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a b s t r a c t 

The paper concerns torsional buckling and the initial post-buckling of axially compressed 

thin-walled aluminium alloy columns with bisymmetrical cross-section. It is assumed that 

the column material behaviour is described by the Ramberg–Osgood constitutive equa- 

tion in non-linear elastic range. The stationary total energy principle is used to derive the 

governing non-linear differential equation. An approximate solution of the equation deter- 

mined by means of the perturbation approach allows to determine the buckling loads and 

the initial post-buckling behaviour. Numerical examples dealing with simply supported I- 

column are presented and the effect of material elastic non-linearity on the critical loads 

and initial post-buckling behaviour are compared to the linear solution. 

© 2018 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

The thin-walled members made of aluminium are increasingly found in various fields of engineering structures in the

light of their strength relative to the weight [1–3] . As is well known under the influence of compression there are prob-

lems related to loss of stability: global (flexural, torsional, flexural-torsional), local and distortional modes depending on the

parameters of the cross-section, the column length and the mechanical properties of the column material. The problems of

different types of buckling, especially torsional buckling are well described in literature [4] . Recently special problems related

to mainly flexural-torsional buckling are taken into consideration in analytical–numerical–experimental [5–8] , experimental–

numerical [9] or experimental [10,11] routines, using different materials (e.g. steel, aluminium, laminated structural glass,

wood composite) but appropriate attention is paid neither to torsional buckling [12] nor post-buckling behaviour of columns

[13] . Most of the papers focused on torsional buckling and post-buckling refer to cylindrical shells only [14,15] in linear or

non-linear sense. A relatively comprehensive theoretical review (in mathematical view) of major problems for buckling and

post-buckling of rods and shells in linear and non-linear elastic ranges can be found in a monograph by Antman [16] . Two

articles written by Hancock are also worth mentioning [17,18] . In these articles the author reviews research on cold-formed

structures conducted in recent years. 
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Fig. 1. Axially compressed columns; numerical example – data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this paper torsional buckling and initial post-buckling behaviour of axially compressed column made of aluminium

alloy [19] is analysed. The material behaviour is described by the Ramberg–Osgood law [20,21] . In order to find the analytical

solution of the problem at first the total potential energy of the structure and applied loads is formulated based upon the

classical theory of beams in initial finite displacements range [22] . The governing nonlinear differential equation is derived

with the aid of the stationary total potential energy principle. The approximate solution of the equation obtained by means

of a perturbation approach [22] leads to the critical buckling load and the initial post-buckling behaviour. The critical load

follows the tangent modulus approach [23] . In order to verify the analytical results numerical examples dealing with I-

columns are presented and comparison with the FEM results using ABAQUS software [24] is shown. A good agreement of

both kind of stability analysis is achieved here. 

2. Total potential energy of column and governing differential equation 

Consider an axially compressed thin-walled column with bisymmetric cross-section (see Fig. 1 ) made of non-linear elastic

material described by the Ramberg–Osgood relationship (1) [21] 

ε = 

σ

E 
+ K 

(
σ

σ0 

)n −1 

(1) 

where σ is the axial stress, E stands for the Young’s modulus, σ 0 denotes the yield stress, ε strain, K and n are material

constants. It is well known that three independent global buckling modes are possible: two flexural about axes of symmetry

and a torsional one. The tangent modulus theory [20] is adopted to find the torsional buckling load and initial post-bucking

behaviour. The tangent modulus is determined by the first derivative of the constitutive Eq. (1) with respect to the strain ε

E t = 

dσ

dε 
= E 

[
1 + (n − 1) KEσ n −2 σ 1 −n 

0 

]−1 
(2) 

Following [25] the critical buckling load P l cr corresponding to the linear elastic material is 

P l cr = 

A 

J 0 

[ 
π2 EJ ω 

l 2 
b 

+ GJ d 

] 
(3) 

where J 0 stands for the polar moment of inertia, J ω is the cross-sectional warping moment of inertia, A is for the cross-

section area, G represents the shear modulus, J d is the free-torsion moment of inertia and l b stands for the effective buckling

length depending on the boundary conditions of the column. In order to find the critical buckling load in nonlinear elastic

range of the column material behaviour the tangent modulus E t (2) should be inserted instead the Young’s modulus in

(3) and after some algebra we arrive at the non-linear algebraic equation for the critical buckling load 

P cr + KEA (n − 1) P n −1 
cr P 1 −n 

0 = P l cr (4) 

where P 0 = σ0 A . Herein it is assumed that the Poisson’s ratio ν in non-linear range is independent of the strain ε and hence

G t = 

E t 

2(1 + ν) 
(5) 

In the initial post-buckling state the axial stress σ 1 and the axial strain ε1 due to the column torsion θ (see Fig. 1 ) may be

written as 

σ1 = σ − σcr , ε 1 = ε − ε cr (6) 
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where the critical buckling stress denoted by σ cr may be determined using solution of the Eq. (4) 

σcr = 

P cr 

A 

(7)

and the critical buckling strain εcr can be computed from the relation (1) . 

Expansion of the relation σ 1 ( ε1 ) in the vicinity of the bifurcation point ( σ cr , εcr ) into Taylor series leads to 

σ1 = E t ε 1 + E 1 ε 
2 
1 + E 2 ε 

3 
1 + · · · (8)

where E 1 and E 2 are regarded as the second and the third moduli expressed by corresponding stress σ 1 derivatives with

respect to the strain ε1 at the bifurcation point ( σ cr , εcr ) 

E 1 = 

1 

2 

d 2 σ1 

dε 2 
1 

(σcr , ε cr ) , E 2 = 

1 

6 

d 3 σ1 

dε 3 
1 

(σcr , ε cr ) (9)

The close analytical formulas for these derivatives are derived by means of successive differentiation of the relationship

(1) 

d 2 σ1 

dε 2 
1 

= − KE(n − 1)(n − 2) 

1 + K(n − 1) 
(

σcr 

σ0 

)n −1 (
E 
σcr 

)
(
σcr 

σ0 

)n −3 ( E t 

σ0 

)2 

d 3 σ1 

dε 3 
1 

= − KE(n − 1)(n − 2) 

1 + K(n − 1) 
(

σcr 

σ0 

)n −1 (
E 
σcr 

)
(

E t 

σcr 

)(
E 1 
σcr 

)(
σcr 

σ0 

)n −1 

. . . (10)

. . . 

[ 
6 + (n − 3) 

(
E t 

σcr 

)(
E t 

E 1 

)] 

The total potential energy of the column V in the initial post-buckling state consists of the strain energy V S and the potential

energy of the applied end loads V P 

V = V S + V P (11)

The strain energy is a sum of the effect of the normal stress V σ the energy due to free torsion V t 

V S = V σ + V t (12)

where the first part may be written as the integral on the column volume W 

V S = 

∫ 
W 

∫ σ1 

0 

σ1 dε 1 dW (13)

and the second one [4,25] 

V t = 

1 

2 

G t J d 

∫ l 

0 

θ ′ 2 dz (14)

where l is the column length, θ is the torsion angle, the prime denotes derivative with respect to z . 

In order to calculate the integral (13) a well-known relation for the axial strain due to the column torsion is applied

[25] 

ε 1 = ωθ ′ ′ + 

1 

2 

(
r 2 − J 0 

A 

)
θ ′ 2 (15)

where ω is the sectorial area and r denotes the polar coordinate of cross-section point. 

Inserting the relation (8) into the integral (13) and neglecting the terms higher than third order we arrive at 

V S = 

∫ l 

0 

∫ 
A 

(
1 

2 

E t ε 1 + 

1 

3 

E 1 ε 
2 
1 + 

1 

4 

E 2 ε 
3 
1 

)
d Ad z (16)

Using (15) and integrating on whole cross-section the integral (16) may be rewritten as 

V S = 

1 

2 

E t J ω 

∫ l 

0 

θ ′ ′ 2 dz + 

1 

8 

E t J 00 

∫ l 

0 

θ ′ 2 dz + 

1 

4 

E 2 J ωω 

∫ l 

0 

θ ′ ′ 4 dz (17)

where the terms higher than fourth order of derivatives of the torsion of angle are neglected. The following notations are

introduced: 

• the warping torsional moment of inertia J ω = 

∫ 
A ω 

2 dA, 

• the fourth order polar moment of inertia J 00 = 

∫ 
A r 

4 dA, 

• the reduced fourth order polar moment of inertia J 00 = J 00 − J 2 
0 
A 

, 

•
∫ 

4 
the fourth order warping moment of inertia J ωω = A ω dA . 
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The potential energy of axial end loads P may be described by [25] 

V P = −P 
J 0 
2 A 

∫ l 

0 

θ ′ 2 dz (18) 

Summarizing, the total potential energy (11) may be presented as 

V = 

1 

2 

∫ l 

0 

F (z) dz (19) 

where the underintegral function is 

F (z) = E t J ω θ
′ ′ 2 + 

(
G t J d − P 

J 0 
A 

)
θ ′ 2 + 

1 

4 

(
E t J 00 θ

′ 4 + 2 E 2 J ωω θ
′ ′ 2 ) (20)

The necessary condition for the functional extremum (19) , well known the Euler–Lagrange [26] equation 

d 

dz 

(
∂F 

∂θ ′ 
)

− d 2 

dz 2 

(
∂F 

∂θ ′ ′ 
)

= 0 (21) 

leads to the governing differential equation of the torsional buckling and initial post-buckling of the column 

E t J ω θ
IV + 

(
P 

J 0 
A 

− G t J d 

)
θ ′ ′ − 3 

2 

E t J 00 θ
′ 2 θ ′ ′ + 3 E 2 J ωω 

(
2 θ ′ ′ θ ′ ′ ′ 2 + θ ′ ′ 2 θ IV 

)
= 0 (22)

The solution of the non-linear Eq. (22) can be found by means of the perturbation approach, the following expansions up

to third power are introduced 

θ (z) = θ0 θ1 (z) + θ2 
0 θ2 (z) + θ3 

0 θ3 (z) + · · · (23) 

P = P cr + θ0 P 
(1) + θ2 

0 P 
(2) + θ3 

0 P 
(3) + · · ·

where θ0 stands for a perturbation parameter and P cr denotes the critical buckling load. 

Substituting relations (23) into (22) and equating, in accord to the perturbation approach [22] , the coefficients of the

power of the perturbation parameter to zero the following system of linear differential equations is given 

E t J ω θ
IV 
1 + 

(
P cr 

J 0 
A 

− G t J d 

)
θ1 

′ ′ = 0 

E t J ω θ
IV 
2 + 

(
P cr 

J 0 
A 

− G t J d 

)
θ2 

′ ′ = −P (1) J 0 
A 

θ1 
′ ′ (24) 

E t J ω θ
IV 
1 + 

(
P cr 

J 0 
A 

− G t J d 

)
θ3 

′ ′ = −1 

2 

P (2) J 0 
A 

θ1 
′ ′ + · · ·

+ 

3 

2 

E t J 00 θ
′ 
1 

2 θ
′ ′ 
1 − 3 E 2 J ωω 

(
2 θ

′ ′ 
1 θ1 

′ ′ ′ 2 + θ1 
′ ′ 2 θ IV 

1 

)
together with the appropriate boundary conditions and additional ‘‘false’’ conditions [22] . 

3. Critical buckling loads and initial post-buckling behaviour 

Consider a simply supported I-column of length l axially compressed by the end loads P presented in Fig. 1 . The boundary

conditions for both column ends may be written as 

θ (0) = θ ′ ′ (0) = 0 , θ (l) = θ ′ ′ (l) = 0 (25) 

The additional ‘‘false’’ condition results from an assumption that the perturbation parameter θ0 is considered the displace-

ment at the mid-span cross-section, thus 

θ1 (l/ 2) = θ0 , θi (l/ 2) = 0 , i = 2 , 3 , . . . (26)

The solution of the first differential Eq. (24) accounting for the boundary conditions (25) and (26) leads to the buckling

mode and the critical buckling load 

θ1 (z) = θ0 sin 

πz 

l 
, P cr = 

A 

J 0 

(
π2 

l 2 
E t J ω + G t J d 

)
(27) 

Entering these results into the solution of the second Eq. (24) and applying the boundary and ‘‘false’’ conditions we arrive

at 

θ2 (z) = 0 , P (1) = 0 (28) 

Inserting these results in the third Eq. (24) it reads 

E t J ω θ
IV 
3 + 

(
P cr 

J 0 
A 

− G t J d 

)
θ

′ ′ 
3 = k 3 sin 

πz 

l 
+ l 3 sin 

3 πz 

l 
(29) 
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where 

k 3 = 

(
π

l 

)2 [ J 0 
2 A 

P (2) − 3 

8 

(
π

l 

)2 

E t J 00 −
3 

4 

(
π

l 

)6 

E 2 J ωω 

] 
(30)

l 3 = 

1 

4 

(
π

l 

)4 [ 
− 3 

2 

E t J 00 + 9 

(
π

l 

)4 

E 2 J ωω 

] 
The solution of the Eq. (24) can be written as 

θ3 = C 1 + C 2 z + C 3 sin 

πz 

l 
+ C 4 cos 

πz 

l 
+ K 3 sin 

πz 

l 
+ L 3 sin 

3 πz 

l 
(31)

The constants C 1 , C 2 , C 3 and C 4 should be determined from the boundary conditions (25) and additional ‘‘false’’ one (26) .

Thus we arrive at 

C 1 = C 2 = C 4 = 0 , C 3 = L 3 , K 3 = 0 , L 3 = 

l 3 
72( π

l 
) 4 

(32)

These results lead to the final solution of the Eq. (26) and the second derivative of the axial load with respect to the

perturbation parameter P (2) 

θ3 (z) = 

1 

192 

J 00 

J ω 

[ 
6 

(
π

l 

)4 E 2 J ωω 

E t J 00 

− 1 

] (
sin 

3 πz 

l 
+ sin 

πz 

l 

)
(33)

P (2) = 

3 

4 

(
π

l 

)2 A 

J 0 
E t J 00 

[ 
1 + 2 

(
π

l 

)4 E 2 J ωω 

E t J 00 

] 

The result shown in (28) allows to draw a conclusion that the obtained bifurcation point is symmetrical. Additional stability

property of the bifurcation point is determined by P (2) value. If negative, it holds 

2 

(
π

l 

)4 E 2 J ωω 

E t J 00 

< −1 (34)

here the bifurcation point is unstable, which means that the critical buckling load may be decreased. Thus reduction of the

critical load due to inevitable geometric imperfections is possible and the bifurcation point exchange into the limit point

[22,25] . Evidently for columns made of linearly elastic material symmetrical and stable bifurcation points [25] occur. 

The relative initial post-buckling equilibrium path vs. the rotational angle in the column mid-span can be established by

the ratio of the axial load P (23) to the critical buckling load corresponding to the linear model of the column material P l cr 

P 

P l cr 

= 

P cr 

P l cr 

+ 

3 

4 

(
π

l 

)2 E t J 00 + 2 

(
π
l 

)4 
E 2 J ωω (

π
l 

)2 
E t J ω + G t J d 

θ2 
0 (35)

The initial post-buckling equilibrium path may be determined putting first relation (22) and (24) into the first formula (16) 

θ (z) = θ0 

{ 

sin 

πz 

l 
+ 

θ2 
0 

192 

J 00 

J ω 

[ 
6 

(
π

l 

)4 E 2 J ωω 

E t J 00 

− 1 

] (
sin 

3 πz 

l 
+ sin 

πz 

l 

)} 

(36)

4. Numerical examples 

Numerical examples deal with a simply supported thin-walled I-column made of heat-treated aluminium alloy 6081

( E = 68.67 GPa, ν= 0.33, σ 0 = 288 MPa) [19] presented in Fig. 1 . Torsional buckling and initial post-buckling behaviour are

discussed here. The critical buckling load P cr and the post-buckling equilibrium paths are determined for the non-linear

material following the Ramberg–Osgood relation (1) [19] ( K = 0.002, n = 16.16) and compared to load P l cr corresponding to

the linear one. The geometrical characteristics of the I cross-sections necessary to calculate the critical loads and the initial

post-buckling path are as follows 

A = ht h + 2 bt b 

J 0 = 

h 

3 t h 
12 

[ 
1 + 6 

b 

h 

t b 
t h 

+ 2 

(
b 

h 

)3 t b 
t h 

] 

J 00 = 

h 

5 t h 
80 

{ 

1 + 2 

(
t b 
t h 

)[ (
b 

h 

)5 

+ 

5 

12 

(
b 

h 

)3 

+ 5 

b 

h 

] } 

(37)

J ω = 

1 

24 

b 3 h 

2 t b 

J ωω = 

1 

640 

b 5 h 

4 t b 

J d = 

ht 3 
h 

3 

[ 
1 + 2 

(
t b 
t 

)3 b 

h 

] 

h 
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Fig. 2. Three-dimensional FE models, boundary conditions and load diagrams: (a) Model A, (b) Model B. 

Table 1 

Axially compressed simply supported column – critical buckling force (kN). 

Analytic Diff. FEM Diffs. 

l t b P 0 Linear R–O Linear R–O 

( m ) ( mm ) (5) (3) (4) (%) (LBA) (Riks) (%) (%) (%) 

3.5 5 2016 1955.3 1582.9 19.0 1916.9 1605.8 16.2 2.0 1.4 

10 2304 2275.5 1817.7 20.1 2229.2 1851.4 16.9 2.0 1.8 

4 5 2016 1578.4 1464.2 7.2 1562.5 1477.3 5.5 1.0 0.9 

10 2304 1857.7 1696.6 8.7 1830.3 1713.9 6.4 1.5 1.0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The analytical solutions are verified by means of the results of FEM analysis. Numerical analysis is performed by means

of the ABAQUS software [24] . In order to estimate values of the critical buckling loads the linear (Linear Buckling Anal-

ysis) and non-linear (Riks) [27–29] procedures are applied. In the numerical analysis by ABAQUS software the non-linear

behaviour of material (aluminium alloy 6081) is described by two parameters of the Ramberg–Osgood law (ABAQUS – Ma-

terial Behaviours – Mechanical – Deformation Plasticity): the ‘‘yield’’ offset α = K 

E 
σ0 

= 0.476875 and the hardening exponent

N = n −1 = 15.16. In the FEM analysis, due to symmetry of the member, only a half of the column was discretised with

boundary conditions presented in Fig. 2 . In all numerical analysis the members are modelled by means of fully integrated

shell elements with a reduced integration type S4R. The main finite element size is 0.01 × 0.01 m 

2 (i.e. 80 elements are used

along the cross-sections and for: l /2 = 1.75 m − 175; l /2 = 2 m − 200 along the length of the member). The total amount of

finite elements applied is: l /2 = 1.75 m − 14,0 0 0 and l /2 = 2 m − 16,0 0 0. Prior to numerical stability analysis of the problem

convergence of the applied FEM procedure is investigated. In Fig. 2 numerical models, FEM mesh, load and imposed bound-

ary conditions are shown. The numerical calculations were performed by means of two models ( Fig. 2 ): first (a) Model A

to find a starting non-perfect geometry using kinematic extortion θ0 (10 −5 or 20 −5 rad) and 

∗COUPLING constraints com-

mand (see Fig. 2 a) (using ∗STATIC, GENERAL command) and next (b) Model B (see Fig. 2 b) used in the main analysis (using
∗STATIC, RIKS command) with initial imperfections taken from Model A (using ∗IMPERFECTION command). 
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Fig. 3. Relative critical torsional buckling load vs. middle-span deflection for simply supported column; length 3.5 m and web thickness t h = 5 mm for (a) 

linear and (b) non-linear material. 

Fig. 4. Relative critical torsional buckling load vs. middle-span deflection for simply supported column; length 3.5 m and web thickness t h = 10 mm for (a) 

linear and (b) non-linear material. 

 

 

 

 

 

Tables 1 and Figs. 3 –6 presents the critical buckling loads and the relations of the critical load to the one corresponding

to linearly elastic material vs. the rotation at mid-span cross-section. 

The slenderness ratios λ for the analysed cross-sections were investigated. If l = 3.5 m the λ equals 43.6 at t h = 5 mm and

46.6 at t h = 10 mm and if l = 4 m λ equals 49.9 at t h = 5 mm and 53.3 at t h = 10 mm. In all cases the slenderness ratios λ are

higher than the reference slenderness ratio λr = π
√ 

E 
σ0 

= 15.4. 

Moreover the initial post-buckling equilibrium paths are shown in Figs. 7 and 8 . Additionally in the Table 1 the values

of limit forces P 0 are shown. Comparison of the results obtained allows to draw a conclusion that analytical and numerical

solutions converge. 
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Fig. 5. Relative critical torsional buckling load vs. middle-span deflection for simply supported column; length 4 m and web thickness t h = 5 mm for (a) 

linear and (b) non-linear material. 

Fig. 6. Relative critical torsional buckling load vs. middle-span deflection for simply supported column; length 4 m and web thickness t h = 1 mm for (a) 

linear and (b) non-linear material. 

 

 

 

 

 

 

5. Discussion and conclusions 

Torsional buckling and initial post-buckling behaviour of the axially compressed columns with bisymmetrical cross- 

section made of aluminium alloy are considered. Closed analytical formulas for the torsional critical buckling load and post-

buckling behaviour are stated. Additionally, the initial post-buckling equilibrium path is derived. It should be noted that the

Ramberg–Osgood constitutive equation may be also applied for other materials, for example: stainless-steel, carbon-steel 

or wood and in these cases it is possible to use the method of stability analysis presented herein. Finally, the comparative

numerical analysis using the commercial computer system ABAQUS is carried out. 

The analytical and numerical study allows to formulate some conclusions related to effect of material non-linearity on the

torsion critical load and initial post-buckling behaviour. The results of the FEM analysis confirm correctness of the proposed

analytical solutions and their acceptable accuracy. The small discrepancies observed may be a result from neglecting the

cross-section deformability in the analytical solution. 
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Fig. 7. Relative initial post-buckling equilibrium path for simply supported column; length 3.5 m and web thickness: (a) t h = 5 mm and (b) t h = 10 mm for 

linear and non-linear material – analytical results. 

Fig. 8. Relative initial post-buckling equilibrium path for simply supported column; length 4 m and web thickness: (a) t h = 5 mm and (b) t h = 10 mm for 

linear and non-linear material – analytical results. 
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It should be noticed that the sign of the reduced fourth order polar moment of inertia J 00 value defines the type of

bifurcation point in an elastic range of the column material behaviour. If the polar moment of inertia J 00 is positive, a

symmetric and stable bifurcation point exists and the reduction of critical load due to geometrical imperfections does not

occur. In the case of the negative value of J 00 , the bifurcation point is unstable and such a reduction occurs (see Figs. 3 (a),

4 (a), 5 (a), 6 (a)). Otherwise it is noteworthy that the bifurcation point of flexural buckling is symmetric and stable in the

elastic range of the material behaviour. In the case of material non-linearity, in view of the negative dominate value of E 2 
module (9) and (10) , the bifurcation point is usually symmetric but unstable and causes decrement of the critical buckling

load. 

A higher reduction of the critical buckling stress occurs if its value is close to the elastic limit. It is also noteworthy that,

the case happens only for heat-treated aluminium alloys [19] . In the case of non-heat-treated aluminium alloys [19] prior

to loss of the torsional of stability the material usually becomes plastic. This phenomenon is very important aluminium

structural design constructions in order to fulfill stability and stress conditions. 
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