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1. Introduction

We study nonlinear systems, describing impact dynam-
ics. One of the most interesting phenomena, occurring in
impact systems, is the so-called grazing, where impact ve-
locity tends to zero. The stability of the impacting mo-
tion was first comprehensively considered by Peterka [1]. A
decade later Thompson and Ghaffari [2] conducted numeri-
cal studies showing complexity of dynamical responses for a
simple impacting system. Mathematically, a grazing bifur-
cation corresponds to the case when there exists a family of
periodic solutions, continuously depending on a parameter
of the system and such that the normal component of the
impact velocity vanishes at the bifurcation point.

There is a rich literature on analysis of the dynamics
near grazing in a general class of impact oscillator systems,
most notably the comprehensive work of Nordmark [3–10];
see [11,12] for an overview. A powerful technique of analysis
is to derive a so-called discontinuity mapping which has a
square-root singularity, close to the impacting orbit. This
can then be combined with an analytic Poincaré map to
give a so-called grazing normal form whose dynamics can
be shown to be topologically equivalent to those of the un-
derlying flow. See also the works of Whiston [13–15], Budd,
Dux [16,17] and Chillingworth [18,19] for some geometrical
analysis of the underlying strange attractors in impact os-
cillators. The structure of the unstable manifold of a limit
cycle near grazing was studied in the paper [19].

In this paper we have a different goal, namely to show
that the topological features of the resulting attractors can
be characterized in terms of the standard tools for chaotic
dynamics. In particular, we use the following definition of
chaos, given by Devaney [20].
Definition 1. Let U, V ∈ M be domains of a smooth
manifold. Consider a diffeomorphism T : U → V . An in-
finite compact hyperbolic invariant set K ⊂ U

⋂
V is called

chaotic if the following conditions are satisfied.

1. The periodic points of the mapping T are dense in K.

2. There is a point p0 ∈ K, whose orbit

O(p0) = {T k(p0) : k ∈ Z}

is dense in K.

The periodic points of a chaotic invariant set must be un-
stable. An attractor is called strange if it contains a chaotic
invariant set.

It was shown by Nordmark [3,6] that the periodic solu-
tions must be unstable in a small neighborhood of grazing.
The behavior of the corresponding Lyapunov exponents was
studied. It was shown in many papers (experimentally [22–
26], numerically [27–30] and analytically [6], [31–34] that
the grazing is one of typical reasons for chaotic behavior in
vibro-impact systems (VIS).

Usually, the Devaney chaos is found via existence of a
transversal homoclinic point, corresponding to a transversal
intersection of the stable and the unstable manifold of a
fixed point (the Smale-Birkhof theorem, [35]).

An approach to study the structure of the stable and un-
stable manifold was offered in the article [28] (see also [29]).
The homoclinic point is obtained by calculation of a bent of
the unstable manifold in the points of non-smoothness. This
approach was applied for VIS in the current paper (Section
4).

The other types of chaos are also possible for vibro-
impact systems. The sufficient conditions for the Li-Yorke
chaos in vibro-impact systems have been given in [11,30]
and [36], the stochastic properties of impact oscillators were
studied in [37,38].

However, due to the strong nonlinearity of vibro-impact
systems, especially the non-s.d.f. ones, the ratios of Lya-
punov exponents may be very big for a near-grazing period-
ic solution. This follows from the normal form of the square
root singularity [6,11]. Hence, the corresponding strange at-
tractor may be very sensitive to the changes of parameters
of the systems. It may become invisible [25] i.e. it does not
physically occur but could occur if the appropriate param-
eters and initial data were chosen.

Roughly speaking, we have an object (a part of an at-
tractor) which looks like a periodic point on the computer
screen. On the other hand the structure of invariant mani-
folds of this object may be complex, they may look like fo-
liations over the Cantor set. Then, the following questions
arise.

1. Does the inner structure of an invisible attractor have
an influence on the global behavior of solutions?

2. How can the invariant manifolds, corresponding to
subsets of an invisible attractor look like?

This problem has been analyzed by one of the co-authors
[25,26]. For a linear harmonic oscillator with an elastic im-
pact the structure of the unstable manifold of the periodic
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point was studied (Fig. 1). The following system is consid-
ered:

ẋ = y;
ẏ = aω2 sin(ωt)− 2ξy − x− β(x− e)H(x− e).

The last term at the second equation corresponds to the
soft impact (the stiffness of the delimiter (see Fig. 2) is
much larger than one of the spring). Both the attractors
at the Fig. 1 correspond to the values ξ = 0.01 (damping),
e = 1.26 (position of the delimiter), a = 0.7 (excitation
amplitude), β = 29 (stiffness ratio), H is the Heaviside
function. The considered grazing bifurcation corresponds
to ω = 0.801928.

The left hand side of the figure shows an unstable man-
ifold of a 3-periodic point, ω = 0.802 the right hand side
shows one of a chaotic invariant set, ω = 0.8023, which oc-
curs for a very narrow band of the parameter ω(see [25] for
details). One can see that whatever the considered invari-
ant set is, the corresponding unstable manifold has a visible
complex structure. So, the structure of an unstable mani-
fold or, more precisely, one of its numerical approximation,
traces one of the corresponding invariant set, but is much
more easy to be studied numerically.

Fig. 1.

In the current paper, we give an attempt to explain such
phenomena and offer an approach, which gives a new type
of chaotic dynamics. Instead of considering the dynamics of
points, we introduce (Theorem 2) the dynamical system on
an infinite set of disks of codimension 1. We show that this
dynamics is transitive and periodic disks are dense. Con-
structing these so-called ”admissible disks” approximating
the invariant manifolds, simplifies the studying of the inner
structure of the invariant set.

The obtained dynamics is structurally stable. Unlike the
classical results of chaotic dynamics (like the Smale-Birkhof
theorem on the chaotic dynamics in a neighborhood of a
transversal homoclinic point), we do not assume that all

the Lyapunov exponents of the bifurcating periodic/fixed
point are non-zero in a neighborhood of the bifurcation val-
ue. Comparing with the similar results from the theory of
partial hyperbolicity [39–47] (see also references therein),
we do not need any special assumptions like dynamical co-
herence (integrability of the central foliation) or dimension
1 of the central manifold.

This dynamics of disks may be considered as a new mod-
el of the near-grazing oscillations.

The rest of the paper is organized as follows. At the Sec-
tion 2 we introduce the Newtonian model of a vibro-impact
system and discuss the basic properties of the correspond-
ing solutions. At the Section 3 we define a grazing family of
periodic solutions and analyze, when such a family exists.
The Section 4 is the main. There, we provide some condi-
tions, sufficient for existence of a non-hyperbolic homoclinic
point in a neighborhood of grazing. The existence of such
a point does not imply the classical Devaney chaos, so we
introduce a special dynamical system on the space of the so-
called admissible disks which is described by the symbolical
dynamics. A simple example, illustrating the main result of
the paper, is considered at the Section 5. At the Section 6
we discuss how the obtained results may be applied. The
conclusions are given at the Section 7.

Some definitions and results are accompanied with re-
marks where the corresponding statements are explained at
a less formal level.

2. Mathematical model of an impact oscillator.

2.1. General assumptions and equations of motion of the
free flight

Let n ∈ N be the number of degrees of freedom of the
considered motion. Consider the half-space

Λ = [0,+∞]× R
2n−1.

Denote by | · | the Euclidean norm. Let col(a1, . . . , am) be
the column vector consisting of the elements a1, . . . , am. For
any vector

b = col(b1, . . . , bn)

we define btan = (b2, . . . , bn).
Suppose that the free flight motion between impacts is

described by the following equations

ẍk = fk(t, x1, ẋ1, . . . , xn, ẋn, µ), k = 1, . . . , n.
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or, equivalently, by the system

ẋk = yk; ẏk = fk(t, z,µ), k = 1, . . . , n. (1)

This system may be rewritten in the form

ż = F (t, z, µ) = col(y1, f1(t, z,µ), . . . , yn, fn(t, z,µ)),
z = col(x1, y1, . . . , xn, yn).

We suppose that the parameter µ is scalar. The continuous
function F : R2n+2 → R

2n is assumed to be T – periodic
with respect to the variable t and C2 smooth with respect
to z and µ.

2.2. Impact conditions

Suppose that the system (1) is defined for z ∈ Λ and
if x1 = 0 the following impact conditions takes place. Let
µ− ≤ 0 ≤ µ+ be a segment, r : [µ−, µ+]× ∂Λ → [0, 1] be a
C2 smooth function.
Condition 1.

1. If the solution

z(t) = col(z1(t), . . . , zn(t)) =
col(x1(t), y1(t), . . . , xn(t), yn(t))

of the system (1) is such that

x1(t0 − 0) = 0, y1(t0 − 0) ≤ 0,

then
x(t0 + 0) = x(t0 − 0),

y1(t0 + 0) = −r(µ)y1(t0 − 0),
ytan(t0 + 0) = ytan(t0 − 0)

where yα(t0 − 0) and yα(t0 + 0) are velocities before
and after impact respectively, α is 1 or tan.

2. Let the solution z(t) of the system (1) be such that
x1(t0) = 0, y1(t0) = 0 for a certain instant t0. Let
ζ(t) be the solution of the system

ẋk = yk; ẏk = fk(t, 0, 0, xtan, ytan, µ),
k = 2, . . . , n.

with initial conditions ζ(t0) = ztan(t0), and a segment

I = [t0, t1]

be such that

f1(t, 0, 0, ζ(t), µ) ≤ 0

for all t1 ∈ I. Then

x1(t) = 0, y1(t) = 0

and ztan(t) = ζ(t) for any t ∈ I.

Remark 1. So, we suppose, that x1 is an impacting
variable, the delimiter is homogeneous (the restitution co-
efficient does not depend neither on the point xtan nor on
the velocity y of the impact) and slippery (the tangent com-
ponent of the velocity does not change during the impact).

The item 1 of the Condition 1 describes the instanta-
neous reflection, corresponding to a non-degenerate impact
(with a positive value of the normal velocity), and the item
2 describes the sliding along the delimiter, corresponding to
a zero-velocity impact. This part of the Condition 1 forbids
the zero-velocity penetration through the delimiter which
is a nonsense from the physical point of view.

We study the following model of vibro-impact system:

ż = F (t, z, µ)
while x1(t) > 0;
the Condition 1 is applied if x1(t− 0) = 0.

(2)

Remark 2. One can keep in mind the following simple
case of the system (2):

ẋ = y; ẏ = −x− 0.1y + sin t, x, y ∈ R

while x > 0 and y(t + 0) = −y(t − 0) if x(t) = 0. The
mechanical system, corresponding to this model, is shown
at the Figure 2. Here 1 is a mass, 2 is a spring, 3 is a
delimiter and 4 is a damping element.

Fig. 2.

The following statement is evident due to the implicit
function theorem.
Lemma 1. Let z(t) = col(x1(t), y1(t), . . . , xn(t), yn(t)) be
the solution of the system (2) for µ = µ0 and the ini-
tial conditions z(t0) = z0 = col(x0

1, y
0
1 , . . . , x

0
n, y

0
n) where

x0
1 6= 0. Suppose that this solution is defined on the segment

[t−, t+] ∋ t0. Assume that there are exactly N zeros

t− < τ01 < . . . < τ0N < t+
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of the function x1(t) over the segment [t−, t+] and

y1(τ
0
j − 0) 6= 0, (j = 1, . . . , N).

Then for any ε > 0 there exists a neighborhood U of the
point col(z0, µ0) such that for any fixed

t ∈ J = [t−, t+] \
N⋃

k=1

(τ0k − ε, τ0k + ε)

the mapping z(t, t1, z
1, µ) is C2 smooth. For these solutions

there are exactly N impact instants

τj(t1, z
1, µ1), j = 1, . . . , N

over the segment [t−, t+]. These instants and corresponding
velocities

Yj = −y1(τj(t1, z
1, µ1)− 0, t1, z

1, µ1)

C2 smoothly depend on t1, z
1 and µ1.

So, the instants and velocities of non-degenerate impacts
smoothly depend on the initial data and parameters.

3. Grazing in the Newtonian model

Let µ∗ ∈ (0, µ+). Suppose the following condition is sat-
isfied.
Condition 2. (Fig. 3) There exists a continuous family of
T – periodic solutions

ϕ(t, µ) = col(ϕx
1(t, µ), ϕ

y
1(t, µ), . . . , ϕ

x
n(t, µ), ϕ

y
n(t, µ)),

t ∈ R, µ ∈ [0, µ∗) of the system (2) with the following
properties.

1. For any µ ≥ 0 there exist exactly N +1 distinct zeros
τ0(µ), . . . , τN (µ) of the component ϕx

1(t, µ) over the
period [0, T ).

2. The velocities y0k(µ) = −ϕy
1(τk(µ) − 0, µ) are such

that

y00(µ) > 0 for all µ > 0, y00(0) = 0,
f1(τ0(0), 0, 0, ϕtan(τ0(0), 0), 0) = φ0 > 0,

y0k(µ) > 0, ∀µ ∈ [0, µ∗), k = 1, . . . , N.
(3)

Here

ϕtan(t, µ) = (ϕx
2 (t, µ), ϕ

y
2(t, µ), . . . , ϕ

x
n(t, µ), ϕ

y
n(t, µ)).

3. The instants τk(µ) and the velocities y0k(µ) continu-
ously depend on µ ∈ [0, µ∗).

Remark 3. So we consider the family of periodic mo-
tions, corresponding to N non-degenerate impacts over the
period and exactly one impact, such that the normal com-
ponent of the corresponding velocity vanishes for µ = 0.
This family may persist for negative values of µ (the so
called continuous grazing, Figure 3) or disappear (a so-
called discontinuous grazing). In the rest of this section
we write down the conditions, sufficient for both of these
bifurcations. A simple example of the system with a graz-
ing family of periodic solutions (Eq. (27)) is studied at the
Section 5.

Fig. 3.

We suppose without loss of generality that τ0(µ) ≡ 0,
ϕtan(0, µ) ≡ 0. This may be obtained by the transformation
s = t− τ0(µ), ζ = z − col(0, 0, ϕtan(0, µ)). Define

θ0 =
1

2
min

(
min

µ∈[0,µ∗)
τ1(µ), T − max

µ∈[0,µ∗)
τN (µ)

)
.

Fix small positive θ < θ0 and µ ∈ (0, µ∗) consider the shift
mapping for the system (2), given by the formula

Sµ,θ(z
0) = z(T − θ + 0,−θ, z0, µ).

For small positive µ and θ the mapping Sµ,θ is C2 smooth
in a neighborhood of the point zµ,θ = ϕ(−θ, µ). Then

lim
µ,θ→0+

zµ,θ = 0.

The existence of a grazing family of periodic solutions
implies that the boundary problem for the system (2) with
boundary conditions

x1(τ0) = 0, z(τ0 + 0) = P (µ)z(τ0 + T − 0) (4)
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is solvable for small µ ≥ 0. Here τ0 is an unknown parame-
ter,

P (µ) =




1 0 0
0 −r(µ) 0
0 0 E2n−2


 ,

where E2n−2 is the unit matrix of the corresponding size.
Suppose that the considered boundary problem is solvable
for µ = 0. Without loss of generality, we assume that the
corresponding values of τ0 and z(τ0) are zeros.

Denote

A = (aij) = (A1, . . . , A2n) = (A1, A2, Atan) =

lim
θ→0+

lim
µ→0+

∂z

∂z0
(T − θ − 0, θ + 0, z0, µ)|z0=zµ,θ

;

B = col(b1, . . . , b2n) =

lim
θ→0+

lim
µ→0+

∂z

∂µ
(T + θ − 0, θ + 0, z0, µ)|z0=zµ,θ

;

F0 = col(0, f01, 0, f2(0, 0, 0), . . . , 0, fn(0, 0, 0)).

(5)

Now we find the conditions, sufficient for existence of
a family (τ0, z0) = (col(τ0(µ), 0, y00(µ), z0,tan(µ))) solving
the boundary problem for the system (2) with the bound-
ary conditions (4) for small positive µ. It follows from the
definition of grazing that the inequality y00(µ) > 0 must be
true for positive values of µ.

Note that b1 = 0 in the considered case. This statement
follows from the Taylor formula for x1.

Let ek be the k –th coordinate vector, k = 1, . . . , 2n,
Etan = col(e3, . . . , e2n). Due to the implicit function the-
orem the existence of smooth functions τ0(µ), y00(µ) and
z0,tan(µ) in the neighborhood of µ = 0 can be provided by
the condition

detLy 6= 0;

Ly =

(
(E −A)F0, A2 +

1

r(0)
e2, Atan − Etan

)
.

(6)

Here F0 = F (0, 0, 0). The derivatives of τ0(µ), y00(µ) and
z0,tan(µ) satisfy the system

Lycol(τ
′(0), y′00(0), z

′
0,tan(0)) = −B.

So, to provide the inequality y00(µ) > 0 for positive values
of µ, we must have

[L−1
y B]2 < 0. (7)

For the single-degree-of-freedom case the conditions (6) and
(7) may be simplified. The matrix Ly takes the form

(
−a12f01 a12

(1− a22)f01 a22 + 1/r(0)

)
.

The determinant of this matrix equals to

∆y = −a12f01(1 + 1/r(0)).

So the condition (6) may be rewritten in the form a12 6= 0.
The inverse matrix L−1

y takes the form

1

∆y

(
a22 + 1/r(0) −a12
(a22 − 1)f01 −a12f01

)

and the condition (7) takes the form

b2 < 0. (8)

Let us discuss, when the family of periodic solutions,
corresponding to grazing, persists for after-grazing (nega-
tive) values of µ. In this case, the boundary problem for
the system (2) with the conditions

y1(τ0) = 0, z(τ0) = z(τ0 + T ), x1(τ0) ≥ 0 (9)

must be solvable.
Without loss of generality, we may suppose that it is

the initial conditions τ0 = 0, z(0) = 0, which correspond
to the solution of the boundary problem (9) for the system
(2), µ = 0. Then the existence of the smooth functions
τ(µ), x1(µ), z0,tan(µ), giving a solution of the considered
boundary problem may be provided by the condition

detLx 6= 0; Lx = (A1 − e1, (E −A)F0, Atan − Etan)
(10)

Since f01 > 0, the condition (10) may be rewritten in the
simpler form det(A− E) 6= 0.

To provide the condition x01(µ) ≥ 0 for negative values
of µ it suffices to suppose that

[L−1
x B]1 > 0, (11)

where [L−1
x B]1 is the first element of the vector L−1

x B.
In the s.d.f. case the condition (11) may be rewritten in

a simpler form. If n = 1,

Lx =

(
a11 − 1 −a12f01
a21 (1− a22)f01

)
.

The determinant of this matrix equals to

∆x = − det(A− E)f01

and

L−1
x =

1

∆x

(
(1 − a22)f01 a12f01

−a21 a11 − 1

)
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and the condition (11) is equivalent to the following one:

a12b2 det(A− E) < 0. (12)

If the conditions (8) and (12) are satisfied simultaneous-
ly, a12 det(A− E) > 0.

Finally, the following two scenarios are possible (the sim-
ilar results for the square root type mapping are given in
[11]).

1. A smooth family ϕ(t, µ) of periodic solutions exists for
µ ∈ (µ−, µ+) ∋ 0. The number of impacts increases
by 1 as the parameter passes through the bifurcation
value. This case is called continuous grazing bifurca-
tion. This bifurcation takes place if (7) and (11) are
satisfied. For the s.d.f. case this corresponds to the
case b2 < 0, a12 det(A− E) > 0.

2. A smooth family ϕ(t, µ) of periodic solutions exists
for µ ∈ [0, µ+). These solutions disappear as µ pass-
es through the bifurcation value. This case is called
discontinuous grazing bifurcation and corresponds to
inequalities (7) and

[L−1
x B]1 < 0. (13)

For the s.d.f. case the inequality (13) corresponds to
the case b2 < 0, a12 det(A− E) < 0.

Remark 4. We mention the following classification of
periodic solutions in vibro-impact systems, introduced by
Peterka [1]. We say that the periodic solution x(t) of a T –
periodic vibro-impact system is of the (m,n) type (some-
times the notationm/n is used) if it is of the period nT with
exactly m impacts over the period. Some bifurcations imply
the changes in the Peterka pattern. For example, the non-
degenarate period doubling corresponds to the transition
(m,n) → (2m, 2n). In this sense the continuous grazing bi-
furcation corresponds to the transition (m,n) → (m±1, n).

The bifurcation theory approach to this problem has
been presented by A.P. Ivanov [48] for the s.d.f. case. The
following classification has been given:

1. If a12 < 0 (z12 in the notation of the quoted article)
then for a positive value of the parameter µ one of the
multipliers of the given stable periodic orbit turns to
unity and this orbit collides with the unstable one and
disappears, i.e. the saddle-node bifurcation scenario
takes place.

2. If a12 > 0 then for a positive value of the parameter
µ one of the multipliers of the given stable periodic
orbit turns to −1 and the period doubling bifurcation
takes place. In this case several periodic solutions of
different periods may coexist.

Note that the validity of (8) depends on the choice of
sign of µ and, if the considered periodic orbit is stable, we
have det(A − E) > 0. Hence, the existence of a continuous
grazing family depends on the coefficient a12 only.

4. Nonhyperbolic chaos in a neighborhood of the

grazing bifurcation

Sometimes it may be difficult to apply the Devaney’s
definition of the chaotic invariant set to a multi-dimensional
VIS. The main trouble is to check the hyperbolicity of the
obtained invariant set. As we are going to show, one of Lya-
punov exponents of the periodic solution in the neighbor-
hood of grazing is large and positive, another one is large
and negative, and nothing can be said about other ones,
except they are relatively small with respect to the first
two. Moreover, these exponents are very sensible to the pa-
rameters of the system and the choice of the mathematical
model.

On the other hand, there are naturally defined stable
and unstable manifolds of near-grazing periodic solutions
(both of the dimension 1), corresponding to and the central
manifold (see the Subsection 4.1 for definition) of the codi-
mension 2. From the mechanical point of view, this means
that the normal component x1 of the vector x is ”fast” and
the tangent component xtan is ”slow”.

4.1. Invariant manifolds

Let U be a domain in the Euclidean space Rm. Consider
a diffeomorphism S ∈ C1(U → V ⊂ R

m). Suppose there
exists an fixed point x∗ ∈ U of the mapping S. We can
assume without loss of generality that x∗ = 0.

Consider the constants

0 < λ1 ≤ µ1 < λ2 ≤ µ2 < λ3 ≤ µ3,

µ1 < 1, λ3 > 1 and a decomposition Es ⊕ Eu ⊕ Ec = R
m,

DS(0)(Eσ) = Eσ for all σ ∈ {s, u, c}, such that the follow-
ing conditions are satisfied. Here µ1 is the degree of contrac-
tion over the stable space and λ3 is the degree of expansion
over the unstable space.
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1. Those eigenvalues λ of the matrix DS(0), which cor-
respond to the vectors of the space Es, satisfy the
estimate λ1 ≤ |λ| ≤ µ1.

2. Those eigenvalues λ, which correspond to the vectors
of the space Ec, satisfy the estimate λ2 ≤ |λ| ≤ µ2.

3. Those eigenvalues λ, which correspond to the vectors
of the space Eu, satisfy the estimate λ3 ≤ |λ| ≤ µ3.

The spaces Es, Eu and Ec are called stable, unstable
and central space respectively. Denote their dimensions by
ms, mu and mc. Also, we consider the spaces

Ecs = Es ⊕ Ec, Ecu = Eu ⊕ Ec.

Following the notations of [44], we call them central stable
and central unstable spaces. Let

mcs = ms +mc, mcu = mu +mc.

The following result is a corollary of the reduction prin-
ciple [46] (see also [43] and [47]) and an analogue of the
well-known Perron theorem for a hyperbolic fixed point.
Theorem 1. Let S ∈ C1(U → R

m), 0 ∈ U be a fixed point
of the mapping S. Then there exist C1 - smooth embeddings
bs : R

ms

→ R
m, bu : R

mu

→ R
m, bcs : R

mcs

→ R
m,

bcu : Rmcu

→ R
m, such that the following statements hold

true.

1. bs(0) = bu(0) = bcs(0) = bcu(0) = 0.

2. Let bσ(Rmσ

) = W σ
loc, σ ∈ {s, u, cs, cu}. These mani-

folds (we call them local stable, unstable, central stable
and central unstable respectively) are locally invariant
in a neighborhood of 0.

3. The tangent spaces T0(W
σ
loc) to W σ

loc(0) at the origin
coincide with the spaces Eσ, σ ∈ {s, u, cs, cu}.

4. For any ε > 0 there exists positive numbers a, ρ and
δ, such that

|Sk(z)| ≤ (a+ ε)(µ1 + ε)k|z|
if z ∈ W s

loc, |z| < δ, k ∈ N;
|Sk(z)| ≤ (a+ ε)(λ3 − ε)−k|z|
if z ∈ Wu

loc, |z| < δ, −k ∈ N;
|Sk(z)| ≤ (a+ ε)(µ2 + ε)k|z|
if z ∈ W cs

loc, |z| < δ, k ∈ N

while |Sk(z)| < ρ;
|Sk(z)| ≤ (a+ ε)(λ2 − ε)−k|z|
if z ∈ W cu

loc, |z| < δ, −k ∈ N

while |Sk(z)| < ρ.

5. There exist numbers α > 0 and ̺ > 0, such that for
any z ∈ Bα(0) \ W s

loc(0) there is a natural number
k+ such that |Sk+(z)|(µ1 − ε)k+ ≥ ̺, and for any
x ∈ Bδ(0) \ Wu

loc(p) there is an integer k− < 0 such
that |Sk−(x)|(λ3 − ε)k− ≥ ̺.

Remark 5. The stable and the unstable manifolds cor-
respond to ”fast” coordinates and the central manifold cor-
responds to ”slow” coordinate.

We extend the obtained local manifolds to global ones,
supposing

W σ(0) = {Sk(z) : k ∈ Z, z ∈ W σ
loc},

σ ∈ {s, u, cs, cu}.
The behavior of iterations Sk(p) of a point p is the fol-

lowing:

1. Sk(p) tends to zero exponentially as k → +∞ if

p ∈ W s(0);

2. Sk(p) tends to zero exponentially as k → −∞ if

p ∈ Wu(0);

3. Sk(p) does not tend to zero too quickly (this is con-
trolled by the parameter µ2) as k → +∞ if

p ∈ W cu(0);

4. Sk(p) does not tend to zero too quickly (this is con-
trolled by the parameter λ2) as k → −∞ if

p ∈ W cs(0).

4.2. The separatrix

Let us consider the system (2), assuming the Condition
2 is satisfied, i.e. there is a grazing family of periodic solu-
tions. Fix µ, θ > 0. Denote

Γµ,θ = {z0 ∈ Λ : ∃t1 ∈ [−T, T ] : z1(t1,−θ, z0, µ) = 0}

(Fig. 4).
Lemma 2. There exists a neighborhood U0 of zero such that
if the positive parameters µ and θ are small enough, the set
Γµ,θ

⋂
U0 is a surface of the dimension 2n − 1, which is

8

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Fig. 4.

the graph of the C2 smooth function x1 = γµ,θ(xtan, y).
Moreover,

γµ,θ(z) = y21

(
1

f1(−θ, zµ,θ, µ)
+ γ̃µ,θ(z)

)
, (14)

where γ̃µ,θ is a C2 smooth function such that γ̃µ,θ(0) = 0.
Remark 6. This surface Γµ,θ plays an important role

in our later reasonings. We show that corresponds to the
points of non-smoothness of the Poincaré mapping and, at
the same time, to the solutions with a degenerate impact.
The invariant manifolds bend, intersecting the surface Γµ,θ.

Proof. Take a point ζ ∈ Γµ,θ. Let the instant t0 be such
that z1(t0,−θ, ζ) = 0, s = t− t0,

z1(t+ 0,−θ, ζ) = col(x1(t), y1(t)).

Let us show that if t0 is close enough to −θ, we may take
s0 ≥ |t0 + θ| so that the function x1(t0 + s) does not have
zeros on [−s0, s0], except s = 0. Otherwise, there exists
a sequence tk0 → −θ (suppose without loss of generali-
ty, that tk0 > −θ and the sequence decreases), a sequence
tk1 ∈ [−θ, tk0) and one, consisting of solutions, uniformly
bounded on the segment [−θ, t10]:

zk(t) = col(zk1 (t), . . . , z
k
n(t)) =

col(xk
1(t), y

k
1 (t), . . . , x

k
n(t), y

k
n(t))

such that zk1 (t
k
0) = 0, xk

1(t
k
1) = 0 (Fig. 5). Also, there exist

instants tk2 ∈ (tk1 , t
k
0), such that ẋk

1(t
k
2) = 0 and instants

tk3 ∈ (tk2 , t
k
0) such that ẍk

1(t
k
3) = 0. Moreover, tk3 → −θ,

xk
1(t

k
3) → 0, ẋk

1(t
k
3) → 0. Then

ẍ1(t
k
3) → f1(−θ, 0, µ) = 0.

This contradicts to (3).

Fig. 5.

Then for all s ∈ [−s0, s0] the function x1(t0 + s) can be
represented as series

x1(t0 + s) = X2s
2 +X3s

3 + . . . (15)

Differentiating (15), we obtain that

ẋ1(t0 + s) = 2X2s+ 3X3s
2 + . . . .

On the other hand,

X2 = ẍ1(t0 + 0)/2 → f1(−θ, zµ,θ, µ)

as t0 → −θ. Then

x1(−θ) = f1(−θ, zµ,θ, µ)(t0 + θ)2(1 + o(1))/2;

y1(−θ) = f1(−θ, zµ,θ, µ)(t0 + θ)(1 + o(1)). Since y1 = ẋ1,
the formula (14) is true. �

Take a small parameter ς > 0 such that the sets

V = {z ∈ Λ : ‖z − zµ,θ‖ ≤ ς} ⊂ U0,
{(x, y) ∈ V : x1 < γµ,θ(xtan, y)},
{(x, y) ∈ V : x1 > γµ,θ(xtan, y)}

are correctly defined and nonempty.
Consider the matrix A, defined by the formula (5). Let

∆0 = detA. Denote the elements of the matrix A by aij
and ones of the matrix A−1 by αij . Denote the columns of
matrices A and A2 by Aj and A2

j respectively, the strings

of the matrix A−1 by Aj . Later on, we assume that

a12 > 0,

2n∑

j=1

a1kak2 < −a12. (16)

As we show later, these conditions allow us to control the
bent of invariant manifolds, intersecting the surface Γµ,θ.

4.3. The Jacobi matrix

Note that all the mappings Sµ,θ, corresponding to the
same value of µ, are conjugated. Fix a number µ > 0
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and a solution z0(t) = col(x0
1(t), y

0
1(t), . . . , x

0
n(t), y

0
n(t)) of

the corresponding system with an impact at t0. Suppose
that the corresponding normal velocity Y01 = −y01(t0 − 0)
is nonzero. We consider Y01 as a small parameter. Denote
Z0,tan = z0tan(t0−0). Fix a positive number s0 and consider
the mapping

Σ(ζ) = z(t0 + s0, t0 − s0, ζ, µ),

defined in a neighborhood of the point ζ0 = z0(t0 − s0).
Here we assume that the point ζ0 and the parameter s0
are chosen so that there exists a neighborhood Ω ∋ ζ0 such
that any solution z(t) = z(t, t0 − s0, z−, µ) (z− ∈ Ω) im-
pacts once over the segment [t0 − s0, t0 + s0]. Denote the
corresponding instant by t1 = t1(z−) and the normal veloc-
ity of the impact by Y1 = Y1(z−). Let Ztan = ztan(t1) be
the tangent component of the solution z(t) at the impact
instant. Take the numbers s± = s±(z−) so that

t0 ± s0 = t1(z−)± s±(z−)

for all z− ∈ Ω. The mapping Σ is smooth in the neigh-
borhood of the point ζ0, let us estimate the Jacobi matrix
DΣ(ζ0). Denote

z+ = z(t0 + s0) = z(t0 + s0, t1 + 0, 0, rY1, Ztan, µ),
x+ = x(t0 + s0) = x(t0 + s0, t1 + 0, 0, rY1, Ztan, µ),
y+ = z(t0 + s0) = y(t0 + s0, t1 + 0, 0, rY1, Ztan, µ),
x− = x(t0 − s0) = x(t0 − s0, t1 − 0, 0,−Y1, Ztan, µ),
y− = y(t0 − s0) = y(t0 − s0, t1 − 0, 0,−Y1, Ztan, µ).

Similarly, we define the numbers

x1,±, y1,±, x±,tan, y±,tan.

Consider the Taylor formula for z±:

x1,− = Y1s− + f1(t1, 0,−Y1, Ztan, µ)s
2
−/2+

ρ1(s−, t1, Y1, Ztan, µ)s
3
−;

y1,− = −Y1 − f1(t1, 0,−Y1, Ztan, µ)s−+
ρ2(s−, t1, Y1, Ztan, µ)s

2
−;

x−,tan = xtan(t1)− ytan(t1 − 0)s−+
ftan(t1, 0,−Y1, Ztan, µ)s

2
−/2+

ρ3(s−, t1, Y1, Ztan, µ)s
3
−;

ytan− = ytan(t1 − 0)− ftan(t1, 0,−Y1, Ztan, µ)s−+
ρ4(s−, t1, Y1, Ztan, µ)s

2
−;

x1,+ = rY1s+ + f1(t1, 0, rY1, Ztan, µ)s
2
+/2+

ρ5(s+, t1, Y1, Ztan, µ)s
3
+;

y1,+ = rY1 + f1(t1, 0, rY1, Ztan, µ)s++
ρ6(s+, t1, Y1, Ztan, µ)s

2
+;

xtan+ = xtan(t1) + ytan(t1 − 0)s++
ftan(t1, 0, rY1, Ztan, µ)s

2
+/2+

ρ7(s+, t1, Y1, Ztan, µ)s
3
+;

ytan+ = ytan(t1 − 0) + ftan(t1, 0, rY1, Ztan, µ)s++
ρ8(s+, t1, Y1, Ztan, µ)s

2
+.

(17)
Here all functions, denoted by the letter ρ with different
indices, are C2 smooth with respect to all arguments except
s±. Denote

f0k+ = fk(t0, 0, rY01, Z0,tan, µ),
f0k− = fk(t0, 0,−Y01, Z0,tan, µ).

It follows from (17) that

∂z+
∂(s+, Y1, Ztan)

∣∣∣∣
s+=0, Y1=Y01, Ztan=Z0,tan

=


rY01 0 0
f01+ r 0
X+ 0 E2n−2


 ;

∂z−
∂(s−, Y1, Ztan)

∣∣∣∣
s−=0, Y1=Y01, Ztan=Z0,tan

=



Y01 0 0
−f01− −1 0
X− 0 E2n−2


 .

Here E2n−2 is the unit matrix of the corresponding size,
X+ = col(y2(t0 − 0), f02+, . . . , yn(t0 − 0), f0n+),

X− = col(−y2(t0 − 0),−f02+, . . . ,−yn(t0 − 0),−f0n+).

Denote

f ′
k =

∂fk(t0, 0, y1, Z0,tan, µ)

∂y1

∣∣∣∣
y1=0

.
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Clearly, ds+/ds− = −1. Then, similarly to the results of
the paper [49], we obtain

B = lim
s±→0

∂z+
∂z−

=




−r 0 0
β21 −r 0

B1,tan 0 E2n−2


 .

Here B1,tan = col(β31, . . . β2n 1),

β21 = −(f01+ + rf01−)/Y01 =
−(r + 1)φ0(1 +O(Y01))/Y01,

β2j−1 1 = 0,
β2j 1 = (f0j+ − f0j−)/Y01 = (r + 1)f ′

k +O(Y01),
j = 1, . . . , n.

Note that detB = r2.
It is shown at the Figure 4 how a small rectangular

domain U of initial data is stretched while the time passes
a fixed segment corresponding to low-velocity impacts of
solutions (R transfers to R1).

4.4. Lyapunov exponents

In this subsection we study the Lyapunov exponents,
corresponding to the Poincaré mapping at a near-grazing
periodic point. We show that one of these exponent tend
to +∞ as µ → 0, another one tends to −∞ and all others
are relatively small, compared with the first two (the ratios
tend to zero as µ → 0).

We estimate the larger and the smaller absolute value of
eigenvalues of D = DSµ,θ(zµ,θ) and ones of small perturba-
tions of this matrix. The mapping Sµ,θ can be represented
as the composition Sµ,θ = S2,µ,θ ◦ S1,µ,θ, where

S2,µ,θ(ζ) = z(T − θ + 0, θ, ζ, µ).

The Jacobi matrix Aµ,θ = DS2,µ,θ(S1,µ,θ(zµ,θ)) tends to
A as µ, θ → 0. Note, that the elements of these matrices
satisfy the inequalities similar to (16) provided µ and θ are
sufficiently small.

The matrix Bµ,θ = DS1,µ,θ(zµ,θ) is of the form

lim
s±→0

∂z+
∂z−

= B

as µ and θ tend to 0.
Then

D = Aµ,θBµ,θ =
(−(r + 1)A2φ0(1 + o(1))/Y0,−rA2(1 + o(1)),

A3 + o(1), . . . , A2n + o(1)).

Consequently, if a12 6= 0 and if µ is small, one of the eigen-
values of the matrix D is λ+ = −(r+1)a12φ0(1+ o(1))/Y0.
The corresponding eigenvector u+ equals to A2 + o(1). The
eigenvalue λ+ is of the multiplicity 1, the linear space, cor-
responding to other eigenvalues, tends to the hyperplane
π1, given by the condition x1 = 0 as µ → 0. Since a12 6= 0,
the vector u+ is out of π1. Note that

detD = detAµ,θ detBµ,θ = (r2 + o(1))∆0.

The matrix D−1 satisfies the following asymptotic estimate

D−1 =
1

r2




−rA1 + o(1)
(r + 1)A1(1 + o(1))/Y0

A3 + o(1)
. . .

A2n + o(1)




.

It follows from the form of this matrix, one of the eigenval-
ues of the matrix D−1 equals to

λ−1
− = (r + 1)φ0α12(1 + o(1))/(r2Y0).

The corresponding eigenvector satisfies the asymptotical es-
timate u− = e2 + o(1).

4.5. Intersection of invariant manifolds

Let
λ+, λ−, λ3, . . . , λ2n

the eigenvalues of the matrix DSµ,θ(zµ,θ). Let

Λ1 = min(|λ+|, |λ
−1
− |)/2, Λ2 = 2 max

k=3,...,2n
(|λk|, |λ

−1
k |).

It is only the first column of D, which is unbounded. Con-
sequently, Λ1 > Λ2 provided µ is small enough. Let Es

be the line, corresponding to the eigenvalue λ−, E
u be the

one-dimensional space, corresponding to the eigenvalue λ+,
and Ec be the space, corresponding to all other eigenval-
ues. The spaces Es and Es are linear hulls of the vector
Es

1 = e2 +O(θ) and the vector Eu
1 = A2 +O(θ) respective-

ly.
Due to the Theorem 1, for the fixed point zµ,θ there exist

the stable manifold W s the unstable manifold Wu (both
of the dimension 1), the central stable manifold W cs and
the central unstable manifold W cu (both of the dimension
2n− 1). The corresponding spaces Eσ are tangent to these
manifolds at the fixed point.
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Now we show that, provided the assumptions of the The-
orem 1 are satisfied there exists a non-hyperbolic analogue
of a homoclinic point for the considered system.
Lemma 3. There is µ+ > 0, so small that, provided

µ ∈ (0, µ+),

the manifolds W cs and Wu intersect transversally at a point
p 6= zµ,θ, i.e. there exists a neighborhood V of the point p,
such that the connected components of sets W cs

⋂
V and

Wu
⋂
V , containing p, are smooth manifolds and intersect

transversally at the point p.
This intersection for the s.d.f. case is illustrated at the

figure 6.

Fig. 6.

Proof. For small positive values of µ the manifold Wu

intersects transversally the surface Γµ,θ at the point qu. Let
qu1 = Sµ,θ(q

u). Denote by Lu the arc of the manifold Wu,
connecting the points qu and qu1 . Denote Lu

1 = Sµ,θ(L
u).

The curve Wu is not smooth at the point qu1 . The tangent
lines to Wu at the points of the curve Lu are close to the
line directed along the vector A2 i.e. the direction of the
vector A2 is the limit one to all tangent vectors of Wu

as µ, θ → 0. The tangent lines to the arc Lu
1 are close to

the linear hull of the vector A2
2 for small µ. Due to (16)

the vectors A2 and A2
2 are directed to the different sides

with respect to the hyperplane π1 and of the space Ecs.
Consequently, provided µ is small, the neighborhood V can
be chosen so that the arc Lu

1 and the manifoldW cs intersect
transversally. �.

4.6. Straightening

The main goal of this subsection is to introduce the ap-
propriate coordinates in a neighborhood of a homoclinic
point.

Due to the Theorem 1, there exists a diffeomorphism
h : Uµ,θ → Ω of the neighborhood Uµ,θ of the point zµ,θ to
a domain Ω, containing the origin in R

2n and endowed with
coordinates

ζ = col(ζs, ζu, ζc) = col(ζs, ζu, ζc1 , . . . , ζ
c
2n−2)

and such that the following conditions are satisfied (here
we suppose that h is extended to a diffeomorphism of the
whole Euclidean space).

1. h(zµ,θ) = 0.

2. The Euclidean norms of all columns of the matrix
Dh(zµ,θ) equal to 1.

3. h(W s
loc) ⊂ {col(ζs, 0, 0) : ζs ∈ R} = Oζs,

h(Wu
loc) ⊂ {0, 0, ζu) : ζu ∈ R} = Oζu,

h(W cs
loc) ⊂ {col(ζs, ζc, 0) : ζs ∈ R, ζc ∈ R

2n−2},

h(W cu
loc) ⊂ {col(0, ζc, ζu) : ζu ∈ R, ζc ∈ R

2n−2}.

4. Dh(zµ,θ)u+ = e1 = col(1, 0, . . . , 0).

5. Dh(zµ,θ)u− = e2 = col(0, 1, 0, . . . , 0).

6. The point q = h(p) corresponds to the coordinates
(ζsq , 0, ζ

c
q), ζ

s
q > 0. The segment, linking the point q

with the origin, is a subset of h(W cs
⋂
U).

7. Let Lu
U be the connected component of h(Wu

⋂
U),

containing the point q. Then

h(Lu
U ) ⊂ {col(ζsq , ζ

u, ζcq ) : ζ
u ∈ R}.

Let Ŝµ,θ = h ◦ Sµ,θ ◦ h−1. Consider the point q1 with
the coordinates (ζsq , 0, 0). Select the positive numbers εs, εu

and εc and the neighborhoods

U0 = {ζ = col(ζs, ζu, ζc) : |ζs| ≤ εs, |ζu| ≤ εu, |ζc| ≤ εc};
U1 = {ζ = col(ζs, ζu, ζc) : |ζs − ζsq | ≤ εs,

|ζu| ≤ εu, |ζc| ≤ εc}
(18)

so that the following conditions are satisfied

1. U0, U1 ⊂ U .

2. U0

⋂
U1 = ∅, i.e. εs < ζsq/2.

3. U1

⋂
h(W s) i.e. εc > 2|ζcq |.
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4. Let Π1 be the projector to the axis Oζs. For any two
points

ζ1,2 = col(ζs1,2, ζ
u, ζc) ∈ U

the following Lipschitz condition is true:

|Π1Ŝµ,θ(ζ1)−Π1Ŝµ,θ(ζ2)| ≤ |ζs1 − ζs2 |/2.

So, we have introduced two disjoint sets: a neighborhood
U0 of the fixed point and a neighborhood U1 of the homo-
clinic point. The set U1 is constructed so that it does in-
tersect the local stable manifold. The reductions Π1Ŝµ,θ|Ui

must be uniformly contracting. This may be obtained since
the distance between the homoclinic point and the fixed
point tends to zero as the parameter µ tends to the bifur-
cation value (Fig. 7).

4.7. Admissible disks

Here we consider the set of possible approximations to
central unstable manifolds and study their iterations.

We define an admissible disk in one of the domains Ui as
a subset of Ui, which is the graph of a C1 – smooth function
ζs = η(ζu, ζc), defined for |ζu| ≤ εu, |ζc| ≤ εc and such that
max |Dη(ζu, ζc)| ≤ 1. Let Qi (i = 0, 1) be the sets of disks,
admissible at Ui endowed with the C1 metric dist1. Denote
Q = Q0

⋃
Q1.

Any admissible disk intersects transversally with the
stable manifold. There exists an integer m1 such that the
image Ŝm1

µ,θ(Q) of any admissible disk Q does intersect the
domain U0. Moreover, the intersection contains an admis-
sible curve ̟ i.e. the graph of a C1 – smooth function
(ζs, ζc) = χ(ζu), defined for |ζu| ≤ εu and such that

max
|τ |≤εu

|χ′(ζu)| ≤ 1, χ(0) = (χs(0), 0)

i.e. any admissible curve intersects the local stable mani-
fold. There exist positive numbers µ0 and ε0 and the integer
number m2 such that if µ < µ0, the image Ŝm2

µ,θ(̟) of any
admissible curve ̟, satisfying the condition |χ(0)| ≤ ε0,
contains an admissible curve ̟1 ⊂ U1. Without loss of gen-
erality we may suppose m2 to be so large that for any ad-
missible disk Q the intersection Ŝm1

µ,θ(Q)
⋂
h(W s) contains

a point col(ζs, 0, 0); |ζs| ≤ ε0.
Remark 7. Actually, we are going to present a struc-

ture, which approximates a foliation of central unstable
manifolds. In a hyperbolic case we could take a disk, whose
inclination to the stable manifold is not too small (this is

what we call admissible disk). Then, due to the λ – lemma
the iterations of this disk provide local approximations to
the unstable manifold. For non-hyperbolic cases the itera-
tions of these admissible disks may shrink in some direc-
tions. This is why we develop a more complex technique,
using the procedure of extension (see the next subsection).

Select εc1 ∈ (0, εc] so that for any m > m1 the images
Ŝm
µ,θ(Q) of any admissible disk Q contain disks, admissible

at the more narrow domain

Ṽ0 = {ζ : |ζs| ≤ εs, |ζu| ≤ εu, |ζc| ≤ εc1}.

Select the number εc2 so that the image Ŝm2

µ,θ(Q̃) of any disk

Q̃, admissible at the set Ṽ0, contains a disk, admissible at
the domain

{ζ : |ζs − ζsq | ≤ εs, |ζu| ≤ εu, |ζc − ζcq | ≤ εc2}

and one, admissible at the domain

{ζ : |ζs| ≤ εs, |ζu| ≤ εu, |ζc| ≤ εc2}.

Fig. 7.

Denote δc = min(εc1, ε
c
2), m3 = m1 +m2.

4.8. Extensions

We are going to show that the initial dynamical system
engenders one at the set of admissible disks. Unfortunately,
we cannot consider the iterations Sk

µ,θ(D) of an admissible
disk D since these iterations may shrink. So, we need to
”expand” these iterations on every step.

Consider the sets

V0 = {ζ : |ζs| ≤ εs, |ζu| ≤ εu, |ζc| ≤ δc/2},
V1 = {ζ : |ζs − ζsq | ≤ εs, |ζu| ≤ εu, |ζc − ζsq | ≤ δc/2},

∂0 = {ζ : |ζs| ≤ εs, |ζu| ≤ εu, |ζc| = δc/2},
∂1 = {ζ : |ζs − ζsq | ≤ εs, |ζu| ≤ εu, |ζc − ζsq | = δc/2}.

We can take k so large that the following statements
hold.

13

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


1. For all i, j ∈ {0, 1} the intersections

Ŝk
µ,θ(Ui)

⋂
Uj

contain components Uij such that if Q ∈ Qi then the

intersection Ŝk
µ,θ(Q)

⋂
Uij contains an admissible disk

G̃j(Q) ⊂ Vj ⊂ Uij .

2. For all Q1,2 ∈ Q, i = 0, 1

dist1(G̃i(Q1), G̃i(Q2)) ≤
1

2
dist1(Q1, Q2). (19)

3. The mappings G̃i are one-to-one; moreover, the im-
ages of non-intersecting disks do not intersect any
more.

Denote by Q− the sets of the disks, admissible in cor-
responding domains Vi. Clearly, any disk Q ∈ Q contains a
subdisk from the set Q−. Here we construct an embedding
J : Q− → Q such that

dist1(J(Q1), J(Q2)) ≤ dist1(Q1, Q2) (20)

for all Q1,2 ∈ Q and J(Q)
⋂
Vi = Q

⋂
Vi for all Q ∈ Q−,

i = 0, 1.
Fix a disk Q̃ ∈ Q−, given by the equation

ζs = η1(ζ
u, ζc).

Let i ∈ {0, 1} be such that Q̃ ⊂ Ui. The intersection

of the disk Q̃ and the surface ∂Vi
is a manifold ∂Q of the

dimension 2n− 2. Let us join every point of this manifold
with a point of the set ∂Ui

by a segment of the type

{ζ = col(ζs, ζu, ζc) : ζs = c1, ζ
u = c2,

ζc = τc3 : τ ∈ [τ−, τ+]}

so that (c1, c2, τ−c3) ∈ ∂Q, (c1, c2, τ+c3) ∈ ∂Ui
or vice versa.

We obtain a disk in Ui, defined by formulae ζs = η2(ζ
u, ζc).

However, this disk is not smooth at the points of the set
∂Q.

Let us smooth this disk in a standard way. Suppose,
without loss of generality that i = 0. Consider a C∞ –
smooth function φ : R → [0, 1], satisfying the following
conditions.

1. φ(s) ≡ 0 if s ≤ 0, φ(s) ≡ 1 if s ≥ 1.

2. φ′(s) ∈ (0, 2) for all s ∈ (0, 1).

Let B = {z ∈ R
2n : |z| ≤ εc}. Define the function

η : [−εu, εu]×B by formulae:

η(ζu, ζc) =




η1(ζ
u, ζc), if |ζc| ≤ δc/2;

(1− φ((2|ζc| − δc)/δc))η1(ζ
u, ζc)+

φ((2|ζc| − δc)/δc)η2(ζ
u, ζc),

if |ζc| ∈ [δc/2, δc];
η2(ζ

u, ζc), if |ζc| ≥ δc.

Clearly, the graph of this function η is an admissible disk.
Now we fix an admissible disk Q ⊂ U0

⋃
U1 and apply

the discussed extension-smoothing procedure to the disks
G̃0(Q) and G̃1(Q). Denote the obtained disks by G0(Q)
and G1(Q). The mappings G0 and G1, defined in this way
are continuous and, due to the formulae (19), both of them
are uniformly contracting.

4.9. Symbolic dynamics

Consider the set Σ, consisting of infinite one-side se-
quences a = {ak ∈ {0, 1} : k ∈ Z

+}. Let us define the
metric in the set by a standard way

d(a, b) =

∞∑

k=0

2−k|ak − bk|. (21)

We identify the periodic subsequences of Σ, which can be
obtained by infinite repetition of finite sequences

(a0, . . . , aN ),

(aj ∈ {0, 1}) with these finite sequences.
For any periodic sequence a, of this type, generated by

the set {a0, . . . , aN} we put into correspondence the admis-
sible diskQa, which is the unique fixed point of the mapping

Ga0
◦Ga1

◦ . . . ◦GaN
.

Then the following statements hold:

Q ∈ Qa0
, Q ∈ Ga0

(Qa1
), Q ∈ Ga0

◦Ga1
(Qa2

), . . . ,
Q ∈ Ga0

◦Ga1
◦ . . . ◦GaN−1

(QaN
).

(22)
This means that there exists a constant C > 0 such that
for any k ∈ N if the first k elements of finite sequences
a = (a0, a1, . . . , aN1

) and b = (b0, b1, . . . , bN2
) coincide then

dist1(Qa, Qb) ≤ C2−k.
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Consequently, for any converging sequence {bk} ⊂ Σ,
consisting of periodic elements, the corresponding sequence
Qbk converges at Q. Fix an element

a = (a0, a1, . . . , aN , . . .) ∈ Σ

and denote ak = (a0, . . . , ak). Clearly, a
k → a. Let

Qa = limQak .

Consider
K = {Qa : a ∈ Σ}.

Let H be a parameterizing mapping: H(a) = Qa and σi be
the adding of i ∈ {0, 1} to the left side of the element a ∈ Σ.
For an arbitrary a ∈ Σ we denote 1a = σ1(a), 0a = σ0(a).

Let us prove that the disks, corresponding to different
elements of the space Σ, are different. Let a, b ∈ Σ be such
that, a 6= b. Consider the least integer j, such that aj 6= bj.
If j = 0, the disks Qa and Qb appertain to different sets Ui.
Otherwise, due to (22), we have

Qa ∈ Ga0
◦Ga1

◦ . . . ◦Gaj−1
(Qaj

),
Qb ∈ Gb0 ◦Gb1 ◦ . . . ◦Gbj−1

(Qbj ) =
Ga0

◦Ga1
◦ . . . ◦Gaj−1

(Qbj ).

Hence these disks do not intersect.
Lemma 4. For both i ∈ {0, 1}

σi ◦H = H ◦Gi. (23)

or, equivalently, Dia = Gi(Da) for any a ∈ Σ, i ∈ {0, 1}.
Proof. Let i = 0, the case i = 1 is similar. Fix a se-

quence a = {ak : k ∈ Z
+} ∈ Σ and the corresponding disk

Qa = Qa0

⋂
Ga0

(Qa1
)
⋂
Ga0

◦Ga1
(Qa2

)
⋂
. . .⋂

Ga0
◦Ga1

◦ . . . ◦GaN−1
(QaN

)
⋂
. . .

Then

Q0a = Q0

⋂
G0(Qa0

)
⋂
G0 ◦Ga0

(Qa1
)
⋂
. . .⋂

G0 ◦Ga0
◦Ga1

◦ . . . ◦GaN−1
(QaN

)
⋂
. . . = G0(Qa).

�

The periodic points of the shift mapping are dense in Σ,
and this set is transitive i.e. there is a point

a∗ = {a∗k, k ∈ Z
+} ∈ Σ,

whose shifts are dense [35]. Consequently, the periodic ad-
missible disks are dense in K and there is a dense sequence
{Qk : k ∈ Z

+} ∈ K such that

Ga∗
k
(Qk) = Qk−1

for all k ∈ N. Here all the disks Qk correspond to shifts of
the sequence a∗k.

Note, that the similar set of admissible disks exists for
any mapping J , satisfying (20).

4.10. The main result

Recall some notations: Sµ,θ is the Poincaré period shift
mapping for the considered vibro-impact system (2), zµ,θ
is the fixed point of this mapping, corresponding to the
grazing family of periodic solutions,

A = lim
θ→0+

lim
µ→0+

∂z

∂z0
(T + θ − 0, θ + 0, z0, µ)|z0=zµ,θ

.

We have proved the following statement.
Theorem 2. Suppose the vibro-impact system (2) satisfies
the Condition 2 (existence of the grazing family) and the
elements of the matrix A satisfy (16). Then there exists
numbers µ∗ > 0, θ∗ > 0 such that for any µ ∈ (0, µ∗),
θ ∈ (0, θ∗) the domains Ui, defined by (18) and the corre-
sponding domains Vi, i = 0, 1 are such that the following
statements are true.

1. There is an integer k and domains V0 ⊂ U0, V1 ⊂ U1,
such that for any disk D, admissible at U0 or U1, (the
definition of admissible disk is given at the first para-
graph of the Subsection 4.7), the set Sk

µ,θ(D) contains
a disk, admissible at V0 and a disk, admissible at V1.

2. The set J of Lipschitz (with the constant, equal to
1) embeddings J : Q− → Q is not empty. Here Q−

and Q are the sets of disks, admissible at Vi and Ui

respectively.

3. For any J ∈ J there exists a continuous embedding
H : Σ → Q, of the space Σ consisting of one side
boolean sequences with the metric (21) to the space Q
with the C1 metric. This embedding conjugates map-
pings σi (adding of 0 or 1 to a sequence) and mappings
Gi in the sense of formulae (23).

Remark 8. A non-formal reformulation of this state-
ment is given at the Section 6.

4.11. Structural stability

Let us discuss the robustness of the constructed set
with respect to small perturbations of the diffeomorphism
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S = Sµ,θ or, equivalently, the mapping Ŝ = Ŝµ,θ. Fix a

number δ > 0 and consider a diffeomorphism S̃ such that

|Ŝ(x) − S̃(x)| ≤ δ, |DŜ(x)−DS̃(x)| ≤ δ

for any x ∈ U0

⋃
U1. We suppose the number δ be so small

that for any Q ∈ Q the image S̃M (Q) contains two admis-
sible subdisks of the sets Vi. Also, we suppose that

|Π1Ŝµ,θ(ζ
s
1 , ζtan)−Π1S̃(ζ

s
2 , ζtan)| ≤

2

3
|ζs1 − ζs2 |

for all values (ζi, ζtan) ∈ U .
Then, similarly to what we have done above, we may

construct the set K̃ of admissible disks, with the properties,
similar to ones of the set K.

5. Example

Consider a two degree-of-freedom system, given by equa-
tions

ẍ1 + 2pẋ1 + qx1 − x2 = 0; ẍ2 + ω2x2 = a. (24)

Suppose that

q−p2 = ω2
0 > 0, a > 0, ω > 0, p2+(q−ω)2 > 0 (25)

and there exists k ∈ N, such that

ω0/ω ∈ (k + 1/4, k + 1/2). (26)

Denote T = 2π/ω. Suppose that the system (24) is defined
for x1 ≥ 0. The impact conditions are the following.
Condition 3.

1. Let r ∈ (0, 1]. If x1(t0) = 0, then

x1(t0 + 0) = 0, x2(t0 + 0) = x2(t0 − 0),

ẋ1(t0 + 0) = −rẋ1(t0 − 0), ẋ2(t0 + 0) = ẋ2(t0 − 0).

2. Let the instant t0 be such that x1(t0) = ẋ1(t0− 0) = 0
and x2(t0) ≤ 0. Consider the solution ξ(t) of the sec-
ond equation (24) with initial conditions

ξ(t0) = x2(t0 − 0), ξ̇(t0) = ẋ2(t0 − 0).

Let I = [t0, t1] be the maximal segment such that
x2(t) ≤ 0 for all t ∈ I. Then x1(t)|I ≡ 0.

In this section the following VIS is considered:

ẍ1 + 2pẋ1 + qx1 − x2 = 0; ẍ2 + ω2x2 = a,
while x1(t) > 0;
the Condition 3 is applied if x1(t) = 0.

(27)

Note that
x2(t) =

a

ω2
+ b sin(ω(t+ ϕ0)).

Here b and ϕ0 are constants. Then the system (24) may be
reduced to the equation

ẍ1 + 2pẋ1 + qx1 =
a

ω2
+ b sin(ω(t+ ϕ0)). (28)

Provided the conditions (25) are satisfied, the Eq. (28) has
the periodic solution

x∗
1(t) =

a

ω2q
+

(q − ω2)b sin(ω(t+ ϕ0))

4p2ω2 + (q − ω2)2
−

2pbω cos(ω(t+ ϕ0))

4p2ω2 + (q − ω2)2
.

Let b∗(a) =
√
4p2ω2 + (q − ω2)2a/(qω2). If b = b∗(a), the

function x∗
1(t) is non-negative and there is exactly one im-

pact instant of the corresponding solution over the period
[0, 2π/ω), which is grazing. The general solution of the Eq.
(28) is of the form

x1(t) = C exp(−pt) sin(ω0(t+ θ)) +
a

ω2q
+

(q − ω2)b sin(ω(t+ ϕ0))− 2pbω cos(ω(t+ ϕ0))

4p2ω2 + (q − ω2)2
.

Here C and θ are constants. All the (1,1) periodic solu-
tions of the system (27) are ones of the boundary problem,
depending on the parameter t0 ∈ [0, T )

{
x(t0) = x(t0 + T ) = 0; ẋ(t0) = −rẋ(t0 + T );
x(t) > 0 for t ∈ (t0, t0 + T ).

(29)

Fix b and ϕ0. The Eq. (29) may be considered as a
system on the parameters C, θ and t0. Denote

t1 = Rcsin(2pω/
√
4p2ω2 + (q − ω)2),

τ0 = t0 + ϕ0 − t1, τ = t+ ϕ0 − t1,

A = a/(ω2q), B = b/
√
4p2ω2 + (q − ω)2),

C1 = C exp(pt0), ϑ = θ + t0.

The general solution of the Eq. (28) is of the form

x1(τ) = C1 exp(−p(τ − τ0)) sin(ω0(τ − τ0 + ϑ))+
A+B sin(ωτ).
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The first two equations of (29) may be rewritten as follows:





C1 sin(ω0ϑ) +A+B sin(ωτ0) = 0;
C1 sin(ω0ϑ) = C1 exp(−pT ) sin(ω0(ϑ+ T ));

C1(ω0 cos(ω0ϑ)− p sin(ω0ϑ)) +Bω cos(ωτ0) =
−rC1 exp(−pT )(ω0 cos(ω0(ϑ+ T ))−

p sin(ω0(ϑ+ T )))− rBω cos(ω(τ0 + T )).

(30)

The second of the Eq. (30) gives two cases: either C1 = 0,
or

cot(ω0ϑ) =
exp(pT )− cos(ω0T )

sin(ω0T )
. (31)

If C1 = 0, then b = b∗(a) and function x1(t) has exactly
one zero (of the multiplicity 2) over the period. Otherwise
the condition (31) defines uniquely the number

ϑ ∈ (0, π/ω0).

It follows from the third equation (30) that

C1 = B(1 + r)ω cos(ωτ0)/H. (32)

Here

H = r exp(−pT )(p sin(ω0(ϑ+ T ))−
ω0 cos(ω0(ϑ+ T ))) + p sin(ω0ϑ)− ω0 cos(ω0ϑ).

Substituting the expression (32) to the first equation (30),
we obtain

B(sin(ωτ0) +D cos(ωτ0)) +A = 0, (33)

where D = (1 + r)ω sin(ω0ϑ)/H . The number τ0 may be
found from the Eq. (33) if and only if

B2(1 +D2) ≥ A2. (34)

This inequality implies |b| ≥ b∗(a). If (34) is false, the sys-
tem (29) is unsolvable. For b = ±b∗(a) the graph of the
function x1(t) is tangent to Ox and does not have any oth-
er zeros over the period. If |b| > b∗(a), then for any fixed
value of the pair (b, ϕ0) there are two solutions of the Eq.
(33) and, respectively, two periodic solutions of the VIS
(27). These solutions continuously depend on b and ϕ0 and
have a single impact over the period. The corresponding
velocities tend to 0 as b → ±b∗(a). The system

{
ẋ = y,
ẏ = −qx− 2py

(35)

is the homogeneous part for (28). Let Φ(t) be the funda-
mental matrix of the system (35), turning to the unity at
t = 0. The trace of Φ(T ) equals to 2 cos(ω0T ) exp(−pT ),
and the determinant equals to exp(−2pT ). Due to the in-
equality (26), the conditions of the Theorem 2 are satisfied
and there exists a set of admissible disks, corresponding to
the VIS (27), which can be described by means of symbolic
dynamics.

6. Discussion.

Here we reformulate the result of the Theorem 2 on a
less formal level. We try to find a ”visible” analogue of the
chaotic dynamics in a neighborhood of an invisible chaotic
invariant set. First of of all we construct a non-hyperbolic
homoclinic point.

For this we need conditions (16). These conditions have
a clear geometric sense. The inequality a12 > 0 implies that
the unstable manifold Wu exists and intersects the grazing
surface Γµ,θ provided µ and θ are positive and sufficient-
ly small. The unstable manifold bents at the point of the
intersection. If

2n∑

j=1

a1kak2 < −a12

the manifold Wu turns so that it intersects W cs transver-
sally.

This does not imply the existence of a Smale horseshoe.
What we can expect is to find a symbolic dynamics on leaves
of a foliation over a Cantor set. However, even this is not
always possible.

A central stable manifold is not as ”good” as an ordinary
stable manifold. For example, it may be non-unique even for
a fixed point [44]. Typically, a central stable bundle over an
invariant set is not integrable [43] i.e. we can not find a
corresponding continuous foliation, like what we can do in
the hyperbolic case. Moreover, the iterations of a central
stable (or a central unstable) manifold may shrink both in
positive and negative direction. So, we have to be able to
expand iterated leaf on every step. This is why we need the
mapping J from the statement of the theorem.

If we can reconstruct the whole central stable (or central
unstable) leave by any small plaque of this disk (this is the
so-called dynamical coherence [45]), then we get a naturally
defined expanding mapping J and, due to the Theorem 2,
a symbolic dynamics on the set of central unstable leaves.
For example, this happens, if the considered central unsta-
ble manifolds are de facto ordinary unstable manifolds (a
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hyperbolic case) or, more generally, there is a Lyapunov
function, which does not allow the central unstable leaves
to shrink. For the last case, we do not need any expanding
mappings at all.

In the general case, we offer a sample of expanding map-
ping (Subsection 4.8) drawing straight lines through the
boundary points of the ”narrow” disk. The expansion pro-
cedure allows us to construct a foliation. So, iterating and
expanding disks on every step, we obtain a complex dynam-
ics on the set of disks, close to the central unstable bundle.
We have constructed a model of a slow-fast system with a
chaotic dynamics for the fast variable and unknown behav-
ior of the slow one.

Compare the Devaney’s definition of chaos with one of-
fered in our paper.

Remark 9.

1. The Devaney’s definition of chaos requests hyperbol-
icity. The introduced model does not.

2. The Devaney’s definition describes the dynamic of
point. Our model describes the dynamic of approx-
imations to central unstable leaves.

3. Both the considered models are structurally stable.

7. Conclusion.

An impact oscillator, described by the Newtonian mod-
el of impacts has been studied. There exist many results
on grazing bifurcations for such systems (see [10-12] for re-
view). It has been shown that different types of chaos can be
observed for near-grazing values of parameters. The explicit
conditions, providing existence of a complex dynamics have
been given. The geometry of the obtained strange attractors
has been described.

However, especially in the case of several degrees-of-
freedom, the structure of these attractors may be very sensi-
tive to the parameters of the system. This happens because
the ratios of the Lyapunov exponents of this solution are
big in a non-degenerate case.

In order to describe the robust properties of attractors,
we offer a new approach treating the near-grazing dynamics
as non-hyperbolic. We use a technique of central unstable
manifolds. A dynamical system on a set of embeddings of
the local central unstable manifold of a periodic point is in-
troduced. For this system we find an invariant set described
by the symbolical dynamics.

The conditions of existence of this set (Theorem 2) do
not require hyperbolicity of the periodic motion. So, the
obtained structure is less sensitive to the changes of pa-
rameters when the strange attractor, which may disappear
if one of the Lyapunov exponents becomes zero. Roughly
speaking, some traces of the strange attractor persist, even
when the attractor itself has already disappeared.

From the mathematical point of view, we do not use any
common assumptions from the theory of partial hyperbol-
icity, like integrability of the central unstable bundle, etc.
There may be no continuous central unstable foliation in
the considered case. What we have constructed, is not a
classical ”dynamics of leaves” [43]. However, all the ”ad-
missible disks” are close to the central unstable bundle and
can be considered as approximations to local central unsta-
ble manifolds. So, the result of the Theorem 2 describes a
new type of chaotic dynamics.

Grace to the work by Dankowitz and Nordmark [7], the
results of the current paper may be transferred to the ”soft”
models of impacts.

The obtained model of near-grazing dynamics is struc-
turally stable and can be observed in experiments.
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