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Abstract: This paper presents an algorithm for 3D path-following using an articulated
6-Degree-of-Freedom (DoF) robot as well as experimental verification of the proposed
approach. This research extends the classic line-following concept, typically applied in
2D spaces, into a 3D space. This is achieved by equipping a standard industrial robot
with a path detection tool featuring six low-cost Time-of-Flight (ToF) sensors. The primary
objective is to enable the robot to follow a physically existing path defined in 3D space.
The developed algorithm allows for step-by-step detection of the path’s orientation and
calculation of consecutive positions and orientations of the detection tool that are necessary
for the robot arm to follow the path. Experimental tests conducted using a Nachi MZ04D
robot demonstrated the reliability and effectiveness of the proposed solution.

Keywords: 3D path-following; articulated robot; robot control

1. Introduction
One of the basic tasks in robotics is to lead the robot arm (for example, the arm of

an industrial robot) or the robot itself (for example, in mobile robotics) from the start
point to the target point without collisions. This involves making strategic decisions and
defining a sequence of valid robot configurations (including position, orientation, and
speed) that constitute the obstacle-free path leading to the desired destination and taking
environmental constraints into account [1]. Planning of the route can be global or local. In
global path planning, all spaces where obstacles exist are predetermined so the obstacle-free
route can be calculated in advance [2,3]. When the environment is unknown a priori, or
it is not static, local path planning is needed to dynamically respond to the environment
changes. Both approaches may also be combined, for example, by providing the reference
path, calculated by the path planner first, and then, as the robot moves, by correcting it
using local planning as the response to changes in the environment detected by the robot’s
sensors [4]. Recent studies in path planning, advanced inverse kinematics (IK), and sensor
fusion present significant progress, addressing challenges in efficiency, adaptability, and
precision [3]. Efficient and precise navigation often needs advanced sensors like IMUs
(Inertial Measurement Units), LiDARs, radars, mono and stereo vision systems, etc. Data
from various sensors are usually combined (which is called sensor fusion) to provide
complex information about the state of the robot and the environment [3]. Then, advanced
algorithms for calculating inverse kinematics task, path planning, obstacle detection, and
avoidance are applied to allow the robot to reach the desired target position. When the
robot moves, it usually follows the path calculated by some path planning algorithm;
however, this path usually does not exist physically in the environment. It is “virtual”,
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and various control techniques are applied to minimise the tracking error and, of course,
to perform the task collision-free [5]. In particular, Artificial Intelligence (AI) methods are
currently widely explored and applied with numerous successes for data processing and
path planning [3,6]. However, despite undoubted advantages and often excellent results,
there are also drawbacks and limitations. For example, they usually require preparing and
tunning the AI model, which is not an easy task, and gathering a large amount of training
data. Thus, the training process, particularly of deep learning algorithms, is often time-
consuming, requires a high level of AI expert knowledge, demands high computational
power, and consumes a lot of energy [3,7]. The additional drawback of some advanced
methods are also the costs of some types of sensors, for example, 3D cameras and long-
range LiDARs. This leaves a space for exploring simpler or cheaper solutions [8], especially
when movement accuracy is not of the first importance.

One of the simplest variants for performing the task of moving a robot from the
start point to the target position is to move it along a line that is physically defined in the
environment. In such a case, and if there is only one possible path to the target (i.e., the path
does not split), only local planning is needed, and it is sufficient to just move the robot along
the path. This approach is commonly known as “line-following” and is usually applied in
mobile robotics. Typically, the line is drawn on the surface where the robot moves. Thanks
to sensors, the robot controller detects if the robot pulls off the line to the left or to the right
and corrects the robot movement by turning the robot to the direction of the sensor that
detected the line, to keep the robot back over the line (Figure 1). Such an approach focuses
on correcting the local robot position error relative to the path. In this scenario, although
the robot moves in a 2-dimensional (2D) space, the problem is 1-dimenional.
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Figure 1. Control principles for typical line-following, 2-wheeled robot showing situations resulting
in (a) turn left, (b) move straight, (c) turn right commands.

Due to the very simple control rules, this task is often presented as one of the first dur-
ing robotic classes for students or as the introduction to mobile robotics for children. There
are various types of line-following robots, starting from toys, through various enthusiast-
level robots, advanced “racing” robots for line-following competitions [9–11], up to profes-
sional, industry-grade constructions. For example, some of the AGVs (Automated Guided
Vehicles) in factories and logistic centres also utilise line-following principles in their control
systems [12]. The line to follow might be a visual line painted or embedded (e.g., electrical
or magnetic wire) in the floor or ceiling. Line detection and following also play an impor-
tant role in autonomous driving systems applied in road cars [13,14]. In order to detect the
line, various types of sensors might be used, for example, light reflection sensors, infrared
sensors, magnetic sensors, video cameras, and others. Even though there are already plenty
of line-following robots on the market, there are still new constructions [15,16] and new
control algorithms developed: for example, ones based on fuzzy sets [17], the dynamic
PID algorithm [18], AI swarm algorithms [19], vision systems combined with infrared
sensors [20], and others.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Appl. Sci. 2025, 15, 2917 3 of 25

Although most of the line-following robots are ground vehicles that operate in a 2D
space, there are also some implementations of this principle for industrial robots and for
aerial robots. For example, in [21] the artificial Double Deep Q-Network was applied for
performing the path-following task using an articulated robot. The network was trained
to follow a path drawn on a flat surface and observed locally by a camera mounted on
the robot arm. The achieved path tracking error was below 1 mm. In the paper [22], a
system for extracting the features of and tracking a weld joint was presented. It utilised
a laser scanner to detect the path defined by the contact line of two metal elements to
weld. However, the system was tested only on a straight, flat (i.e., defined in the 2D
space) path. An example of the application of line-following principles in aerial robotics is
robotic competitions [23], where a robot equipped with a camera must reach the end of a
line that is drawn on the floor. Another example is the application of UAVs (Unmanned
Aerial Vehicles) for chemical spraying in agriculture [24], where a robot equipped with
a camera detects lines of crops and flies along them. Another example is [25], where a
UAV was used for pipeline inspections and the data from the vision system processed
using a Convolutional Neural Network were used for navigating the drone along the
pipe. However, the system was tested only for pipes lying flat on the ground and the
UAV was flying at a fixed altitude. It must be noted that, even though these robots fly in
a 3-dimensional (3D) space, they still follow a line detected on the ground, i.e., defined
in a 2D space, at a constant flight level. There are very few attempts to implement the
line-follower principle for following a path physically defined in a 3D space. One such
example is [26], where a UAV is designed for an aerial power line inspection. It tracks the
powerline using a LiDAR sensor. Another example, described in [27], is also a UAV for
power line inspection. In this paper, the arrangement of the line to follow is extracted from
the camera image of the aerial powerline. To keep the UAV centred and oriented with the
lines, the PID controller tuned with the fuzzy logic algorithm is used. Unfortunately, the
performance of the algorithm was tested in simulation environments only. It is also noted
that it will need to merge the information acquired by the camera with laser sensors in order
to determine the distance of the UAV from the followed power line. In [28], the control of
an AUV (Autonomous Underwater Vehicle) for underwater cable tracking is presented.
The tracking of a cable buried in the seabed is achieved by magnetic field sensing. Thanks
to this, not only can the direction of the tracking be obtained but also the distance from the
cable can be maintained. However, the control algorithm does not take into account the
presence of environmental disturbances (e.g., water currents) or obstacles (e.g., underwater
sand-waves). The authors admit that a more advanced algorithm enabling more than just
fixed AUV-to-cable distance maintaining in the 3D space must be developed. The need for
developing the AUV for monitoring underwater structures, including pipes and cables, as
well as some preliminary design of such a platform is also presented in [29].

From the literature review, it appears that vision processing techniques have a high
capability for detecting objects and shapes, including lines and paths, but they lack sufficient
information on the scene’s depth. Thus, they must be accompanied by some distance
measurement techniques, for example, LiDARs, radars, 3D cameras, or stereo vision, which
increases costs and computational power demand. It also introduces problems with the
synchronisation and fusion of data from various systems [30]. An additional drawback, in
the context of the task described further in this paper, is that some types of sensors have
limited capabilities in terms of detecting objects located close to sensors (i.e., closer than a
few centimetres).

It must be underlined here that there are a lot of works on the subject of 3D path-
following or tracking, with a great variety of methods being applied [31,32], but the 3D
“path” is usually defined as a set of the robot’s configuration states, including coordinates
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to be reached or passed by the robot on its way. These coordinates are just points defined
in some space. There is no physical line to be followed. This is a very different case from
the one that will be described in this paper.

The aim of this work is to enable continuous, step-by-step control of robot incremental
motion following a path in 3D space. This is obtained based on the classic line-follower
concept, and the control rules are developed in order to allow an articulated, 6DoF (Degree
of Freedom) industrial robot to follow the physically existing path defined in 3D space. The
literature on this defined problem is, to the authors’ best knowledge, very limited.

Nevertheless, a somewhat similar problem was investigated in [33], where the shape
of a physically existing line was detected using a camera and the articulated robot learned
how to move along it using reinforcement learning. However, even though the line was
defined by a hose placed in the robot’s space, the path was flat, i.e., this was in fact a 2D
problem. Moreover, the solution was not calculated step by step and, as the path was
analysed globally, it belongs to the global planning methods.

In [34], a very wide review of vision methods for automatic robotic welding is provided.
Welding involves accurate control of the robot effector movement along a path that is
defined by two adjacent, contacting elements. This is a problem that may appear similar to
tracking a 3D path. However, the path is not detected directly but is rather described by
the intersection of adjacent surfaces or by a groove on the surface. The presence of adjacent
surfaces makes the locating of the path easier, and in the case of groove detection, closer
to a 2D line-following problem. Most of the methods described in [34] offer a weld seam
tracking accuracy between 1 and 0.1 mm. In the most accurate solutions, vision systems
are accompanied by laser scanners.

Another publication that presents a similar task is [35], where an industrial robot was
controlled by an Artificial Neural Network trained to follow an arbitrary path drawn by a
human demonstrator on a 3D surface. Line detection and tool orientation were extracted
from the image obtained from the camera placed on the robot’s effector. A laser beam was
used to mark the tool orientation relative to the path on the surface to help extract it from
the image obtained from the camera. Three different reinforcement learning algorithms
were compared in terms of path tracking accuracy, with the Proximal Policy Optimisation
reinforcement learning algorithm achieving a maximum tracking error of 4 mm and mean
error of 0.2 µm.

Contrary to the majority of the publications, this paper presents a method for following
a path that is physically defined in a 3D space. The path position is detected using a simple
tool held by an industrial 6 DoF robot. The tool is equipped with six low-cost Time-of-Flight
(ToF) sensors. The task to be performed is to move the robot arm with the tool along the
path from the start to the finish point, without a collision with the path. Only the start
position is known a priori, before the start of the whole process, so the path position and
orientation must be detected, and proper robot arm movements must be calculated on-line,
as the following of the path progresses.

2. Materials and Methods
2.1. General Description of the Proposed Solution

The general concept of the algorithm is to extend the classic idea of the line-follower
into a 3D space. The path shape is defined using a hose mounted inside the robot’s
workspace. The path’s position is detected by the sensors placed on two perpendicular
arms of the path detection tool (Figure 2). Thanks to this, the path’s existence may be
detected in points located at the sensors’ line-of-sight intersections. However, this allows
for path detection only inside the 2D space of the detection tool. In order to detect the path’s
orientation in the 3D space, the robot moves the tool by a small amount and performs a
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second detection. Thanks to this, it is possible to calculate how the sensing tool should
be moved along the path to the next position to perform the next detection. Then, the
process is repeated, taking into account the tool’s new (now current) position, and its
previous position. When moving to subsequent positions, it is also important to always
keep the sensing tool oriented perpendicular to the path. It must also be underlined that it
is assumed that the path is not placed flat but bends in various directions in 3D. The details
of the proposed solution are presented in the following subsections of this chapter.
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2.2. Detected Path Position Calculation

Figure 3 presents an exemplary path detection tool with 6 sensor placements and the
detection points of the path detection tool marked. The current tool position is always
known, i.e., it is calculated based on the gripper global position returned by the robot
controller. The centre of the tool’s coordinate system (O, tool position) is located in the
middle of the detection field. It lies at the intersection of the lines of sight associated with
the two central sensors (No. 2 and 5 in Figure 3). The Y and Z axes lie in the tool plane,
while the Z axis is perpendicular to this plane. The sensor spacing is a.
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Each of the intersection points of the sensors’ lines of sight in the global system can
be determined by knowing the position of the tool and its orientation in the form of Euler
angles. Euler angles determine the orientation of the local tool coordinate system relative
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to the global system (located in the robot base). The first stage of the process of calculating
these points is to determine the rotation matrix of the local tool system:

Rx(α) =

1 0 0
0 cos α −sin α

0 sin α cos α

, (1)

Ry(β) =

 cos β 0 sin β

0 1 0
−sin β 0 cos β

, (2)

Rz(γ) =

cos γ −sin γ 0
sin γ cos γ 0

0 0 1

, (3)

R = Rz(γ) · Ry(β) · Rx(α), (4)

where α—rotation angle around the X axis (roll); β—rotation angle around the Y axis (pitch);
γ—the angle of rotation around the Z axis (yaw); Rx, Ry, Rz—rotation matrices around
individual axes, respectively, X, Y, Z; and R—tool rotation matrix.

The position of a point in the global coordinate system, knowing its position in the
local coordinate system, can be determined using the following formula:

P = P0 + R ·→u , (5)

where P—the desired point position in the global system; P0—the centre of the local
coordinate system; and

→
u —the vector of the position in the local coordinate system (the

vector between the centre of the local coordinate system and the position of the desired
point in this system).

For example, the position of the point A in the global coordinate system (Figure 3) is

A = O + R ·
[
0

√
2

2

√
2

2

]T
· a. (6)

The general formula for calculating detection point positions (intersections of sensors’
lines of sight) is

Pi = O + R · v̂ · l. (7)

where Pi—the intersection of sensors’ lines of sight in the coordinate system of the robot
base; v̂—unit vector; and l—the distance between the centre of the local coordinate system
and the desired point i.

The next step is the calculation of the middle point based on the set of points where
the path was detected, because it is possible that the path is detected in more than one
point simultaneously. This is calculated according to the following formula:

S =

(
1
n∑ n

i=1xi,
1
n∑ n

i=1yi,
1
n∑ n

i=1zi

)
, (8)

where S—the midpoint, i.e., the point where the followed path is assumed to be; xi, yi, zi—
coordinates of points where the path was detected; and n—the number of points where the
detection occurred.

In some cases, it is also possible that the path is not detected at all, for example, when
the path is located between the sensors’ lines of sight. In such case, S = O, which means
that it is assumed that the path is in the middle of the detection tool and the robot should
continue in the previously calculated direction. This is performed in order to deal with
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detection errors caused by the limited special resolution of the detection tool. It is also
assumed that by moving forward, the path will eventually be again.

2.3. Calculation of the Next Tool Position

To determine the next position where the detection tool should be moved by the robot,
it is necessary to calculate the appropriate vector (Figure 4). In the previous section, how to
designate the S point that represents the detected path position was presented. Knowing
the position of this point, the next step is to determine the vector between this point and
the position of the detection tool (point O).

→
m =

−→
OS =

[
xS − xO yS − yO zS − zO

]
, (9)

where xS, yS, zS—point S coordinates; xO, yO, zO—point O coordinates.

Additionally, the tool displacement (
→
t vector) from the position where the path was

detected for the last time (point O’) must be calculated:

→
t =

−→
O’O. (10)

It must be noted that the O’ position is not always the last (previous) tool position.
This happens when the path is not detected by the tool. In this case, it is assumed that the
path is located between the sensor’s lines of sight, and it should be detected again in one of
the next moves, so the tool is moved ahead in the previously calculated direction but the O’
point used in (10) is still the one obtained when the path was detected the last time. Apart
from handling temporary path loss, this also helps to react appropriately to path bends,
depending on how sharp they are.

After summing up both vectors
→
t and

→
m, the resultant vector

→
w is obtained (11),

which is the vector needed to determine the next tool position. Then, the vector
→
w must be

normalised (12). The resulting unit vector allows the determination of the new position
shifted by a given distance d (Figure 4).

→
w =

−→
O’S =

→
t +

→
m, (11)

ŵ =

→
w∥∥∥→w∥∥∥ =

[
wx√

w2
x+w2

y+w2
z

wy√
w2

x+w2
y+w2

z

wz√
w2

x+w2
y+w2

z

]
, (12)

Pn = O + ŵ · d, (13)

where
→
w—vector between O’ and S points; ŵ—unit vector; d—tool displacement distance;

and Pn—next tool position.
Figure 5 presents the general scheme of the path-following, showing 3 consecutive

positions of the path detection tool.
An exception to the rules described above is the situation when the midpoint S is

placed in the tool centre (point O). In this case, the next position is calculated based on the
vector normal to the tool plane (tangent to the X axis of the tool).

Pn = O + R ·
[
1 0 0

]
· d. (14)

This is caused by the fact that tool rotation is calculated separately (which is described
in the next section), and even though the path is in the tool centre, the

→
w vector and normal

vector may differ.
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2.4. Calculation of the Tool Rotation

The detection tool detection field, which lies in the Y and Z axes (in the local tool
coordinate system), should be oriented perpendicularly to the path. In this orientation, it is
easiest to detect the path and to avoid tool collision with the path. Therefore, the orientation
of the tool is as important as the position in the Cartesian coordinates of the tool and must
be determined on-line. The adopted method of determining Euler angles, analogous to
the process of determining the sequential tool positions, is based on the calculation of the
vector that defines the new orientation of the X axis of the tool’s coordinate system. Thank
to this, two rotation angles can be defined, and the third rotation angle (rotation around the
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X axis) is imposed. This tool orientation vector differs from the vector used for position
calculation because it is possible to modify its parameters. By introducing this approach, it
is possible to tune the algorithm and achieve smoother path-following.

To obtain the tool rotation vector, the vector normal to the plane lying in the Y and Z
axes of the local tool coordinate system must be determined:

x̂ =
[
1 0 0

]T
, (15)

→
n = R · x̂, (16)

where x̂—unit vector oriented along X axis of the tool coordinate system;
→
n —vector normal

to the tool plane.
Using the previously determined

→
m vector, the tool orientation vector may be calcu-

lated as follows:
→

wa =
→
n · a +

→
m · b, (17)

where a, b—vector’s modification parameters, experimentally adjusted during tests;
→

wa =
[
wa,x wa,y wa,z

]
—orientation vector (Figure 6).
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Figure 6. The
→

wa vector with its components, wa,x, wa,y, wa,z, and two rotation angles that can be
determined on the basis of this vector: βn and γn.

If, in Equation (17), parameter a is set to the scalar value (i.e., length) of
→
t , the rotation

is indirectly proportional to the path arc radius. When the radius is high, the path bend is
small and there can be a few subsequent steps when the path is not detected by the tool.
When the radius is low, the path bend is high, and the path is detected frequently. This
means that normal vector length is dependent on the distance between the subsequent path
detection positions. Parameter b, which is manually set constant with a value below 1, acts
as tool rotation reduction coefficient. This prevents too high tool rotations when the path is
detected in two subsequent positions in different detection tool points. In such a situation,

the
→
m vector may be much longer than vector

→
t . As a result, the orientation vector may be

oriented almost parallelly to the detection tool plane, i.e., it indicates very high rotation.
This may cause the collision of the detection tool with the path and also results in high
oscillations of the detection tool around the followed path. The reduction of the

→
m vector

prevents both situations. Thanks to this, smoother path-following is achieved, which, in
turn, results in better path detection effectiveness. The only drawback of this solution is
that in the case where the path has a low radius bend, the tool cannot be turned to the
proper orientation in one step. In this case, the bend is negotiated in a few subsequent steps.

The trigonometric relationships and the Pythagorean theorem result in the following:

tan γn =
wa,y

wa,x
, (18)
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tan βn =
−wa,z√

wa,x2 + wa,y2
, (19)

where γn—new rotation angle around the Z axis (yaw); βn—new rotation angle around the
Y axis (pitch).

The minus sign in Equation (19) results from the use of a right-handed coordinate
system. In such a system, the positive angle βn (pitch) corresponds to the counterclockwise
rotation around the Y axis. In case the wa,z component of the vector is positive, it corre-
sponds to a clockwise rotation. For this reason, the expression must include a minus sign to
conform to the convention. As the result, using the arctangent function, new tool rotation
angles can be determined:

γn = atan
wa,y

wa,x
, (20)

βn = atan
−wa,z√

wa,x2 + wa,y2
, (21)

and a constant value assigned to the angle of rotation around the X axis (roll):

αn = 0. (22)

Figure 7 presents the summary of combining calculations of both tool rotation and the
next tool position.
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how the effector was defined in the robot controller. Of course, it is possible to define a 
new effector in the robot software, but it was decided to determine the position of the tool 
on the control computer side, i.e., in the Mathworks Matlab version 2023b (Mathworks, 
Natick, MA, USA) environment. This solution was selected to facilitate the incorporation 
of the tool geometry modifications, anticipated during project development, into the al-
gorithm and to discard the need for adjusting the tool definition in the robot controller if 
any change in the tool is made. Additionally, thanks to this approach, the whole algorithm 
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centre position; vectors
→

wa,
→
w,

→
t ,

→
n , and

→
m and a and b constants are described in the text.

2.5. Determining the Position of the Detection Tool Based on the Position of the Gripper

In previous sections, it was assumed that the position and orientation of the effector
(detection tool) are known. However, during experimental tests, when the robot controller
was queried for actual robot position, the gripper position was returned, because this is
how the effector was defined in the robot controller. Of course, it is possible to define a new
effector in the robot software, but it was decided to determine the position of the tool on the
control computer side, i.e., in the Mathworks Matlab version 2023b (Mathworks, Natick,
MA, USA) environment. This solution was selected to facilitate the incorporation of the
tool geometry modifications, anticipated during project development, into the algorithm
and to discard the need for adjusting the tool definition in the robot controller if any
change in the tool is made. Additionally, thanks to this approach, the whole algorithm is

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Appl. Sci. 2025, 15, 2917 11 of 25

more robot-independent, i.e., there are no configuration changes to be made in the robot
controller settings.

The tool coordinate system is shifted (in relation to the gripper system) along the Z
axis of the gripper by the distance le. Its orientation in relation to the gripper system can be
described by the following angles: αe—rotation angle around the X axis (roll); βe—rotation
angle around the Y axis (pitch); and γe—rotation angle around the Z axis (yaw). During
the experiments, these angles were as follows: roll 180◦(π rad), pitch 0◦(0 rad), and yaw
−45◦

(
π
4 rad

)
.

In order to find the position of the tool, the first step is to determine the rotation matrix
of the gripper system with respect to the global coordinate system. Using the relationships
describing the rotation matrices around individual axes Equations (1)–(3), the rotation
matrix of the gripper system has the following form:

Rc = Rz(γc) · Ry(βc) · Rx(αc), (23)

where αc, βc, γc—gripper rotation angles (roll, pitch, and yaw); Rc—gripper rotation matrix.
The tool coordinate system is shifted along the gripper Z axis in the positive direction.

Knowing the position of the centre of the gripper coordinate system, it is possible to
determine the position of the centre of the tool system using Equation (5). The formula for
the position of the centre of the tool system takes the following form:

O = Oc + Rc ·
[
0 0 1

]T
· le, (24)

where Oc—gripper coordinate system centre.
Next, the orientation of the tool coordinate system relative to the global coordinate

system must be determined. First, the rotation matrix of the tool system in relation to the
gripper system is determined, again using Equations (1)–(3):

Rec = Rz(γe) · Ry(βe) · Rx(αe), (25)

where Rec—rotation matrix of the tool’s coordinate system relative to the gripper’s coordi-
nate system.

Using matrices Rc and Rec, it is possible to determine the rotation of the tool coordinate
system in relation to the global coordinate system (i.e., to the robot base):

Re = Rc · Rec, (26)

where Re—rotation matrix of the tool coordinate system relative to the coordinate system
of the robot base.

On the basis of the determined matrix, Re, it is possible to determine the orientation
of the tool in the form of Euler angles. According to [36], however, there is always more
than one possible solution and the selection of angles is arbitrary, because they result in the
same orientation of the system.

3. Results
3.1. Experimental Setup

In order to prove the reliability of the proposed algorithm, experimental tests were
carried out using the industrial, articulated, 6DoF robot Nachi MZ04D (Nachi Fujikoshi
Corp., Tokyo, Japan) with a Nachi CFD controller [37]. The maximum load capacity of this
robot is 4 kg, and the maximum reach of the flange is 541 mm. The robot is equipped with
a Gimatic MPLF 2550 (Gimatic, Roncadelle, Italy) electric gripper and Schunk FT-AXIA 80
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(Schunk, Lauffen/Neckar, Germany) force and torque sensor, which was installed on the
robot but was not used during this research. The path to follow was set up using a shower
hose (20 mm diameter) with a 3 mm copper wire inside, so that the hose retains its position
when setting the path. The hose was attached at both ends to the worktable with metal
brackets. Additionally, it was supported with some blocks and boxes to obtain the desired
path, but these supports were placed outside the path-following zone.

The robot was enclosed in a safety cell with the dimensions 1250 × 1250 × 1250 mm.
In the robot controller software, the virtual safety walls were set to −550 . . . +550 mm in the
X axis, −550 . . . +550 mm in the Y axis, and +5 . . . +inf mm in the Z axis. Similar boundaries
were defined in the IK solver settings utilised in the path-following algorithm. The robot
was placed in one of the didactic laboratories of the Gdansk University of Technology,
which ensures stable environmental conditions (room temperature around 21 ◦C, humidity
around 30%, appropriate lighting).

The path detection was provided thanks to the specially designed detection tool
(Figure 8). It consists of a box with communication electronics and six ST Microelectron-
ics VL6180X (ST Microelectronics, Plan-les-Ouates, Switzerland) infrared Time-of-Flight
sensors [38] placed on two perpendicular arms, three sensors per arm. These sensors can
detect objects at a distance from 0 to 100 mm away from the sensor. The measurement
accuracy is not explicitly provided in the datasheet; however, it contains the following
information: measurement noise up to 2 mm, temperature-dependent drift 9 mm, and
voltage-dependent drift 3 mm. All of the sensors were calibrated before use according to
the procedure described by the manufacturer. Nevertheless, it must be noted that range
(distance) measurement data are not directly used for path detection. Only the presence of
the path in the detection zone of a sensor is used, not the exact distance value. Experimental
verification proved that this is sufficient if only a small part of the path (hose) lies in the
sensor’s detection sight, as its detection is stable. It must also be noted that the detection
field of each sensor is not a narrow, straight line but a cone with a vertex located in the
sensor position and 25◦ vertex angle. Because of this, as sensors are separated by 22 mm
(which makes 31 mm when considering the grid diagonal), and the hose diameter is 20 mm,
it is common that the path is detected by more than one sensor. In such situations, path
position is calculated using Equation (8). This means that the overall accuracy of the path
centre detection is not worse than ±16 mm.
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Figure 8. Path detection tool used during experimental verification: (a) view of the real tool in the
robot gripper placed over the path to follow; (b) main tool diameters.

Data from sensors were read by an ST Microelectronics STM32G431 microcontroller
(MCU) on an STM32 Nucleo board via I2C bus and then sent to a personal computer (PC).
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The communication between the tool and a control algorithm running in Matlab on the PC
was provided via a wireless Bluetooth 4.0 BLE connection. The tool is independent from
the robot, i.e., it is grasped by the robot’s gripper at the beginning of the program and then
moved to subsequent positions, but there is no connection (i.e., no wires) and no direct
communication between the tool and the robot or the robot controller. For the designed
detection tool, the le distance (Equation (24)) was 159.7 mm.

The software architecture of the whole system is presented in Figure 9. Data from the
detection tool are read by the control program running in Matlab. This program, based
on the current and previous detection data, calculates the next detection tool position,
i.e., where the robot arm should be moved. Calculated robot joint positions are sent (via
Ethernet) to the robot controller. On the controller, there are two programs running, the
main one and the so-called User Task [39]. User Tasks are additional programs that can
run in parallel with the main program. In the presented case, the User Task developed for
the purpose of this research was responsible for two-way communication with the PC. It
must be noted that although the User Task can perform various tasks associated with the
robot control, it cannot contain commands that execute the physical moves of the robot
arm. Moves can only be performed by commands included in the main program. Due to
this, the User Task writes joint angles received from the PC to internal registers of the robot
controller and the main program reads them and moves the robot to the desired position.
Additionally, the developed User Task can also return current robot position as joint angles
or Cartesian coordinates, operate the gripper, and perform some additional robot settings.
Communication between the Nachi CFD robot controller and PC is provided via Ethernet
and TCP protocol.
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3.2. Algorithm Implementation, Constraints, and Supporting Solutions

The path-following procedure schema is presented in Figure 10. The process starts
with the initialisation of the communication between the program running on the PC in
Matlab and the robot controller as well as the detection tool. Once all hardware elements
are connected, some initial moves of the robot are performed. These are detection tool
pick-up and moving to the start position located over the path. Then, in the loop, for each
stage the following steps are repeated for a given number of iterations:

• Read sensor data and interpreting these data:
The measurement field of the detection tool is represented as a 3 × 3 array (sensor
array). Path detection is possible at nine points that are located at the intersections
of the sensors’ line of sight. Each of the points is represented by one element of the
sensor array. The matrix rows represent the sensors located in the left arm of the path
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detection tool (sensors 1–3) and the columns represent the sensors in the right arm
(sensors 4–6). The path is marked as detected at a given point when its presence is
signalled by two sensors whose fields intersect in this point. Additionally, if the path
is detected too close or too far from the sensor it is marked as a detection error to
prevent unambiguous data input to the path-following algorithm. A detection error is
not treated as a wrong readout. In such a case, the algorithm continues as if the path
was not detected in this step and calculates the next step based on the last successful
readout (the O’ point of the last step when the path was detected is used).

• Read the current position of the gripper from the robot.
• Calculate the effector’s (detection tool) current position and orientation based on the

position of the gripper using Equations (23)–(25).
• Perform path-following algorithm step:

Calculate the effector’s new position based on its current and previous positions and
detected path position. First, the detected path position is calculated using Equa-
tions (1)–(8). Then, the next tool position and rotation is calculated using Equations (9)–
(14) and (15)–(22). It must be noted here that according to the detection condition, a
“long” or “short” step is performed (according to the value of the variable d in Equa-
tions (13) and (14)). A “short” step is performed when the path is detected only in the
central point of the detection field or when it is not detected by any sensor. In all other
cases, a “long” movement is performed. This is to prevent an insufficient correction
of the detection tool position when the path trajectory bends or losing the path when
moving straight ahead. Moreover, in some cases, due to the algorithm’s response to
detecting a path in a position other than the centre of the detection field, the calculated
tool rotation may have a high angle value (see Section 2.4). This has a negative impact
on the smoothness of the motion along the path and may also cause the loss of path
detection. Rotation reduction is accomplished by reducing the length of the

→
m vector.

It is multiplied by a constant parameter (named b in Equation (17)), which should
have a value greater than 0 and less than 1. This reduction may, however, cause the
situation where the tool rotates by a smaller angle than is needed. Fortunately, in such
a case the path-following algorithm will recognise in the next iteration that the path is
still positioned on the edge of the detection field and, in order to follow the path, it
must be rotated again. Eventually, the algorithm corrects the tool orientation in a few
subsequent movement steps.

• Calculate inverse kinematics (IK):
The IK function calculates the articulated variables of the robot based on the detection
tool position and orientation determined by the path-following algorithm. To calculate
IK solution, the Matlab generalised IK object [40] is used, which internally uses the
Broyden–Fletcher–Goldfarb–Shanno (BFGS [41]) gradient projection algorithm solver.
As a starting point for the solver to find the solution for the next position, the previous
robot position is used. There are also some additional solver constraints applied that
limit the robot body elements to stay inside safety cell, force the solver to prefer the
downward tool orientation, and limit maximum tool rotation around its axes to less
than 90◦ to prevent tool reversal, which will cause a collision with the path.

• Send new joint positions to the robot controller.
• Execute robot move:

Robot moves are executed with an arbitrary chosen constant speed. Read, in a loop,
current robot position and wait until it reaches the assigned position.

Once the algorithm performs the desired number of iterations, the finalising moves
are executed, i.e., the detection tool is stored back in its holder, the robot moves to the
safe position, and program execution logs are saved. During the development of the
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software for communication between the PC and the Nachi robot controller, a few minor
software elements and information on Nachi MZ04 robot performance provided in [42]
were employed.

The full software developed for the purpose of this paper is available as the Supple-
mentary Data provided as [S1]. This includes the main program for the robot controller,
the User Task for the robot controller, the STM32 project for STM32G431 microcontroller,
and the Matlab implementation of the path-following algorithm.
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Figure 10. Path-following algorithm schema.

3.3. Experimental Verification

To demonstrate the effectiveness of 3D path-following using an industrial robot con-
trolled by the developed algorithm and the proposed path detection tool, tests were per-
formed for four different path settings. Path 1 was tested twice and then tests for paths 2,
3, and 4 were performed. In each presented case, the task was successfully accomplished.
Below, views of the recognised paths are visualised. In each figure, the robot is presented
in the initial position, and the path is presented as a green line. Note that the figures show
path positions as they were detected by the path detection tool and as they were represented
in the algorithm. These are not the actual, real locations of the path but are close to them.
Additionally, photos of some selected positions obtained by the robot during the program
run are also presented. A full view of each run is presented in the video available as the
Supplementary Data provided as [S2].
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3.3.1. Path 1, Run 1

The first path was composed with some up and down bends with moderate arc
radiuses. This path was successfully followed by the robot. Figure 11 presents four views
of the detected path and Figure 12—three selected examples of robot positions obtained
during path-following.
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Figure 12. Path 1, run 1—(a–c) three selected examples of robot positions obtained during path-
following; full video available as Supplementary Material [S2].

3.3.2. Path 1, Run 2

The same path as in the previous run was used and it was also followed with success.
Figure 13 presents four views of the detected path and Figure 14—three selected examples
of robot positions obtained during path-following. Some differences in the detected path
positions compared to run 1 may be noticed, but they are small. Figure 15 presents both
runs overlayed, so the differences are easier to notice. The largest difference between
detected positions of both paths is 15.2 mm (which is a value similar to the path detection
accuracy described in Section 3.1), and the mean difference is 5.2 mm. This test confirms
the repeatability of the results obtained using the proposed solution.
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Figure 15. Path 1, run 1 and 2 overlayed; the robot body is removed for a clearer view.

3.3.3. Path 2, Run 1

In this test, the path had more up and down bends and path arcs had smaller radiuses.
This path was also successfully followed. Figure 16 presents four views of the detected path
and Figure 17—three selected examples of robot positions obtained during path-following.
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3.3.4. Path 3, Run 1

This path had a longer, almost flat section at the beginning, followed by a high bend
section. Additionally, it was placed closer to the robot base in its middle section. At the
end of the run, the detection tool slightly collided with the path, but the algorithm was
able to correct the tool trajectory and continued properly. This means that the path was,
once again, followed with success. Figure 18 presents four views of the detected path and
Figure 19—three selected examples of robot positions obtained during path-following.
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direction (i.e., away from the robot) and then going “up”. In this case, the boundary in the 
X+ axis was changed to 850 mm, as it was necessary to slightly cross the standard limits 
of the robot safety cell. The cell doors were open, so there was no collision with the cell 
during the run. Figure 20 presents four views of the detected path and Figure 21—three 
selected examples of robot positions obtained during path-following. 
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3.3.5. Path 4, Run 1

This path was shorter, but it differed from the others by being bent in the “outbound”
direction (i.e., away from the robot) and then going “up”. In this case, the boundary in the
X+ axis was changed to 850 mm, as it was necessary to slightly cross the standard limits
of the robot safety cell. The cell doors were open, so there was no collision with the cell
during the run. Figure 20 presents four views of the detected path and Figure 21—three
selected examples of robot positions obtained during path-following.
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4. Discussion
The proposed algorithm, despite the simplicity of the measurement tools used and

despite being based on the simple, classically inspired line-follower concept, turned out
to be effective in following the path defined in a 3D space. Its capabilities and practical
effectiveness, however, are limited by the capabilities of the robot itself and the inverse
kinematics solver. In particular, these are the issues associated with avoiding the robot’s
singular positions when tracing the path, the physical limitations of the robot’s kinematics
resulting from its construction, and the size of the working area, limitations of robot
movements resulting from, for example, the wiring of the equipment installed on the robot
and the physical dimensions of the detection tool and the path itself. During the tests, if the
path-following run had to be interrupted (i.e., halted), in most cases it was caused by the
inability of the IK solver to find the proper solution due to the robot’s limited workspace
or because the expected position was simply impossible to reach for the robot due to its
kinematic constraints. This means that the limits of the proposed solution do not lie in the
path-following algorithm itself but rather in the limits of the employed robot.
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During the experiments, the robot moves were performed with a limited, safe speed
of 50 mm/s. Higher speeds may be applied, but when choosing them the step calculation
time must be taken into consideration. A limitation might lie in the time needed for the
calculation of the next position by the IK solver. During the presented tests, this was usually
calculated in a short time (0.25 s on average), but in some difficult to reach positions it took
a couple of seconds for the solver to provide a solution. The algorithm was run on a laptop
computer with an Intel i5-1340p processor and 16 GB RAM. Another limitation may be
caused by the time needed for reading the detection sensors’ state and by the time needed
for communication with the robot. During tests, one complete step (starting from the call
to read sensor data up to executing and completing the move to the new position) was
usually performed in approximately 1.7 s.

The algorithm should work properly when applied with almost no modifications on
any articulated robot. Only the robot kinematics description and constraints for the IK
solver must be updated to match a different robot. The application of the proposed solution
should also be possible for mobile robots, but it would not be as straightforward as in the
case of industrial robots and some elements would have to be adapted first. This is one
possible goal for further algorithm development and research. Additionally, in the current
form the algorithm does not include procedures for processing path splits or intersections,
which may be a drawback. However, as each step is calculated based on local detection
results only, the path as a whole (i.e., globally) does not have to be predetermined as it
is detected step by step. This means that the path may change its shape during path-
following. The only limitation is that the path cannot change too much in a close vicinity
of the detection tool because in this case the path may leave the detection field. On the
other hand, even if the path moves inside the detection field, this would be treated by the
algorithm as a path bend, and it will adapt to the new path position.

The ability of the algorithm to follow a sharp path bend depends on many factors.
First of all, the physical dimensions of the path and the detection tool limit the tool rotation
in subsequent steps. Secondly, during calculations of tool rotation, rotation reduction
is applied so the tool cannot be rotated too much. Without reduction, the tool may be
extensively rotated in every move when the path is detected in different detection points
in two subsequent steps. Reduction decreases this effect. Vector reduction values (a and
b in (17)) are adjustable, and their values should therefore be the result of a compromise.
Stronger reduction will limit the ability to follow path bends with small arcs but, on the
other hand, will reduce the “waving” movement of the tool around the path. This will
result in an overall smoother path-following. Additionally, path width (i.e., diameter),
detection tool dimensions, sensor spacing and characteristics (ex. cone-shaped detection
field), etc., also influence the ability to follow sharp path bends. During the tests, the
smallest arc of bend was around 10 cm.

During the experiments, it appeared that sometimes, especially when the tool was
moving away from the path, the path was lost and the algorithm was not able to locate
it. When the tool was moving towards the path, such a problem almost never occurred.
To prevent losing the path, more sensors should be used, and they should be placed more
densely. Another solution may be to return to the last successful path detection position
if the path is not detected for a given number of steps, and then to restart the moves in a
slightly modified direction.

The ToF sensors that were used in the detection tool, as well as Bluetooth communica-
tion, proved to be very reliable. In practice, the only malfunctions were caused by the low
energy level of the battery powering the tool. In such situations, communication was lost
and the path-following procedure was aborted as the battery had to be replaced.
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5. Conclusions
Thanks to the result of the presented research, it can be concluded that despite the use

of only six low-cost ToF sensors (the price for one sensor breakout module with the sensor
and integrated supporting electronics is approximately EUR 11, while one sensor itself costs
approximately EUR 2), the low-cost microcontroller and Bluetooth (approximately EUR
15 for the MCU development board and EUR 12 for the Bluetooth module), and standard
laptop computer, it was possible to meet the expected goals. This was achieved using
simple technical tools and a simple algorithm, without the need for applying a complex
method like, for example, AI algorithms, which need long-lasting and high computing
power and time-consuming training.

The presented solution is easily scalable. An improvement may be sought by increas-
ing the number of sensors, e.g., to 10 instead of 6. This would improve the number of
detection points, increase path detection accuracy, and reduce the occurrence of situations
in which the algorithm loses the path or sharp bends in the path occur. The other proposal
is to use LiDAR sensors (instead of ToF sensors), which should reduce the size of the
detection tool and allow the reading of the position of the path to be much more accurate,
not only at the intersections points of the detection zones of ToF sensors.

The presented algorithm together with its implementation (including hardware ele-
ments) has a centimetre-level path-following accuracy. It is limited mostly by the detection
tool spatial resolution. At the current stage of elaboration, the main goal of this research
was to develop the methodology and test it in practice. Further development, as mentioned
above, will be directed towards enhancing the path detection accuracy.

When comparing the results to other solutions, it is worth noting that path detection
and path-following methods for 2D paths, especially those based on vision systems sup-
ported by lasers and AI data processing, achieve even submillimetre-level accuracy. The
methods used for 3D navigation and positioning or object and obstacle recognition, used,
for example, for UAV or autonomous car control, have various accuracies, starting from
metres down to millimetres depending on what is needed for the particular application.
The most accurate methods used for object localization in a 3D space are precise structured
light scanners. Commercially available scanners may achieve very high, micrometre-level
accuracies, but are very expensive and need high computational power for data processing.
In this context, the method proposed in this paper may appear inferior, but it is always a
trade-off between the desired accuracy and system costs, including hardware and software.
Thus, the described solution, even though it cannot match the extremally high accuracies
of some of the most advanced solutions, may find applications, especially after detection
resolution and accuracy are increased, which is possible within limited costs.

Potential applications of the proposed path-following method are tasks performed
in the robot’s workspace that require moving along a previously unknown but physically
defined path, for example, contactless scanning or monitoring of various long, narrow
objects. After extending the method to mobile robots, specifically aerial or underwater, the
proposed idea could be implemented in the tasks of monitoring power lines, pipelines,
ropes, or chains, hanging in the air or placed underwater, especially if exact positioning or
minimising the path-following error are not of the greatest importance, or the costs need to
be kept to a minimum. After increasing path detection accuracy, this approach could also
be applied, for example, in some less accuracy-demanding welding, glueing, or 3D printing
jobs. The method could also be used as a supplementary add-on to other methods, for
example, those relying on vision systems, especially in adverse environments or conditions
such as underwater operations, dark areas, or in severe weather conditions.
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