
ABSTRACT
Current trends of development of satellite derived bathymetry (SDB)
models rely on applying calibration techniques including analytical
approaches, neuro-fuzzy systems, regression optimization and others.
In most of the cases, the SDB models are calibrated and verified for
test sites, that provide favorable conditions for the remote derivation
of bathymetry such as high water clarity, homogenous bottom type,
low amount of sediment in the water and other factors. In this paper, a
novel 3-dimensional geographical weighted regression (3GWR) SDB
technique is presented, it binds together methods already presented
in other studies, the geographically weighted local regression (GWR)
model, with depth dependent inverse optimization. The proposed SDB
model was calibrated and verified on a relatively difficult test site of
the South Baltic near-shore areas with the use of multispectral
observations acquired by a recently launched Sentinel-2 satellite
observation system. By conducted experiments, it was shown that the
proposed SDB model is capable of obtaining satisfactory results of
RMSE ranging from 0.88 to 1.23[m] depending on the observation and
can derive bathymetry for depths up to 12m. It was also shown, that
the proposed approach may be used operationally, for instance, in the
continuous assessment of temporal bathymetry changes, for areas
important in the context of ensuring local maritime safety.
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Introduction

SDB is one of the key tools that allows for the provision of worldwide shallow water moni-
toring capabilities at a relatively low cost. Current trends in the development of SDB meth-
ods rely on the application of optimization techniques for a set of calibrating points in order
to obtain a relatively precise model of water depths in near shore areas (Lyzenga 1981; Ma
et al. 2014; Lafon et al. 2002). High accuracy SDB models have a significant influence in
many fields of engineering as they allow for the mapping of bathymetry changes in near-
shore areas and support the safety of shallow water maritime routes in critical locations
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(Pe’eri et al. 2014; Moszynski et al. 2015). The precise methods of the remote mapping of
bathymetry are also of high importance for many fields of geosciences (Kulawiak et al. 2010)
(Pacheco et al. 2015; Forfinski-Sarkozi and Parrish 2016), for instance, in environmental
studies, where remotely estimated bathymetry helps to generate a better understanding of
environmental phenomena, such as water sediment monitoring (Wieczorek et al. 2014),
temporal changes in water quality (Doernhoefer et al. 2016, 2), coral reef cover observations
(Hamylton et al. 2015), marine archaeology (Guzinski et al. 2016) or glacial lake changes
(Moussavi et al. 2016; Pope et al. 2016).

Currently, SDB studies are focused on enhancing empirical model performance by utiliz-
ing various optimization techniques such as global and local regression models (Su et al.
2014), artificial networks (Jena et al. 2012), fuzzy models (Kobryn et al. 2013; Corucci et al.
2011; Mishra et al. 2007) and analytical approaches (Brando and Dekker 2003) (Hoge and
Lyon 1996; Lee et al. 1998). So far, most of the optimization techniques in this field were
applied to geographical test sites in areas that provide favorable conditions to derive bathym-
etry from remote observations (Table 1.). However, there are several studies related to the
investigation of this issue in more demanding, optically complex waters, for instance, in the
Baltic Sea (Vahtmaee and Kutser 2016; Vahtm€ae et al. 2006) or Singapore (Bramante et al.
2013). Significant improvements to this field of science were also brought about by applying
physical modelling to the process of bathymetry estimation. This was achieved by utilizing

Table 1. Comparison of basic features of selected SDB models.

Author(s)/
publication
year RMSE [m]

Satellite sensor/
spatial resolution

[m] Location(s)
Max. derivation

depth [m] Remarks

(Lyzenga et al.
2006)

1.74 – 3.02 IKONOS/3.2 Cancun, Duck NC,
Kahana Bay, Carysoft

Reef FL,

16–24
(depending on

location)
Pearl Harbour, HI
Diamond Head

HI, Maunaloa Bay,
HI

(Stumpf et al.
2003)

0.2–0.7 IKONS/3.2 Kure Atoll – Hawaiian
Islands,

25–30
Landsat 7/30

(Ma et al.
2014)

0.62–1.73 Hyperion/30 O’Ahu Island, Saint
Thomas Island

25 RMSE 2.57–3.35 [m] for
depths> 25m

(Su et al. 2008) 1.25 (local models) Landsat 7/30 Kauai Island, Barbuda
Island, HI,

17–18
2.34 (global
approach)

(Vinayaraj
et al. 2016)

1.7–1.82 (for local
approach)

Landsat 8/30
RapidEye/5

South-Eastern coast
of Puerto Rico

20

2.48–2.63 for
global models

(Mishra et al.
2006)

1.316–2.819 QuickBird/2.4 Routan Island,
Honduras

18–35

(Mishra et al.
2005)

2.711 IKONOS/3.2 West coast, Honduras >40

(Hamylton
et al. 2015)

N/A WorldView-2/0.5 Lizard Island, Australia
Sykes Reef, Australia

27 – 30 Residual values
(difference between
model and estimated
depths) in most of
cases was in range
between¡10.4 to 5

[m]
(Eugenio et al.

2015)
1.2–1.94 WorldView-2/0.5 Canary Islands 25–35 Correlation coefficient

0.93–0.94
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radiative transfer models in order to account for the existence of optically active constituents
of the water column (Spitzer and Dirks 1986; Mobley et al. 2005; Brando et al. 2009;
Giardino et al. 2012; Pope and Fry 1997).

Generally, to date the most promising results have been obtained for test sites that are
characterized by low amounts of sediment in the water, a homogenous bottom type and a
small spatial diversity of water quality, i.e. the Florida coast (Lyzenga et al. 2006), Hawaiian
Islands (Stumpf et al. 2003), Caribbean (Ma et al. 2014) , the Australian coast (Hamylton
et al. 2015) or the west coast of Roatan Island, Honduras (Mishra et al. 2005). In such cases,
the appropriate model of calibration allows for the derivation of water depths even for points
located up to 30 m under water surface thus obtaining the RMSE below 2.5 m. Applying
local regression models, though harder to implement, can reduce the RMSE error to just a
1m range. Model quality can be also be enhanced by using more precise observation instru-
ments (increased spatial, radiometrical and quantization resolution) for instance, from newly
available satellite systems such as Landsat 8, Hyperion or commercial systems such as IKO-
NOS, QuickBird or WorldView-2 (Lee et al. 2012). In this case, more information about the
observed area is delivered to the model and therefore its general performance may be
increased. Particularly for high resolution observations, approaches that focus on atmo-
spheric and sunglint data correction are of high importance as proper data pre-processing
enables for taking advantages from higher quality of observations (Eugenio et al. 2015;
Mahiny and Turner 2007; Chavez et al. 1996).

The presented studies above indicate the high degree of usefulness of SDB, however, at
least three important issues have not been addressed in sufficient detail to date. Firstly, not
much attention is being paid to more problematic sites in order to analyze whether freely
available remote observations may be useful in other climatic regions/zones. Secondly, the
opportunities presented by the recently launched ESA Senitnel-2 (S2) system, which has
been assigned the task of observing the European continent, hasn’t been sufficiently utilized
in the context of SDB (Hedley et al. 2012). Thirdly, and possibly most important point, how
current methods of SDB may be improved in order to achieve a higher level of precision,
specifically for more demanding test cases.

Therefore, in this paper, the problem of SDB retrieval for the region of the South Baltic
coast was addressed. The author proposes the novel concept of a 3-dimensional locally
weighted geographical regression (3GWR) which relies on applying local regression not only
in the planar (geographical) plane (as it was presented in previous studies)(Su et al. 2014; Su
et al. 2015), but also in the vertical (depth related) plane of the analyzed region. The pro-
posed model was calibrated and verified on the basis of observations acquired from the
European Space Agency Senitnel-2 satellite system.

Methods

Satellite derived bathymetry is generated from remote multispectral observations obtained
from visible bands of electromagnetic spectra with the use of additional information
required for accurate model calibration (Knudby et al. 2016; Vinayaraj et al. 2015; Lyzenga
1977). Currently, no predefined set of model parameters is available, therefore every model
requires a set of training points, where the exact location, connected to the a priori known
depths, is required, in order to best fit (usually in terms of LSE) the SDB observation estima-
tor to in-situ measured bathymetry. The bathymetry is usually acquired by single beam
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echosounder (SBE), mutlibeam sonars (MBS) or is derived indirectly by the LiDaR system.
Other forms of retrieving calibration data include methods of bathymetry retrieval from
ENC, nautical charts or external marine data sources.

The overall concept of the SDB retrieval model relies on the physical phenomena of
light attenuation in the water column and it’s reflection from the bottom to a certain
depth. The level of backscattered light registered at the satellite sensor is generally
inversely proportional to the depth of the observed pixels on the water surface. In order
to maximize the depths that can be derived by satellite measurements, bands with the
lowest level of light absorption in water are used: mainly blue and green. However, in
case of hyperspectral sensors (i.e. Hyperion), the number of usable bands may be higher
(Liu 2013).

Satellite bathymetry derivation using global optimization

The main principle of SDB models relies on the phenomena of light passing through a water
column of a certain depth described by the Beer-Lambert law (Eq. 1)

I D I0 e¡ kz; (1)

which connects the portion of light energy before (I0) and after (I) passing through the water
column of a certain depth z, and light attenuation coefficient k. When deriving the bathyme-
try from a multispectral sensor, energy is registered in various wavelengths as it is attenuated
by the water in different degrees. Using regression or approximation techniques of light
reflected from the bottom, the water depth of observed pixels can be estimated. The basic
SDB retrieval model constitutes four basic components, namely:
� light absorption in the atmosphere which, in most cases, is assumed to be constant over

an area or it’s effect is removed during satellite data processing,
� water surface optical effects related to light reflection,
� light attenuation in the water column during its passage on the pathway from the water

surface to the bottom and back,
� bottom reflectance of light for optically shallow water – this component is apparent

only when the light of certain wavelengths reaches the bottom.
In order to maximize the depths that can be estimated on the basis of the model, most

techniques utilize passive optical scanners of wavelengths that have the smallest possible
water attenuation coefficients. For instance, sunlight in the blue band (450–495 nm), in
favorable conditions, can even reach 30 m depths, while green light (495–570 nm) usually
penetrates water to depths less than 15 m (Allen et al. 2017) (Luchinin and Kirillin 2016).

One of the main satellite derived bathymetry approaches, originally proposed by Stumpf
(Stumpf et al. 2003), uses the log-ratio technique to obtain the spatial distribution (map) of
the SDB estimator obtained from remote observation. This model assumes that as the water
depth increases, reflectance values in the band characterized by higher levels of absorption
will decrease faster than those with a lower level of absorption. Moreover, this empirical
approach implicitly accounts for the change in bottom albedo as bottom type heterogeneity
which affects both bands in a similar way, while changes in depth are directly observed. At
the first step of this process, the estimator is computed as the ratio of logarithms of selected
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optical bands for points located at position x; yð Þ :

zest x; yð Þ Da0 Ca1
ln R xb x; yð Þð Þð Þ
ln R xg x; yð Þ

� �� � ; (2)

where a0 and a1 are coefficients of the model to be optimized during model calibration and
are set with initial values (for instance 0 and 1 respectively) before model calibration, R
λb x; yð Þð Þ and R λg x; yð Þ

� �
are corrected remote sensing radiances for optical bands λb and λq

(i. e. blue and green respectively).
In order to properly calibrate the model, for instance, in the sense of least squared dis-

tance (LSE), iterative or analytic fitting is used. It relies on finding the estimated value for
which the global cost function JG reaches a minimum:

JGD E
1
2

Xn
iD 1

zi ¡ ẑið Þ2
" #

D E
1
2

Xn
iD 1

zi ¡∅ oið ÞTa
� �2

" #
; (3)

where E½�� is an expected value operator, n is the number of training points, i is the observa-
tion number, zi is the depth of the i-th calibration point, ẑi is the model value which can be
expanded as a basis function of observations oi – vector ; oi

� �T
. In general, the solution to

the optimization problem defined in Eq. 2 is the â vector of (linear) regression coefficients:

âD ½XTWX�¡ 1 XTWz (4)

where each row of X 2 ℝn£m contains m training data coefficients for the i-th observation,
W 2 ℝn£n is the optional matrix, where diagonal entries represent the importance of the i-
th observation and z is the column vector constructed from zi values.

The main advantage of this approach is that it is relatively robust and does not require
either high computational power or auxiliary information to set the model parameters opti-
mally if the calibration points are calculated accurately. The model, in this form, can be used
at all scales, however, when dealing with larger areas, the results are usually worse as the
global approach is not capable being fit to local distortions of environmental parameters like
water turbidity, bottom type variety and other factors. (Cleveland and Devlin 1988).

Geographical weighted local regression model – GWR

In contrast to global approach learning systems, local optimization models split up the global
problem into multiple simpler learning problems (Stulp and Sigaud 2015). Traditional geo-
graphically weighted regression (GWR) (Fotheringham et al. 1998) approaches achieve this by
dividing up the global cost function J ’G into a sum of multiple independent local cost functions:

J ’G D E
1
2

XL
lD 1

XN
iD 1

wl;i zi ¡∅ oið ÞTak

� �2
� �" #

D
XL
lD 1

E
1
2

Xn
iD 1

wl;i zi ¡∅ oið ÞTak

� �2
" #

D 1
2

XL
lD 1

Jl

(5)
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where wl;i is the weight of the i-th observation in l-th (l D 1; 2; . . . ; Lð Þ) local model. This
approach is particularly useful, when the optimization of the model concerns observations
that are locally dependent (Kanno et al. 2011). In such cases, local regression models are usu-
ally capable of increasing overall model quality.

In the locally optimized SDB model, weighting windows, that define the geographical local
sub-center of training dataset, must be defined a priori. Therefore, for every calibration point,
the weighting kernel is centered at the local model midpoint, and the further the distance from
the local model center, the more the importance of calibration for a particular point decreases.

In the local approach, the SDB model from Eq. 2 can be rewritten using the local depen-
dence of model parameters as follows:

z x; yð Þ Da0 x; yð ÞC
X
j

aj x; yð ÞB̂ x; yð Þ (6)

where B̂ x; yð Þ is the local SDB estimator derived from initial conditions from Eq. 2. and j is
the number of selected spectral components of remote observations.

In order to account for the locality of aj x; yð Þ parameters (j D 0; 1; . . .ð Þ /, the spatial
weights are set during local model calibration. For GWR, the 2D weights of the l-th local
model for point located at x; yð Þ are usually computed with the use of the inverse distant
function:

wl x; yð ÞD 1¡ dl
b

� 	2
" #2

; if dl < b ; (7)

and
wl x; yð ÞD 0 else; (8)

where dl is the distance of the point, located at position x; y, to the l-th local model window
center and b is the geographical window width (usually equal for all local models). The
proper selection of window width and local center localization is important because the
wider the windows, the smoother the results of the model which are obtained. On the other
hand, the wide windows of the local model make the regression less sensitive to local condi-
tions of function to be locally approximated.

The solution to the GWR approach, specified in Eqs. 5–8, is analogous to the global
approach, however in this case, Wl applies only to the l-th local model parameters to be fit-
ted in order to minimize local cost functions:

âl D ½XTWlX�¡ 1 XTWlz (9)

where Wl 2 ℝn£n is the optional matrix, where diagonal entries represent the importance of
the i-th observation proportional to its distance from the model center (Eqs. 7 and 8)

Local inverse optimization width depth windowing – 3GWR

As presented above, GWR models can be effectively fit to the geographically spread hetero-
geneity of the function to be estimated. However, when estimating bathymetry from
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spaceborne optical sensors, not only geographical variety of phenomena is important but
also the issue of depth dependency of model parameters should be considered in order to
obtain the best possible estimation (Kyriakidis et al. 2016). Therefore, in this paper, a 3-
dimensional geographically weighted regression model (3GWR) which is an expansion of
the GWR model functionality, is presented. The proposed approach is novel, because it
introduces another set of local models, coupled with a particular local GWR model, deter-
mined by the depth of the pixels to be estimated. This is achieved by applying a two-step
procedure in the process of determining the pixel depth. In first step, the depth is determined
on the basis of locally adjusted depth dependent models. Next, the final depth of the pixel is
calculated as a weighted average of locally depth dependent estimations. This means that the
local regression coefficients do not only depend on the geographical position of the point to
be estimated, as in GWR model, but also on its depth.

In this case, the cost function of the set of local problems is formulated as:

J
0 0
G D E

1
2

XL
lD 1

XD
dD 1

XN
iD 1

wl;i wl;d;i zi¡∅ oið ÞTad

� �2
� �" #

D 1
2

XL
lD 1

XD
dD 1

Jd;l (10)

where D is the total number of depth-dependent local models, d D 1; 2; ::Dð Þ. In this case,
finding an estimation âD, for which J

0 0
G is minimal, requires constructing an additional set

of constraint matrix equations, this is analogous to the GWR approach, that accounts for the
heterogeneity of the model in depth plane. In this case the local model determined by depth
parameters âD are determined by the following equation:

âd D ½XTWdX�¡ 1 XTWdz (11)

whereWd is a depth dependent weight matrix for center depth d, where diagonal entries rep-
resent the weight inversely proportional to the distance from the d-th depth-dependent local
sub-model center.

The combination of the set of geographically and depth dependent models allows the spa-
tially continuous SDB coverage product (map) to be obtained and is performed with the use
of a two-step procedure (Figure 1). Firstly, the initial SDB estimator B̂ x; yð Þ taken from the
initial conditions of Eq. 2 is calculated for the pixel located at x; yð Þ. Then, the depths z1 x; yð Þ
; . . . ; zD x; yð Þ are determined by D depth dependent models (denoted as DM1; ::;DMD).
Then, each local (in the sense of depth dependency) depth zi x; yð Þ, ( i D 1; 2; . . .Dð Þ), is
weighted using inverse distant weights w1; . . . ; wD. The resulting local depth dependent
value Z x; yð Þ, is then processed by a standard GWR scheme (step 2), where LM1; ::; LML

denote local GWR models and W1 x; yð Þ; . . . ; WL X; yð Þ are geographically (inverse distant)
determined weights.

Materials

Remote observation from Sentinel-2 system

In the study, four images of the Gda�nsk Gulf and part of the south coast of the Baltic, regis-
tered in spring of 2016, were acquired in order to evaluate the proposed approach. Namely,
4 observations from this period acquired on 4th March 2016, 9th March 2016, 27th March
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2016 and 6th May 2016 were extracted. Note that, these are one of the first acquisitions of
the Sentinel-2 system available. At the time this study was performed, only one of the two
planned Sentinel-2 satellites, was fully operational in orbit (Sentinel-2A). Therefore, the
revisit time was longer than it was or the full constellation and thus the number of available
acquisitions made under clear sky conditions was smaller.

Sentinel-2 is the polar orbiting satellite system that provides high-resolution multispectral
observations of land and sea. S2, as a part of the ESA Copernicus Programme, which is dedi-
cated to providing observational data to European users, however, global observations are
available in a 2–5 day (depending on the latitude) repeat cycle. The Multispectral Instrument
(MSI) sensor, mounted on the Sentinel-2 satellite, registers observed radiation in 12 bands,
ranging from the optical 443 nm (§10 nm) to near infrared (NIR) 2190 nm (§90 nm). The
spatial resolution of the observations depends on the registered wavelength and ranges from
10 m. to 60 m. For the purposes of this research, two optical bands, blue (490 nm § 32 nm)
and green (560 nm § 17 nm), that provide observations in a 10m 10m regular UTM 34N
cartographic grid, were used for the calibration of the proposed 3GWR algorithm.

Data from S2 is provided to scientific users via the SciHub portal which is dedicated to the
ESAmirror site for providing Copernicus data. The SciHub portal allows for browsing, filtering
and downloading necessary observations and meta data provided in a Level 1C stage product
composed of 100 £ 100 km2 tiles (ortho-images in UTM/WGS84 projection) in top of the
atmosphere (TOA) reflectance. Since the S2 mission is land-oriented no predefined scheme for
providing atmosphere corrected reflectance over water surfaces is available (Toming et al.
2016). Although there are several atmosphere dedicated correction schemes (sen2cor, ACO-
LITE) for water reflectance determination using MSI (Martins et al. 2017; Doernhoefer et al.
2016), their implementation is not trivial, and usually requires high resolution transmittance
data or aerosol spatial distribution to be provided. However, since the proposed methodology
is based on the local empirical modelling approach and due to the fact that aerosol dispersion
varies in scales of kilometers (Kay et al. 2009), the simplified Gauss averaging filter of L1A data
was applied in order to account for sun glint and specular effects. In this case, applying more
sophisticated schemes, such as utilizing NIR data (Harborne and Mumby 2005), didn’t pro-
duce a significant improvement in the model performance.

Figure 1. Scheme of 3GWR method – two-step procedure for creating a continous map of SDB using the
proposed approach.
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In order to distinguish water reflectance pixels from land, a simple NIR thresholding
method was applied. Cloud masking was performed on the basis of the provided L1C data
vector mask in the GML format.

Model calibration and validation

Model calibration and validation was performed with the use of single beam echosounder
soundings acquired by the Polish Maritime Administration (PMA), which is an official
domestic entity responsible for maritime safety and security, marine route monitoring and
management for the spatial planning and environmental protection of the Polish Baltic eco-
nomic zone. The PMA performs periodic surveys, with the use of echo sounding equipment
in order to prepare data for official navigation charts produced by the Naval Hydrographical
Office. The dataset for this study was acquired in the period between 2010 and 2015 and is
constituted from several single beam echosounder profiles perpendicular to the coastline.
The spacing between the profiles is around 500 m and, within each profile, the sounding
spacing is about 10–15 m (Figure 2). Unfortunately, obtaining time co-incident echosound-
ing datasets and remote observations was not possible for the time period in which the Senti-
nel-2 observations were acquired.

In order to evaluate the quality of the results obtained by the proposed SDB model, the
iterative leave-p-out cross-validation scheme, was applied. The general outline of this scheme
is based on the iterative repetition of the calibration and validation procedure of the model
performed on randomly divided subdatasets. Namely, within each iteration, the input PMA
dataset was randomly divided into two separate subsets: the training dataset (TD), used for
the calibration of the algorithm, and the validation dataset (VD) used for the evaluation of
obtained results (Figure 3).

Then, the results of each iteration were evaluated using two basic statistical factors,
namely the sample correlation coefficient defined and calculated as:

R D
XN

iD 1
d̂i ¡ d

� �
di¡ d
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

iD 1
d̂i ¡ d

� �2
r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

iD 1
di ¡ d
� �2q (12)

Figure 2. PMA sounding dataset points and test site used in the study. Grey marker lines, perpendicular to
the coastline, represent the locations of soundings acquired by the PMA using an SBE echosounder. Coor-
dinates are given in the original Sentinel-2 coordinate system – UTM 34N zone [meters].
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where d̂ is the expected value (mean) of SDB¡ d̂, and d is the expected value (mean) of
d (depths from TD or VD respectively) and N is the number of elements in the tested popu-
lation and root mean squared error (RMSE) defined as :

RMSE D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

iD 1
d̂i ¡ di

� �2

N

vuut
(13)

In order to verify whether the results in each iteration are representative, the statistics of
TD and VD datasets obtained in each iteration are presented in the form of a global compar-
ison in Table 2.

What is important to note is that, although in particular iterations of the validation
scheme, datasets were divided randomly, the main statistical features between iterations
were preserved. The normalized number of sounding points that fall within a particular
depth range differs in each iteration, however, variations are usually less than 1%. For
instance, in all iterations the number of points falling within the 4–6 [m] depth range,

Table 2. Test site calibration dataset – statistical description.

Training dataset Validation dataset

Total no. of Points 2571 1071

Date of acquisition 2010–2015
Bounds [m] in UTM 34 Xmin D 302290

Xmax D 360880
YminD 6050800
Ymax D 6082300

Normalized number of points falling within depth range

Training dataset Validation dataset

Depth range [m] Min Median Max Min Median Max

<2 16.2% 16.5% 16.8% 16.3% 16.8% 17.7%
2–4 15.8% 16.1% 16.3% 15.3% 15.8% 16.4%
4–6 14.0% 14.5% 14.7% 13.3% 13.9% 14.9%
6–8 13.6% 13.8% 14.2% 12.8% 13.7% 14.2%
8–10 11.2% 11.4% 11.6% 11.0% 11.5% 12.0%
10–12 10.3% 10.6% 10.9% 9.9% 10.7% 11.3%
12–14 8.1% 8.3% 8.6% 7.7% 8.4% 8.8%
14–16 4.8% 5.1% 5.4% 4.5% 5.3% 6.1%
>16 3.7% 3.8% 4.0% 3.5% 3.8% 4.1%

Figure 3. Detail view of the training data points and validation data for a location near Jastrzębia G�ora city
(54.832043� N, 18.307413� E).
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ranges from 14% to 14.7% in the case of TD and from 13.3% to 14.9% for VD. Analogi-
cally, the fraction of points falling within the 6–8 m depth range, ranges from 13.6% to
14.2% (of TD) and 12.8–14.2% (of VD). A similar trend may be observed for other depth
ranges. The higher variations for VD are caused by the smaller number of points than
for TD (1017 and 2571 respectively). It is also important to notice that in the case of
both datasets, the largest number of points, that the model used for training and verifica-
tion, falls in the range between 2 and 12 meters (from 64.9% to 67.7% of VD and from
62.2% to 68.8% of TD), as this was the depth range that was primarily of interest in the
case of this study.

Results and discussion

Following the methodology described in Eqs. 1–11, locally adjusted calibration and ver-
ification of the model was performed. The localization of centers of local sub-models
(geographical and depth related) were constant for the whole study. In order to deter-
mine the center position of each local geographic model, at the first step, sounding
transects were ordered in an eastward direction. Then, the whole dataset was divided
into ten-element groups of adjacent transects and the geometrical middle of each group
was considered to be the local model center. In the case presented, the proposed
approach constitutes 12 local geographical models situated along the south Baltic coast
and the northern part of the Hel Peninsula (Figure 4). Generally, in this case, an
increase in the number of local sub-models would be desirable, as generally this would
allow the method to better account for the spatial non-stationary aspect of the model.
However, this approach is limited by the density and the number of available calibra-
tion points and in extreme cases, too many local sub-models may obscure general
model performance

All calculations were performed in the native cartographic coordinate system, as applied
to the Sentinel-2 observations (UTM 34N). In the next step, for every pixel of the satellite
observation, geographical weight values, calculated from Eqs. 7,8, were assigned.

A similar methodology was applied to determine the depth related window centers. In
this case, three static windows centered at 3, 8.25 and 13.75 [m] with assigned weights as
presented in Figure 5, were assumed.

Figure 4. The position of the local model weighted location centers and geographical local model
weights.
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Model calibration

The general color-coded overview of the product obtained with the use of the proposed SDB
model acquired from selected observations is presented in Figure 6. The light blue color rep-
resents shallow depths and the dark blue depth represents areas with an estimated depth of
up to 15 m. The background base map is constructed from true-color images on the basis of
Sentinel-2 optical bands.

For each of the observations, the results obtained from the model training are pre-
sented in Table 3. In all cases, a strong correlation (R) between SDB and the training
dataset ranges from 0.92–0.93 (in the case of an observation acquired on 4th March
2016) to 0.95–0.96 (in the case of an observation acquired on 6th May 2016), may be
observed. Moreover, the general difference between the results obtained in individual
iterations is relatively small, this confirms the hypothesis stated earlier, that the process
of model training is relatively stable. Errors (RMSE) obtained during the proposed
3GWR model calibration range from 0.9 to 1.15 [m], and the differences between indi-
vidual iterations and observations are noticeable but relatively small. Additionally, the
comparison of results obtained by the proposed 3GWR model with the standard GWR
approach, indicated the important conclusion that the proposed approach allows for a
significant RMSE reduction (shown in the last column of Table 3) that ranges from 17%
to 29% depending on the test case.

An additional analysis of error distribution, presented in Figure 7., shows a small positive
bias (� 0:5 ½m� depending on the observation) of residual errors which indicates that depths
from remote observations are, to a small extent, under-estimated. Although its value is gen-
erally lower than the overall RMSE (� 1 ½m�), the general tendency of SDB underestimation
may be observed. This is most probably caused by two factors. Firstly, in shallow areas
(depths <4 m) the specular effects caused by wave foaming and sun glint from the non-flat
sea surface is more noticeable. Moreover, wave foam affects the spectral content of the
image, altering the reflectance intensity over the whole optical spectrum and this produces
the result that more energy is registered by the sensor, as it would be for shallower pixels.
The second reason is the difficulty in distinguishing between deep pixels for which a very
small amount of light is reflected from the bottom, from those that are optically fully deep.
In the results, there are some fully deep water pixels lying in the edge of these regions that
are falsely indicated as a valid bathymetry estimation while the real depth exceeds the possi-
bilities of remote estimation.

Figure 5. Depth windowing used for local depth dependent models.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Figure 6. General overview of satellite derived bathymetry obtained by the proposed model from Senit-
nel-2 images registered on 4th March 2016 (upper picture), 9th March, 27th March and 6th May 2016
(lower pictures respectively) over the northern part of the Gulf of Gda�nsk test site.
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The presented results also indicate a relatively small variation in the residual error distri-
bution as 50% of the results are within the ¡ 0:5 to 1:5m absolute error range, with extreme
values of errors (3 and 97 percentile) slightly exceeding 3m. A more detailed analysis of the
obtained results (not shown in the tables) also reveals that for every observation, over 90%
of in situ verified points were characterized by an RMSE lower than the 2 [m] threshold and
between 63.6% to 77% (depending on the observation) had an RMSE lower than 1m.

In Figure 8., the relationship between the obtained RMSE and the depth of points for each
of the observations is presented. In this case, each figure shows the results of ten iterations of
the training scheme and it may be observed, that for most of the depths, the RMSE obtained
is lower than 1 [m]. Also note, that the errors obtained for shallower depths (<2 m) are
higher than those for 8m depths. There are at least two reasons for that: firstly, in shallow
water depths, wave break foaming effects have a significant influence on the optical proper-
ties of the surface of the water and thus generally disturb the model learning process. Sec-
ondly, the much higher spatial diversity of shallow water optical properties may be expected
due to the presence of sediment and particles in the water. On the other hand, the lowest
errors were observed for depths of around 8m, this may be caused by the fact, that the local
depth window center is placed in this value. For depths of over 10m, a significant increase in

Table 3. Statistical results of model calibration obtained by the proposed SDB model. The results repre-
sent the results obtained only with the use of the training dataset. The procedure of model calibration
was repeated 10 times.

Proposed 3GWR Standard GWR model
Dataset/ Acquisition
date R (min-max) RMSE [m] (min-max) R (min-max) RMSE [m] (min-max)

RMSE reduction
(averaged) using 3GWR

4rd March 2016 0.92–0.93 1.1–1.15 0.9–0.91 1.34–1.38 17%
9th March 2016 0.95 § 0.003 0.90–0.93 0.94 1.16–1.19 22%
27th March 2016 0.93–0.94 1.03–1.07 0.92 § 0.03 1.45–1.48 28%
6th May 2016 0.95–0.96 1.11–1.13 0.94 1.56–1.6 29%

Figure 7. Boxplots of the statistical distribution of the satellite derived bathymetry residual error (differ-
ence between SBE sounding and SDB) accumulated from all iterations of model training.
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RMSE may be observed, as this is probably close to the limit of maximal depth derivation for
the analyzed test site.

Model verification

In order to evaluate the proposed model performance, we compared the results obtained by a
trained SDB model to the external data – validation dataset (Table 4). It may be observed,
that the results of model verification show a strong similarity to those obtained when using a
training set. This means that the model performance is satisfactory when external data, that
was not used for model training, is utilized. The correlation coefficient error obtained is neg-
ligibly smaller than is the case for the model training process and in all cases exceeds 0.9,
namely from 0.91 (in the case of an observation acquired on 4th March 2016) to 0.95 (in the
case of an observation acquired on 9th March and 6th May 2016). Similar conclusions may
be drawn regarding the obtained RMSE calculated on the basis of the validation dataset. In
particular, errors were obtained from the use of a calibrated model tested with a validation

Figure 8. Depth related RMSE obtained during the model calibration process. Each of the figures repre-
sents the results of 10 iterations of the model training process.

Table 4. Statistical results of model verification obtained by the proposed calibrated SDB model. The table
represents the results obtained with the use of validation dataset only. The procedure of model verifica-
tion was repeated 10 times.

Proposed 3DGWR Standard GWR model
Dataset/ Acquisition
date R (min-max) RMSE [m] (min-max) R (min-max) RMSE [m] (min-max)

RMSE reduction
(averaged) using 3GWR

4rd March 2016, 0.91–0.93 1.07–1.23 0.9–0.91 1.31–1.46 17%
9th March 2016, 0.95§0.005 0.88–0.95 0.94 1.16–1.24 23%
27th March 2016 0.93–0.94 1.01–1.07 0.91–0.92 1.45–1.5 29%
6th May 2016 0.95§0.004 1.08–1.14 0.93–0.94 1.53–1.62 30%
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dataset range from 0.88 [m] to 1.23 [m]. Moreover, variations between iterations for each
observation, do not exceed 0.16 m (most variation was observed in the case of an observation
acquired on 4th March 2016). The proposed 3DGWR approach was also compared with the
GWR model in terms of basic statistical measurements. In this case, it may be observed that
the application of the proposed approach significantly improves the overall model perfor-
mance in comparison to the standard GWR technique which, as a consequence, allows for
RMSE reduction from 17% to 30%.

An additional statistical analysis of error distribution, analogous to the TD case, is pre-
sented in Figure 9. It clearly shows, that error distribution in the case of model validation is
very similar to the results obtained when using training data. Presented in the form of box-
plots, residual error analysis indicates a relatively small variation of errors and a similar
(� 0:5m/ bias, which also, in this case, indicates a small under-estimation of bathymetry
when using remote observations. Additional calculations, also show that, in the case of vali-
dation data, the estimated bathymetry of over 63% of sounding points was characterized by
an RMSE lower than 1 [m] and for over 92% of VD points the RMSE of remote bathymetry
estimation was lower than the 2m threshold.

An analogous analysis of RMSE dependence in relation to the depth of sounding in VD
was presented in Figure 10. It may be observed, that similarly, as in the case of the training
data (Figure 6), RMSE shows no special dependence due to the depth of the observed pixel
in the range of 2–10m, which is the result of a good model fit to local depth related to the
conditions of approximated data. With regard to extreme error values, in this case, the small-
est RMSE error was obtained for depths of 8–9 meters. Similarly, as in the TD case, there
might be at least two reasons for that: firstly, for depths of over 6m the amount of sediment
and particles in the water column is relatively less observable than for shallow water and
therefore the water attenuation coefficient is more stable over the analyzed area. Secondly,
the lowest RMSE at this depth range is also probably caused by the fact that it is near the
depth dependent window center (Figure 4).

Figure 9. Boxplot statistical analysis of the residual errors of the proposed SDB data verified on validation
dataset soundings.
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With regard to the general conclusions concerning the obtained RMSE in comparison to
results obtained in different studies, it should be stated that, there are at least two factors
that have a negative influence on the final proposed model performance. The first thing is
the difference between the time that the in situ data was acquired and the time that the
remote observations were registered. In case of this study, TD and VD surveys were made
from 1 to 5 years earlier than the observations and, during this time, significant changes in
bathymetry in the observed area may have taken place. The second factor, is the spatial reso-
lution of observations that cannot capture bathymetry variations within the area of one pixel.

Application of the algorithm

In order to verify whether the proposed 3GWR SDB model may be used outside the calibra-
tion site, an analysis of SDB obtained by the proposed approach for areas in the vicinity of
Jastarnia port (54�41046.200N 18�40030.500E), that is placed in the middle of the south coast of
Hel Peninsula, was performed. It is worth mentioning that the vicinity of Jastarnia port is
not part of the calibration test site of the model, as it is situated on the other (southern) coast
of Hel Peninsula. However, an analysis of this test-case is important, because it covers
important marine route for numerous touristic vessels and fishing boats. This site is also
unusual as most of this area has a sandy bottom and, therefore, this maritime route needs to
be frequently monitored in order ensure maritime traffic safety.

In Figure 11 two consecutive SDB observations made on 4th March and 6th May of 2016
(Figure 8) with depths ranging from close to 0 m up to 20 m are presented. It may be
observed that the route consists of an approximately 150m wide passage placed between two
shallow water fields and its maximal depth exceeds 7m.

Transects indicated on the observations registered on 4th March 2016 (points A, B, C and
D) and 6th May 2016 (corresponding points A0, B0, C0 and D0) were defined in order to pres-
ent the usefulness of the proposed model in observing the process of sediment migration in

Figure 10. Results of model validation.
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this area. Namely, in Figure 12, depths along transects were extracted in order to show tem-
poral changes of bathymetry within the analyzed maritime route. The presented results,
clearly show the process of the flattening of the sea route in the vicinity of the port, which is
the result of sediment migration along the southern part of Hel peninsula.

Namely, according to the proposed SDB model, in the case of the AB (A0B0) transect, it
may be observed that the depth of point A (A0) has decreased from 3.75 m to 1.9 m during
the period from March to May. An even bigger difference may be observed for point B (B0),
where the depth decreased almost 4 m (from 8 m to 4.1 m). The depth of the transects, in its
middle part, is similar (total depth of approximately 8–8.5 m and the difference between
observations is relatively small – about 20–30 cm), which confirms the conclusion, that both
SDB observations, though registered in different periods, may be used to monitor temporal
changes of bathymetry. An analogous conclusion may be drawn for the CD (C0D0) transect,
as the observable depth decreases, in this case, for both points, by �1 m, with the middle of
the transect showing no noticeable difference. This issue also confirms the hypothesis stated
earlier, regarding errors produced by the model. Namely, errors in bathymetry estimation
are more likely to be the result of the low spatial resolution of remote observations rather
than just the inaccuracy of the model itself. This is because, the variations of bathymetry
within the area of one pixel (10m: £ 10m:), cannot be captured by remote observation and
thus the model is not capable of fitting to the local distortions of bathymetry. Moreover, the
comparison of corresponding pixels in different observations rather suggests that the model

Figure 11. Satellite derived bathymetry of the area in the vicinity of Jastarnia Port, the middle part of the
southern coast of Hel Peninsula. Two derived bathymetry maps were obtained with the use of the pro-
posed 3GWR model from observations acquired on 4th March and 6th May of 2016. Manually fixed points
(ABCD and A’B0C’D) indicate transverse transects (red lines in the figure) of the marine route. Data is pre-
sented in the UTM 34N coordinate system.
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is capable of acquiring a higher level of precision because the depths of transects in their
middle part remain static between observations as observed changes in bathymetry estima-
tion were less than 0:5 m.

Conclusions

In this paper, the proposed original 3-dimensional geographical weighted regression
(3GWR) method for satellite bathymetry derivation (SDB) based on multiple local regres-
sion models was presented. The novelty of the proposed approach relies on the fact, that the
presented technique binds together previously known models from the literature, namely
geographical weighted regression models (GWR), with local depth related inverse regression
optimization, which is used to derive the best possible (in the sense of the mean square error)
bathymetry model. The data for model training and its verification was acquired by a single
beam echosounder and provided by the Polish Maritime Administration.

The Author of the paper conducted experiments in relatively difficult SDB model
areas, which are characterized by a high level of sediment and lower water clarity than
other typical test sites presented in different studies. Nevertheless, it was shown, that
the proposed technique is useful at a global and local scale, to depths up to 12 meters.
The results presented in this paper, indicate that the proposed SDB model allows for
an estimation of bathymetry in near shore areas with errors ranging from RMSE D
0:88 [m] to RMSE D 1:23 ½m� and a high correlation ranging from 0.91 to 0.95 depending
on the observation. The variation in the residual errors of the proposed approach are rela-
tively small as 50% of the results fall in the ¡0.5 to 1.5 m error range with a bias of �0.5 m
and bathymetry of over 60% of the points of the validation dataset were estimated to have
a RMSE lower than 1m.

The results of the proposed approach were also verified during the conducted practical
use-case experiment, where the proposed method for SDB estimation was used to assess the
changes of the bottom of the maritime route near the observed test site. The presented
results indicate a high application potential for the proposed methods with regard to activi-
ties related to assessing the changes in bathymetry of near shore areas. This is particularly

Figure 12. Comparison of SDB profiles between 4th March and 6th May of 2016.The figure shows a signif-
icant difference in the depth of points that are bound the maritime route.
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important for locations where temporal bathymetry rapidly changes, for instance due to
sand migration, and therefore the area must be continuously monitored in order to ensure
the safety of marine routes. The proposed model was tested and verified for a particular mar-
itime route, namely the route to the Jastarnia Port placed in the middle of the south coast of
the Hel Peninsula, Poland.

The study presented in this paper shows that the proposed SDB model, though tested in
difficult conditions, is capable of extracting the temporal changes in the near shore bathyme-
try and, in consequence, can generally increase the level of maritime traffic safety.
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