
0018-926X (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Abstract—Assessing the immunity of antenna design to 
fabrication tolerances is an important consideration, especially 
when the manufacturing process has not been predetermined. At 
the same time, the antenna parameter tuning should be oriented 
toward improving the performance figures pertinent to both 
electrical (e.g., input matching) and field properties (e.g., axial 
ratio bandwidth) as much as possible. Identification of available 
trade-offs between the robustness and nominal performance can 
be realized through multi-objective optimization (MO), which is 
an intricate and computationally expensive task. This paper 
proposes a novel technique for fast tolerance-aware MO of 
antenna structures. The key component of the presented 
methodology is a feature-based regression surrogate, established 
based on the characteristic points of antenna responses extracted 
from its electromagnetic (EM)-simulation data, and employed for 
a rapid estimation of the maximum allowed input tolerance levels 
for given values of performance parameters of interest. 
Subsequent trade-off designs are generated by tuning the antenna 
parameters for various assumed values of relevant figures of 
interest (e.g., the operating bandwidth). As demonstrated using 
three microstrip antennas, a rendition of performance-robustness 
trade-off designs can be accomplished at the cost of just about 
forty (for six-parameter antenna) to about eighty (for fourteen-
parameter antenna) per design EM analyses of the respective 
structure. Reliability of the approach is validated through direct 
EM-driven Monte Carlo analysis at the selected designs.  

Index Terms— Antenna optimization; multi-objective design; 
fabrication tolerances; EM-driven design; surrogate modeling; 
response features. 

I. INTRODUCTION

ntenna manufacturing processes inherently suffer from a 
limited accuracy, and there is a direct relation between the 

achievable level of tolerances pertaining to geometry 
parameters and the fabrication costs. Appropriate assessment of 
design sensitivity to parameter deviations is therefore an 
important part of the antenna development process. At the same 
time, the best system performance—as understood traditionally 
(i.e., ensuring desirable levels of electrical and field parameters 
such as bandwidth, gain, axial ratio, etc.)—may not correspond 
to the maximum immunity to tolerances [1]. The robustness is 
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 also essential for devices subjected to epistemic (or systematic) 
uncertainties [2], e.g., varying environmental conditions 
(temperature, humidity), mechanical deformations (bending), 
or lack of precise knowledge about the material parameters 
(e.g., substrate permittivity). All of these may affect the system 
performance in an undesirable manner [3]. To ensure up-to-
standard operation, sufficient safety margins are always 
necessary. Having in mind the aforementioned factors, 
including the manufacturing expenses, practically attractive 
designs are often sub-optimal in terms of performance, yet 
exhibit a sufficient level of robustness that allows for 
accommodating both statistical and systematic uncertainties.  

From the perspective of practical design, the improvement of 
antenna performance is most often realized using numerical 
optimization methods [4]-[8]. For reliability reasons, it is 
normally carried out using full-wave electromagnetic (EM) 
simulation models. The associated computational cost is 
perhaps its most serious challenge, especially in the case of 
global search methods [9], nowadays primarily involving 
nature-inspired metaheuristic procedures [10]-[14]. If the 
fabrication tolerances are to be accounted for as well, in 
particular, an identification of performance-robustness trade-
offs is required, the design problem becomes inherently multi-
objective [15]. Multi-objective optimization (MO) is a 
numerically demanding process. In the case of EM-driven MO, 
the difficulties related to excessive computational overhead can 
be alleviated using surrogate modeling techniques [16], [17], 
where most of the operations are executed at the level of a fast 
replacement model (the surrogate). The latter can be either 
based on approximating samples EM simulation data (kriging 
[18], Gaussian process regression, GPR [19], support-vector 
machines [20], performance-driven surrogates [21], [22]) or 
physics-based (space mapping [23], sequential domain 
patching [24], Pareto-ranking-based bisection [25]). In practice, 
the surrogate is often iteratively refined using the high-fidelity 
data accumulated in the course of the optimization process [26], 
[27]. It is also possible to combine data-driven and physics-
based surrogates to improve computational efficiency of the 
MO process, as suggested in [28]. Therein, kriging interpolation 
models rendered at the level of low-fidelity EM simulations  
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have been corrected using space mapping and sparse high-
fidelity EM data. 

Accounting for tolerances requires quantification of the 
uncertainties [29]. For high-frequency structures, the most 
popular statistical performance metric is the yield [30], whereas 
robust design methods are concerned with yield maximization 
[31], [32], i.e., the increasing the likelihood of the system 
satisfying given performance requirements under the assumed 
probability distribution of the manufacturing tolerances and 
other relevant parameter and/or material deviations [33]. An 
alternative approach is seeking for the maximum level of input 
parameter deviations, for which the output tolerances are within 
acceptable limits (cf. maximum input tolerance hypervolume, 
MITH [34]). In any case, the estimation of statistical figures of 
merit is a computationally expensive task when using 
traditional methods. For example, direct EM-driven Monte 
Carlo (MC) simulation is most often prohibitive. Consequently, 
statistical analysis and robust design of antenna and microwave 
components is typically conducted with the aid of surrogate 
modeling methods [35]-[37]. A notable example is polynomial 
chaos expansion (PCE) [38], [39], which allows for evaluating 
statistical moments of the system outputs based on the PCE 
expansion coefficient, without the necessity of running MC. In 
[40], a technique exploiting polynomial chaos–Kriging (PC-
Kriging) modeling method for fast yield estimation of multi-
band antennas has been reported. The underlying concept is to 
replace the conventional polynomial-based trend functions by 
PCE, which brings additional computational savings as 
compared to ordinary kriging. Another option is to employ 
performance-driven modeling concept for cost-efficient yield 
optimization of antennas, as proposed in [41], where the 
surrogate domain is only extended towards important directions 
of the parameters space (those having more significant impact 
on the statistical figures of merit). As a result, a single surrogate 
constructed with a small training data set can be used, rather 
than a sequence of models rendered in consecutive domains 
relocated along the yield optimization path. 

Few methods for multi-objective design of antenna structures 
with tolerance analysis have been reported in the literature. In 
[42], kriging surrogate models were used for robust MO of 
electromagnetic devices, with worst-case analysis conducted 
for Pareto-optimal designs identified using particle swarm 
optimization (PSO). In [34], the authors carry out multi-
objective design of antenna components and antenna arrays 
with MITH evaluated using machine learning approach with the 
underlying surrogate constructed using GPR [43]. The 
approach proposed in [44] is perhaps the only technique where 
the input tolerance hypervolume is explicitly handled as one of 
the design objectives. Therein, three competing modeling 
methods are applied (polynomial regression, kriging, and GPR) 
to accelerate the MO process realized using the non-dominated 
sorting genetic algorithm (NSGA) [45]. The procedure is 
successfully applied to a broadband Vivaldi antenna and a 
capacitively-loaded monopole antenna, both described by six 
geometry parameters.  

This paper proposes a novel surrogate-assisted procedure for 
rapid tolerance-aware multi-objective design of antenna 

components. In our approach, maximization of the input 
tolerances that still ensure satisfaction of the prescribed design 
specifications is treated as an explicit design objective. Its 
assessment is aided by feature-based regression surrogates 
constructed using characteristic points of antenna responses 
extracted from EM simulation data. The performance-
robustness trade-off designs are generated iteratively through 
(local) tuning of antenna geometry parameters for different 
values of relevant figures of interest (e.g., the impedance 
bandwidth). The presented methodology is demonstrated using 
three microstrip antennas, including dual- and triple-band 
structures. The cost of the MO process is remarkably low, and 
corresponds to only a few dozens of EM analyses of the 
respective components. Reliability of the procedure is validated 
by means of direct EM-driven Monte Carlo analysis of the 
selected designs. The originality and the technical contribution 
of this work can be summarized as follows: (i) the development 
of a novel MO procedure with explicit treatment of acceptable 
input tolerance levels as design objective, (ii) incorporation of 
feature-based regression models for rapid and accurate 
assessment of statistical figures of merit of antenna design into 
the MO process, (iii) comprehensive (based on three antenna 
structures) demonstration of the efficacy of the presented 
algorithm and its low execution cost. The methodology 
introduced in this paper may become a useful tool for a fast 
rendition of alternative antenna designs representing possible 
trade-offs between nominal performance and immunity to 
manufacturing tolerances, thereby allowing the designer to 
select, e.g., a suitable fabrication process. Another application 
is to compare different designs with respect to their ability to 
satisfy the imposed performance requirement under the 
assumed parameter deviation levels. 

II. MULTI-OBJECTIVE ANTENNA PARAMETER TUNING: 
PERFORMANCE VERSUS ROBUSTNESS 

This section provides the details of the multi-objective design 
procedure with tolerance analysis, proposed in the work. We 
start by formulating the design task (Section II.A), followed by 
uncertainty quantification approach involving response feature 
surrogates (Section II.B), as well as the outline of the iterative 
procedure for generating optimum trade-off designs between 
nominal performance of the antenna of interest and its 
robustness (Section II.C). The latter is measured by the 
maximum level of input tolerances, for which satisfaction of the 
assumed design specification is still ensured. The entire 
optimization framework is summarized in Section II.D and 
further explained by means of a flow diagram. 

A. Problem Statement 

Let R(x) denote the EM-simulated responses of the antenna 
at hand with x = [x1 … xn]T being a vector of adjustable 
(geometry) parameters. In specific instances, the responses of 
interest might be reflection S11(x,f), axial ratio AR(x,f), or gain 
characteristics G(x,f); in all these cases, explicit dependence on 
frequency f has been marked. Let Fp (x) be a scalar function 
representing the (target) nominal performance for the antenna, 
i.e., assuming no fabrication tolerances or other types of 
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uncertainties. In this work, for the purpose of formulating and 
demonstrating the proposed approach, the figures of interest 
will be based on the target operating bandwidths.  

Let us assume that f0k, k = 1, …, N, are the intended operating 
frequencies, and Bk be the target bandwidths over which the 
particular parameter P(x,f) should not exceed the acceptance 
threshold Pmax. Given the target operating frequencies and 
bandwidths, the performance requirements are satisfied if 

  0 0 max1
max , : | ( , ) |

N

k k k kk
f f B f B P f P


   x   (1) 

Here, again, f stands for frequency. In the case of antenna input 
characteristics, we would have P(x,f) = |S11(x,f)|, and, typically, 
the maximum acceptable level is set to be Pmax = S11.max = –10 
dB. If the goal is to ensure a specific axial ratio bandwidth, we 
have P(x,f) = AR(x,f), and the maximum acceptable level is 
normally set as Pmax = ARmax = 3 dB. 

Now, if the design problem is formulated to obtain the best 
possible levels of the performance parameter P over the target 
bandwidths, then the best nominal design (here, denoted as xp) 
can be obtained as 

 0 01
argmin{max{ , : ( , )}}


   Np

k k k kk
f f B f B P f

x
x x  (2) 

In practice, we might set B1(x) = … = BN(x) = B(x) (equal 
absolute bandwidth requirement), or B1(x)/f01 = ... = BN(x)/f0N = 
BF(x) (equal fractional bandwidth requirement), and minimize 
P(x,f) according to (2). Within this formulation, the target 
nominal antenna performance Fp(x) will simply equal Pmax. 

In the following, let Fr(x) be a scalar function representing 
the antenna robustness, calculated using a statistical figure 
merit of choice. As mentioned in the introduction, this could be 
the fabrication yield estimated for the assumed probability 
distribution describing the parameter deviations, or the measure 
of maximum input tolerances (e.g., the tolerance hypervolume 
[34]) for which the performance requirements are still satisfied. 
In this work, it is assumed that parameter deviations follow 
independent Gaussian distributions of zero mean and a 
(common across all parameters) variance . In this, case, we 
have Fr(x) = (x), where the dependence on the design x 
emphasizes the fact that the maximum allowed variance is a 
function of antenna parameters. The assumption of joint 
variance for independent Gaussian distributions, is tenable, as 
geometry parameter deviations are determined by the 
fabrication process such as chemical etching. Nevertheless, this 
supposition can be extended to virtually any given covariance 
matrix describing the relationships between the design 
variables, e.g., due to a particular spatial allocation of the 
parameters. In fact, replacing joint variance (which is, in fact, 
an identity covariance matrix) by arbitrary covariance matrix, 
has no effect on the relevance and operation of the presented 
methodology. The only change would be the necessity of 
employing a different optimization routine when evaluating the 
function Fr in (6). 

Using the notation discussed above, the tolerance-aware 
multi-objective antenna design task can be formulated as  

* arg min ( ) ( )p rF F   x
x x x                       (3) 

i.e., the goal is to simultaneously improve both the target 
nominal performance Fp(x) and the robustness Fr(x). Note that 

we put the minus sign in front of Fr in order to turn 
maximization of robustness into a minimization task for the 
sake of consistency with the treatment of Fp. Clearly, these two 
objectives are at least partially conflicting, in particular, 
imposing more demanding target nominal performance 
normally leads to a degradation of the robustness. Consider two 
specific designs, the best nominal design xp as discussed above, 
and the minimum acceptable performance design, here, denoted 
as xr, corresponding to the highest (worst) target value of Fp that 
can be accepted for a given application, or any other value of 
the designer’s choice (e.g., –10 dB in the case of reflection 
response, or 3 dB for the axial ratio response). Further, the 
design xr is obtained to maximize Fr given the aforementioned 
highest values of Fp. We have 
 Design xp. Because this design corresponds to be best 

possible performance according to the assumed requirements 
(e.g., the lowest in-band reflection of the antenna), it features 
the minimum robustness at the same time. In particular, we 
have zero fabrication yield, and zero levels of input 
tolerances ensuring the fulfilment of performance 
specifications. This is because any parameter deviation with 
respect to xp necessarily degrades Fp(x), which leads to 
violating the condition (1). In other words, the subset 
containing feasible designs with respect to the condition (1) 
is—assuming uniqueness of solution to (2)—a single-point 
set consisting of xp. 

 Design xr. As this design features the largest performance 
margin with respect to the best nominal design xp, it exhibits 
the largest robustness at the same time (recall, that xr was 
assumed to maximize Fr). This is because the feasible region 
for the highest considered value of Fp is the largest, and 
centering the design within it allows for maximization of the 
input tolerance levels, for which the performance 
specifications (as determined by Fp) can still be satisfied. 
The set of designs which are globally non-dominated in the 

Pareto sense [46] with respect to the objectives Fp and Fr form 
the Pareto front XP [46], representing the best possible trade-
offs between the nominal performance and the robustness. The 
span of the front is determined by the vectors xp and xr. In this 
work, our goal is to identify a discrete subset of XP, preferably 
distributed uniformly along the front. The proposed approach 
to accomplishing this aim has been described in Sections II.B 
through II.D. Figure 1 provides a conceptual illustration of the 
tolerance-aware multi-objective design problem formulation 

B. Uncertainty Quantification Using Response Features 

In this work, the robustness metric Fr(x) is defined as the 
maximum level of input tolerances, measured using the 
variance  of the zero-mean independent Gaussian probability 
distributions selected to characterize the statistical allocation of 
geometry parameter deviations. This is understood as the 
maximum  for which the fabrication yield retains at 100 
percent. The yield is defined as [47] 

( ) ( , )
fX

Y p d x y x y                               (4) 

where p(y, x) is a joint probability density function describing 
statistical variations of the design y with respect to the 
evaluation parameter vector x. The feasible space Xf contains 
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designs fulfilling the assumed performance specifications (here, 
those satisfying condition (1)). In practice, (4) can be 
approximately evaluated by means of Monte Carlo (MC) 
simulation as 

1 ( )

1
( ) ( )rN k

r k
Y N H


 x x                          (5) 

where x(k) = x + dx(k), k = 1, …, Nr, with deviation vectors dx(k) 
generated according to the density function p. Reliable 
evaluation of (5) requires a large number of random samples, 
thus, it is an expensive process when realized directly using EM 
simulations. In practice, yield estimation if often accelerated 
using surrogate modeling techniques, e.g., [35]-[39].  

Identification of Fr(x) = (x), the maximum input probability 
distribution variance ensuring 100-percent yield, is realized by 
solving 

 ( ) arg max ( , ) 1rF Y


  x x                      (6) 

In (6), the explicit dependence of the yield on  has been 
marked to emphasize the fact that this is the parameter 
determining the input tolerance levels, hence, the yield.  

In this paper, to ensure computational efficiency, numerical 
evaluation of (6) is based on feature-based regression models as 
elaborated on below. The response feature technique has been 
originally proposed in [48] to improve reliability and to 
accelerate local tuning of antenna geometry parameters. The 
underlying concept is to reformulate the design problem using 
characteristic (or feature) points, e.g., frequency and level 
coordinates of resonances, or frequencies corresponding to 
specific levels of gain or axial ratio responses, extracted from 
the EM-simulated antenna outputs. The definition of the feature 
points is problem dependent so that information carried therein 
is sufficient to evaluate the system performance [48]. At the 
same time, focusing on characteristic points allows for reducing 
the complexity as well as nonlinearity, as the functional 
relationship between the feature point coordinates and 
geometry parameters is usually weakly nonlinear. As a result, it 
is possible to obtain expedited convergence of the optimization 
process [49], global search capabilities even when using local 
algorithms [50], or reduce the number of training data points for 
surrogate model construction [51]. 

Figure 2 shows the examples of input characteristics of a 
triple band antenna with the feature points defined to 
correspond to –10 dB levels of |S11|. These points are sufficient 
to verify whether the operating bandwidths of the antenna 
adhere to given specifications (marked on the picture as thin 
lines). For other design situations, the required characteristic 
point setup might be different. 

Following the performance specification setup of (1), the 
feature vector at the design x, denoted as P(x) can be defined as 

1 2 2

1 2 2

( ) [ ( ) ( ) ... ( )]

[ ( ) ( ) ... ( )]

 



T
N

T
N

p p p

f f f

P x x x x

x x x
                 7) 

where f2k–1 and f2k are the frequencies corresponding to  
P(x,f2k–1) = P(x,f2k) = Pmax for the kth operating band of the 
antenna, k = 1, …, N. As mentioned before, these frequencies 
can be readily extracted from the EM-simulated antenna 
characteristics. Using P, condition (1) can be rewritten as  

2 1 0. 2 0.( ) , ( )k k k k k kp f B p f B    x x ,     k = 1, …, N   (8) 

|S11|

f

Target BW

-10 dB

FpFeasible 
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Best nominal design xp

(minimum robustness Fr)

Parameter space  
(a) 

|S11|

f

-10 dB
Fp

Target BW

(Output) tolerance 
margins
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Parameter space

Intermediate 
design

Input tolerance 
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(b) 

|S11|

f

Fp = -10 dB

Target BW

(Output) tolerance 
margins

Parameter space

Best robustness design xr

(maximum acceptable 
nominal performance Fp)

Feasible 
region

Input tolerance 
regions

 
(c) 

Fig. 1. Tolerance-aware multi-objective antenna design. Feasible region, shaded 
grey, contains designs satisfying performance requirements for a given value of 
Fp (note that the regions become larger with relaxing Fp). The right-hand-side plots 
illustrate exemplary antenna reflection responses versus target impedance 
bandwidth for different levels of target nominal performance threshold Fp: (a) for 
the best nominal design xp, assuming the uniqueness of solution to (2), the feasible 
region is a single-point set consisting of xp, therefore, the input tolerance level is 
zero; (b) for an intermediate design, the feasible region is larger and the most 
robust design is centred therein to maximize the input tolerance ranges ensuring 
performance requirements satisfaction; (c) for the best robustness design, 
corresponding the maximum acceptable level of Fp (e.g., –10 dB for antenna 
reflection), the input tolerance levels are the largest upon concluding the 
optimization process (cf. Section II.C). The family of designs obtained for 
different values of Fp form a Pareto set (performance vs. robustness trade-offs).  
 

Due to a weakly-nonlinear relationship between the feature 
points and antenna geometry parameters, it is possible to set up 
a simple (e.g., linear) feature-based regression surrogates 
whose predictive power is sufficient to estimate the design 
robustness. Here, to represent P(x) in the vicinity of the current 
design, say x(i), we use a linear model LP

(i)(x), defined as 
( )

0.1 1

( )
.1 .2

( )
0.2 2

( )

( ) [ ( ) ... ( )]

( )

T i

i T
P L L N

T i
N N

l

L p p

l

  
 

   
   

L x x

x x x

L x x

    (9) 

The model coefficients are determined using n + 1 training 
points xB

(j) and the corresponding feature vectors P(xB
(j)), j = 1, 

…, n+1, extracted from EM-simulated antenna characteristics 
at the respective points. The arrangement of training points is 
as follows: xB

(1) = x(i), and xB
(j) = x(i) + [0 … 0 d 0 … 0]T (d on 

the (j–1)th position). Here, we set d = 3, where  is the 
variance of the Gaussian probability distribution assumed for 
parameter deviation. 

The regression model can be identified analytically as  
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(a) 

 
(b) 

Fig. 2. Reflection characteristics of a triple-band antenna (—) and the response 
features corresponding to –10 dB |S11| levels (o). Exemplary exemplary design 
specifications shown using thin lines. The frequency coordinates of the feature 
points are sufficient to determine satisfaction/violation of performance 
requirements imposed on impedance matching, here for Pmax = –10 dB (cf. (1)): 
(a) design satisfying specifications, (b) design violating specifications. 
 

1 (1)(1) ( )

0.

( 1) ( ) ( 1)

( )1 ( )

1 ( ) ( )

i T
j BB

j

j n i T n
B j B

p
l

p



 

  
    

    
          

xx x

L
x x x

  ,      j = 1, …, 2N (10) 

The robustness-related objective Fr(x) defined by (6) is 
computed through numerical integration of (4) using the 
regression surrogate (9). As mentioned before, performance 
condition (1) is equivalent to (8), which allows for estimating 
the yield Y(x,) using a large number of random observables 
xr

(j), which are allocated using the assumed probability 
distribution characterized by the variance .  

The yield evaluation procedure works as follows: 
1. Input parameter: variance ; 
2. Generate random observables {xr

(j)}j = 1, …, Nr; 
3. Evaluate regression surrogate LP

(i)(xr
(j)) for j = 1, …, Nr; 

4. Evaluate (8) for all observables using predicted feature 
points pL.k(xr

(j)), j = 1, …, Nr; 
5. Estimate the yield Y(x,) as in (5). 
The function H in (5) is defined to be equal to one if (9) is 
satisfied, and zero otherwise. Using a large number of random 
samples allows for maintaining low yield estimation variance. 
To further accelerate the process, all steps in the above 
algorithm are vectorized (e.g., simultaneous evaluation of the 
regression model for all random samples is arranged as matrix 
multiplication due to the model being a linear function of its 
coefficients).  

Now, evaluation of Fr is realized by solving (6) using a 
golden ratio search procedure [52] because having a common 
variance  makes the problem a one-dimensional task. For other 
scenarios, e.g., probability distribution determined by multiple 
parameters (e.g., a given covariance matrix), other methods can 
be used such as gradient-based algorithms. 

C. Iterative Rendition of Pareto-Optimal Designs 

The tolerance-aware multi-objective optimization is carried 
out here as an iterative process leading to a discrete set of 
Pareto-optimal designs with respect to the performance and 
robustness objectives Fp and Fr, respectively, defined in Section 
II.A. The span of the Pareto front is determined by the best 
nominal design xp (cf. (2)), and the most robust design xr, 
corresponding to the maximum acceptable target level Pmax 

(e.g., –10 dB for input characteristics, or 3 dB for axial ratio 
responses). The aim is to generate NP trade-off designs, with the 
first one being x(1) = xp. The value of the nominal objective 
function (2) at this design, denoted as Pmax.1, is 

  max .1 0 01
max , : ( , )

N p
k k k kk

P f f B f B P f


    x  (11) 

Let us set Pmax.NP = Pmax (the maximum acceptable target 
level). The remaining NP – 1 trade-off designs x(j), j = 2, …, NP, 
will be generated for a sequence of target levels Pmax.j, j = 1, …, 
NP, allocated between Pmax.1 and Pmax.NP. In particular, equally-
spaced distribution of the target levels  

( )
max . max .1 max . max .1

1
( )

1P

j
p j N

P

j
F P P P P

N

      
x    (12) 

would result in equally-spaced Pareto set representation with 
respect to the nominal performance objective. 

The design x(j) is found by solving  
( ) arg min ( )j

rF
x

x x                          (13) 

with Pmax in (8) set to Pmax.j. In other words, the antenna is 
optimized for maximum robustness in the sense of (6), 
assuming that the target value therein is set to Pmax.j. 

The problem (13) is solved iteratively following the trust-
region (TR) principles [53]. At each iteration, a new 
approximation x(j.i+1) of the design x(j) is obtained as 

( . ) ( )

( . 1)

|| ||
arg min ( )

j i i

j i
r

d
F

 


x x
x x                     (14) 

The starting point x(j.0) is set to be x(j–1). The evaluation 
process of Fr(x) using feature-based surrogates has been 
described in detail in Section II.B. Note that the problem (14) is 
solved subject to a constraint ||x – x(j.i)||  d(i); the trust region 
size d(i) is modified according to the typical TR rules [53]. Upon 
rendering a new point x(j.i+1), the gain ratio is calculated as  

# ( . 1) ( . )

( . 1) ( . )

( ) ( )

( ) ( )

j i j i
r r

j i j i
r r

F F
r

F F









x x

x x
                      (15) 

The denominator of r determines the improvement of the 
robustness as predicted by the feature-based regression model. The 
numerator is computed using Fr

#, which is calculated in a similar 
manner as in Section II.B, but with the model LP

(j.i) replaced by the 
linear model LP

#(j.i). The model LP
#(j.i) is constructed as in (9), (10) 

but with the coefficient vector [l0.1 … l0.2N]T replaced by P(x(j.i+1)), 
the latter obtained from EM simulation results at x(j.i+1). The reason 
for using Fr

# rather than an updated surrogate LP
(j.i+1) is the  

computational efficiency: evaluation of the former requires only 
one EM analysis of the antenna at hand. The reliability of the 
assessment (15) is subject to the feature point gradients being 
relatively stable, i.e., not changing significantly between x(j.i) and 
x(j.i+1). This assumption normally holds because the distance 
between these two designs is comparable to , and—as mentioned 
before—the relationship between the feature point coordinates and 
antenna geometry parameters is weakly nonlinear. 

The acceptance of the vector x(j.i+1) is contingent upon r being 
positive. Otherwise, a new candidate design is obtained by 
repeating the iteration with a reduced size parameter d(i). The 
termination condition is based on the required resolution: we 
use the conditions ||x(i+1) – x(i)|| <   OR  d(i) < , with  = 10–3. 
Figure 3 provides a graphical illustration of trade-off design 
generation using the concepts proposed in this paper. 
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( ) arg min ( ), 1,...,j
r PF j N 

x
x x

subject to Fp(x)  Pmax.j0

 
Fig. 3. Conceptual illustration of sequential generation of performance-
robustness trade-off designs.  
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Fig. 4. Flow diagram of the proposed tolerance-aware multi-objective 
optimization algorithm using the feature-based regression surrogates and trust-
region parameter adjustment process. 

Ws

Wr

W0

L0

Lg

Wg

Wd

g
d

d

Ld

Lr

S

Ls

 
Fig. 5. Geometry of the dual-band dipole antenna with truncated substrate [54]. 
The light-gray shade marks the ground plane of the structure. 

D. Optimization Procedure 

Figure 4 shows the flow diagram of the proposed tolerance-
aware multi-objective optimization procedure. Having 
determined the operating parameters and the maximum 
acceptable performance level Pmax, the best nominal design xp 
is found, typically using local optimization. The performance 
objective value at this design Fp(xp) is used, along with Pmax and 
NP, to determine the target performance levels Pmax.j. The 
performance-robustness trade-off designs are then obtained 
iteratively by solving the problem (13) with appropriate values 
of target performance levels. 

III.  DEMONSTRATION EXAMPLES 

This section demonstrates the multi-objective design 
approach introduced in Section II using three examples of 
planar antennas, including two dual-band structures, and a 
quasi-Yagi antenna with an integrated balun. In all cases, the 
nominal performance function Fp(x) is defined by the 
maximum in-band reflection level of the respective antenna, 
with an additional requirement imposed for the quasi-Yagi 
structure, and related to the minimum realized gain at the centre 
frequency. The robustness objective function Fr(x) is defined as 
in (6), i.e., as the maximum variance of the probability 
distributions (describing the fabrication tolerances), for which 
100-percent yield can still be achieved. For each structure, 
several trade-off designs are generated using the proposed 
methodology, and validated by means of EM-driven Monte 
Carlo simulations. 

A. Example 1: Dual-Band Antenna with Truncated Substrate 

The first verification example is a dual-band dipole antenna 
with truncated substrate [54] shown in Fig. 5. The structure is 
implemented on RO4003 substrate (r = 3.38, h = 0.81 mm). 
The designable parameters are x = [Lrr d Ws Wd S Ld Lgr Wgr]T 
(all dimensions are in millimeters except those ending with 
subscript r, which are relative). Other parameters are: Wr = 5 
mm, Ls = 5 mm, L0 = 25 mm, W0 = 1.9 mm, Lr = Lrr((Ws – W0)/2 
– Wd – d), Lg = Lgr(L0 – Wg/2 + W0/2), Wg = WgrWs, and g = Wd. 
The computational model of the antenna is implemented in CST 
Microwave Studio and evaluated using the time-domain solver. 

The target operating bandwidths of this antenna are given by 
f01 = 3.5 GHz, f02 = 4.2 GHz, and B1 = B2 = 80 MHz (cf. Section 
2.1). Thus, we have 3.42 GHz to 3.58 GHz (lower band), and 
4.12 GHz to 4.28 GHz (upper band). The best nominal 
performance design xp = [0.91 1.45 48.01 3.66 1.80 4.97 1.00 
0.38]T corresponds to the maximum in-band reflection of Fp(xp) 
= –15.1 dB. The robustness objective Fr(xp) = 0 (cf. Section 
2.1). Five more trade-off designs have been obtained, 
corresponding to Pmax.2 = –14 dB, Pmax.3 = –13 dB, through 
Pmax.6 = –10 dB (the highest acceptable in-band reflection 
level). Table I gathers numerical data concerning the 
performance-robustness trade-off designs, whereas Fig. 6 
illustrates the corresponding Pareto set.  

Furthermore, Fig. 7 provides visualization of the EM-driven 
Monte Carlo (MC) simulation for selected designs. The purpose 
of running MC was to verify whether the fabrication yield is 
indeed 100 percent for a given pair {Fp(x(j)),Fr(x(j))}. According 
to the obtained results, it is typically between 98 and 100 
percent (design dependent). However, it should be emphasized 
that MC was executed using only 500 samples (to avoid 
excessive CPU expenses), therefore, the standard deviation of 
yield estimation is relatively high.  

It should also be mentioned that the proposed methodology 
is computationally efficient. The average cost of rendering one 
trade-off design is only about 62 EM simulations of the antenna 
structure. The primary acceleration factor is the incorporation 
of feature-based surrogates as described in Section II.B. 
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Fig. 6. Dual-band antenna of Fig. 5: performance-robustness trade-off designs 
obtained using the proposed procedure for multi-objective optimization with 
tolerances. The vertical line marks the maximum acceptable in-band reflection level.  
 
 

 
(a) 

 
(b) 

 
(c) 

Fig. 7. EM-driven Monte Carlo simulation for selected trade-off designs of 
Table I. Black line shows the antenna response at the given trade-off design: (a) 
design x(2), (b) design x(4), (c) design x(6), grey lines correspond to 500 random 
observables generated according to the assumed probability distribution with 
the variance equal to Fr. Thin lines denote design specifications.  
 

 
Fig. 8. Geometry of the dual-band uniplanar dipole antenna with coplanar 
waveguide feed [55].  
 

B. Example 2: Dual-Band Uniplanar Dipole Antenna  

Our second example is a dual-band uniplanar dipole antenna 
with coplanar waveguide feed [55] shown in Fig. 8. The 
structure is implemented on RF-35 substrate (r = 3.5, h = 0.76 
mm). The designable parameters are x = [l1 l2 l3 w1 w2 w3]T 
(dimensions mm). Other parameters are l0 = 30 mm, w0 = 3 mm, 
s0 = 0.15 mm, and o = 5 mm. The computational model of the 
antenna is implemented in CST Microwave Studio and 
evaluated using its time-domain solver. 

 

 
Fig. 9. Dual-band uniplanar antenna of Fig. 8: performance-robustness trade-
off designs obtained using the proposed procedure for multi-objective 
optimization with tolerances. The vertical line marks the maximum acceptable 
in-band reflection level. 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 10. EM-driven Monte Carlo simulation for selected trade-off designs of 
Table I. Black line shows the antenna response at the given trade-off design: (a) 
design x(2), (b) design x(5), (c) design x(7), grey lines correspond to 500 random 
observables generated according to the assumed probability distribution with 
the variance equal to Fr. Thin lines denote design specifications.  
 

The target operating bandwidths of this antenna are given by 
f01 = 3.0 GHz, f02 = 5.5 GHz, B1 = 60 MHz, and B2 = 110 MHz 
(cf. Section II.A). Thus, we have 2.94 GHz to 3.06 GHz (lower 
band), and 5.39 GHz to 5.61 GHz (upper band). The best 
nominal performance design xp = [30.37 11.51 19.28 0.41 2.31 
1.21]T corresponds to the maximum in-band reflection of Fp(xp) 
= –16.3 dB. For this structure, six additional trade-off designs 
have been generated, corresponding to Pmax.2 = –15 dB, Pmax.3 = 
–14 dB, through Pmax.7 = –10 dB (the highest acceptable in-band 
reflection level). The numerical data and visualization of the 
Pareto set are provided in Table II and Fig. 9, respectively. 
Visualization of the EM-based Monte Carlo simulation for 
selected trade-off designs has been shown in Fig. 10. Similarly 
as for the first example, the estimated yield is close to 100 
percent for all Pareto-optimal vectors x(j), which corroborates a 
good predictive power of the response feature surrogates. The 
average computational cost of generating the trade-off designs 
is only about 40 EM antenna analyses per point. 
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Fig. 11. Geometry of quasi-Yagi antenna with integrated balun [53]. Light-gray 
shade indicates ground-plane metallization. 

 

TABLE I  DUAL-BAND ANTENNA OF FIG. 5:  
RESULTS OF MULTI-OBJECTIVE DESIGN WITH TOLERANCES 

Design 
Objectives Geometry parameters [absolute in mm, relative unitless] 

Fp 
[dB] 

Fr  
[m] 

Lrr d Ws Wd S Ld Lgr Wgr 

x(1) = xr –15.1 0 0.91 1.45 48.01 3.66 1.80 4.97 1.00 0.38 

x(2) –14 25.9 0.92 1.42 47.99 3.62 1.78 4.93 1.00 0.38 
x(3) –13 35.0 0.92 1.40 47.99 3.65 1.80 4.95 1.00 0.38 

x(4) –12 57.5 0.92 1.34 47.98 3.72 2.01 4.68 0.99 0.39 
x(5) –11 73.5 0.92 1.24 47.87 3.65 2.32 4.58 0.99 0.38 

x(6) = xr –10 82.7 0.92 1.20 47.85 3.68 2.39 4.62 0.99 0.38 
 

TABLE II  DUAL-BAND UNIPLANAR ANTENNA OF FIG. 8:  
RESULTS OF MULTI-OBJECTIVE DESIGN WITH TOLERANCES 

Design 
Objectives Geometry parameters [mm] 

Fp [dB] Fr [m] l1 l2 l3 w1 w2 w3 

x(1) = xr –16.3 0 30.37 11.51 19.28 0.41 2.31 1.21 

x(2) –15 13.5 30.31 11.52 19.28 0.38 2.32 1.21 
x(3) –14 23.3 30.30 11.51 19.28 0.38 2.32 1.21 

x(4) –13 33.2 30.29 11.51 19.27 0.38 2.31 1.21 
x(5) –12 47.1 30.27 11.51 19.29 0.37 2.28 1.20 

x(6) –12 62.0 30.25 11.51 19.29 0.38 2.27 1.20 

x(7) = xr –10 78.9 30.23 11.52 19.31 0.38 2.26 1.19 

C. Example 3: Quasi-Yagi Antenna with Integrated Balun 

Our last example is a quasi-Yagi antenna with integrated 
balun [56] shown in Fig. 11. The antenna is implemented on 
RO4003 substrate (r = 3.38, h = 1.5 mm). The independent 
design parameters are x = [La Lb Lc Ld W wa Da Db Dc Dlr Drr Sr 
wbr wcr]T. The parameters with subscript r are relative. We have 
Dl = DlrLa, Dr = DrrLa, S = SrW, wb = wbrW/2, wc = wcrW, w0 = 
3.4 mm. The unit for the absolute dimensions is mm. The 
computational model of the antenna is implemented and 
simulated in CST Microwave Studio. 

The target operating bandwidth is given by f01 = 2.5 GHz and 
B1 = 50 MHz (cf. Section II.A). Thus, the bandwidth is 2.45 
GHz to 2.55 GHz. An additional condition is that the realized 
gain at 2.5 GHz is to be at least 7.9 (i.e., 8 dB with the tolerance 
of 0.1 dB). The best nominal performance design xp = [20.21 
12.33 16.47 26.09 52.06 1.83 1.02 4.39 4.26 0.37 0.44 0.98 0.71 
0.72]T corresponds to the maximum in-band reflection of Fp(xp) 
= –17.0 dB. In this case, seven additional trade-off designs have 
been generated, corresponding to Pmax.2 = –16 dB, Pmax.3 = –15 
dB, through Pmax.7 = –10 dB (the highest acceptable in-band 
reflection level).  

 
Fig. 12. Quasi-Yagi antenna of Fig. 11: performance-robustness trade-off 
designs obtained using the proposed procedure for multi-objective optimization 
with tolerances. The vertical line marks the maximum acceptable in-band 
reflection level. 
 

 
(a) 

 
(b) 

 
(c) 

Fig. 13. EM-driven Monte Carlo simulation for selected trade-off designs of 
Table I. Black line shows the antenna response at the given trade-off design: (a) 
design x(2), (b) design x(5), (c) design x(8), grey lines correspond to 500 random 
observables generated according to the assumed probability distribution with 
the variance equal to Fr. Thin lines denote design specifications.   
 

The numerical data and visualization of the Pareto set are 
provided in Table III and Fig. 12, respectively. Visualization of 
the EM-based Monte Carlo simulation for selected trade-off 
designs has been shown in Fig. 13. Also for this antenna, the 
estimated yield is close to 100 percent for all vectors x(j), 
although the differences between the perfect and actual yield 
are more significant: the average estimated yield is 97 percent 
but the values obtained for the last design x(8) is 90 percent, 
which is due to two factors: (i) higher dimensionality of the 
parameter space (fourteen parameters versus eight and six for 
the first two examples), and (ii) limited prediction power of the 
surrogate model for larger values of input tolerances. At the 
same time, one needs to remember that MC based on only 500 
samples is not perfectly reliable.  

The average computational cost of obtaining the trade-off 
designs is about 82 EM antenna simulations per point, which is 
slightly higher than for the previous examples; however, it can 
be observed that the cost scales close-to-linearly as shown in 
Fig. 14. This property is a consequence of using linear 
regression surrogate, the setup cost of which is proportional to 
the number of antenna parameters. 
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Fig. 14. Computational cost of MO with tolerances versus parameter space 
dimensionality. The data gathered from examples presented in Sections III.A 
through III.C (antenna of Fig. 8 – six parameters, antenna of Fig. 5 – eight 
parameters, antenna of Fig. 11 – fourteen parameters). The vertical bars 
represent standard deviation of the cost, calculated for the trade-off design set.   
 

TABLE III  QUASI-YAGI ANTENNA OF FIG. 11:  
RESULTS OF MULTI-OBJECTIVE DESIGN WITH TOLERANCES 

D
es

ig
n Objectives Geometry parameters [absolute in mm, relative unitless] 

Fp  
[dB] 

Fr  
[m] 

La Lb Lc Ld W wa Da Db Dc Dlr Drr Sr wbr Da 

1 –17 0 20.2 12.3 16.5 26.1 52.1 1.83 1.02 4.39 4.26 0.37 0.44 0.98 0.71 0.72 

2 –16 7.1 20.2 12.3 16.5 26.0 52.1 1.73 1.02 4.34 4.15 0.38 0.44 0.98 0.71 0.72 

3 –15 10.5 20.3 12.4 16.5 26.0 52.1 1.73 1.03 4.34 4.11 0.38 0.43 0.98 0.71 0.72 

4 –14 16.6 20.2 12.4 16.5 26.0 52.1 1.64 1.02 4.36 4.04 0.38 0.40 0.99 0.71 0.72 

5 –13 22.2 20.2 12.4 16.5 26.0 52.1 1.69 1.02 4.41 4.02 0.38 0.40 0.99 0.71 0.73 

6 –12 30.9 20.3 12.4 16.5 26.0 52.1 1.66 1.01 4.48 4.06 0.37 0.40 0.98 0.71 0.73 

7 –11 39.9 20.5 12.4 16.4 26.1 52.1 1.49 1.01 4.50 3.99 0.38 0.40 0.98 0.71 0.73 

8 –10 49.5 20.6 12.5 16.3 26.1 52.1 1.45 1.01 4.50 3.98 0.35 0.40 0.97 0.71 0.73 

IV.  CONCLUSION 

This paper proposed a novel technique for multi-objective 
optimization of antenna structures with tolerances. The aim is to 
produce a family of designs representing the best possible trade-
offs between the nominal performance (i.e., without accounting 
for manufacturing tolerances), and the robustness. The latter is 
quantified as the maximum levels of input tolerances for which 
the perfect (100-percent) yield is still possible. The key 
components of the presented approach are response feature 
surrogates, the employment of which contributes to both the 
reliability of the optimization process and its computational 
efficiency. Furthermore, embedding the search process into the 
trust-region framework ensures convergence while allowing us 
to reduce the computational cost even further. Comprehensive 
validation carried out using three microstrip antennas indicates 
that the presented methodology permits expedited and accurate 
rendition of performance-robustness trade-off designs. The 
CPU expenses vary from forty to about eighty EM antenna 
simulations per design, for structures described by six to 
fourteen parameters. The reliability of the algorithm was 
validated through EM-driven Monte Carlo simulation at the 
selected Pareto-optimal points. The optimization framework 
introduced in this work may be useful for determining the 
required accuracy of the fabrication process as well as for 
comparing alternative antenna structures with respect to their 
tolerance immunity. 
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