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We present a novel quantum mechanical/molecular mechanics (QM/MM) approach in which a
quantum subsystem is coupled to a classical subsystem described by the AMOEBA polarizable
force field. Our approach permits mutual polarization between the QM and MM subsystems, effected
through multipolar electrostatics. Self-consistency is achieved for both the QM and MM subsystems
through a total energy minimization scheme. We provide an expression for the Hamiltonian of
the coupled QM/MM system, which we minimize using gradient methods. The QM subsystem is
described by the  linear-scaling DFT approach, which makes use of strictly localized orbitals
expressed in a set of periodic sinc basis functions equivalent to plane waves. The MM subsystem is
described by the multipolar, polarizable force field AMOEBA, as implemented in . Distributed
multipole analysis is used to obtain, on the fly, a classical representation of the QM subsystem in terms
of atom-centered multipoles. This auxiliary representation is used for all polarization interactions
between QM and MM, allowing us to treat them on the same footing as in AMOEBA. We validate our
method in tests of solute-solvent interaction energies, for neutral and charged molecules, demonstrat-
ing the simultaneous optimization of the quantum and classical degrees of freedom. Encouragingly,
we find that the inclusion of explicit polarization in the MM part of QM/MM improves the agreement
with fully QM calculations. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4962909]

I. INTRODUCTION

Combining quantum-mechanical (QM) calculations with
a classical description is a well-established technique
in computational studies of molecular systems.1–7 The
computational cost of purely QM approaches becomes
prohibitive for many systems. One reason is the long-
range nature of Coulombic interactions, which makes many
properties of interest converge slowly with the size of the
system. This makes it necessary to include hundreds of atoms,8

if not more,9 in the calculation before acceptable accuracy
can be reached,10 with suitable truncation of larger systems
often far from trivial.11 Another difficulty arises for systems
which cannot be well represented by a single conformer,
necessitating a statistical averaging of properties over a large
number of configurations.12 Linear-scaling approaches13–20

can help ameliorate the length scale problem, but they do
not address the effects of conformational sampling, which
may become more important with the increase of the system
size.21 While molecular mechanics (MM) approaches can be
routinely applied to systems comprising ∼105 to 106 atoms for

a)Author to whom correspondence should be addressed. Electronic mail:
c.skylaris@soton.ac.uk

timescales in the order of 1 µs, the purely classical description
is inherently unable to describe intrinsically electronic
processes (such as bond breaking and bond reconstruction)
and properties (e.g., band gaps or solvent shifts).

In many cases, the properties of interest are localized
to a certain part of the system (usually a molecule) that
is embedded in a greater environment (such as solvent or
solid state matrix). Although typically the presence of the
environment cannot be neglected, it is often the case that we are
not interested in its detailed properties or behavior. This is the
raison d’être of focused models such as QM/MM, which seek
to describe the subsystem of interest at a desired level of theory,
while representing the environment only approximately.12

Hybrid (quantum-classical) calculations fall into two
main categories, depending on how they describe this
environment. QM/continuum approaches employ an averaged
description, with the environment lacking any internal
structure. This strategy is best exemplified by widely used
implicit solvation techniques, such as PCM,22,23 COSMO,24,25

or density-dependent models,26–28 which help to address
the sampling problem by reducing the dimensionality of
the system. QM/MM approaches instead adopt a molecular
description of the environment, retaining its atomistic
detail and thereby preserving directional and specific

0021-9606/2016/145(12)/124106/19/$30.00 145, 124106-1 Published by AIP Publishing.
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interactions, such as hydrogen bonds between solvent and
solute.29 Methodologies combining all three descriptions
(e.g., QM/MM/PCM) have recently been reported.12,30–32

The relative ease with which QM/MM methods enable a
meaningful compromise between efficiency and accuracy is
now well-accepted in biomolecular chemistry,33 particularly in
applications where electronic excitations are of interest.12,30,34

Consequently, a wide gamut of approaches of varying
sophistication, and targeting different classes of systems
has been proposed12,21,29–57 since the pioneering work of
Warshel and Levitt.1 While even the briefest of reviews is
beyond the scope of this paper, an interested reader may
benefit from a presentation of model hierarchies,58 a review of
QM/MM methods for biomolecular systems2 and for materials
science,59 and a recent overview of applications of QM/MM
in enzymology.60

In parallel to the progress of QM/MM techniques, the last
two decades have witnessed significant developments in the
sophistication of force fields,61 following the identification of
deficiencies in commonly used fixed point charge models. The
way in which molecules respond to environmental conditions,
such as the presence of a solvent, pH, or ion concentration is,
unsurprisingly, difficult to capture without taking polarization
into account.62 In the absence of explicit polarization terms,
fixed point charge models can only describe polarization
effects in an averaged fashion, through the reparametrization
of the pairwise energy terms that they have at their disposal.
This crude description may be adequate under conditions
that are sufficiently close to those for which the potential
has been parametrized, but, more often than not, it is poorly
transferable to different phases or different environments, such
as interfaces.63

The non-additive, many-body nature of polarization
interactions makes such models more involved and compu-
tationally demanding compared to traditional fixed point
charge models. In consequence, a wide variety of competing
treatments of polarization has emerged (see Refs. 62
and 64 for a review), employing: Drude oscillators,65,66

fluctuating charges,67,68 and induced point dipoles69–75 or
higher multipoles.76

Correspondingly, a number of distinct QM/MM models
employing polarizable force fields have since been proposed.
These models differ in their approach to MM polarization
(Drude oscillators,50,52 fluctuating charges,12,51,55,77 induced
dipoles21,29–31,33,34,37,48,54,56,78), and the sophistication of their
treatment of the non-polarizable (permanent) part of MM elec-
trostatics (partial charges only,12,29–31,37,48,50–52,55,77,78 higher-
order multipoles21,32,34,56). Several groups have developed
models specifically focused on electronic excitations, using
polarizable embedding alongside time-dependent density
functional theory (TDDFT),12,21,29–33,55 where dynamic mutual
polarization33 poses an additional challenge. Other models
restrict their scope to ground-state density functional
theory (DFT). Some of the models further extend their
classical description by coupling to a continuum dielec-
tric.12,30–32,51,54,78 Other desirable features include analytical
gradients,31,48,55 the ability to treat covalent bonds spanning
the QM/MM interface,31,48,50,56 and the availability of post-
Hartree-Fock methods for the QM part.31,34,53,55,79

In this work we present a new QM/MM approach,
which combines the DFT methodology of 80,81 and
the polarizable force-field AMOEBA.70,72,73 The QM and
MM subsystems are coupled electrostatically, and undergo
mutual polarization. The electrostatic effect of the MM
subsystem is included in the QM Hamiltonian, polarizing
the QM subsystem by deforming its electronic charge density.
Conversely, the electric field of the QM subsystem is included
in the direct field that drives the polarization of the MM
subsystem.

A crucial element of our electrostatics model is an
auxiliary representation of the QM system in terms of point,
atom-centered multipoles, which is used in the calculation
of polarization interactions. This representation is obtained
through a variant of distributed multipole analysis (DMA),82,83

which is a technique for partitioning charge density into
single-atom contributions. Invoking this intermediate classical
representation for the QM system allows our model to
describe QM/MM polarization interactions on the same
footing as in AMOEBA, that is using damped, point-multipole
electrostatics.

A second distinguishing feature of our approach is the
use of linear-scaling DFT80,84 to describe the QM subsystem
with the aim of, ultimately, undertaking QM/polarizable-MM
calculations with QM regions spanning thousands of atoms.
To the best of our knowledge, there have been no reports to
date of a polarizable QM/MM model with a linear-scaling
QM component, although we note in passing that a QM/MM
approach with linear-scaling MM (in CPU and memory use)
has recently been reported.54

In our approach, van der Waals interactions in the
MM subsystem use the unmodified AMOEBA buffered 7-14
formalism,73,85 and the same pairwise functional form is used
for QM/MM interactions. In the QM subsystem, the repulsive
term is naturally accounted for through the exchange-
correlation term, while standard empirical corrections86 are
used to account for dispersion.

We derived a total energy expression for the entire
system (QM+MM). This energy is iteratively minimized
under suitable constraints using gradient methods87 until the
simultaneous self-consistency of both subsystems is achieved.

We envision this paper to be the first in a series of
continued developments, serving as a proof of concept. For
this reason we will primarily focus on a detailed description
of theory behind our model, and its validation.

This paper is organized as follows. In Sec. II we describe
our approach—starting from a description of the QM and MM
components, we follow with an explanation of how they are
coupled. Section III is devoted to validation and demonstration
of the utility of the proposed approach. Conclusions and
closing remarks will be found in Section IV.

II. METHOD

A. Conventions and notation

We follow the sign convention where electrons are
positively charged. Atomic units are used throughout the
text, unless indicated otherwise. Quantities typeset in bold

 26 February 2024 09:55:44
D

o
w

nl
o

ad
ed

 f
ro

m
 m

o
st

w
ie

d
zy

.p
l

http://mostwiedzy.pl


124106-3 Dziedzic et al. J. Chem. Phys. 145, 124106 (2016)

denote Cartesian column vectors (positions r, electric fields
E, dipoles µ, etc.), Cartesian tensors of rank 2 (e.g., T d-d

LM)
and of rank 3 (T d-q

LM). Matrices with dimensions other than
3 × 3 are typeset with blackboard capitals (e.g., K). Indices
I and J always refer to atoms in the QM subsystem, and
indices L and M refer to atoms in the MM subsystem.
Localized orbitals are indexed with Greek symbols. By van
der Waals interactions we will mean the sum of the repulsive
and dispersive terms, referring to the attractive term simply as
“dispersion.”

B. QM component

In this section we describe how the QM subsystem
is treated in our model. We employ the linear-scaling
20,80,88–91 approach, which is a reformulation of Kohn-
Sham DFT in terms of the one-electron density matrix,
ρ (r,r′). The density matrix is expressed in a separable
form

ρ (r,r′) =

αβ

ϕα (r) Kαβϕ∗β (r′) (1)

in terms of non-orthogonal, localized orbitals (support
functions) ϕα (r), and a density kernel K =

�
Kαβ

�
. The sup-

port functions, termed non-orthogonal generalized Wannier
functions (NGWFs),20 are strictly localized within atom-
centered spherical regions. The density kernel is the matrix
representation of the density matrix (1) in the duals of the
NGWFs.

Linear-scaling is achieved by making the NGWF
localization regions finite, and by truncating the density
matrix beyond a chosen cutoff distance, exploiting the
“nearsightedness principle” of electronic matter.92 The
assumption of finite localization regions makes the overlap
matrix S =

�
Sαβ

�
, whose elements are given by

Sαβ =


ϕα |ϕβ

�
, (2)

sparse, while the truncation of the density matrix introduces
sparsity into the density kernel K.

Unlike in most linear-scaling approaches, in  the
NGWFs themselves are expanded in an underlying basis
of periodic sinc93 (psinc) functions, which are equivalent
to plane waves. Gradient methods87 are used to minimize
the total energy by optimizing not only the elements of
the density kernel, but also the expansion coefficients of
the NGWFs in terms of psincs. As the NGWFs are optimized
in situ, using a minimal NGWF basis is sufficient for obtaining
high accuracy and systematic convergence of total energies to
those of a plane-wave approach with Kohn-Sham molecular
orbitals. Alternatively, the NGWFs can be kept fixed following
suitable initialization—e.g., to pseudoatomic orbitals (PAOs),
or to orbitals that have been pre-optimized in advance. This
simpler approach obviates the requirement of deriving and
computing energy gradients with respect to the NGWFs. In
the interest of simplicity in this communication we limit
ourselves to this latter approach.
 permits calculations both on periodic systems (in

the Γ-point approximation) and on isolated (non-periodic)
systems through the use of open boundary conditions (OBCs)

and a selection of techniques for eliminating the effects
of undesired periodicity.94 The model described here uses
the latter methodology, and, unless indicated otherwise, we
shall assume in the text that follows that OBCs are in
effect.

For an isolated QM system, the minimized quantity is
the usual Born-Oppenheimer DFT energy of electrons in
the potential of clamped nuclei, which in the density-matrix
formulation is given by

EQM
DFT =

 
−1

2
∇2

r′ρ (r,r′)


r′=r
dr

+


vext (r) n (r) dr +

1
2


n (r) n (r′)
|r − r′| drdr′

+ EQM
XC [n] , (3)

where ρ (r,r′) is the density matrix (1), vext (r) is the external
potential of the QM ions, EQM

XC is the exchange-correlation
energy functional, and n (r) is the electronic density,
given by

n (r) = ρ (r,r) , (4)

where we assume a closed-shell system for simplicity,
with the factor of 2 that is a consequence of spin
degeneracy accounted for in the scaling of K. We note
that in practice the pseudopotential approach is used, and
so vext (r) would correspond to the pseudopotential of the
QM cores, and n (r)—to the pseudodensity of valence
electrons.

The remaining energy terms associated with the QM
subsystem are independent of the electronic degrees of
freedom. The first of these is the Coulombic repulsion
energy of the cores, which, under open boundary conditions is
simply

EQM
core-core =

1
2

NQM
I

NQM
J,I

ZIZJ

|RJ − RI | , (5)

where NQM is the number of atoms in the QM subsystem,
{RI}NQM

I=1 are the positions of the cores, and {ZI}NQM
I=1

are their charges. The last term, EQM
disp, is an empirical

dispersion-correction term, which accounts for the well-
known deficiency of generalized gradient approximation
(GGA) DFT in describing dispersion interactions.86 The exact
expression depends on the model used, but the general form
is that of a double sum of pairwise terms. This work uses
the Elstner95 formulation, with parameters determined by
Hill and Skylaris.86 The total energy associated with the
QM subsystem is the sum of the three above-mentioned
terms,

EQM = EQM
DFT + E

QM
core-core + EQM

disp. (6)

C. MM component

In our model the MM subsystem is described with
an unmodified AMOEBA73 polarizable force-field, as
implemented in the 71 code. AMOEBA is a successful
polarizable force field offering a consistent treatment of
electrostatic interactions through permanent multipoles up to
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a quadrupole, with polarization realized via damped, induced,
point dipoles. The accuracy of the AMOEBA description
and parametrization has been demonstrated72 for a variety of
properties (i.a. heats of vaporization, dimer binding energies,
vibrational frequencies, solvation free energies). Its canonical
implementation, , provides the means for extracting
individual MM energy terms and induced dipoles, which
greatly simplifies interfacing with QM. In this section we
give a brief account of those aspects of AMOEBA that are
relevant to our QM/MM approach and we introduce necessary
terminology.

The AMOEBA energy expression can be written in the
general form

EMM = EMM
perm + EMM

pol + E
MM
val + E

MM
vdW, (7)

with the four energy components respectively accounting
for permanent electrostatic interactions, polarization, short-
range valence interactions, and van der Waals inter-
actions.

1. Permanent electrostatics

In its treatment of electrostatic interactions, AMOEBA
uses a point multipole representation. Each atomic site
L is associated with permanent, point multipoles up to
a quadrupole:

�
qp
L,µ

p
L,Q

p
L

	
. The permanent multipoles are

parametrized from ab initio calculations,96–98 and use a
suitable local coordinate frame70 to maintain transferability
between different molecular conformations. Interactions
between permanent multipoles on different sites are purely
Coulombic, i.e., they are not damped. However, to ensure
a smooth transition between an electrostatic description of
interactions at medium range and bonded interactions at
short range, permanent electrostatic interactions between
nearest and second-nearest neighbors (as determined by
bond connectivity) are zeroed, and corresponding interactions
between third- and fourth-nearest neighbors are attenuated,72

in what is known as scaling or masking. We shall denote
the permanent electrostatic energy of the MM subsystem by
EMM

perm, readers interested in the full expression can consult
Ref. 73, eqs. 1 and 10.

2. Polarization

In addition to permanent multipoles, AMOEBA asso-
ciates an induced dipole µL with each atomic site L.
These dipoles are induced primarily by the electric field
of the permanent multipoles, termed the direct field, in
what is known as direct induction. AMOEBA uses an
interactive induction scheme, whereby each induced dipole
µL will further polarize induced dipoles at other sites
M , L. Such mutual induction continues until the induced
dipoles at each site reach convergence.73 Induced dipole self-
consistency is usually achieved through the use of iterative
solver techniques, such as SOR,71,99 although a variety of
alternative schemes is also in use.100–102 For a more detailed
discussion the reader is referred to Ref. 103. At convergence
the dipole induced at site L through linear response is

simply

µL = αL

�
EL + Em

L

�
, (8)

where αL is the atomic polarizability of site L, and EL and
Em

L are, respectively, the direct and the mutual electric fields
at RL.

AMOEBA uses a non-additive polarization model, where
mutual polarization takes place between all polarizable
sites, even those belonging to the same molecule.71 This
means that the polarizability of a molecule is not a
sum of atomic polarizabilities of its constituent atoms;
and that intramolecular polarization needs to be accounted
for (removed) during the parametrization of permanent
multipoles. An important advantage of the non-additive model
is that it makes the atomic polarizability tensors isotropic,
which is why the polarizability αL featuring in (8) is a scalar
value.

In order to avoid a well-known deficiency of point
polarizability models known as the “polarization catas-
trophe”104 (an unbounded mutual polarization of nearby
dipoles), AMOEBA damps all interactions involving induced
dipoles. The damping model devised by Thole105 and
subsequently revised106 modifies the dipole-dipole interaction
tensor, ensuring interaction energies approach a finite value
rather than becoming infinite as the distance between the
two dipoles approaches zero. Analogous modifications107 to
dipole-charge and dipole-quadrupole interaction tensors make
it possible to similarly damp the interactions of induced
dipoles with permanent multipoles used in AMOEBA. The
relevant modified Cartesian interaction tensors will be given
later in the text, cf. Eqs. (27)–(29).

Other modifications to electrostatic interactions involving
induced dipoles employed in AMOEBA include the scaling
of permanent-induced interactions (which are zeroed for
nearest and second-nearest neighbors, as determined by bond
connectivity), and the use of polarization groups (permanent
multipoles do not induce dipoles within their own polarization
groups). A detailed discussion of the AMOEBA electrostatics
model is beyond the scope of this paper, and the interested
reader is referred to Ref. 70.

The polarization energy EMM
pol is given by the expression

(A1) in the Appendix (Appendix 1), where we discuss
polarization in more detail.

3. Short-range valence interactions

By EMM
val in (7) we denote all short-range valence

interactions local to the MM subsystem. In the AMOEBA
force field EMM

val comprises the following terms: bond-stretch,
angle-bend, stretch-bend coupling, out-of-plane bend, and
torsional rotation. As the detailed expressions for these terms
can be found in Ref. 73, Eqs. 2-6, we shall refrain from
recounting them here.

4. Van der Waals interactions

The term EMM
vdW in (7) accounts for van der Waals

(dispersion-repulsion) interactions local to the MM subsys-
tem. AMOEBA uses the Halgren formulation85 of the buffered
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14-7 potential,

EMM
vdW

�
Ri j

�
= εi j

(
1 + δ

ρi j + δ

)7
*
,

1 + γ
ρ7
i j + γ

− 2+
-
, (9)

where ρi j = Ri j/R0
i j, δ = 0.07, γ = 0.12. Detailed expres-

sions, along with a description of mixing rules and
hydrogen “reduction factors” can be found in Ref. 73,
eqs. 7 and 8.

D. Auxiliary point-multipole representation QM∗

1. Rationale

Like in most plane-wave and plane-wave-like DFT codes,
the electronic density in  is represented on a uniform,
real-space, Cartesian grid, with a typical spacing of ∼0.25 a0,
which corresponds to commonly used kinetic energy cutoffs
in the range of 800 eV. As the localized orbitals in 
typically extend for ∼8 a0 from the atomic cores, some MM
sites will invariably be found in regions of non-negligible QM
electronic density, arbitrarily close to (or even exactly at) grid
points on which this density is represented. In the absence of
any mitigating measures, such as damping, attempts to directly
use the grid representation in calculations of polarization
involving point dipoles run into issues of ill-conditioning
due to the singularities of the point dipole potential and
the sensitivity of energies to the positioning of the grid
relative to the point dipole. These issues manifest as quantum-
classical counterparts of the polarization catastrophe, such as
unbounded polarization of the MM point dipole in the direct
field of the (discretized) density, or the electronic density
being “sucked out” by the unbounded potential of the MM
point dipole.

In order to address these difficulties our model uses Thole
damping in the calculation of QM/MM polarization, in line
with what is done in AMOEBA. Since the Thole damping
scheme is pairwise, it requires specifying the polarizabilities
of two point dipoles, or in its more general version, of
a point dipole and point multipole (cf. (30) and (31)). This
requirement makes it impossible to directly use Thole damping
for distributed electronic densities. The use of an auxiliary
representation of the QM charge density in terms of point
multipoles alleviates this problem.

2. Implementation

Here we describe how to obtain an auxiliary representa-
tion of the QM subsystem charge density in terms of atom-
centered, fixed, point multipoles up to a quadrupole. We shall
refer to this representation as QM∗.

The technique whereby a continuous charge distribution
is represented in terms of a set of point multipoles is known
as distributed multipole analysis (DMA). Atomic centers
are usually, although not universally, used as the centers
for the multipoles. DMA, first proposed by Rein,108 has
been pioneered and popularised by Stone82 and Alderton.83

Distributed multipole analysis is typically performed in a
Gaussian basis set.109,110 Below we briefly outline how
electronic densities represented in a localised (NGWF) basis

can be similarly expanded. A more detailed description can be
found in Refs. 111 and 112. Our approach belongs to the class
of the density-fitting techniques pioneered independently by
Baerends et al.113 and Whitten.114

The first step involves decomposing the electronic density
(4) into two-center contributions

n (r) =

αβ

ϕα (r) Kαβϕ∗β (r) (10)

=

I


J


α∈I


β∈J

ϕα (r) Kαβϕ∗β (r) (11)

=

I


J

SI J,0

nI J(r). (12)

The shortcut notation α ∈ I used in (11) is understood as
“NGWFs α belonging to atom I.” Equation (12) explicitly
separates the density into two-center contributions from
atomic centers I and J that have nonzero overlap SI J. The case
of I = J, although technically a one-center contribution, can
be treated on the same footing for simplicity of notation.
By construction, NGWFs which do not overlap do not
contribute to density.

We approximate each contribution as a linear combination
of one-center contributions, represented in an auxiliary basis
set, i.e.,

ñI J(r) =
Nf
s

f s (r)Cs
I J, (13)

where Cs
I J are the sought coefficients in the expansion, and

{ f s(r)}Nf
s=1 are the functions making up our auxiliary basis set,

Nf/2 of which originate on center I, and the remaining Nf/2
on center J.

We subsequently define an electrostatic metric V = [Vst],
Vst = ( f s | f t) , (14)

where, for the sake of brevity, we introduced the notation

(g |h) =


g∗(r) 1
|r − r′| h(r

′) dr dr′. (15)

The use of the electrostatic (Coulomb) metric has long been
recognized to be more advantageous compared to the simple
overlap metric.115,116 Robust schemes that make it possible to
maintain variationality in the presence of density fitting have
been proposed.115–118

The expansion coefficients are obtained as

Cs
I J =

Nf
t

(nI J | f t)V ts, (16)

by requiring that the electrostatic self-energy of
(nI J (r) − ñI J (r)) be minimum. Here t indexes auxiliary basis
functions originating on centers I and J in the same way
s does. V ts are elements of the inverse electrostatic metric
matrix.

When calculating gradients with respect to the density
kernel, it is useful to separate the atom-pair coefficients Cs

I J

into combinations of kernel matrix elements and NGWF-pair
coefficients csαβ. By comparing (11) and (12) we obtain
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from (16)

Cs
I J =

Nf
t

( 
α∈I


β∈J

ϕα (r) Kαβϕ∗β (r) ��� f t
)
V ts

=

α∈I


β∈J

Kαβ

Nf
t

(
ϕα (r) ϕ∗β (r) | f t

)
V ts

=

α∈I


β∈J

Kαβcsαβ. (17)

We have now decomposed the electronic density of the
system into a sum of atom-centered contributions, with each
contribution being a linear combination of auxiliary basis
functions. For the sake of concreteness, we will now explicitly
assume the auxiliary basis functions to be truncated spherical
waves (SWs),81,119 indexed by their angular momentum
number l, magnetic quantum number m, and number of
zeros q in the radial part., i.e.,

f SW
lmq (r) =




jl
�
r/blq

�
Zlm (r̂) r < rSW

0 r ≥ rSW
, (18)

where rSW is the localization radius of the SW, jl (·) is a
spherical Bessel function, and Zlm (r̂) is a real spherical
harmonic. The values of the length scale blq are chosen so
that jl

�
r/blq

�
has exactly q zeros on the interval (0,rSW], with

the last one at r = rSW for the truncation not to introduce a
discontinuity. The index q runs from 1 to a chosen maximum
value qmax, which is in the order of 10–20 and in practice is
limited by the fineness of the grid. Higher values make the
density fitting more accurate at the expense of increased
computational cost, which grows as O

�
N2

f

�
∼ O

�
q2

maxl
4�.

The localization radii rSW of the SWs and of the NGWFs
coincide.

We recall that the index s runs over auxiliary basis
functions originating on both centers, while l, m, q describe a
truncated spherical wave at r = 0, and so

f s (r) ≡



f SW
lmq (r − RI) , s ≤ Nf/2

f SW
lmq (r − RJ) , s > Nf/2

. (19)

The sought spherical multipoles associated with an atomic
center I can be calculated as111,120

Mlm(I) =

J

SI J,0


q

Clmq
I J Jlq, (20)

where Clmq
I J correspond to Cs

I J originating only on I, and

Jlq =
 a

0
r l+2 jl(r/blq) dr (21)

is a radial integral that can be computed analytically.
While the approach described above is general, in this

work we truncate the expansion at quadrupoles (l ≤ 2).
Charges qQM∗

I , Cartesian dipoles µQM∗

I , and traceless
Cartesian quadrupoles QQM∗

I are obtained from the spherical
representation (20) using well-known relations121 (eqs. 2.85-
2.87). To obtain a representation of the total density,
the charges ZI of the atomic cores need to be added
to qQM∗

I .

The procedure described above minimizes the self-
interaction energy of the error in the approximate density,
with no constraint on the total charge of the entire system

I qQM∗

I . Numerical tests indicate that the total electronic
charge obtained from the expansion is within 0.05% of
the expected number of valence electrons for reasonable
qualities of the auxiliary basis set. Of course this valence
charge is to a large degree compensated by a similar, but
negative, contribution from the cores, which makes the
relative error in the total charge substantially larger (and,
infinite, by definition, for neutral systems). In practice we
found it sufficient to compensate for this by uniformly
rescaling the electronic monopole terms, matching the total
with the number of valence electrons. We discuss the
effect of this scaling on gradients in Subsection 3 of the
Appendix.

E. Consistent coupling between QM and MM

Our model uses the following total energy expression:

E = EQM + EMM + EQM/MM
perm + EQM/MM

vdW , (22)

which we variationally minimize using gradient methods. The
minimization is a single SCF process following the approach
of Aida et al.,37 where the linear response equations for
induced dipoles are solved at each SCF step. This iterative
solution requires only the evaluation of classical multipole
interactions, and its computational cost is minor compared to
the costs associated with QM terms in the energy. To maintain
variationality, this scheme requires the recomputation of the
QM∗ representation at every SCF step. This can be done
efficiently for two reasons. First, the bottleneck here is
the evaluation of the electrostatic metric matrix (14), which
does not depend on either the electronic or MM degrees of
freedom, and can be precomputed. Second, by construction,
the expansion coefficients csαβ in (17) only need to be
recomputed when the NGWFs change, and not at every SCF
step.

In this communication we restrict ourselves to computing
gradients with respect to the density kernel K, which we
will derive for every term in turn. In future communications
we plan to outline the calculation of gradients with respect
to the NGWFs (which will permit optimizing them in situ),
and with respect to ionic positions (which will pave the way
towards geometry optimization, transition state searches, and
molecular dynamics).

The superscript of each term identifies it as a property
of a particular subsystem (QM, MM) or as a cross energy
term (QM/MM). We shall discuss each term in turn. The
single-system energy terms EQM and EMM are defined by
(6) and (7), respectively. Regardless of whether the QM
and MM subsystems are isolated or coupled, the functional
form of these two terms is the same. That is to say, our
approach does not modify the descriptions of the individual
subsystems. When coupling is introduced, however, the
interpretation of these terms changes: EQM becomes the
energy of the QM subsystem polarized by the electric field
of the MM subsystem, and EMM becomes the energy of
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the MM subsystem polarized by the electric field of the QM
subsystem. To elucidate how these changes arise, we insert (6)
and (7) into (22), to obtain the total energy expression for our
model

E = EQM
core-core + EQM

disp + E
MM
perm + EMM

val + E
MM
vdW

+ EQM
DFT + E

MM
pol + E

QM/MM
perm + EQM/MM

vdW . (23)

The first five energy terms are insensitive to whether
QM and MM are isolated or coupled, and, as they have been
defined already, can be omitted from further discussion. The
introduction of coupling does, however, change the values of
EQM

DFT and EMM
pol , which reflects the fact that the two subsystems

mutually polarize.

1. Polarization

The change in EQM
DFT = E

QM
DFT [n (r)] is brought about by

the deformation of the electronic density n (r) in response to
the electric field of the MM subsystem, and thus accounts for
the polarization of QM due to MM. This deformation of n (r)
is driven by the gradient contributions (36) and (41).

The change in EMM
pol is a consequence of the inclusion

of the electric field of the QM subsystem in the direct field
experienced by the MM induced dipoles, cf. (24). Following
the introduction of coupling, EMM

pol accounts for not only
the internal polarization of the MM subsystem (cf. Fig. 1,
interactions ⑤, ⑥), but also for the polarization of MM due
to QM (cf. Fig. 1, interaction ④). The two contributions are

FIG. 1. Schematic representation of electrostatic interactions in our model.
Intra-QM electrostatics is that of standard pseudopotential DFT and has been
omitted for clarity. A single atomic site (I ) has been highlighted in the QM
subsystem and its auxiliary representation, QM∗. The QM subsystem is de-
scribed with point-charge cores Z I , and a distributed electronic density n(r),
while the QM∗ representation uses permanent point charges q

QM∗
I , dipoles

µQM∗
I , and quadrupoles QQM∗

I . In the MM subsystem two atomic sites (L,
M ) have been highlighted. The MM subsystem is described with permanent
multipoles up to a quadrupole {qp

L/M
, µ

p
L/M

,Qp
L/M

}, and induced dipoles
µL/M . Interactions ① and ② are described by Eqs. (39)–(41). Interaction ③ is
described in Ref. 73. Interactions ④, ⑤, ⑥ are treated on the same footing and
are described by Eqs. (25) and (36).

non-additive. In our model polarization contributions from
QM/MM interactions are damped, consistent with MM/MM
polarization contributions owing to the use of the auxiliary
QM∗ representation (Sec. II D 2). This representation is
used in the calculation of EMM

pol and its gradient dEMM
pol /dKηθ

(cf. (33)). This gradient contribution, apart from being
essential for maintaining the variational behavior of our
method, enables the electronic degrees of freedom to respond
to the induced dipoles of the MM subsystem, thereby capturing
the polarization effect of the environment.

Before we proceed with a more detailed account of
polarization in our model, we refer the reader to Subsection 1
of the Appendix for a brief review of how polarization energy
is calculated for an isolated MM system—this serves as a
starting point for the discussion that follows.

In our QM/MM model the direct field experienced by
an MM site L (which we will denote with E′L) contains
two contributions—the direct electric field of permanent
MM multipoles (A5), and the direct electric field of QM∗

multipoles

E′L = EL + EQM∗

L . (24)

The corresponding polarization energy is

EMM
pol = −

1
2

NMM
L

µᵀLE′L, (25)

which has the same form as (A6), except for the fact that the
dipoles µL are now induced in response to the total direct field
E′L. Here, NMM is the number of atoms in the MM subsystem.

The multipole expansion QM∗ is truncated at quadrupoles,
leading to the following expression (cf. Ref. 121, eq. 2.63) for
the electric field it generates at RL:

EQM∗

L =

NQM
I

(
−T d-c

LIq
QM∗

I + T d-d
LIµ

QM∗

I − 1
3T

d-q
LI : QQM∗

I

)
.

(26)

The sum runs over all atomic sites I of the QM∗ representation.
Each site contains a point charge qQM∗

I , dipole µQM∗

I , and
quadrupole QQM∗

I .
The Thole-damped, dipole-charge interaction tensor T d-c

LI

is given by

T
d-c
LM =

*.........
,

−λ3Rx

R3

−
λ3Ry

R3

−λ3Rz

R3

+/////////
-

, (27)

the corresponding dipole-dipole interaction tensor is given by

T
d-d
LI =

*.........
,

3λ5R2
x

R5 − λ3

R3

3λ5RxRy

R5

3λ5RxRz

R5

3λ5RxRy

R5

3λ5R2
y

R5 − λ3

R3

3λ5RyRz

R5

3λ5RxRz

R5

3λ5RyRz

R5

3λ5R2
z

R5 − λ3

R3

+/////////
-

, (28)

and the dipole-quadrupole interaction tensorT d-q
LI is given by
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T
d-q
LI =

*.........................................
,

*........
,

−
15λ7R3

x

R7 +
9λ5Rx

R5

−
15λ7R2

xRy

R7 +
3λ5Ry

R5

−
15λ7R2

xRz

R7 +
3λ5Rz

R5

+////////
-

*........
,

−
15λ7R2

xRy

R7 +
3λ5Ry

R5

−
15λ7RxR2

y

R7 +
3λ5Rx

R5

−
15λ7RxRyRz

R7

+////////
-

*........
,

−
15λ7R2

xRz

R7 +
3λ5Ry

R5

−
15λ7RxRyRz

R7

−
15λ7RxR2

z

R7 +
3λ5Rx

R5

+////////
-

*........
,

−
15λ7R2

xRy

R7 +
3λ5Ry

R5

−
15λ7RxR2

y

R7 +
3λ5Rx

R5

−
15λ7RxRyRz

R7

+////////
-

*.........
,

−
15λ7RxR2

y

R7 +
3λ5Rx

R5

−
15λ7R3

y

R7 +
9λ5Ry

R5

−
15λ7R2

yRz

R7 +
3λ5Rz

R5

+/////////
-

*........
,

−
15λ7RxRyRz

R7

−
15λ7R2

yRz

R7 +
3λ5Rz

R5

−
15λ7RyR2

z

R7 +
3λ5Ry

R5

+////////
-

*........
,

−
15λ7R2

xRz

R7 +
3λ5Ry

R5

−
15λ7RxRyRz

R7

−
15λ7RxR2

z

R7 +
3λ5Rx

R5

+////////
-

*........
,

−
15λ7RxRyRz

R7

−
15λ7R2

yRz

R7 +
3λ5Rz

R5

−
15λ7RyR2

z

R7 +
3λ5Ry

R5

+////////
-

*.........
,

−
15λ7RxR2

z

R7 +
3λ5Rx

R5

−
15λ7RyR2

z

R7 +
3λ5Ry

R5

−
15λ7R3

z

R7 +
9λ5Rz

R5

+/////////
-

+/////////////////////////////////////////
-

, (29)

where R is the norm of the vector RI − RL, and
�
Rx,Ry,Rz

	

are its Cartesian components.
Here, λ3, λ5, and λ7 are the Thole damping factors, given

by

λ3 (u) = 1 − e−au
3
,

λ5 (u) = 1 −
�
1 + au3� e−au

3
,

λ7 (u) = 1 −
�
1 + au3 + 3

5 a2u6� e−au
3
,

(30)

where u is the reduced distance

u =
R

(αLαI)1/6 , (31)

a is a dimensionless width parameter,73 and αL, αI are
the (scalar) polarizabilities of the sites L, I, respectively.
Since our model adopts a damped polarization treatment
consistent with AMOEBA, it requires specifying classical
scalar polarizabilities of QM sites, αI .

During the AMOEBA self-consistency procedure in
which

�
µL

	
are determined, the degrees of freedom in QM∗

are temporarily clamped, meaning EQM∗

L , and in turn E′L,
remain constant. A zero residual condition analogous to (A7)

is satisfied at induced dipole self-consistency

∀L
dEMM

pol

dµL

= 0. (32)

As we follow a gradient-based approach, we seek the
total derivative of the polarization energy with respect to a
density kernel element Kηθ:

dEMM
pol

dKηθ
=

∂EMM
pol

∂Kηθ
+

NMM
L

dEMM
pol

dµL

∂µL

∂Kηθ
. (33)

Once the induced dipoles reach self-consistency, the second
term vanishes owing to (32), leading to

dEMM
pol

dKηθ
=

∂EMM
pol

∂Kηθ
= −1

2

NMM
L

µᵀL
∂

∂Kηθ

(
EL + EQM∗

L

)
, (34)

which, with EL being independent of the density kernel,
simplifies to

dEMM
pol

dKηθ
= −1

2

NMM
L

µᵀL
∂EQM∗

L

∂Kηθ
. (35)

By substituting (26) into (35) we obtain

dEMM
pol

dKηθ
= −1

2

NMM
L

µᵀL

NQM
I

*
,
−T d-c

LI

∂qQM∗

I

∂Kηθ
+ T d-d

LI

∂µQM∗

I

∂Kηθ
− 1

3T
d-q
LI :

∂QQM∗

I

∂Kηθ
+
-
, (36)

having used the fact that the interaction tensors are
independent of Kηθ. Expressions for the partial derivatives
remaining in (36) are given in Subsection 2 of the Appendix,
which completes the derivation.

2. Permanent electrostatics

The next term, EQM/MM
perm , accounts for the electrostatic

interaction between the permanent multipoles in the MM
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subsystem and the QM charge density (cf. Fig. 1,
interactions ①, ②). In our model this interaction is not damped,
by analogy to how AMOEBA does not damp interactions
between permanent multipoles. The Coulombic potential at r
due to the permanent MM multipoles (cf. Ref. 121, eq. 2.62)
is simply

vMM
p (r) =

NMM
L

�
T c-c
Lr qp

L − Tc-d
Lr
ᵀ
µp
L +

1
3 Tc-q

Lr : Qp
L

�
, (37)

where qp
L, µp

L, and Qp
L have been defined in Sec. II C, and T c-c

Lr ,
Tc-d

Lr, Tc-q
Lr are, respectively, the Coulombic (undamped) charge-

charge, charge-dipole, and charge-quadrupole interaction
tensors acting from RL to r,

T c-c
Lr = 1/R,

Tc-d
Lr =

*.........
,

−Rx

R3

−
Ry

R3

−Rz

R3

+/////////
-

,

Tc-q
Lr =

*.........
,

3R2
x

R5 −
1
R3

3RxRy

R5

3RxRz

R5

3RxRy

R5

3R2
y

R5 −
1
R3

3RyRz

R5

3RxRz

R5

3RyRz

R5

3R2
z

R5 −
1
R3

+/////////
-

,

(38)

where R = |RL − r|.
The charge density of the QM subsystem is

nQM (r) = n (r) +
NQM
I

δ (r − RI) ZI , (39)

and its energy of interaction with the potential of the permanent
MM multipoles is given by

EQM/MM
perm =


Ω

vMM
p (r) nQM (r) dr, (40)

where Ω can be restricted to the union of the localization
regions of {ϕα}, as nQM (r) is zero elsewhere.

In practice, n (r) is defined on a uniform Cartesian grid,
and the integral (40) is computed as a three-dimensional
sum over grid points. Even though n (r) is a slowly
varying (pseudo)density, this approach suffers from similar
ill-conditioning issues as those described in Sec. II D 1—
since a grid point can be located arbitrarily close to a point
MM multipole, the value of R in (38) can become arbitrarily
small (or indeed zero), making the corresponding tensors,
and the resultant potential (37) unbounded, and EQM/MM

perm
ill-conditioned.

One solution to this problem would be to resort again
to the QM∗ representation and to calculate this interaction
energy as a pairwise sum of point-multipole–point-multipole
interactions. However, abandoning the distributed description
of charge density in favor of a multipole expansion would
lead to the introduction of charge penetration error. This
well-known deficiency of point-multipole models122 is a
consequence of their poor description of the interaction
between extended atomic charge densities at short distances.

In this regime the overlap of the two atomic densities becomes
significant, leading to a decrease in the shielding of the nuclear
charge by its density,123 an effect that is not captured by
point-multipole models, unless specifically corrected for.

In order to preserve the advantages that having access
to the full density nQM (r) offers, we choose to avoid the
ill-conditioning by smoothing the potential (37) in the vicinity
of every MM multipole. To this effect we replace Coulombic
interaction tensors (38) with their Thole-damped counterparts,
but instead of using atomic polarizabilities in the denominator
of (31), we use a fixed value of 0.2 a0 for the characteristic
length. The influence of such smearing is negligible already for
R > 0.5 a0, but it effectively removes singularities as R → 0.
We find the results to be practically insensitive to the particular
choice of this value.

Since vMM
p (r) does not depend on the electronic degrees

of freedom, the corresponding energy gradient is simply a
matrix element of the potential in the NGWF basis

dEQM/MM
perm

dKηθ
=

∂

∂Kηθ


Ω

vMM
p (r) nQM (r) dr

=


Ω

vMM
p (r) ∂

∂Kηθ


αβ

ϕα (r) Kαβϕ∗β (r) dr

=


Ω

vMM
p (r)


αβ

ϕα (r) δαηδβθϕ∗β (r) dr

=

ϕθ | ˆvMM

p |ϕη


. (41)

This gradient term enables the electronic degrees of freedom
to respond to the permanent dipoles of the MM subsystem,
thereby capturing the direct polarization of QM by MM.

3. Van der Waals interactions

In the calculation of EQM/MM
vdW we use the same formalism

as is used for MM/MM van der Waals interactions,
i.e., the pairwise Halgren formulation85 of the buffered
14-7 potential.73 The calculation of this term is performed
entirely in , with the QM subsystem treated as an
embedding inactive region, which avoids calculating QM/QM
contributions that are already accounted for in EQM.

Adopting such classical approach requires choosing
suitable vdW parameters for atoms in the QM subsystem.
In contrast to the fine-grained system of atom types that
AMOEBA uses for electrostatics, van der Waals interactions
are parametrized using a broader notion of atom classes,
meaning the vdW parameters are, to a large extent, shared by
atoms whose chemical species and hybridization are identical.
With this in mind, we simply use unmodified AMOEBA
parameters for atom classes deemed to be nearest matches
for atoms in the QM subsystem, avoiding the need for
parametrizing the QM subsystem altogether.

Since EQM/MM
vdW is independent of the electronic de-

grees of freedom, the corresponding gradient contribution
vanishes

dEQM/MM
vdW

dKηθ
= 0. (42)
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F. The TINKTEP implementation

 is a software package that enables self-consistent,
mutually polarizable QM/MM calculations combining 
and . The theory outlined above has been implemented
entirely within , within an infrastructure of general-
use software modules: spherical wave resolution of identity
(SWRI), spherical wave expansion (SWX), distributed
multipole analysis (DMA), and polarizable embedding (PE).

Our approach does not require any intervention into
the general mechanisms of  in order to actualize
the coupling. Only a small, well-contained set of trivial
adjustments to ’s input/output routines is necessary to
increase the numerical precision of certain inputs and outputs,
and to adjust the maximum line length. This is realized through
a patch that is distributed with .
 itself comprises several core scripts and about a

dozen utility scripts. The role of the core scripts is to provide
a user-friendly environment in which  and  are
executed, and to oversee and synchronize their execution,
providing user feedback, error logging, and graceful abort
in case of errors. The utility scripts facilitate the set-up of
QM/MM calculations, file format conversions, translations of
frame of reference etc.
 is available to all users of  v4.5 and

later. In addition to polarizable QM/MM calculations, 
supports QM/MM calculations with fixed point-charge force
fields, such as the General Amber Force Field (GAFF).

III. DEMONSTRATION OF METHODOLOGY

We demonstrate the feasibility of our QM/MM approach
using two test setups. First, we briefly validate the correctness
of the total (QM+MM) energy gradient by examining the
convergence of total energy for a diphenylhydramine molecule
embedded in a water sphere. Second, we closely examine how
accurately the binding energy of six solutes to water solvent
is reproduced by a number of MM and QM/MM approaches.
Having selected larger, small, neutral, and charged solutes,
and investigating the binding energy curves for increasing
sizes of solvent spheres, we can elucidate the advantages and
deficiencies of each approach. We demonstrate that in terms
of accuracy our approach outperforms QM/MM schemes that
do not take mutual polarization into account.

A. Correctness of total energy gradient

We begin with basic validation of the correctness
of our implementation. We compared total (QM+MM)
energy gradients obtained by finite differences (FD) with
analytical gradients, ensuring they were in agreement for a
variety of systems, including charged systems, where mutual
polarization becomes significant. In all cases we were able
to converge the embedded system to the same thresholds as
the purely QM system, and we obtained expected agreement
between analytical and FD gradients. Below (Fig. 2) we
restrict ourselves to demonstrating that the convergence of
the total energy during density matrix optimization proceeds
very similarly regardless of the type of embedding used. We

FIG. 2. Convergence of density matrix optimization in the absence of embed-
ding (black, circles), with purely electrostatic fixed point charge embedding
that neglects vdW interactions (red, diamonds), and with AMOEBA embed-
ding (blue, squares). Test case: diphenylhydramine and 75 H2O molecules in
the QM region; 256 H2O molecules in the MM region.

demonstrate this on a representative system, where the QM
subsystem comprises a diphenylhydramine molecule with
75 surrounding H2O molecules, and the MM subsystem
comprises 256 H2O molecules.

B. Binding energies

To assess the accuracy and robustness of our QM/MM
approach we employed it to calculate the interaction energy
of six solutes with progressively larger shells of explicit
water molecules. Three of the solutes were chosen from the
SAMPL4 blind challenge124—these were (a) (–)-menthol,
(b) diphenylhydramine, and (c) 2-chloro-4-hydroxy-3,
5-dimethoxybenzaldehyde. These moderately sized molecules
(31, 40, and 23 atoms, respectively) encompass a number of
chemical features: a cyclohexane ring (a), an ether group (b),
an aromatic ring (b), an amine group (b), a halogen atom (c),
and an aldehyde group (c). The remaining three molecules
were (d) ammonia (NH3), (e) the ammonium ion (NH+4), and
(f) the cyanide ion (CN−)—which we chose to verify if our
model correctly describes small and charged solutes.

1. Computational set-up

Each of the six solutes has been solvated in approx. 660
explicit H2O molecules under periodic boundary conditions
(PBCs). Classical polarizable MD trajectories in the N pT
ensemble (p = 1 atm, T = 298 K) were then obtained using
the dynamic program from the  suite. The dynamics
was run for 50 ps with a timestep of 1 fs and the final
configuration was used in subsequent calculations. AMOEBA
parametrization for solutes (a)-(c) has been taken from
Ref. 96, solutes (d)-(f) used parameters natively available
in AMOEBA0972 and for water molecules we used the
AMOEBA 2003 water model. Long-range electrostatics used
the particle mesh Ewald approach,125 with a real-space cutoff
of 8 Å. van der Waals interactions were cut off at 9 Å, and a
long-range correction was applied.
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FIG. 3. The protocol used for preparing configurations suitable for QM/MM calculations under open boundary conditions (OBCs): (a) AMOEBA molecular
dynamics is performed under periodic boundary conditions, and the final configuration is selected. (b) Only H2O molecules fully contained within a sphere around
the solute are kept. (c) The outermost H2O molecules are relaxed to reduce the excess dipole moment arising from their temporarily unphysical orientation.

The above procedure yields configurations suitable for
calculations with periodic boundary conditions (cf. Fig. 3,
panel (a)). At present our QM/MM implementation only
supports calculations with open boundary conditions, which
necessitates augmenting the simulation protocol with an
intermediate step. First, we discard all water molecules which
are not entirely contained in a sphere with a radius of half of
the simulation box size (cf. Fig. 3, panel (b)). No longer part
of the bulk, the water molecules at the surface of the sphere
are now misoriented, generating a non-negligible, spurious
dipole moment. As has been recently shown by Lever et al.,11

this can lead to an unphysical lowering of the HOMO-LUMO
gap in ab initio calculations, making it crucial to address this
effect. We mitigate the problem by allowing the outermost
water molecules to relax to a local energy minimum. This is
illustrated in Fig. 3, panel (c). The relaxation is performed with
’s optimize program, using open boundary conditions
(OBC) and an infinite interaction cutoff. The solute and water
molecules whose geometric centers are within 12 Å from
the geometric center of the solute are restrained during the
relaxation. As expected, in the course of the relaxation we
observe a lowering of the dipole moment of the system and
the final solute-solvent binding energy is close to that of the
original PBC system. The resultant configurations consist of
the solute and 325-400 H2O molecules and are suitable for
calculations with OBC.

We examined the binding energies between the solute
and the surrounding water molecules for a single snapshot
for each of the solutes, investigating how the solute-solvent
interaction energy converged as the number of surrounding
H2O molecules was increased. Water molecules were added in
the order of increasing distance from the center of the solute.
Binding energies were calculated as

Ebind = Esolute+solvent − Esolute − Esolvent, (43)

with atomic positions taken from the solute+solvent
configuration.

Our comparison involved four computational approaches:

(a) Fully QM calculations with no embedding (entire system
treated at the DFT level of theory), which serve as
reference.

(b) QM calculations using a purely electrostatic embedding,
where the QM subsystem encompassed only the solute,
and H2O molecules were described with fixed partial
charges. In this set-up only a fixed, external potential
is included in the QM Hamiltonian; we emphasize the
neglect of van der Waals interactions between the QM
and the embedding.

(c) QM/MM calculations with either a fixed point-charge
embedding (GAFF v1.5126) or a polarizable embedding
(AMOEBA). Here too the QM subsystem encompassed
only the solute, and all water molecules were described by
a classical force field. What is also different from (b) is that
van der Waals interactions between the solvent and solute
were included at the MM level of theory (Lennard-Jones
potential for GAFF embedding, Halgren’s 7-14 potential
(cf. (9)) for AMOEBA embedding).

(d) Fully MM calculations, where the entire system was
treated with classical MM (GAFF or AMOEBA).

All QM calculations were performed using the 
linear-scaling package. Since our QM/MM approach does
not currently support optimizing the NGWFs in situ,
we used a fixed minimal NGWF basis pre-optimized in
vacuum, and only optimized the density kernel K. Open
boundary conditions were imposed by using direct Coulombic
summation (5) for EQM

core-core, and through the use of the cut-
off Coulomb127 technique in the calculation of electronic
interactions. The kinetic energy cutoffwas set to 1000 eV. The
PBE128 exchange-correlation functional was used. Empirical
dispersion correction in the formulation of Elstner,95 with
parameters determined by Hill and Skylaris86 was employed to
correct the deficiencies of GGA DFT description of dispersion
interactions.

All MM calculations were performed with ’s
analyze program. Open boundary conditions were used, with
an infinite cutoff for all interactions. Induced dipoles were
converged to a tight rms threshold of 10−11 D in order to make
the residual (A7) negligible.

QM/MM calculations used the above settings for the
QM and MM subsystems, respectively. QM/MM coupling
was effected through the use of the - interface,
 (cf. Sec. II F), that has been implemented as part of this
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work. In QM/polarizable-MM calculations the QM∗ expansion
(cf. Sec. II D 1) was truncated after quadrupoles. In fixed
point charge QM/MM calculations and in QM calculations
with fixed point-charge embedding we used partial charges
of 0.417 e for H atoms and −0.834 e for O atoms, which
are identical to the TIP3P129 model used in GAFF. In this
case the QM∗ expansion was limited to atom-centered charges
only—in the absence of polarization, the QM∗ representation
is only of relevance to the tests of the refined model described
in Sec. III B 3, and in Fig. 6, curve (b) in particular.

2. Initial results

We first focus on one of the molecules, (–)-menthol, to
illustrate in detail how the accuracy of MM, QM, and QM/MM
approaches compares when no adjustments are made to any
of the models, and to elaborate on the metrics we used for
judging accuracy.

Figure 4 shows the binding energy between the
(–)-menthol molecule and the molecules of the solvent. By
the time the water shell comprises 130 H2O molecules, the
reference QM energy is converged to within 1 kcal/mol of
the value obtained for the largest shell. The purely classical
AMOEBA results closely track the QM trend, consistently
underbinding by as little as 2 kcal/mol for the larger systems.
GAFF’s predictions are not as accurate, with the error
accumulating quickly in the short range and plateauing at
about 10 kcal/mol by the time 50 H2O molecules are reached.

The behaviors of the studied approaches are easier to
interpret if we adopt the QM results as a baseline, and
examine errors in the binding energy, understood as energy
differences from the reference. To this effect we replot the same
data in Figure 5, immediately re-establishing that AMOEBA’s
predictions are very good for all system sizes, and that GAFF’s
long-range behavior is correct, but its predictions are plagued
by short-range error.

FIG. 4. Binding energy between the solute ((–)-menthol) and increasing
shells of H2O molecules—comparison between the reference DFT calculation
(black, +), QM with purely electrostatic point charge electrostatic embedding
(red, �), QM/MM with GAFF (orange, ×), QM/MM with AMOEBA (blue,
�), and purely MM calculations with GAFF (grey, �) and AMOEBA (green,
◦). Dashed lines denote a margin of ±1 kcal/mol from the converged QM
result.

FIG. 5. Error (difference with respect to pure QM calculation) in the binding
energy between (–)-menthol and increasing shells of H2O. Color-coding
follows that of Fig. 4.

We now examine the predictions of QM/MM models
and the of the purely electrostatic embedding approach.
Electrostatic (point-charge) embedding severely underbinds
the system by accumulating as much as 20.5 kcal/mol of error
in the short- and medium-range. To a large extent this is an
expected consequence of not taking solute-solvent (QM/MM)
van der Waals interactions into account. Since the partial
charges used in calculations with electrostatic embedding and
QM/MM with GAFF are identical, and the van der Waals
contribution in the latter is calculated classically and so
does not affect the electronic degrees of freedom, the entire
difference between electrostatic embedding and QM/MM with
GAFF is due to missing van der Waals interactions. Here these
interactions are strongly attractive and their neglect accounts
for the majority (12.5 kcal/mol) of electrostatic embedding’s
error (cf. Fig. 5(a)). The remaining error is the same as the
error in QM/MM with GAFF and amounts to about 8 kcal/mol
in the long range (cf. Fig. 5(b)).

In the calculation of binding energies, all intra-MM terms
(valence, van der Waals, and electrostatic) cancel out between
the solute-solvent “complex” and the solvent-only calculation.
The classical intra-QM dispersion correction similarly cancels
out between calculations on the complex and on the solute. The
only remaining energy terms are QM/MM electrostatic and
van der Waals terms, and intra-QM electronic energies (i.e., the
polarization response of the solute). Of these three, only
point-charge electrostatic interactions are long-ranged, and
the behavior of the QM/MM GAFF curve—which becomes
almost flat beyond 100 H2O molecules—suggests that in this
case the point-charge description is sufficient at long range.
We will later demonstrate that this is no longer the case for
charged solutes. Here, however, the errors in both MM GAFF
and QM/MM with GAFF are already accumulated (to values
of ∼10 kcal/mol and ∼8 kcal/mol, respectively) by the time the
solvent shell comprises ∼60 H2O molecules—a regime where
the mean distance between a solute atom and a solvent atom
is 6.8 Å. This indicates the unsurprising breakdown of the
fixed point charge description, and/or GAFF’s van der Waals
model, at short range, where AMOEBA’s polarizable model
is seen to cope very well. The curves obtained from MM with
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GAFF and QM/MM with GAFF have very similar shapes,
differing mostly by an almost constant offset of 2.5 kcal/mol.
This implies that the majority of the error (the remaining
∼8 kcal/mol) is due to a short-range deficiency in the shared
components of the two models, i.e., in GAFF’s treatment of
solute-solvent vdW interactions and the limitations of point-
charge description—rather than any serious deficiency of the
QM/MM interface. Aida et al. reached similar conclusions
for solute-solvent interactions with their QM/MM-pol-vib
model.37

The opposite is true for the QM/MM with AMOEBA
model proposed in this work. A comparison of the QM/MM
with AMOEBA curve with the MM AMOEBA curve reveals
that their shapes differ significantly only at short range (up
to ∼40 H2O molecules), where the QM/MM calculation
already underbinds by 8.5 kcal/mol (cf. Fig. 5(c)) compared
to MM AMOEBA. From this point on the offset between
the two curves remains practically constant, indicating almost
identical, correct medium-, and long-range behavior. Given
that at short range the purely MM AMOEBA description is in
remarkable agreement with the DFT result (cf. Fig. 5(d)), we
must conclude that in this case the QM/MM interface itself
is responsible for most of the error by which our QM/MM
scheme underbinds (–)-menthol.

3. Model refinement

We will now elucidate the sources of this error, and
propose a simple measure to remediate the problem. The main
differences between the treatment of interactions in QM/MM
with AMOEBA and MM with AMOEBA are the following:

(a) Quantum-mechanical treatment of the QM subsystem.
(b) Absence of QM-side charge penetration error in the

treatment of QM/permanent-MM electrostatics (cf. (40)).
(c) Inclusion of polarization contributions in nQM (r) appear-

ing in (40) in the interaction of QM with permanent
MM multipoles. The entire QM contribution is thus
not damped, whereas it would be more consistent
with AMOEBA methodology to separate this term
into a permanent part (nQM

vac (r)) and an induced part
(nQM (r) − nQM

vac (r)), damping the latter.

Of these three differences, the first two are, of course,
desired features of the model, introduced to improve upon the
MM description. The last one is an unwelcome simplification
resulting from the desire to avoid dealing with induced partial
charges and induced quadrupoles in the QM∗ representation,
as these would not be directly compatible with the AMOEBA
model, and having to perform a separate QM calculation in
vacuum.

Regardless of their origin, each of these changes affects
the behavior of electrostatic interactions in the system, with no
corresponding change in the repulsive part of van der Waals
interactions that AMOEBA leverages to balance strongly
attractive electrostatics at short range. Similarly, since our
approach changes the description of permanent interactions,
while retaining AMOEBA’s damped multipolar scheme for
polarization, we potentially disrupt the balance between
permanent and induction interactions. That is to say, even

when the description of electrostatics is improved, e.g., by the
elimination of charge penetration error on the QM side, the
balance between electrostatics and van der Waals interactions
can easily become disrupted, necessitating adjustments to
parametrization or functional forms for interactions crossing
the QM/MM interface. Similar conclusions have been
reached independently by Aida, Yamataka, and Dupuis.37

Carnimeo et al.55 have also found it necessary to adjust van
der Waals parameters in the QM/MM interface. Ultimately,
the classical description of van der Waals interactions, with
its inherent neglect of the coupling to an atom’s local
electronic structure,130 may altogether prove unsatisfactory
for describing QM/MM interactions. More refined models,
where van der Waals parameters could be made density-
dependent through atomic volumes,131 or where exchange and
dispersion energies are made charge-dependent in a many-
body formulation130 might alleviate this issue in the long term.

We now lay out a very simple two-step remediation
measure that we find to be sufficient to obtain reasonable
accuracy for both neutral and charged solutes.

In the first step we resign ourselves to approximately rein-
troducing charge penetration error (CPE) into QM/permanent-
MM interactions in the hope of restoring some of the balance
between electrostatics and the repulsive van der Waals term.
We achieve that by “correcting” the converged total energy
—removing the CPE-mitigated interaction (40) and replacing
it with the CPE-afflicted interaction energy of QM∗ with the
permanent MM multipoles, as calculated by . This
is not equivalent to reintroducing the entirety of CPE—we
emphasize that the QM density is still optimized under the
original CPE-mitigated Hamiltonian, and the “correction” is
done a posteriori. Furthermore, the CPE-mitigated interaction
only accounted for charge penetration on the QM side, with
the MM subsystem still represented by point multipoles.
Nevertheless, this improves the agreement of our model with
the QM reference (cf. Fig. 6, (a)), not only for (–)-menthol,
but for all six studied molecules. Interestingly, analogous

FIG. 6. Two-step remediation measure aimed at restoring the balance
between electrostatics and van der Waals interactions in QM/MM with
AMOEBA. Step 1: QM-side charge penetration error (CPE) is reintroduced.
Step 2: A single parameter is adjusted in the buffer of the Halgren 7-14
potential to uniformly reduce the steepness of the repulsive wall at very short
distances.
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reintroduction of CPE into QM/MM with GAFF leads to
marked worsening of obtained binding energies, again for
all six molecules (shown for (–)-menthol in Fig. 6, (b)). It
remains to be determined whether the difference in behaviors
is due to the multipolar nature of AMOEBA, the fact that it
is a polarizable model (and thus has to balance permanent
electrostatics and polarization), or the fact that its balance
between electrostatics and van der Waals interactions is
perhaps somewhat more fragile. Intuitively we would expect
switching back to the multipolar description to bring the
QM/MM description closer to the MM model, and this is
indeed what happens—binding becomes stronger in QM/MM
with AMOEBA (compare Fig. 6, (a) with Fig. 5, blue and
green curves), and weaker in the case of QM/MM with GAFF
(compare Fig. 6, (b) with Fig. 5, orange and grey curves). A
detailed study of the electrostatics of our model, supported
by energy decomposition analysis, will be the subject of a
future communication. In the following we will of course
not include this detrimental adjustment in the results obtained
with QM/MM with GAFF.

The second step of our refinement consists of a simple
adjustment of the steepness of the repulsive wall in the buffered
7-14 van der Waals potential (9) used in AMOEBA. We stress
that this is only done for interactions crossing the QM/MM
interface. Moreover, this adjustment does not involve any
changes to the position or value of the minimum of the
potential, and is independent of chemical species. That is, we
keep using the original parametrization of AMOEBA, only
applying a uniform a posteriori adjustment to the shape of
the repulsive wall. Our change amounts in replacing the value
of δ = 0.07 in (9) with δ = 0.21, which achieves the effect
illustrated in Fig. 7. This adjustment is done with the aim of
attenuating a small number of severely repulsive van der Waals
interaction pairs corresponding to a scenario where a QM atom
and an MM atom are drawn close together by very favorable
electrostatic interactions, as is the case for hydrogen bonds
crossing the QM/MM interface. In AMOEBA the energetics
of such pairs relies on a delicate balance between strongly
attractive electrostatic interactions and strongly repulsive
van der Waals interactions. This balance, disrupted by the
differences in the treatment of electrostatics in our QM/MM
model, can be restored, to a large degree, by attenuating

FIG. 7. Adjustment to the slope of the repulsive wall in the Halgren potential
achieved by using δ = 0.21 in lieu of δ = 0.07 in (9). The x axis minimum
in both plots (∼0.593) corresponds to the minimum dimensionless distance
encountered in the (–)-menthol-H2O test case, highlighting how large the
repulsive interactions can occasionally become in AMOEBA. At this zoom
level the attractive part can hardly be seen—in the interest of clarity the inset
shows the same potential with more familiar axis ranges.

only the most excessive van der Waals interactions. The
significant improvement to the short-range behavior of our
QM/MM model resulting from this simple adjustment can be
seen in Fig. 6, (c). Each of the remaining solutes, with the
sole exception of NH+4 , benefits from this final adjustment
to our model. We point out that a similar adjustment is
neither possible, nor necessary for QM/MM with GAFF. This
is because the Lennard-Jones potential does not offer the
flexibility of the buffered 7-14 potential, and, respectively,
because in GAFF the balance in question can be more robust
owing to the absence of polarization. The choice of δ = 0.21
minimises the extremely short range error (best examined,
for the (–)-menthol test case, by comparing curves (a) and
(c) in Fig. 6) across the six tested molecules, while ensuring
long-range behavior is not adversely affected—as excessive
changes to δ will gradually influence the attractive regime.

4. Final results

The performance of each of the approaches is compared
in Table I, where we report errors of each approach (with

TABLE I. Comparison of accuracy offered by fixed point charge (GAFF) and multipolar polarizable (AMOEBA) force-fields in MM calculations and QM/MM
calculations. The values shown are errors (kcal/mol) with respect to DFT reference calculations, averaged over systems with 200+ H2O molecules. RMSE: root
mean square error, MSE: mean signed error.

MM MM QM/MM QM/MM QM/MM QM/MM
Molecule GAFF AMOEBA point-charge GAFF AMOEBA (initial) AMOEBA (refined)

(–)-menthol 10.4 1.9 20.5 8.0 10.5 −1.3
diphenylhydramine 13.7 −0.1 41.3 14.9 15.3 2.8
2-Cl-4-OH-3,5-dimethoxy-BALD 4.7 −0.6 24.4 6.8 6.9 0.3
NH3 2.7 1.5 3.7 4.1 7.6 −1.8
NH+4 5.1 1.1 −5.0 4.5 1.2 −4.1
CN− −7.7 7.2 0.9 −1.8 18.2 2.9

RMSE 8.3 3.1 21.5 7.9 11.4 2.5

MSE 4.8 1.8 14.3 6.1 10.0 −0.2
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DFT results as baseline) obtained for the systems with the
largest numbers of solvent molecules. Error values were
averaged over systems with 200 or more H2O molecules to
give an idea of the feasibility of each approach in practical
scenarios, where the computational effort associated with
the MM embedding is small compared with the effort of
the QM calculation, permitting the use of large embedding
regions.

For each of the molecules, purely classical calculations
with AMOEBA are in significantly better agreement with

DFT than GAFF is, with CN− being the only solute that
is not captured to within 2 kcal/mol, presumably due to the
complex electronic structure of this ion (a σ-donor, π-acceptor
ligand). Calculations with point-charge embedding perform
very poorly due to their neglect of solute-solvent van der
Waals interactions. With the exception of NH+4 and NH3, these
interactions are attractive, which means their neglect leads
to consistent underbinding, which is particularly severe for
larger molecules—this is well evidenced in the large, positive
mean average error (14.3 kcal/mol) plaguing this approach.

FIG. 8. Error in the solute-solvent interaction energy with increasing number of H2O molecules surrounding the solute with reference to DFT calculation—with
fixed point charge embedding (red, �), with GAFF embedding (orange, ×), with AMOEBA embedding (blue, �), and in purely MM calculations with GAFF
(grey, �) and AMOEBA (green, ◦). In QM/MM calculations only the solute is included in the QM subsystem.
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The inclusion of van der Waals interactions at the GAFF
level of theory (QM/MM with GAFF embedding) improves
accuracy, but only to a level that is on par with purely
MM GAFF calculations. As pointed out earlier, we believe
the errors here are mostly attributable to the fixed point
charge description, rather than to an unbalanced QM/MM
interface.

Initial results obtained with QM/MM with AMOEBA
indicate that the QM/MM interface becomes unbalanced by
the mitigation of charge penetration error and other changes
that our model applies to the treatment of electrostatics.
As a result, the initial model consistently underbinds due
to strongly repulsive van der Waals terms that are no
longer sufficiently balanced by strong electrostatic attraction.
This effect manifests most significantly for hydrogen bonds
crossing the QM/MM interface. Once the model is adjusted
by re-introducing some of the charge penetration error and
softening the repulsive wall of the buffered 7-14 potential, we
observe a dramatic improvement. While our refined model
cannot yet boast chemical accuracy, its rms error is the lowest
of all the studied approaches, and the very low mean average
error (−0.2 kcal/mol) is a good indication of a well-balanced
approach. Given that in this work only the solute molecules
are treated at the DFT level of theory, we consider achieving
an rms error 2.5 kcal/mol against full DFT calculations on
1000+ atoms a success.

Full binding energy error curves illustrating how the
studied approaches compare at all system sizes are shown in
Fig. 8. For QM/MM with AMOEBA only the results obtained
with the refined model are shown for clarity. The conclusions
we have reached using (–)-menthol as a test case are seen to
be generally applicable to the remaining molecules. Below
we briefly comment on a number of differences observed for
particular molecules.

Earlier we used the similarity in the trends between
QM/MM with GAFF and MM GAFF and to argue that
the majority of the error in both approaches is likely due
to a shared component of the models (GAFF’s description
of solute-solvent interactions). If so, we would expect the
short-range part of the two curves to differ more for solutes
that are more difficult to describe with a pure MM description
(where the difference between the QM and MM treatments of
the solute would be highlighted). This is indeed the case for
2-chloro-4-hydroxy-3,5-dimethoxybenzaldehyde.

For (–)-menthol we reasoned about good long-range
behavior of MM GAFF from the flat shape of the energy error
curve at long range. We point out that this is no longer the case
for charged solutes, for which the fixed-point charge model is
clearly insufficient. This is evidenced by large oscillations in
the MM GAFF, QM/MM with GAFF and QM with point
charge embedding curves for NH+4 and CN−. The same
curves are much flatter for MM AMOEBA and QM/MM
with AMOEBA, indicating that, as expected, polarization
of the solvent needs to be taken into account for charged
solutes.

Finally, we point out that the largest errors in our
QM/MM model also appear for charged solutes, and have
opposite signs for a cation and an anion. This suggests
directions for further refinement of the model through

improving the description of electrostatics, and polarization in
particular.

IV. CONCLUSIONS AND CLOSING REMARKS

We have presented an implementation of a QM/MM
approach in which the quantum subsystem described by DFT
is coupled to a classical subsystem described by the AMOEBA
polarizable force field. The two components mutually polarize
one another within a total energy minimization scheme
which achieves self-consistency for both the MM and
QM subsystems. We have derived an expression for the
Hamiltonian of the coupled QM/MM system, which we
minimize using gradient methods.

We describe the QM subsystem with the  linear-
scaling DFT program, which makes use of localized orbitals
expressed in a set of periodic sinc basis functions equivalent
to plane waves. We have interfaced  with the
 code, which is a prototypical implementation of
the AMOEBA force field, used in our model to describe
the MM subsystem. We have put great emphasis on
treating polarization interactions consistently between the MM
and QM subsystems, particularly with regard to damping,
which is a crucial mechanism in polarizable point dipole
approaches.

We have carried out tests to validate our method,
demonstrating the simultaneous optimization of the quantum
and classical degrees of freedom. We identified and remediated
the sources of inaccuracy in the QM/MM interface that
stem from a disruption of the balance between (improved)
electrostatics and van der Waals interactions.

This is a proof-of-principle implementation, as we
have not yet implemented the in situ optimization of the
local orbitals of . Despite this limitation, which we
plan to address in a future communication, our results
indicate that our approach offers superior convergence
and accuracy compared to conventional QM/MM methods.
Future work also will be devoted to investigating suitable
reparametrization of interactions crossing the QM/MM
interface, and refining the treatment of electrostatics in our
model.

SUPPLEMENTARY MATERIAL

See the supplementary material for the coordinates of
solvated test systems referred to in Figs. 2, 4–6, and 8.
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APPENDIX: POLARIZATION ENERGY
AND ITS DERIVATIVE WITH RESPECT
TO THE DENSITY KERNEL
1. Polarization in an isolated MM system

We start from the expression for the polarization energy
of a set of point dipoles as formulated by Simmonett et al.100

(eq. 9), which we rewrite using explicit summations over NMM
polarizable dipole sites

EMM
pol =

1
2

NMM
L

NMM
M

µᵀLTLMµM −
NMM
L

EᵀLµL, (A1)

where EL is the direct electric field at site L, µL is the dipole
induced at site L in response to the total (direct and mutual)
electric field, and TLM is a 3 × 3 coupling tensor between
sites L and M ,

TLM =



−T d-d
LM, L , M

α−1
L I, L = M

. (A2)

T
d-d
LM is the Thole-damped, Cartesian dipole-dipole interaction

tensor (dipole field tensor) between induced dipoles at sites L
and M (cf. (28)). Authors preferring the block matrix notation
refer to the 3N × 3N block matrix T = [TLM] describing
the entire system as the coupling tensor100 or the relay
matrix.106

Inserting (A2) into (A1) yields

EMM
pol =

1
2

NMM
L

µᵀL
*.
,

µL

αL
−

NMM
M,L

T
d-d
LMµM

+/
-
−

NMM
L

EᵀLµL (A3)

=
1
2

NMM
L

µᵀLµL

αL
− 1

2

NMM
L

NMM
M,L

µᵀLT
d-d
LMµM

−
NMM
L

EᵀLµL. (A4)

We identify the three terms in (A4) as: the work cost of
assembling the set of dipoles, the mutual interaction energy of
induced dipoles, and the interaction of induced dipoles with
the direct field.

By expressing the direct field as a difference between the
total field and the mutual field

EL =
µL

αL
−

NMM
M,L

T
d-d
LMµM, (A5)

we can rewrite (A3) simply as

EMM
pol = −

1
2

NMM
L

µᵀLEL, (A6)

which is the same as the result given in Ref. 72, eq. 5.
In the standard AMOEBA formulation the induced

dipoles µL are determined through an iterative proce-
dure, with the zero residual condition satisfied at self-
consistency100

∀L
dEMM

pol

dµL

= 0. (A7)

2. Gradients of the auxiliary representation
QM∗ with respect to the density kernel

Here we finalize the derivation presented in Sec. II E,
where we sought to calculate the gradient of the polarization
energy with respect to the density kernel. We continue
from Sec. II E, where the components that remain to be
derived are the derivatives of Cartesian traceless multipole

moments with respect to the density kernel,
∂q

QM∗
I

∂Kηθ ,
∂QQM∗

I

∂Kηθ , and
∂µQM∗

I

∂Kηθ .
We begin by inserting (17) into (20) to obtain

Mlm(I) =

J

SI J,0


q


α∈I


β∈J

Kαβclmq
αβ Jlq

=

J

SI J,0


α∈I


β∈J

Kαβdlm
αβ, (A8)

where

dlm
αβ =


q

clmq
αβ Jlq. (A9)

The shortcut notation α ∈ I used in (A8) is understood as
“NGWFs α belonging to atom I.” Since dlm

αβ are independent
of the density kernel, it follows from (A8) that

∂Mlm(I)
∂Kηθ

=

J

SI J,0


α∈I


β∈J

δαηδβθdlm
αβ

=



dlm
ηθ η ∈ I ∧ θ ∈ J : SI J , 0

0 otherwise
. (A10)

This means that a multipole at a QM atomic site I
only has non-vanishing derivatives with respect to density
kernel elements coupling NGWFs on atom I to NGWFs
on its neighbors J. By neighbors we mean atoms J
(including J = I), whose overlap with I is non-zero,
SI J , 0.

With this in place, the only operation left is the
conversion between spherical multipoles and Cartesian
traceless multipoles

∂qQM∗

I

∂Kηθ
= d00

ηθ, (A11)

∂µQM∗

I

∂Kηθ
=

(
d11
ηθ,d

1−1
ηθ ,d10

ηθ

)ᵀ
, (A12)

 26 February 2024 09:55:44
D

o
w

nl
o

ad
ed

 f
ro

m
 m

o
st

w
ie

d
zy

.p
l

http://mostwiedzy.pl


124106-18 Dziedzic et al. J. Chem. Phys. 145, 124106 (2016)

∂QQM∗

I

∂Kηθ
=

*.........
,

√
3

2
d22
ηθ −

1
2

d20
ηθ

√
3

2
d2−2
ηθ

√
3

2
d21
ηθ√

3
2

d2−2
ηθ −d20

ηθ −
√

3
2

d22
ηθ +

1
2

d20
ηθ

√
3

2
d2−1
ηθ√

3
2

d21
ηθ

√
3

2
d2−1
ηθ d20

ηθ

+/////////
-

. (A13)

3. Charge scaling

In Sec. II D 2 we briefly mentioned that the total charge
obtained from the DMA procedure is not constrained to be
an integer, and typically needs to be scaled to match the
number of valence electrons. This is achieved by replacing
all electronic monopoles qQM∗

I with q̃QM∗

I = λqQM∗

I , where λ
is the ratio between the expected valence charge and the total
charge obtained from DMA, i.e.,

λ =
TrKS
I ′

qQM∗

I ′

. (A14)

The scaling is very modest, with typical values of λ ∈
(0.9995,1.0005). Nevertheless, this additional dependence
on K needs to be taken into account in the gradients. To this
effect we correspondingly replace (A11) with

∂q̃QM∗

I

∂Kηθ
=

∂qQM∗

I

∂Kηθ
λ + qQM∗

I

∂λ

∂Kηθ

= d00
ηθλ + qQM∗

I

∂

∂Kηθ

TrKS
I ′

qQM∗

I ′

(A15)

= λ
qQM∗

I Sθη + d00
ηθ

(
TrKS − qQM∗

I λ
)

TrKS
, (A16)

where we used

∂

∂Kηθ
TrKS = Sθη. (A17)
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