. Sabik A. Stability analysis of thermally loaded multilayered shells (in Polish). Monographs of Gdansk 
University of Technology vol. 126, Gdańsk, Poland, 2012 

26. Sabik A, Kreja I. Large thermo-elastic displacement and stability FEM analysis of multilayered plates and 
shells. Thin Wall Struct 2013;71:119-133. 

27. Feng YT., Perić D, Owen DRJ. Determination of travel directions in path-following methods. Math and 
Comput Modelling 1995;21:43-59. 

28. Feng YT, Perić D, Owen DRJ. A new criterion for determination of initial loading parameter in arc-length 
methods, Comput Struct 1996;58:479-485. 

29. de Souza Neto EA, Feng YT. On the determination of the path direction for arc-length methods in the 
presence of bifurcations and `snap-backs'. Comput Methods Appl Mech Engrg 1999; 179:81-89. 

30. Hong T, Teng JG. Imperfection sensitivity and postbuckling analysis of elastic shells of revolution. Thin 
Wall Struct 2008;46:1338-1350. 

31. Sabik A, Kreja I. Imperfection sensitivity of multilayered composite shells. In: Pietraszkiewicz W, Kreja I, 
editor. Shell Structures: Theory and Applications Vol. 2. London: CRC Press/Balkema, 2010. p 137-140.  

32. Chróścielewski J, Makowski J, Stumpf H. Finite element analysis of smooth, folded and multi-shell 
structures. Comp Methods Appl M 1997;141:1-46. 

33. Kreja I. A literature review on computational models for laminated composite and sandwich panels. Cent 
Eur J Eng 2011;1:59-80. 

34. Altenbach H, Meenen J. Single layer modelling and effective stiffness estimations of laminated plates. In: 
Modern trends in composite laminates mechanics, ICMS 448. Wien New York: Springer Verlag, 2003. p 
1-68. 

35. Whitney J. Shear correction factors for orthotropic laminates under static load, ASME J Appl Mech 
1973;40:302-303. 

36. Owen DRJ, Figueiras JA. Anisotropic elasto-plastic finite element analysis of thick and thin plates and 
shells, Int J Num Meth Eng 1983;19:541-566. 

37. Sabik A, Kreja I. The analysis of multilayered laminated plates with the use of equivalent single layer 
models. (in Polish) Acta Mechanica et Automatica 2008;2:63-68. 

38. Ramm E. The Riks/Wempner approach - an extension of the displacement control method in nonlinear 
analyses. Recent Advances in Non-linear Computational Mechanics. Swansea: Pineridge Press Ltd, 1982. 
p. 62-86. 

39. Kreja I, Schmidt R. Large rotations in first-order shear deformation FE analysis of laminated shells. Int J 
Nonlinear Mech 2006;41:101-123. 

40. Noor AK, Peters JM, Burton WS. Three-dimensional solutions for initially stressed structural sandwiches. 
J Eng Mech 1994;120:284-303. 
 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


19 
 

 

Fig. 1. Geometry of the analyzed panels: a) plate strip, b) plate, c) cylinder, d) sphere 

 

 

Fig. 2. Sandwich plates, normalized critical temperature λT vs. parameter m 

 

Fig. 3. Cylindrical cross-ply shell: a) normalized central deflection and locations of perturbation forces; 
b) equilibrium paths of the normalized central circumferential translation 
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Fig. 4. Cylindrical angle-ply shell, N=2, N=4 equilibrium path of the normalized deflection of the point 
(A/4; B/3); N=8=∞, equilibrium path of the normalized deflection of the point (7A/24; B/2) 
 
 

 

Fig. 5. Spherical shell, the equilibrium paths of the normalized central deflections 
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