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Abstract

We present a version of the equivariant gradient degree defined for equivariant gradient perturbations of an
equivariant unbounded self-adjoint operator with purely discrete spectrum in Hilbert space. Two possible
applications are discussed.
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1. Introduction

To obtain new bifurcation results, N. Dancer [5] introduced in 1985 a new topological invariant for S1-
equivariant gradient maps, which provides more information than the usual equivariant one. In 1994 S. Ry-
bicki [14, 16] developed the complete degree theory for S1-equivariant gradient maps and 3 years later K.
Gęba extended this theory to an arbitrary compact Lie group. In 2001 S. Rybicki [15] defined the degree for
S1-equivariant strongly indefinite functionals in Hilbert space. 10 years later A. Gołębiewska and S. Rybicki
[8] generalized this degree to compact Lie groups. The relation between equivariant and equivariant gradient
degree theories were studied in [1, 2, 7].

The main goal of this paper is to present a construction and properties of a new degree-type topological
invariant Deg∇G, which is defined for equivariant gradient perturbations of an equivariant unbounded self-
adjoint Hilbert operator with a purely discrete spectrum (in the general case a compact Lie group). As far as
we know, the idea of the construction of such an invariant should be attributed to K. Gęba.

It is worth pointing out that equivariant gradient perturbations of an equivariant unbounded self-adjoint
operator with a purely discrete spectrum appear naturally in a variety of problems in nonlinear analysis,
such as the search for periodic solutions of Hamiltonian systems or the study of Seiberg-Witten equations for
three dimensional manifolds. The purpose of our work is to provide a topological tool that allows us to solve
problems similar to the above mentioned ones.

The paper is organized as follows. Section 2 contains some preliminaries. In Section 3 we present the
construction that leads to the definition of the degree Deg∇G. The correctness of this definition is proved in
Section 4. The properties of the degree Deg∇G are examined in Section 5. Finally, in Section 6 we discuss two
examples of possible applications.

2. Preliminaries

The preliminaries are divided into five brief subsections.
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2.1. Unbounded self-adjoint operators in Hilbert space
This subsection is based on [17]. Let E be a real separable Hilbert space with inner product ⟨· | ·⟩ and

A : D(A) ⊂ E → E be a linear operator (not necessarily bounded) such that its domain D(A) is dense in E.
Set

D(A∗) = {y ∈ E | ∃u ∈ E∀x ∈ D(A) ⟨Ax | y⟩ = ⟨x | u⟩}.
Since D(A) is dense in E, the vector u ∈ E is uniquely determined by y. Therefore by setting A∗y = u we
obtain a well-defined linear operator from D(A∗) to E. The operator A∗ is called the adjoint operator of A.
We say that A is self-adjoint if A = A∗. By the Hellinger-Toeplitz theorem, if A is self-adjoint and D(A) = E
then A is bounded.

It is easy to see that
⟨x | y⟩1 = ⟨x | y⟩+ ⟨Ax | Ay⟩

defines an inner product on the domain D(A). Under this product D(A) becomes a Hilbert space, which will
be denoted by E1. Thus D(A) and E1 are equal as sets but equipped with different inner products. Note that
A treated as an operator from E1 to E is bounded.

We say that a self-adjoint operator A has a purely discrete spectrum if its spectrum consists only of isolated
eigenvalues of finite multiplicity. If E is an infinite dimensional Hilbert space then following conditions are
equivalent:

1. A has a purely discrete spectrum.
2. There is a real sequence {λn} and an orthonormal basis {en} such that lim |λn| = ∞ and Aen = λnen

for n ∈ N.
3. The embedding ı : E1 → E is compact.

2.2. Local maps in Hilbert space
Let
• E be a real Hilbert orthogonal representation of a compact Lie group G,
• A : D(A) ⊂ E → E be an unbounded self-adjoint operator with a purely discrete spectrum,
• D(A) be invariant and A equivariant.

Definition 2.1. We write f ∈ GG(E) if
• f : Df ⊂ E1 → E, where Df is an open invariant subset of E1,
• f(x) = Ax−∇φ(x), where φ : E → R is C1 and invariant,
• f−1(0) is compact.
Elements of GG(E) will be called local maps.

2.3. Otopies in Hilbert space
Let I = [0, 1]. Assume that G acts trivially on I. A map h : Λ ⊂ I× E1 → E is called an otopy if
• Λ is an open invariant subset of I× E1,
• h(t, ·) ∈ GG(E) for each t ∈ I,
• h−1(0) is compact.
Given an otopy h : Λ ⊂ I× E1 → E we can define for each t ∈ I:
• sets Λt = {x ∈ E1 | (t, x) ∈ Λ},
• maps ht : Λt → E with ht(x) = h(t, x).

If h is an otopy, we say that h0 and h1 are otopic. The relation of being otopic is an equivalence relation in
GG(E).

Observe that if f is a local map and U is an open subset of Df such that f−1(0) ⊂ U, then f and f↾U are
otopic. This property of local maps is called the restriction property. In particular, if f−1(0) = ∅ then f is otopic
to the empty map.
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2.4. Euler-tom Dieck ring
Recall the notion of the Euler-tom Dieck ring following [19]. For a compact Lie group G let U(G) denote

the set of equivalence classes of finiteG-CW-complexes. Two complexes X and Y are identified if the quotients
XH/WH and YH/WH have the same Euler characteristic for all closed subgroupsH ofG. Recall thatXH stands
here for the H-fixed point set of X, i.e. XH := {x ∈ X | hx = x for all h ∈ H} and WH for the Weyl group of H,
i.e. WH = NH/H. Addition and multiplication in U(G) are induced by disjoint union and cartesian product
with diagonal G-action, i.e.

[X] + [Y] = [X ⊔ Y], [X] · [Y] = [X× Y],
where the square brackets stand for an equivalence class of finiteG-CW-complexes. In this way U(G) becomes
a commutative ring with unit and is called the Euler-tom Dieck ring of G.

Additively, U(G) is a free abelian group with basis elements [G/H], where H is a closed subgroup of G. In
consequence, each element of U(G) can be uniquely written as a finite sum ∑

d(H)[G/H], where d(H) is an
integer, which depends only on the conjugacy class of H. The ring unit is [G/G].

2.5. Finite dimensional equivariant gradient degree deg∇G
Assume that V is a real finite dimensional orthogonal representation of a compact Lie group G. We write

f ∈ GG(V) if f is an equivariant gradient map from an open invariant subset of V to V and f−1(0) is compact.
In the papers [1, 2, 6, 16] the authors defined the equivariant gradient degree

deg∇G : GG(V) → U(G)

and proved that the degree has the following properties: additivity, otopy invariance, existence and normal-
ization. The product property formulated below was proved in [6] and [9].
Theorem 2.2 (Product property). Let V and W be real finite dimensional orthogonal representations of a
compact Lie group G. If f ∈ GG(V) and f ′ ∈ GG(W), then f× f ′ ∈ GG(V ⊕W) and

deg∇G(f× f ′) = deg∇G(f) · deg∇G(f ′) in U(G).

In the next section we will make use of the following result, which can be found in [8, Cor. 2.1].
Theorem 2.3. Let V be a real finite dimensional orthogonal representation of a compact Lie group G. If B is an
equivariant self-adjoint isomorphism of V then deg∇G(B) is invertible in U(G).

Remark 2.4. Note that Theorem 2.3 holds even if V is trivial. In this case deg∇G(B) is equal to the unit of U(G).

3. Definition of degree

In this section we present the construction of the degree Deg∇G using finite dimensional approximations.

3.1. Finite dimensional approximations
Let us start with some notations:
• for λ ∈ σ(A) denote by V(λ) the corresponding eigenspace;
• for n ∈ N write Vn = ⊕|λ|⩽nV(λ), Vn = ⊕n−1<|λ|⩽nV(λ) and An = A↾ Vn ; hence Vn = Vn−1 ⊕ Vn;
• let Pn : E → Vn denote the orthogonal projection.

Assume that U is an open bounded invariant subset of Df such that
f−1(0) ⊂ U ⊂ clU ⊂ Df.

Set Un = U ∩ Vn. Finally, let fn : Un → Vn be given by
fn(x) = Ax− PnF(x),

where F(x) = ∇φ(x).
The following two lemmas are needed to prove Lemma 3.3, which is crucial for the definition of Deg∇G.
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Lemma 3.1. There is ϵ > 0 such that |f(x)| ⩾ 2ϵ for all x ∈ ∂U.

Proof. The fact F is compact and ∂U is closed and bounded implies our claim.

Let us introduce an auxiliary map f̃n : Df → E given by f̃n(x) = Ax− PnF(x). By definition, f̃n↾Un
= fn.

Lemma 3.2. There is N such that for n ⩾ N we have

1. |f(x) − f̃n(x)| < ϵ for x ∈ clU,
2. |f̃n(x)| > ϵ for x ∈ ∂U.

Proof. Since F is compact, F is close to PnF, which gives (1). In turn (2) follows from (1) and Lemma 3.1.
Lemma 3.3. For n ⩾ N we have fn ∈ GG(Vn) and, in consequence, deg∇G(fn) ∈ U(G) is well-defined.

Proof. Since fn is obviously gradient, it is enough to check that f−1
n (0) is compact. Note that f̃n can be

considered as an extension of fn on clUn. By (2) from Lemma 3.2, f̃n does not have zeroes in ∂Un ⊂ ∂U,
which implies that f−1

n (0) = f̃−1
n (0) ∩Un is compact.

3.2. Degree definition
Observe that An is an equivariant self-adjoint isomorphism for n ⩾ 1. By Theorem 2.3, elements an :=

deg∇G(An) are invertible in U(G). Set mn := a−1
1 · a−1

2 · . . . · a−1
n .

Definition 3.4. Let Deg∇G : GG(E) → U(G) be defined by

Deg∇G(f) := mn · deg∇G(fn)

for n ⩾ N.
An alternative definition of Deg∇G in terms of the direct limit is given in Appendix A.

4. Correctness of the definition

We have to prove that our definition does not depend on the choice of n and the neighbourhood U.
Independence from the choice of n. To show this we will need the following lemma.
Lemma 4.1. For n large enough fn+1 is otopic to fn ×An+1 in GG(Vn+1) and hence

deg∇G(fn+1) = deg∇G(fn ×An+1).

Proof. First observe there is an open W ⊂ U and natural number N such that
• f−1(0) ⊂ W ⊂ U,
• Pn(clW) ⊂ Un for all n ⩾ N.

Define hn+1 : I× clWn+1 → Vn+1 by

hn+1(t, x) = (1− t)fn+1(x) + t(fn ×An+1)(x).

We set n sufficiently large. One can show that hn+1(t, x) , 0 for t ∈ I and x ∈ ∂Wn+1. In consequence,
hn+1↾ I×Wn+1 is a finite dimensional equivariant gradient otopy between fn+1↾Wn+1 and fn ×An+1↾Wn+1
(otherwise there would be a point x0 ∈ ∂W such that f(x0) = 0, a contradiction). On the other hand, by
the restriction property, fn+1 and fn × An+1 are otopic to their restrictions to Wn+1, which completes the
proof.
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From Lemma 4.1 and Theorem 2.2 we can easily conclude that

deg∇G(fn+1)
4.1
= deg∇G(fn ×An+1)

2.2
= deg∇G(fn) · deg∇G(An+1) = an+1 · deg∇G(fn).

This gives
mn+1 · deg∇G(fn+1) = mn+1 · an+1 · deg∇G(fn) = mn · deg∇G(fn),

which shows that Deg∇G(f) does not depend on the choice of n large enough.
Independence from the choice of U. According to our definition Deg∇G(f) = Deg∇G(f↾U). Now we will prove
that in fact Deg∇G(f) is independent from the choice of the neighbourhood U.
Lemma 4.2. Let W and U be open bounded sets such that

f−1(0) ⊂ W ⊂ U ⊂ clU ⊂ Df.

Then Deg∇G(f↾W) = Deg∇G(f↾U).

Proof. By the analogue of Lemma 3.1 (with ∂U replaced by clU \ W), |f(x)| ⩾ 2ϵ for x ∈ clU \ W and by
Lemma 3.2, |f(x) − f̃n(x)| < ϵ for x ∈ clU. Hence f̃n(x) , 0 for x ∈ clU \W. In consequence, fn(x) , 0 for
x ∈ clUn \Wn. Therefore

Deg∇G(f↾U) = mn · deg∇G(fn↾Un
) = mn · deg∇G(fn↾Wn

) = Deg∇G(f↾W).

Corollary 4.3. Let U and U ′ be open bounded subsets of Df such that

f−1(0) ⊂ U ∩U ′ ⊂ cl(U ∪U ′) ⊂ Df.

Then Deg∇G(f↾U) = Deg∇G(f↾U∩U′) = Deg∇G(f↾U′).

In this way we have proved that Deg∇G(f) does not depend on the choice of admissible U.

5. Degree properties

In this section we prove that our degree Deg∇G : GG(E) → U(G) has all properties analogous to the well-
known properties of the finite dimensional equivariant gradient degree deg∇G.
Additivity property. If f, f ′ ∈ GG(E) and Df ∩Df′ = ∅ then

Deg∇G(f ⊔ f ′) = Deg∇G(f) + Deg∇G(f ′).

Otopy invariance property. Let f, f ′ ∈ GG(E). If f is otopic to f ′ then

Deg∇G(f) = Deg∇G(f ′).

Existence property. If Deg∇G(f) , 0 then f(x) = 0 for some x ∈ Df.

Normalization property.
Deg∇G(A+ P0) = [G/G] = 1U(G),

where P0 : E1 → V0 = kerA is the orthogonal projection.

Product property. Let E and E ′ be real Hilbert orthogonal representations of a compact Lie groupG. If f ∈ GG(E)
and f ′ ∈ GG(E

′), then f× f ′ ∈ GG(E⊕ E ′) and

Deg∇G(f× f ′) = Deg∇G(f) · Deg∇G(f ′),

where the dot here denotes the multiplication in U(G).
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Proof. Additivity. Immediately from the additivity of deg∇G we obtain

Deg∇G(f ⊔ f ′) = mn · deg∇G(fn ⊔ f ′n) = mn · (deg∇G(fn) + deg∇G(f ′n)) = Deg∇G(f) + Deg∇G(f ′).
Otopy invariance. Let the map h : Λ ⊂ I× E1 → E given by h(t, x) = Ax− F(t, x) be an otopy. We introduce
the following notation:

Λt = {x ∈ E1 | (t, x) ∈ Λ}, ht : Λt → E, ht(x) = h(t, x),
Λn = Λ ∩ (I× Vn), hn : Λn → Vn, hn(t, x) = Ax− PnF(t, x),
Λt

n = Λt ∩ Vn, ht
n : Λt

n → Vn, ht
n(x) = hn(t, x).

Note that for the needs of this subsection the time parameter t of the otopy is a superscript, not a subscript.
According to the above notation we have to show that Deg∇G(h0) = Deg∇G(h1). Since h−1(0) is compact, there
is an open bounded set W ⊂ I× E1 such that

h−1(0) ⊂ W ⊂ clW ⊂ Λ.
Hence for i = 0, 1 we have

(hi)−1(0) ⊂ Wi ⊂ clWi ⊂ Λi,
whereWi = {x ∈ E1 | (i, x) ∈ W}. Similarly as in Lemma 3.1, there is ϵ > 0 such that |h(z)| ⩾ 2ϵ for z ∈ ∂W.
On the other hand, similarly as in Lemma 3.2, there is N such that

∣∣h(z) − h̃n(z)
∣∣ < ϵ for z ∈ clW and

n ⩾ N, where h̃n : Λ → E is given by h̃n(t, x) = Ax − PnF(t, x). Therefore |hn(z)| ⩾ ϵ for z ∈ ∂Wn ⊂ ∂W.
From the above:

• hn↾Wn
is a finite dimensional equivariant gradient otopy,

• Deg∇G(hi) = mn · deg∇G(hi
n↾Wi

n
),

which, by the otopy invariance of deg∇G, gives

Deg∇G(h0) = mn · deg∇G(h0
n↾W0

n
) = mn · deg∇G(h1

n↾W1
n
) = Deg∇G(h1).

Existence. If f−1(0) = ∅ then f is otopic with the empty map. Hence
Deg∇G(f) = Deg∇G(∅) = 0.

Normalization. Observe that A+ P0 is an injection and
deg∇G((A+ P0)n) = deg∇G(Id↾ V0) · deg∇G(A1) · . . . · deg∇G(An) = m−1

n

for any n ⩾ 1. Hence
Deg∇G(A+ P0) = mn · deg∇G((A+ P0)n) = [G/G].

Product formula. Let f(x) = Ax−F(x) and f ′(x) = A ′x−F ′(x). Observe that, by Theorem 2.2, if fn ∈ GG(Vn)
and f ′n ∈ GG(V

′
n) then fn × f ′n ∈ GG(Vn ⊕ V ′

n) and

deg∇G(fn × f ′n) = deg∇G(fn) · deg∇G(f ′n).
Moreover, for n large enough

Deg∇G(f) = mn · deg∇G(fn),
Deg∇G(f ′) = m ′

n · deg∇G(f ′n).
Since for any i ⩾ 1

deg∇G((A×A ′)i) = deg∇G(Ai ×A ′
i) = deg∇G(Ai) · deg∇G(A ′

i),
we have

Deg∇G(f× f ′) = mn ·m ′
n · deg∇G(fn × f ′n) = mn ·m ′

n · deg∇G(fn) · deg∇G(f ′n) = Deg∇G(f) · Deg∇G(f ′).
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Remark 5.1. The normalization property can be formulated more generally, but the proof of this fact will
appear elsewhere. Namely, let x0 ∈ Vn and, in consequence, Gx0 ⊂ Vn. Define

U = {x+ y+ z | x ∈ Gx0, y ∈
(
Tx0(Gx0)

)⊥ ⊂ Vn, |y| < ϵ, z ∈ (
Vn

)⊥ ⊂ E1}

and f : U → E by
f(x+ y+ z) = (A+ P0)(y+ z).

Then Deg∇G(f) = [G/Gx0 ].

6. Possible applications

We should emphasize that this section contains not real applications of the theory but only two exemplary
situations illustrating potential applications.

6.1. Applications to Hamiltonian systems
The search for periodic solutions in Hamiltonian systems is one of the fundamental problems in nonlinear

analysis (see for instance [3, 12, 13, 20]). Consider the Hamiltonian system of ODE
dp

dt
= −Hq,

dq

dt
= Hp,

where H ∈ C1(R2n,R) and p,q ∈ Rn or equivalently
dz

dt
= JHz,

where z = (p,q) and
J =

(0 −I
I 0

)
.

The function H is called the hamiltonian or energy.
Rewrite the Hamiltonian system as

ż = J∇H(z), z ∈ R2n (∗)
or equivalently −Jż−∇H(z) = 0.

We are searching for solutions z ∈ H1
T of the equation (∗), where H1

T (T > 0) denotes the completion of
the set of smooth T -periodic functions from R to R2n in the norm associated to the inner product (u | v)H1

T
=∫T

0 uvdt +
∫T
0 u̇v̇ dt. For this purpose we apply the method of the topological degree Deg∇S1 . Namely, let

E = L2(S1,R2n) and E1 = H1(S1,R2n). Moreover, denote by D the set E1 equipped with the inner product
from E.

Observe that
• E and E1 are Hilbert spaces and orthogonal representations of the group SO(2) = S1 with the S1-action

given by the shift in time,
• A : D → E given by Az = −Jż is an equivariant unbounded self-adjoint operator with a purely discrete

spectrum,
• ∇H(z) is a gradient of the invariant functional φ : E → R defined by φ(z) =

∫2π
0 H(z(t))dt,

• ∇H ◦ ı : E1 → E is a compact map by the compactness of the inclusion ı : E1 → E.
We can now formulate the main result of this subsection.

Theorem 6.1. Assume that λ > 0 and the set of zeros of the map fλ(z) = −Jż − λ∇H(z) is compact. If
Deg∇S1(fλ) , 0 then the equation (∗) has a solution in H1

2πλ.

Proof. First note that if f−1
λ (0) is compact then fλ is an element of GS1(E). By the existence property,

Deg∇S1(fλ) , 0 implies that fλ(z) = 0 for some z ∈ E1. Hence a lift z̃ ∈ H1
2πλ of z given by z̃(t) = z(ρ(t)),

where ρ : R → S1 is the standard covering projection, is a solution of (∗), which is our claim.
7
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6.2. Applications to the Seiberg-Witten equations
The description of the Seiberg-Witten equations presented here is necessarily sketchy (for more details

we refer the reader to [4, 10, 11, 18]). LetM be a closed oriented Riemannian 3-manifold. A Spinc-structure
on M consists of rank two Hermitian vector bundle S → M called the spinor bundle. We write Ω1(M, iR) for
the space of smooth imaginary-valued 1-forms on M and Γ(S) for the space of smooth cross-sections of the
spinor bundle S → M. For each a ∈ Ω1(M, iR) there is an associated Dirac operator Da : Γ(S) → Γ(S).

Recall that, in what follows, d stands for the exterior derivative and ∗ denotes the Hodge star. For a pair
(a,φ) ∈ Ω1(M, iR)⊕ Γ(S) the Seiberg-Witten equations are{

Daφ = 0
∗da = Q(φ),

where Q(φ) ∈ Ω1(M, iR) is a certain quadratic form (nonlinear part of the equations). The solutions of
Seiberg-Witten equations are zeros of the Seiberg-Witten map

SW : Ω1(M, iR)⊕ Γ(S) → Ω1(M, iR)⊕ Γ(S)

given by
SW(a,φ) = (∗da−Q(φ),−Daφ).

After suitable Sobolev completion the Seiberg-Witten map SW can be written in the form A − F, where
A = (∗da,−Daφ) is an unbounded self-adjoint operator and F is a gradient map. Moreover, the Seiberg-
Witten map is equivariant for the action of the group S1, which acts trivially on the component arising from
the differential forms and as complex multiplication on the spinor component. It suggests that the SW map
should fit to our abstract setting of the degree Deg∇S1 . Unfortunately, the set of zeros of the SW map is not
compact and its operator part does not have a purely discrete spectrum. However, we hope that it is possible
to reduce our problem to some subspace of Ω1(M, iR) in such a way that the reduced SW map will have
a compact set of zeros and its operator part will have a purely discrete spectrum. Verifying this claim is,
however, still in progress.

Acknowledgements. The authors wish to express their thanks to the referee for helpful comments con-
cerning the paper and to M. Starostka for pointing out an inaccuracy in Subsection 6.2.

Appendix A.

Definition 3.4 may be seen as a simple particular case of a more general construction called the direct limit
of a direct system of groups. Namely, for i = 0, 1, . . . let Gi denote an abelian group and αi : Gi → Gi+1 a
group homomorphism. With this notation we get the sequence

G0
α0−→ G1

α1−→ G2
α2−→ G3 → · · ·

Let G̃ :=
∐∞

i=0 Gi denote a disjoint union, i.e.

G̃ = {(i,m) | i ∈ N, m ∈ Gi}.

We introduce in G̃ an equivalence relation. For i > j we write (i,m) ∼ (j, l) if

αi−1 ◦ · · · ◦ αj+1 ◦ αj(l) = m.

The direct limit of groups is the set of equivalence classes of the above relation, denoted by

lim−→Gi = G̃/ ∼ .

Let lim−→U(G) denote a direct limit of groups, where
8
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• Gi = U(G) for all i,
• αi is multiplication by an element ai = deg∇G(Ai,Vi) ∈ U(G).

With this notation we can alternatively define our degree as a function Deg∇G : GG(E) → lim−→U(G) ≈ U(G)
given by

Deg∇G(f) := [(n, deg∇G(fn,Un))]

for n large enough.
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