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Abstract 15 

The Bakun-Murum (BM) catchment region of the Rajang River Basin (RRB), Sarawak, 16 

Malaysia, has been under severe threat for the last few years due to urbanization, global 17 

warming, and climate change. The present study aimed to evaluate the time series analysis and 18 

impact assessment of the temperature changes on the vegetation/agricultural lands and the 19 

water availability within the BM region. For this purpose, the Landsat data for the past thirty 20 

years (1990-2020) were used. Remote sensing techniques for estimating the surface 21 

temperatures and variation within the vegetation and water bodies were utilized, and validation 22 

was done using on-ground weather stations. Google Earth Engine (GEE) and other RS & GIS 23 

tools were used for analyzing the time series trends of land surface temperature (LST), 24 

normalized difference vegetation index (NDVI), and normalized difference water index 25 

(NDWI). The results exposed an overall rise of 1.06°C in the annual mean temperatures over 26 

the last thirty years. A maximum annual mean NDVI of 0.48 was recorded for 2018 and 2019. 27 

The lowest annual mean NDVI (0.27) was observed in 2005. The annual mean NDWI 28 

increased to 0.48 in 2018 and 2019, respectively. The statistical correlation results revealed the 29 

coefficient of determination (R2) of 0.09 and 0.13 for the annual mean LST and annual mean 30 

NDVI and the annual mean LST and annual mean NDWI, respectively. Moreover, the Mann-31 

Kendall trend test for the annual mean temperature series indicates a slightly increasing trend 32 
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with Sen’s slope of 0.03°C/year. It is found that there is a positive trend in the annual mean 33 

rainfall patterns, as Sen’s slope indicates a yearly increase of 50.58 mm/year. This study found 34 

significant changes in the LST, NDVI, and NDWI of the BM catchment region during the last 35 

thirty years, demanding the concerned authorities' instant attention to alleviate the adverse 36 

effects of such changes to protect the ecosystem. 37 

Keywords: Time series analysis; google earth engine; remote sensing & GIS; impact 38 

assessment; land surface temperature 39 

1. Introduction 40 

The LST usually determines the current urban environment's ecological health (Patz et al., 41 

2005; Grimm et al., 2008; Huang et al., 2009; Du et al., 2016; Liu et al., 2018; Oad et al., 2020). 42 

Urbanization is a fast human-induced process primarily based on urban area expansion, and 43 

land transformation (Guha et al., 2020) has not only decreased the agricultural lands and 44 

contributed to the increased temperature. The remote-sensing normalized difference indices are 45 

usually used to identify ecological shifts within natural resources (Chen et al., 2006; Govil et 46 

al., 2019; He et al., 2019; Govil et al., 2020; Guha et al., 2020). Remote sensing also provides 47 

the TIR structure of the wavelengths, which is also very useful in assessing the variability of 48 

LST temporally and spatially. Remote sensing is widely implemented in every field of earth 49 

science (Wen et al., 2017; Ferrelli et al., 2018; Alexander, 2020; Nimish et al., 2020; Sultana 50 

& Satyanarayana, 2020). The spatial heterogeneity of the LST is due to the variation in 51 

roughness and reflectance of the ground surface (Grimm et al., 2008). The LST has risen due 52 

to global climate change impacts on the meteorological parameters, affecting water resources, 53 

land cover, land use, and vegetated areas. It is claimed that different environmental problems 54 

are responsible for such changes (Chan & Yao, 2008; Choudhury et al., 2019). Using satellite 55 

imagery, shortwave infrared (SWIR), visible and near-infrared (VNIR), and thermal infrared 56 

(TIR) bands allow us to monitor ecological changes (Chan & Yao, 2008; Mondal et al., 2011; 57 

Das et al., 2013; Alexander, 2020). Land surface temperature represents the Earth's surface 58 

temperature and is one of the critical parameters that influence surface-energy balance, heat 59 

fluxes, energy exchanges, and regional climates (Wan & Dozier, 1996; Dash et al., 2002; 60 

Karnieli et al., 2010; Meng et al., 2017; Fang et al., 2018; Zhou et al., 2018; Martin et al., 61 

2019).  62 

The effects of LST on various subjects have been investigated by several researchers, 63 

including surface heat island (SHI), geological and geothermal studies (Coolbaugh et al., 2007; 64 
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Eskandari et al., 2015; Mia et al., 2018; Sekertekin & Arslan, 2019), evapotranspiration 65 

(Elnashar et al., 2021), forest fire monitoring (Maffei et al., 2018), and urban climate studies 66 

(Sekertekin et al., 2016; Naughton & McDonald, 2019; Simwanda et al., 2019). LST has also 67 

been acknowledged as one of the essential criteria for the International Geosphere and 68 

Biosphere Program (IGBP) (Townshend et al., 1994; Li et al., 2013). Meteorological stations 69 

estimate air Temperatures from radiance measurements. However, as it is a point-based 70 

measurement, it does not necessarily allow extensive monitoring on a larger scale (Hale et al., 71 

2011). On the other hand, remotely sensed TIR data enables large-scale, even global, temporal, 72 

and spatial LST observation (Gao et al., 2013). It is crucial for meteorologists, agronomists, 73 

and hydrologists to know the different terms that interact with the surface energy balance. The 74 

LST, however, is one of the key parameters that play a significant role in the interaction 75 

processes of the atmosphere, hydrosphere, and biosphere (Douglas & Aochi, 2008). The LST 76 

is also used throughout many fields, such as the hydrological cycle, evapotranspiration, 77 

vegetation, climate change, etc. (Douglas & Aochi, 2008). It is the critical factor influenced by 78 

the properties of the Earth's surface, such as landscape, land cover, vegetation, land usage, and 79 

permeability of the soil surface (Khandelwal et al., 2018). Many studies have been conducted 80 

to detect LST variations because of land use, vegetation, and land cover differences. Most 81 

research studies (Chan & Yao, 2008; Choudhury et al., 2019) have reported a negative 82 

correlation between natural vegetation and LST, referring to the reduction of LST in crop 83 

cover. The LST can be quantified using the traditional method and remote sensing (RS) 84 

technique. The LST is determined through meteorological stations as temperature using 85 

traditional methods, whereas RS allows assessing it through the energy balance's surface model 86 

(Daou et al., 2012). It is suggested that LST is a vital microclimate variable and that radiation 87 

is transmitted within the atmosphere. Remote sensing and geographical information system 88 

tools, alongside ground-truthing data collected, are suggested for evaluating the spatiotemporal 89 

changes in the LST.  90 

Various vegetation indexes are known to examine differences in the vegetative zone. 91 

Among the most accurate, most extensive, and most widely used indexes is NDVI (Sruthi & 92 

Aslam, 2015). It is possible to calculate the changes in vegetation in a specific area using 93 

NDVI. Several researchers using GIS and Remote Sensing techniques are currently exploring 94 

the inverse relationship between LST and NDVI (Chen et al., 2010). Researchers identified 95 

that satellite imagery thermal bands can calculate the LST (Dagliyar et al., 2015). Using the 96 

OLI/TIRS data acquired, Dagliyar et al., 2015 identified the LST in Erzurum, Turkey. 97 
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Rajendran et al., 2015 focused on LST using the Landsat 8 thermal bands; OLI/TIRS images 98 

show that LST is a feature of vegetative cover and soil water content in India. Using satellite 99 

data, Crawford et al., 2006 observed the relationships between NDVI and LST in China's 100 

Shanghai region. It stated that GIS and RS techniques helped determine the climate change 101 

impacts on the ecosystem. Rapid changes in land use and land cover patterns have resulted in 102 

major LST shifts.  103 

The normalized difference water index (NDWI) is the most common index for surface 104 

water abstraction that is often implemented in land use and LST-related analyses (Yuan et al., 105 

2017). In addition, the nature of the LST-NDWI relationship is not linear and marginal in an 106 

urban climate. Temperature, precipitation, plants, barren land, environmental effluence, warm 107 

or cold soil, an organic layer, various human-made products, and other influences affect it 108 

(McFeeters, 1996; Ghobadi et al., 2015). NDWI and LST's relationship has been established 109 

using TIR remote sensing in various current research studies (Chen et al., 2006; Choudhury et 110 

al., 2019; Govil et al., 2019; Solangi et al., 2019). But, in subtropical Malaysia, the seasonal 111 

study of the LST-NDWI relationship is unusual. Owing to the seasonal variations in air 112 

temperature, moisture content, precipitation, evaporation, etc., NDWI and LST's nature has 113 

changed. Consequently, in Malaysia's subtropical climate, a constant evaluation of the LST-114 

NDWI relation is crucial (Hussain et al., 2018). 115 

The study focused on evaluating the impact of variations in the LST on vegetation and 116 

water bodies and assessing the correlations between them for the Bakun-Murum catchment 117 

region in Sarawak, Malaysia. The Bakun-Murum region was selected because it has been 118 

severely affected by climatic conditions. The following specific objectives achieved the 119 

primary goal:  120 

 Firstly, the data was collected from the respective repositories and departments. 121 

Secondly, the satellite data were analyzed using the Google Earth Engine code editor 122 

to determine the trends in the LST, NDVI, and NDWI. 123 

 Finally, XLSTAT and R statistical tools were used for the Pearson correlation analysis 124 

of annual mean LST with mean NDVI, annual mean NDWI, annual mean temperature, 125 

and annual mean rainfall.  126 

Due to the limitations and unavailability of cloud-free Landsat satellite imageries for the 127 

selected years, we conducted this study using GEE as the available Landsat data specifically 128 

for the BM region is of no use because of the cloud covers. The results of this research would 129 
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be helpful for future urban and country planners, policymakers, environmentalists, and farmers 130 

in the region to take remedial steps to reduce the impacts of climate change in the study area. 131 

2. Materials and Methods 132 

2.1 The Study Area 133 

Figure 1 shows the location map of the study area developed with the help of the shapefiles 134 

and digital elevation model (DEM) using ArcGIS 10.8. The required shapefiles for the study 135 

area map were created using Google Earth Pro, and the administrative boundaries shapefile of 136 

Malaysia was downloaded from DIVA-GIS http://www.diva-gis.org/download.  137 

Malaysia's Sarawak state is covered by thick tropical rainforests and is rich in water 138 

resources (Hussain et al., 2018). It also has a perfect hydropower development landscape 139 

(Hussain et al., 2018). Sarawak is located at 1.5533° N, and 110.3592° E. The Southwestern 140 

monsoon (May to September) and the North-easterly monsoon (October to April) are the two 141 

monsoon seasons in Sarawak (Hussain et al., 2018). In this region, the Southwestern monsoon 142 

has less rainfall than the Northeastern monsoon (Hussain et al., 2018). The minimum rainfall 143 

periods are June to August, and the months from December to February are the rainiest each 144 

year (Hussain et al., 2018). Throughout Malaysia's Sarawak state, the Rajang River Basin 145 

(RRB) is the primary river in agricultural and economic development (Hussain et al., 2018). 146 

RRB is located on Borneo Island (2.1245° N, 111.2181° E), the largest island in Asia and the 147 

third largest island worldwide. It drains fifty thousand square kilometres of Sarawak's tropical 148 

rainforest, accounting for 40% of the state's total area (Oad et al., 2020). In the RRB area, 149 

annual precipitation varying from 3000 to 5200 millimetres is plentiful, and the river is very 150 

well recognized for the hazards of high soil erosion (Hussain et al., 2018). In the upper portion 151 

of the RRB, the catchment elevations range from sea level to about 2016 meters on the west 152 

coast. This river is the largest in Malaysia, with an overall length of 563 kilometres. RRB 153 

originated from the mountains of Iran (Nakisa et al., 2014; Hussain et al., 2018).  154 

The geographical features of the study area are shown in Figure 2, including slope 155 

(Figure 2a), aspect ratio (Figure 2b), and hillshade (Figure 2c). They were evaluated from the 156 

Shuttle Radar Topography Mission (SRTM) 1 Arc-Second Global digital elevation model 157 

(DEM) of a 30 m by 30 m resolution. The DEM was downloaded from the USGS Earth 158 

Explorer https://earthexplorer.usgs.gov/. A slope map shows a region's topography and an 159 

overview of topographical characteristics that have affected and may continue to impact land 160 

creation (Oad et al., 2020). The slope of the study area ranged from 7.48% to 63.59% in figure 161 
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2(a). The aspect and degree of slope for the study area are shown simultaneously by an aspect-162 

ratio map in figure 2(b). Hues (e.g., orange, yellow, red, etc.) symbolize aspect groups, and the 163 

degree of slope classes are mapped with saturation such that the steeper ones are lighter. 164 

Hillshading is a method for making relief maps; shading (points of grey) displays the 165 

topographical form of hills and mountains, suggesting relative slopes and mountain edges, not 166 

total height. A topographical map showing the contour lines of the shape of the ground's 167 

surface, the comparative space of the lines representing the surface's relative angle.  168 

 169 

Figure. 1. Map of the study area. 170 
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 171 

Figure. 2. Geological features of the study area (a) slope, (b) aspect ratio, and (c) hillshade. 172 

2.2  Description of Datasets 173 

Google Earth Engine code editor (https://code.earthengine.google.com/) was used to acquire 174 

the level 2 surface reflectance of Landsat 5 and 8 images from 1990 to 2020. Only cloud-free 175 

images (less than 10% clouds) were processed. As discussed in the later sections, the respective 176 

bands from each image were later used in the estimation of NDVI and NDWI. The description 177 

of the datasets may be obtained from https://developers.google.com/earth-178 

engine/datasets/catalog/landsat. 179 

2.3 Land Surface Temperature 180 

LST was estimated by using an open-source code developed and described by Ermida et al., 181 

(2020) to estimate the LST from the Landsat series and ASTER emissivity using the GEE code 182 

editor. The script to calculate the LST using GEE is attached at 183 

https://code.earthengine.google.com/cbc91b8ed4af97453106b5bacc003970?accept_repo=use184 

rs%2Fvipinkoad%2FRSPaper. 185 

 186 
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2.4 Determination of Vegetation Cover 187 

The normalized difference vegetation index (NDVI) was evaluated using the GEE code editor 188 

to determine the temporal changes in the vegetative cover. This index was determined using 189 

the NIR (near-infrared) and red (R) bands, as described in Equation 1 (Choudhury et al., 2019). 190 

Numerous scholars worldwide have used this index as an indicator of green vegetation. For 191 

Landsat 5, bands 3 and 4 were used, but for Landsat 8/OLI, bands 4 and 5 were used to calculate 192 

NDVI. The index's values vary from -1 to +1. A value of -1 represents a non-vegetated area, 193 

while +1 indicates a vegetative area (Yuan et al., 2017). The script to estimate the NDVI using 194 

GEE is attached at 195 

https://code.earthengine.google.com/e2c4d973d24e8c4a672631647252dfc3?accept_repo=use196 

rs%2Fvipinkoad%2FRSPaper.   197 

NDVI  
NIR R
NIR R

 
(1) 

2.5 Determination of Water Index 198 

The normalized difference water index (NDWI) was used as a stable normalized difference 199 

spectral index in the current research analysis to test the correlation of water bodies with LST. 200 

The NDWI defined in Equation 2 (McFeeters, 1996; McFeeters, 2013) was calculated using 201 

green (G) and near-infrared (NIR) bands. For the TM data, band two was used as a green band, 202 

and band four was used as the NIR band, comparatively. For OLI/TIRS data, bands 3 and 5 203 

were used as green and NIR, respectively. The NDWI value ranges from -1 to +1 (Yuan et al., 204 

2017). A negative NDWI value implies that there are no water bodies in the region and that the 205 

land is dry, while a positive NDWI value indicates water surfaces and plants. The google earth 206 

engine script to estimate the NDWI is attached at 207 

https://code.earthengine.google.com/888ef20dfacb8076d39e0f397064d132?accept_repo=user208 

s%2Fvipinkoad%2FRSPaper.   209 

NDWI  
G  NIR
G  NIR

 
(2) 

2.6 Climate Data 210 

The meteorological data for Malaysia's Sarawak state for the years 1990 to 2020 was obtained 211 

from the Malaysian Meteorological Department. The data are the annual mean temperature in 212 

degrees Celsius (°C) and the annual mean rainfall in millimetres (mm). The annual mean 213 

temperature and annual mean rainfall series data were analyzed for trend interpretation and 214 
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shifts in the trend slope. Trend identification was achieved using the Mann-Kendall non-215 

parametric test and Sen's estimator's trend slope. It's a distribution-free test that doesn't use 216 

normally distributed data (Ahmad et al., 2018; Arfan et al., 2019; Tayyab et al., 2019; Waseem 217 

et al., 2020). Sen's estimator lists the N values' time series from most minor to largest and 218 

computes them. Sen's slope estimator is the median of these N values (Oad et al., 2020). 219 

2.7 Statistical Analyses 220 

As Choudhury et al., 2019 described, the LST was integrated with NDVI and NDWI to see the 221 

influence of the LST on the vegetative cover and water resources of the Bakun-Murum 222 

catchment area of the Rajang River basin. Pearson correlation analysis was used to illustrate 223 

how the evolving LST has influenced the region's vegetative cover and water resources. 224 

3. Results and Discussion 225 

3.1 Dynamics of land surface temperature (LST) 226 

Figures 3a, 3b, and 3c depict the temporal changes in the annual mean land surface temperature 227 

of the Bakun-Murum catchment area from 1990 to 2020. It was observed that the regions of 228 

water and trees have lower LST than towns and barren lands. The LST and its causative factors 229 

have realistic and empirical consequences for advanced crop growth management systems in 230 

an arid and semi-arid climate. Figure 3a shows a decrease in the LST from 19.87°C in 1990 to 231 

17.09°C in 1999. A slight increase was found from 19.87°C in 1990 to 19.96°C in 1997. 232 

Moreover, Figure 3b showed a rise from 19.42°C in 2000 to 21.02°C in 2005, and a slight 233 

decrease was observed at 20.43°C in 2007. Furthermore, from Figure 3c, an increasing LST 234 

trend can be seen from 19.95°C in 2013 to 22.10°C in 2014. Again, a decreasing trend from 235 

2014 to 2017 in Figure 3d was observed. From 2017 to 2019, an increasing LST was observed; 236 

from 2019 to 2020, it slightly decreased. Finally, an overall increase of 1.06°C in the mean 237 

LST has been found from 1990 to 2020 in Figure 3d. 238 
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 239 

Figure. 3 (a). Temporal variations of the study area's annual mean land surface temperature 240 

(1990, 1995, 1996, 1997, 1998, and 1999). 241 
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 242 

Figure. 3 (b). Temporal variations of the study area's annual mean land surface temperature 243 

(2000, 2001, 2002, 2004, 2005, and 2007). 244 
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 245 

Figure. 3 (c). Temporal variations of the study area's annual mean land surface temperature 246 

(2013, 2014, 2017, 2018, 2019, and 2020). 247 

For several factors, increasing LST patterns have a more significant impact on crop 248 

growth. Figure 3d indicates time-based changes in the LST of the study area under several 249 

ranges of temperature. Shifts in the LST are more prominent in the Rajang River Basin’s 250 

Bakun-Murum catchment area. It is because of climate change and changes in the region's 251 

hydrological characteristics due to the developmental growth of the late 1990s. Several factors, 252 

such as increased housing areas and overall global climate change, can lead to a temporal 253 

increase in LST. 254 D
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 255 

Figure. 3 (d). Annual variability of land surface temperature from 1990 to 2020. 256 

3.2 Temporal variations in the vegetation index (NDVI) 257 

Figures 4a, 4b, and 4c indicate chronological changes in the vegetative cover of the Bakun-258 

Murum catchment zone. The annual variability of the annual mean normalized difference 259 

vegetation index is shown in Figure 4d. It can be observed from Figure 4a that the NDVI 260 

decreased from 0.42 in 1990 to 0.36 in 1995. From 1995 to 1996, an increase of 0.04 in NDVI 261 

was found. A decreasing trend of 0.08 NDVI was observed from 1998 to 1999. Figure 4b 262 

depicts a continuous increasing trend in the NDVI from 0.32 in 2000 to 0.38 in 2002. Moreover, 263 

a decrease of 0.11 NDVI was found from 2002 to 2005. Then from 2005 to 2007, a considerable 264 

increase was observed from 0.27 to 0.45. Furthermore, from 2007 to 2013, an increasing trend 265 

continued, while a slight decrease of 0.03 NDVI was found from 2013 to 2014; again, a rising 266 

trend continued from 2014 to 2020. Finally, an overall increase of 0.05 NDVI has been found 267 

from 1990 to 2020. 268 
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 269 

Figure. 4 (a). Temporal variations of the study area's annual mean normalized difference 270 

vegetation index (1990, 1995, 1996, 1997, 1998, and 1999). 271 
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 272 

Figure. 4 (b). Temporal variations of the study area's annual mean normalized difference 273 

vegetation index (2000, 2001, 2002, 2004, 2005, and 2007). 274 
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 275 

Figure 4. (c). Temporal variations of the study area's annual mean normalized difference 276 

vegetation index (2013, 2014, 2017, 2018, 2019, and 2020). 277 

 278 

Figure. 4 (d). Annual variability of normalized difference vegetation index from 1990 to 279 

2020. 280 
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Several factors, such as the increase in the developmental areas, increasing LST, and 281 

overall global climate change, may lead to a temporal reduction in the NDVI. 282 

3.3 Temporal variations in the water index (NDWI) 283 

Figures 5a, 5b, and 5c indicate sequential changes in the water bodies of the Bakun-Murum 284 

catchment zone. The annual variability of the annual mean normalized difference water index 285 

is shown in Figure 5d. It can be observed from Figure 5a that the NDWI decreased from 0.39 286 

in 1990 to 0.34 in 1995. From 1995 to 1996, an increase of 0.04 in NDWI was found. A 287 

decreasing trend of 0.05 NDWI was observed from 1998 to 1999. Figure 5b depicts a 288 

continuous increasing trend in the NDWI from 0.32 in 2000 to 0.38 in 2002. Moreover, a 289 

decrease of 0.11 NDWI was found from 2002 to 2005. Then from 2005 to 2007, a considerable 290 

increase was observed in NDWI from 0.27 to 0.45. Furthermore, from 2007 to 2013, an 291 

increasing trend continued, while a slight decrease of 0.03 NDWI was found from 2013 to 292 

2014; again, a rising trend continued from 2014 to 2020. Finally, an overall increase of 0.08 293 

NDWI has been found from 1990 to 2020. 294 

 295 

Figure. 5 (a). Temporal variations of the study area's annual mean normalized difference 296 

water index (1990, 1995, 1996, 1997, 1998, and 1999). 297 
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 298 

Figure. 5 (b). Temporal variations of the study area's annual mean normalized difference 299 

water index (2000, 2001, 2002, 2004, 2005, and 2007). 300 
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 301 

Figure. 5 (c). Temporal variations of the study area's annual mean normalized difference 302 

water index (2013, 2014, 2017, 2018, 2019, and 2020). 303 

 304 

Figure. 5 (d). Annual variability of normalized difference water index from 1990 to 2020. 305 
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3.4 Correlation among annual mean NDVI, NDWI, LST, Temperature, and Rainfall 306 

Pearson Correlation among annual mean NDVI, NDWI, LST, temperature, and rainfall 307 

was assessed using XLSTAT statistical tool. Table 1 shows the Pearson correlation matrix of 308 

the abovementioned variables. Table 1 shows that the NDVI and NDWI significantly correlate 309 

with a Pearson correlation matrix (r) of 0.99. A negative relationship between LST and NDVI 310 

is found with (r) of 0.30. A weak relationship with (r) of 0.36 between LST and NDWI is also 311 

observed. The correlation between annual mean temperature and land surface temperature is 312 

found at (r) of 0.39. A negative relation (r) of -0.09 between annual mean rainfall and land 313 

surface temperature is observed. Furthermore, a correlation is observed between the annual 314 

mean temperature and NDWI (r) of 0.50 and the annual mean temperature and NDVI (r) of 315 

0.46. In contrast, a negative relation between annual mean rainfall and other variables is found.  316 

Table 2 represents the statistical correlation of annual mean LST with annual mean 317 

NDVI with a coefficient of determination of (R2) of 0.09 is very weak and considered negative. 318 

Thus, as stated by (Yue et al.,2007; Huang & Ye, 2015; Dong et al., 2018), the NDVI of the 319 

region decreases with an increase in LST. Annual mean LST and annual mean NDWI also 320 

show a weak relation (R2) of 0.13. Furthermore, annual mean LST and annual mean 321 

temperature show a modest relationship with (R2) of 0.15. 322 

In Shanghai, China, Yue et al.,2007 also observed an inverse relationship between the 323 

land surface temperature and the NDVI. In the Asansol Durgapur area of West Bengal, 324 

Choudhury et al., 2019 recorded a decreasing greenery pattern in response to rising LST. The 325 

correlation of LST with NDVI in the Karst area was examined by Dong et al., 2018; they found 326 

an inverse relationship between these parameters. Furthermore, Sun et al., 2012 saw a 327 

substantial decrease in Beijing’s LST in the regions surrounding lakes, waterbodies, etc. 328 

The relationship of LST with derived factors like NDVI and NDWI in the Asansol-329 

Durgapur Development Area was discovered by Choudhury et al., 2019; they reported an 330 

inverse relationship between these LST and NDVI. Figure 6 displays the correlation matrix of 331 

the annual mean NDVI, NDWI, LST, temperature, and rainfall developed using R 332 

programming (RStudio). 333 

Table 1. Pearson Correlation Matrix (r). 334 

Variables 

Mean 
Normalized 
Difference 

Vegetation Index 

Mean 
Normalized 
Difference 

Water Index 

Mean Land 
Surface 

Temperature 
°C 

Annual 
Mean 

Temperature 
(°C) 

Annual 
Mean 

Rainfall 
(mm) 
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Mean Normalized Difference Vegetation Index 1 0.9902 0.3021 0.4642 -0.0283 

Mean Normalized Difference Water Index 0.9902 1 0.3607 0.5042 0.0353 

Mean Land Surface Temperature °C 0.3021 0.3607 1 0.3872 -0.0908 

Annual Mean Temperature (°C) 0.4642 0.5042 0.3872 1 -0.1971 

Annual Mean Rainfall (mm) -0.0283 0.0353 -0.0908 -0.1971 1 
* Values in bold are different from 0 with a significance level of alpha=0.05 335 

Table 2. Statistical Correlation with Coefficients of Determination (R2). 336 

Variables 

Mean 
Normalized 
Difference 

Vegetation Index 

Mean 
Normalized 
Difference 

Water Index 

Mean Land 
Surface 

Temperature 
°C 

Annual 
Mean 

Temperature 
(°C) 

Annual 
Mean 

Rainfall 
(mm) 

Mean Normalized Difference Vegetation Index 1 0.9806 0.0913 0.2155 0.0008 

Mean Normalized Difference Water Index 0.9806 1 0.1301 0.2542 0.0012 

Mean Land Surface Temperature °C 0.0913 0.1301 1 0.1499 0.0082 

Annual Mean Temperature (°C) 0.2155 0.2542 0.1499 1 0.0388 

Annual Mean Rainfall (mm) 0.0008 0.0012 0.0082 0.0388 1 
* Values in bold are different from 0 with a significance level of alpha=0.05 337 

 338 

Figure. 6. Correlation matrix of the annual mean NDVI, NDWI, LST, temperature, and 339 

rainfall. 340 

3.5 Trend analysis of rainfall and temperature 341 
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The annual mean temperature and rainfall data of the Bakun-Murum Catchment region from 342 

1990 to 2020 were statistically analyzed using Mann-Kendall trend tests every year to identify 343 

temporal changes. The abovementioned climatic parameters are graphically represented in 344 

Figure 7. Table 1 represents Mann-Kendall trend test statistics. 345 

The Mann-Kendall trend test for the annual mean temperature series indicates a slightly 346 

increasing trend with Sen’s slope of 0.03°C/year. From Table 1, it is found that there is a 347 

positive trend in the annual mean rainfall patterns, as Sen’s slope indicates a yearly increase of 348 

50.58 mm/year. Furthermore, Kendall’s tau for annual mean temperature is recorded as 0.50, 349 

and for annual mean rainfall, it is 0.27. The p-values (Two-tailed) for both abovementioned 350 

parameters are 0.01 and 0.13, respectively. An approximation has been used to compute the p-351 

value.  352 

Table 3. Trend analysis of rainfall and temperature. 353 

Test Statistic Annual Mean Temperature (°C) Annual Mean Rainfall (mm) 

Kendall's tau 0.50 0.27 

p-value (Two-tailed) 0.01 0.13 

Sen's slope 0.03 50.58 
 354 

 355 

Figure. 7. The trend of annual mean temperature and annual mean rainfall over the selected 356 

years. 357 
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For the annual mean temperature, as the computed p-value is lower than the significance 358 

level alpha=0.05, one should reject the null hypothesis H0 and accept the alternative 359 

hypothesis, Ha. The risk of rejecting the null hypothesis H0 while true is lower than 0.58%. 360 

The continuity correction has been applied. Ties have been detected in the data, and the 361 

appropriate corrections have been applied. Moreover, for the annual mean rainfall, as the 362 

computed p-value is more significant than the significance level alpha=0.05, one cannot reject 363 

the null hypothesis H0. The risk of rejecting the null hypothesis H0 while true is 12.97%. The 364 

continuity correction has been applied for this climatic parameter as well. 365 

The tendency of air temperature to increase equally affects the LST. (Hu et al., 2019; Ali 366 

et al., 2020; Ali et al., 2021; Barreto et al., 2021; Memon et al., 2021) demonstrated that air 367 

temperature alone showed 81 to 98 per cent change in LST under the cloudy condition and a 368 

cloudless sky.  369 

4. Conclusions 370 

For the last thirty years (1990-2020), variations in the LST of the BM catchment area and its 371 

effect on the vegetative cover and water bodies have been studied. The research showed that 372 

the study area’s LST increased by an average of 1.06°C over the last thirty years. The temporal 373 

variations in the region's NDVI showed a maximum NDVI of 0.48 in 2018 and 2019, 374 

respectively, followed by an NDVI of 0.47 in 2020. In the year 2005, the lowermost NDVI of 375 

0.27 was found. In addition, the region's temporal NDWI variance recorded the highest NDWI 376 

of 0.48 in 2018 and 2019, followed by an NDWI of 0.47 in 2020. In the year 2005, the lowest 377 

NDWI of 0.27 was observed. An increase in the NDVI shows an increase in vegetation, while 378 

an increase in the NDWI shows an increasing amount of water bodies.  379 

An inverse relationship between LST and NDVI is found with (r) of 0.30. An opposite 380 

relationship with (r) of 0.36 between LST and NDWI is also observed. Furthermore, an inverse 381 

correlation is observed between annual mean temperature and NDWI (r) of 0.50 and annual 382 

mean temperature and NDVI (r) of 0.46. At the same time, a negative relation between annual 383 

mean rainfall and other variables is found. The statistical correlation of annual mean LST with 384 

annual mean NDVI with a coefficient of determination of (R2) of 0.09 is very weak and 385 

considered negative. 386 

In comparison, annual mean LST and annual mean NDWI show an inverse relation (R2) 387 

of 0.13. Moreover, annual mean temperature and annual mean NDVI also indicate a bad 388 

relationship with (R2) of 0.2155; for annual mean temperature and annual mean NDWI, it is 389 
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recorded as (R2) of 0.2542. The Mann-Kendall trend test for the annual mean temperature series 390 

indicates a slightly increasing trend with Sen’s slope of 0.03°C/year. It is found that there is a 391 

positive trend in the annual mean rainfall patterns, as Sen’s slope indicates a yearly increase of 392 

50.58 mm/year.  393 

Research studies like this current work are essential to guide policymakers to take steps 394 

to mitigate the adverse environmental effects of climate change and human-induced changes 395 

(land-use changes). This study corroborates that a significant difference in vegetation cover 396 

and surface water bodies occurred during the last three decades, which calls for the concerned 397 

authorities' immediate attention to mitigate the negative impacts of such changes and safeguard 398 

the ecosystem. Such environmental and human-induced problems can be tackled by reducing 399 

deforestation and planting trees.  400 

Limitations and Recommendations 401 

Based on this present study, we recommend that future studies consider land use land 402 

cover changes (LULC) analysis and assess the impacts of the LST on LULC for those study 403 

areas for which the Landsat satellite data is available with cloud covers below the 10% for 404 

conducting the proper analysis as our study has some data availability limitations that is why 405 

LULC was not considered in this study. For the Bakun-Murum Catchment region, the available 406 

Landsat satellite data for the LULC analysis have cloud covers over 20% from 1990 to 2020. 407 

Therefore, we recommend that advanced machine learning and remote sensing techniques be 408 

applied to clear the cloud covers from the abovementioned Landsat satellite images for future 409 

studies.  410 

Conflicts of Interest: The authors declare no conflict of interest. 411 

References 412 

Ahmad, I., Zhang, F., Tayyab, M., Anjum, M.N., Zaman, M., Liu, J., Farid, H.U. and Saddique, 413 

Q., 2018. Spatiotemporal analysis of precipitation variability in annual, seasonal and extreme 414 

values over upper Indus River basin. Atmospheric Research, 213, pp.346-360. 415 

https://doi.org/10.1016/j.atmosres.2018.06.019. 416 

Alexander, C., 2020. Normalized difference spectral indices and urban land cover as indicators 417 

of land surface temperature (LST). International Journal of Applied Earth Observation and 418 

Geoinformation, 86, p.102013. https://doi.org/10.1016/j.jag.2019.102013. 419 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


25 
 

Ali, M., de Azevedo, A.R., Marvila, M.T., Khan, M.I., Memon, A.M., Masood, F., 420 

Almahbashi, N.M.Y., Shad, M.K., Khan, M.A., Fediuk, R. and Timokhin, R., 2021. The 421 

influence of covid-19-induced daily activities on health parameters—a case study in Malaysia. 422 

Sustainability, 13(13), p.7465. http://doi.org/10.3390/su13137465. 423 

Ali, M., Room, S., Khan, M.I., Masood, F., Memon, R.A., Khan, R. and Memon, A.M., 2020, 424 

December. Assessment of local earthen bricks in perspective of physical and mechanical 425 

properties using Geographical Information System in Peshawar, Pakistan. In Structures (Vol. 426 

28, pp. 2549-2561). Elsevier. http://doi.org/10.1016/j.istruc.2020.10.075. 427 

Arfan, M., Lund, J., Hassan, D., Saleem, M. and Ahmad, A., 2019. Assessment of spatial and 428 

temporal flow variability of the Indus River. Resources, 8(2), p.103. 429 

https://doi.org/10.3390/resources8020103. 430 

Barreto, E.D.S., Stafanato, K.V., Marvila, M.T., de Azevedo, A.R.G., Ali, M., Pereira, R.M.L. 431 

and Monteiro, S.N., 2021. Clay ceramic waste as pozzolan constituent in cement for structural 432 

concrete. Materials, 14(11), p.2917. http://doi.org/10.3390/ma14112917. 433 

Chan, C.K. and Yao, X., 2008. Air pollution in mega cities in China. Atmospheric environment, 434 

42(1), pp.1-42. https://doi.org/10.1016/j.atmosenv.2007.09.003. 435 

Chen, S., Cai, W., Chen, D., Ren, Y., Li, X., Zhu, Y., Kang, J. and Ruoff, R.S., 2010. 436 

Adsorption/desorption and electrically controlled flipping of ammonia molecules on graphene. 437 

New Journal of Physics, 12(12), p.125011. https://doi.org/10.1088/1367-2630/12/12/125011. 438 

Chen, X.L., Zhao, H.M., Li, P.X. and Yin, Z.Y., 2006. Remote sensing image-based analysis 439 

of the relationship between urban heat island and land use/cover changes. Remote sensing of 440 

environment, 104(2), pp.133-146. https://doi.org/10.1016/j.rse.2005.11.016. 441 

Choudhury, D., Das, K. and Das, A., 2019. Assessment of land use land cover changes and its 442 

impact on variations of land surface temperature in Asansol-Durgapur Development Region. 443 

The Egyptian Journal of Remote Sensing and Space Science, 22(2), pp.203-218. 444 

https://doi.org/10.1016/j.ejrs.2018.05.004. 445 

Coolbaugh, M.F., Kratt, C., Fallacaro, A., Calvin, W.M. and Taranik, J.V., 2007. Detection of 446 

geothermal anomalies using advanced spaceborne thermal emission and reflection radiometer 447 

(ASTER) thermal infrared images at Bradys Hot Springs, Nevada, USA. Remote Sensing of 448 

Environment, 106(3), pp.350-359. https://doi.org/10.1016/j.rse.2006.09.001. 449 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


26 
 

Crawford, B., Kasmidi, M., Korompis, F. and Pollnac, R.B., 2006. Factors influencing progress 450 

in establishing community-based marine protected areas in Indonesia. Coastal Management, 451 

34(1), pp.39-64. https://doi.org/10.1080/08920750500379300.  452 

Dagliyar, A., Avdan, U., Demircioglu Yildiz, N. and Nefeslioglu, H.A., 2015, April. 453 

Determination of land surface temperature by using Landsat 8 TIRS: A case study in Erzurum, 454 

Turkey. In EGU General Assembly Conference Abstracts (p. 11007). 455 

Daou, I., Mariko, A., Rasmus, F., Menenti, M., Kourosh, K., Maïga, H.B. and Maïga, S.M., 456 

2012. Estimation and Mapping of Land Surface Temperature From AATSR Images And GIS: 457 

A Case Study In Kolondieba-Tiendaga Basin In Sudano-Sahelian Climate, Mali. International 458 

Journal of Computational Engineering Research (IJCER), 2 (5), 2012. 459 

Das, D.N., Mondal, A. and Guha, S., 2013. Change in mangrove forest cover and deltaic islands 460 

in sundarban areas of West Bengal: a temporal analyses using NCI technique on LANDSAT 461 

TM5 data. Climate Change and Environment, Scientific Publisher, pp.113-127. 462 

Dash, P., Göttsche, F.M., Olesen, F.S. and Fischer, H., 2002. Land surface temperature and 463 

emissivity estimation from passive sensor data: Theory and practice-current trends. 464 

International Journal of remote sensing, 23(13), pp.2563-2594. 465 

https://doi.org/10.1080/01431160110115041. 466 

Dong, F., Chen, J. and Yang, F., 2018. A study of land surface temperature retrieval and 467 

thermal environment distribution based on landsat-8 in Jinan City. In IOP Conference Series: 468 

Earth and Environmental Science (Vol. 108, No. 4, p. 042008). IOP Publishing. 469 

http://doi.org/10.1088/1755-1315/108/4/042008. 470 

Douglas, J. and Aochi, H., 2008. A survey of techniques for predicting earthquake ground 471 

motions for engineering purposes. Surveys in geophysics, 29(3), pp.187-220. 472 

https://doi.org/10.1007/s10712-008-9046-y. 473 

Du, S., Xiong, Z., Wang, Y.C. and Guo, L., 2016. Quantifying the multilevel effects of 474 

landscape composition and configuration on land surface temperature. Remote Sensing of 475 

Environment, 178, pp.84-92. https://doi.org/10.1016/j.rse.2016.02.063. 476 

Elnashar, A., Abbas, M., Sobhy, H. and Shahba, M., 2021. Crop water requirements and 477 

suitability assessment in arid environments: A new approach. Agronomy, 11(2), p.260. 478 

https://doi.org/10.3390/agronomy11020260. 479 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


27 
 

Ermida, S.L., Soares, P., Mantas, V., Göttsche, F.M. and Trigo, I.F., 2020. Google earth engine 480 

open-source code for land surface temperature estimation from the landsat series. Remote 481 

Sensing, 12(9), p.1471. https://doi.org/10.3390/rs12091471. 482 

Eskandari, A., De Rosa, R. and Amini, S., 2015. Remote sensing of Damavand volcano (Iran) 483 

using Landsat imagery: Implications for the volcano dynamics. Journal of Volcanology and 484 

Geothermal Research, 306, pp.41-57. https://doi.org/10.1016/j.jvolgeores.2015.10.001. 485 

Fang, L., Zhan, X., Hain, C.R., Yin, J., Liu, J. and Schull, M.A., 2018. An assessment of the 486 

impact of land thermal infrared observation on regional weather forecasts using two different 487 

data assimilation approaches. Remote sensing, 10(4), p.625. 488 

https://doi.org/10.3390/rs10040625. 489 

Ferrelli, F., Huamantinco Cisneros, M.A., Delgado, A.L. and Piccolo, M.C., 2018. Spatial and 490 

temporal analysis of the LST-NDVI relationship for the study of land cover changes and their 491 

contribution to urban planning in Monte Hermoso, Argentina. 492 

https://doi.org/10.5565/rev/dag.355. 493 

Gao, C., Jiang, X., Li, Z.L. and Nerry, F., 2013. Comparison of the Thermal Sensors of SEVIRI 494 

and MODIS for LST Mapping. In Thermal Infrared Remote Sensing (pp. 233-252). Springer, 495 

Dordrecht. https://doi.org/10.1007/978-94-007-6639-6_12. 496 

Ghobadi, Y., Pradhan, B., Shafri, H.Z.M. and Kabiri, K., 2015. Assessment of spatial 497 

relationship between land surface temperature and landuse/cover retrieval from multi-temporal 498 

remote sensing data in South Karkheh Sub-basin, Iran. Arabian Journal of Geosciences, 8(1), 499 

pp.525-537. https://doi.org/10.1007/s12517-013-1244-3. 500 

Govil, H., Guha, S., Diwan, P., Gill, N. and Dey, A., 2020. Analyzing linear relationships of 501 

LST with NDVI and MNDISI using various resolution levels of Landsat 8 OLI and TIRS data. 502 

In Data Management, Analytics and Innovation (pp. 171-184). Springer, Singapore. 503 

https://doi.org/10.1007/978-981-32-9949-8_13. 504 

Govil, H., Guha, S., Dey, A. and Gill, N., 2019. Seasonal evaluation of downscaled land surface 505 

temperature: A case study in a humid tropical city. Heliyon, 5(6), p.e01923. 506 

https://doi.org/10.1016/j.heliyon.2019.e01923. 507 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


28 
 

Grimm, N.B., Faeth, S.H., Golubiewski, N.E., Redman, C.L., Wu, J., Bai, X. and Briggs, J.M., 508 

2008. Global change and the ecology of cities. science, 319(5864), pp.756-760. 509 

https://doi.org/10.1126/science.1150195. 510 

Guha, S., Govil, H., Dey, A. and Gill, N., 2020. Analyzing the capability of NCI technique in 511 

change detection using high-and medium-resolution multispectral data. In Geoecology of 512 

Landscape Dynamics (pp. 133-147). Springer, Singapore. https://doi.org/10.1007/978-981-15-513 

2097-6_10. 514 

Hale, R.C., Gallo, K.P., Tarpley, D. and Yu, Y., 2011. Characterization of variability at in situ 515 

locations for calibration/validation of satellite-derived land surface temperature data. Remote 516 

Sensing Letters, 2(1), pp.41-50. https://doi.org/10.1080/01431161.2010.490569. 517 

He, B.J., Zhao, Z.Q., Shen, L.D., Wang, H.B. and Li, L.G., 2019. An approach to examining 518 

performances of cool/hot sources in mitigating/enhancing land surface temperature under 519 

different temperature backgrounds based on landsat 8 image. Sustainable Cities and Society, 520 

44, pp.416-427. https://doi.org/10.1016/j.scs.2018.10.049. 521 

Hu, G., Zhao, L., Li, R., Wu, X., Wu, T., Zhu, X., Pang, Q., yue Liu, G., Du, E., Zou, D. and 522 

Hao, J., 2019. Simulation of land surface heat fluxes in permafrost regions on the Qinghai-523 

Tibetan Plateau using CMIP5 models. Atmospheric Research, 220, pp.155-168. 524 

http://doi.org/10.1016/j.atmosres.2019.01.006. 525 

Huang, C. and Ye, X., 2015. Spatial modeling of urban vegetation and land surface 526 

temperature: A case study of Beijing. Sustainability, 7(7), pp.9478-9504. 527 

https://doi.org/10.3390/su7079478. 528 

Huang, S., Taniguchi, M., Yamano, M. and Wang, C.H., 2009. Detecting urbanization effects 529 

on surface and subsurface thermal environment—A case study of Osaka. Science of the total 530 

environment, 407(9), pp.3142-3152. https://doi.org/10.1016/j.scitotenv.2008.04.019. 531 

Hussain, M., Yusof, K.W., Mustafa, M.R.U., Mahmood, R. and Jia, S., 2018. Evaluation of 532 

CMIP5 models for projection of future precipitation change in Bornean tropical rainforests. 533 

Theoretical and Applied Climatology, 134(1), pp.423-440. https://doi.org/10.1007/s00704-534 

017-2284-5. 535 

Karnieli, A., Agam, N., Pinker, R.T., Anderson, M., Imhoff, M.L., Gutman, G.G., Panov, N. 536 

and Goldberg, A., 2010. Use of NDVI and land surface temperature for drought assessment: 537 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


29 
 

Merits and limitations. Journal of climate, 23(3), pp.618-633. 538 

https://doi.org/10.1175/2009JCLI2900.1. 539 

Khandelwal, S., Goyal, R., Kaul, N. and Mathew, A., 2018. Assessment of land surface 540 

temperature variation due to change in elevation of area surrounding Jaipur, India. The 541 

Egyptian Journal of Remote Sensing and Space Science, 21(1), pp.87-94. 542 

https://doi.org/10.1016/j.ejrs.2017.01.005. 543 

Li, Z.L., Tang, B.H., Wu, H., Ren, H., Yan, G., Wan, Z., Trigo, I.F. and Sobrino, J.A., 2013. 544 

Satellite-derived land surface temperature: Current status and perspectives. Remote sensing of 545 

environment, 131, pp.14-37. https://doi.org/10.1016/j.rse.2012.12.008. 546 

Liu, H., Zhan, Q., Yang, C. and Wang, J., 2018. Characterizing the spatio-temporal pattern of 547 

land surface temperature through time series clustering: Based on the latent pattern and 548 

morphology. Remote sensing, 10(4), p.654. https://doi.org/10.3390/rs10040654. 549 

Maffei, C., Alfieri, S.M. and Menenti, M., 2018. Relating spatiotemporal patterns of forest fires 550 

burned area and duration to diurnal land surface temperature anomalies. Remote Sensing, 551 

10(11), p.1777. https://doi.org/10.3390/rs10111777. 552 

Martin, M.A., Ghent, D., Pires, A.C., Göttsche, F.M., Cermak, J. and Remedios, J.J., 2019. 553 

Comprehensive in situ validation of five satellite land surface temperature data sets over 554 

multiple stations and years. Remote Sensing, 11(5), p.479. https://doi.org/10.3390/rs11050479. 555 

McFeeters, S.K., 2013. Using the normalized difference water index (NDWI) within a 556 

geographic information system to detect swimming pools for mosquito abatement: a practical 557 

approach. Remote Sensing, 5(7), pp.3544-3561. https://doi.org/10.3390/rs5073544. 558 

McFeeters, S.K., 1996. The use of the Normalized Difference Water Index (NDWI) in the 559 

delineation of open water features. International journal of remote sensing, 17(7), pp.1425-560 

1432. https://doi.org/10.1080/01431169608948714. 561 

Memon, A.M., Sutanto, M.H., Napiah, M., Yusoff, N.I.M., Memon, R.A., Al-Sabaeei, A.M. 562 

and Ali, M., 2021. Physicochemical, rheological and morphological properties of bitumen 563 

incorporating petroleum sludge. Construction and Building Materials, 297, p.123738. 564 

http://doi.org/10.1016/j.conbuildmat.2021.123738. 565 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


30 
 

Meng, X., Cheng, J. and Liang, S., 2017. Estimating land surface temperature from Feng Yun-566 

3C/MERSI data using a new land surface emissivity scheme. Remote Sensing, 9(12), p.1247. 567 

https://doi.org/10.3390/rs9121247. 568 

Mia, M.B., Fujimitsu, Y. and Nishijima, J., 2018. Monitoring of thermal activity at the 569 

Hatchobaru–Otake geothermal area in Japan using multi-source satellite images—With 570 

comparisons of methods, and solar and seasonal effects. Remote Sensing, 10(9), p.1430. 571 

https://doi.org/10.3390/rs10091430. 572 

Mondal, A., Guha, S., Mishra, P.K. and Kundu, S., 2011. Land use/Land cover changes in 573 

Hugli Estuary using Fuzzy CMean algorithm. International Journal of Geomatics and 574 

Geosciences, 2(2), pp.613-626. 575 

Nakisa, M., Maimun, A., Ahmed, Y.M., Behrouzi, F., Koto, J., Priyanto, A., Sian, A.Y. and 576 

Ghazanfari, S.A., 2014. Ship navigation effect on sedimentation in restricted waterways. Jurnal 577 

Teknologi, 69(7). https://doi.org/10.11113/jt.v69.3279. 578 

Naughton, J. and McDonald, W., 2019. Evaluating the variability of urban land surface 579 

temperatures using drone observations. Remote Sensing, 11(14), p.1722. 580 

https://doi.org/10.3390/rs11141722. 581 

Nimish, G., Bharath, H.A. and Lalitha, A., 2020. Exploring temperature indices by deriving 582 

relationship between land surface temperature and urban landscape. Remote Sensing 583 

Applications: Society and Environment, 18, p.100299. 584 

https://doi.org/10.1016/j.rsase.2020.100299. 585 

Oad, V.K., Dong, X., Arfan, M., Kumar, V., Mohsin, M.S., Saad, S., Lü, H., Azam, M.I. and 586 

Tayyab, M., 2020. Identification of Shift in Sowing and Harvesting Dates of Rice Crop (L. 587 

Oryza sativa) through Remote Sensing Techniques: A Case Study of Larkana District. 588 

Sustainability, 12(9), p.3586. https://doi.org/10.3390/su12093586. 589 

Oad, V.K., Mustafa, M.R.U., Takaijudin, H.B., Nabi, G. and Hussain, M., 2020, November. 590 

Monitoring trends of land use and land cover changes in rajang river basin. In 2020 Second 591 

International Sustainability and Resilience Conference: Technology and Innovation in 592 

Building Designs (51154) (pp. 1-8). IEEE. 593 

https://doi.org/10.1109/IEEECONF51154.2020.9319939.  594 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


31 
 

Patz, J.A., Campbell-Lendrum, D., Holloway, T. and Foley, J.A., 2005. Impact of regional 595 

climate change on human health. Nature, 438(7066), pp.310-317. 596 

https://doi.org/10.1038/nature04188. 597 

Rajendran, P. and Mani, K., 2015. Estimation of spatial variability of land surface temperature 598 

using Landsat 8 imagery. International Journal of Engineering and Science, 11(4), pp.19-23. 599 

Sekertekin, A. and Arslan, N., 2019. Monitoring thermal anomaly and radiative heat flux using 600 

thermal infrared satellite imagery–A case study at Tuzla geothermal region. Geothermics, 78, 601 

pp.243-254. https://doi.org/10.1016/j.geothermics.2018.12.014. 602 

Sekertekin, A., Kutoglu, S.H. and Kaya, S., 2016. Evaluation of spatio-temporal variability in 603 

Land Surface Temperature: A case study of Zonguldak, Turkey. Environmental monitoring 604 

and assessment, 188(1), pp.1-15. https://doi.org/10.1007/s10661-015-5032-2. 605 

Simwanda, M., Ranagalage, M., Estoque, R.C. and Murayama, Y., 2019. Spatial analysis of 606 

surface urban heat islands in four rapidly growing African cities. Remote Sensing, 11(14), 607 

p.1645. https://doi.org/10.3390/rs11141645. 608 

Solangi, G. S., Siyal, A. A., & Siyal, P. (2019). Spatiotemporal dynamics of land surface 609 

temperature and its impact on the vegetation. Civil Engineering Journal, 5(8), 1753-1763. 610 

https://doi.org/10.28991/cej-2019-03091368  611 

Sruthi, S. and Aslam, M.M., 2015. Agricultural drought analysis using the NDVI and land 612 

surface temperature data; a case study of Raichur district. Aquatic Procedia, 4, pp.1258-1264. 613 

https://doi.org/10.1016/j.aqpro.2015.02.164. 614 

Sultana, S. and Satyanarayana, A.N.V., 2020. Assessment of urbanization and urban heat island 615 

intensities using landsat imageries during 2000–2018 over a sub-tropical Indian City. 616 

Sustainable Cities and Society, 52, p.101846. https://doi.org/10.1016/j.scs.2019.101846. 617 

Sun, R., Chen, A., Chen, L. and Lü, Y., 2012. Cooling effects of wetlands in an urban region: 618 

The case of Beijing. Ecological Indicators, 20, pp.57-64. 619 

http://doi.org/10.1016/j.ecolind.2012.02.006. 620 

Tayyab, M., Dong, X., Ahmad, I., Zahra, A., Zhou, J., Zeng, X. and Shakoor, A., 2019. 621 

Identifying Half-Century Precipitation Trends in a Chinese Lake Basin. Polish Journal of 622 

Environmental Studies, 28(3). https://doi.org/10.15244/pjoes/85674. 623 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


32 
 

Townshend, J.R.G., Justice, C.O., Skole, D., Malingreau, J.P., Cihlar, J., Teillet, P., Sadowski, 624 

F.A. and Ruttenberg, S., 1994. The 1 km resolution global data set: needs of the International 625 

Geosphere Biosphere Programme. International Journal of Remote Sensing, 15(17), pp.3417-626 

3441. https://doi.org/10.1080/01431169408954338. 627 

Wan, Z. and Dozier, J., 1996. A generalized split-window algorithm for retrieving land-surface 628 

temperature from space. IEEE Transactions on geoscience and remote sensing, 34(4), pp.892-629 

905. https://doi.org/10.1109/36.508406. 630 

Waseem, M., Ahmad, I., Mujtaba, A., Tayyab, M., Si, C., Lü, H. and Dong, X., 2020. 631 

Spatiotemporal dynamics of precipitation in southwest arid-agriculture zones of Pakistan. 632 

Sustainability, 12(6), p.2305. https://doi.org/10.3390/su12062305. 633 

Wen, L., Peng, W., Yang, H., Wang, H., Dong, L. And Shang, X., 2017. An analysis of land 634 

surface temperature (LST) and its influencing factors in summer in western Sichuan Plateau: 635 

A case study of Xichang City. Remote Sensing for Land & Resources, (2), pp.207-214. 636 

https://doi.org/10.6046/gtzyyg.2017.02.30. 637 

Yuan, X., Wang, W., Cui, J., Meng, F., Kurban, A. and De Maeyer, P., 2017. Vegetation 638 

changes and land surface feedbacks drive shifts in local temperatures over Central Asia. 639 

Scientific Reports, 7(1), pp.1-8. https://doi.org/10.1038/s41598-017-03432-2. 640 

Yue, W., Xu, J., Tan, W. and Xu, L., 2007. The relationship between land surface temperature 641 

and NDVI with remote sensing: application to Shanghai Landsat 7 ETM+ data. International 642 

journal of remote sensing, 28(15), pp.3205-3226. http://doi.org/10.1080/01431160500306906. 643 

Zhou, D., Xiao, J., Bonafoni, S., Berger, C., Deilami, K., Zhou, Y., Frolking, S., Yao, R., Qiao, 644 

Z. and Sobrino, J.A., 2018. Satellite remote sensing of surface urban heat islands: Progress, 645 

challenges, and perspectives. Remote Sensing, 11(1), p.48. 646 

https://doi.org/10.3390/rs11010048. 647 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

