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Abstract. Human chromosomes carry genetic information about our life. 

Chromosome classification is crucial for karyotype analysis. Existing 

chromosome classification methods do not take into account reasoning, such 

as: analyzing the relationship between variables, modelling uncertainty, and 

performing causal reasoning. In this paper, we introduce a knowledge 

engine for reasoning-based human chromosome classification that stores 

knowledge of chromosomes via a novel representation structure, the 

Chromosome Part Description (CPD), and reasons over CPDs by utilizing 

the probability tree model (PTM) for classification. Each CPD keeps 

information on a particular feature of chromosomes, while the PTM 

provides causal reasoning capability taking CPDs as nodes and 

dependencies between CPDs and types as edges. Experimental results show 

that the proposed knowledge engine's performance increases when 

providing more CPDs and achieves 100% classification accuracy with more 

than three CPDs. 
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INTRODUCTION 

Chromosome classification plays a critical role in karyotype analysis. Human 

chromosomes are the carriers of human genetic materials and genes, and karyotype 

analysis is an important technique to identify genetic abnormalities through 

chromosome metaphase images. Karyotype analysis is carried out by preparing 

karyotype images through segmenting metaphase images and then classifying and 

organizing chromosome instances into 23 pairs, including 22 pairs of autosomes and a 

pair of sex chromosomes (XY for males and XX for females) and sending the prepared 

karyotype images to experts for final analysis (Piper&Granum, 1989).  

The study of chromosome classification appeared as early as the end of the last 

century. Jenq et al. (1992) proposed a method of central axis transformation as a pre-

process to help the classification performance. Lerner et al. (1995) try to use neural 

networks to complete the task of chromosome classification. Ritter et al. (1997) use 

chromosome length and centromere position information to classify chromosomes. 

However, due to the complex characteristics of chromosomes and the limitations of the 

technology at that time, these early methods were highly dependent on geometrical 

features (e.g., the chromosome's axis, length, and centromere position) and could hardly 

achieve satisfactory results in accuracy. Kusakci et al. (2017) proposed a method for 

chromosome classification based on multiple support vector machines, which followed 

the same technique path as previous studies. Oskouei et al. (2010) proposed a 

chromosome classification method based on a wavelet neural network, which uses 

chromosome size and the proportional density distribution of long and short arms as 
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feature vectors and achieves good accuracy.  

However, the methods mentioned above do not take into account reasoning, such 

as: analyzing the relationship between variables, modelling uncertainty, and performing 

causal reasoning. Hence, they are barely explainable in their classification outcomes. 

In real clinic scenarios, cytogeneticists need to know how and why a chromosome 

image is classified, which requires reasoning capability and interpretability that those 

methods do not provide. In order to solve these problems, we propose the knowledge 

engine for human chromosome classification and introduce a novel representation 

structure, Chromosome Part Description (CPD), to retain the various features of 

chromosomes and utilize the probability tree model (PTM) to represent causality and 

support causal reasoning. The occurrence of related CPDs serves as nodes in the PTM, 

and the edges in the PTM are causal relationships between features and types. Finally, 

causal reasoning methods (Pearl, 2000), such as conditional probability, intervention, 

and counterfactual reasoning, are utilized to carry out the identifying results of a given 

chromosome image. 

KNOWLEDGE AND PROBABILITY TREE MODEL 

Knowledge is a familiarity, awareness, or understanding of someone or something, such 

as facts (propositional knowledge), skills (procedural knowledge), or objects 

(acquaintance knowledge) (Boghossian, 2007). By most accounts, knowledge can be 

acquired in many different ways and from many sources, including but not limited to 

perception, reason, memory, testimony, scientific inquiry, education, and practice 

(Steup, 2007). In this work, we refer knowledge to cytogeneticists' expertise in 

identifying chromosomes based on the features and features' relationships, and we use 

the CPD and PTM to do the knowledge representation and reasoning. 
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The probability tree, as known as the staged tree model (Görgen, 2017), is one of 

the fundamental models for representing the causal generative process of a random 

experiment or stochastic process (Genewein et al., 2020) (see Figure 1).  

As shown in Figure 1, panels (a) and (b) show the same joint distribution over X 

and Y. They differ in that (a) assumes 𝑋𝑋 → 𝑌𝑌 , whereas (b) does not assume a causal 

dependency. (c) is a more complex example of a probability tree model. It is a 

probability tree where 𝑌𝑌 → 𝑍𝑍 when 𝑋𝑋 = 0 and 𝑍𝑍 → 𝑌𝑌 when 𝑋𝑋 = 1. Panel (d) shows a 

probability tree mass diagram, an alternative representation of the probability tree. By 

convention, we bind 𝑂𝑂 = 1 (O stands for omega "𝛺𝛺" representing the sample space) 

at the root node. 

For knowledge with causal dependences, the machine learning methods or neural 

networks can hardly represent and reason over them. Instead, the PTM naturally 

contains causal dependences (Dasgupta et al., 2019) and works with various reasoning 

O = 1

X = 0

X = 1

1/3

2/3

Y = 0

Y = 1

Y = 0

Y = 1

1/3

2/3

1/3

2/3

a)

O = 1

Y = 0
X = 0

Y = 1
X = 0

Y = 0
X = 1

Y = 1
X = 1

1/9

2/9

2/9

4/9

b)

O = 1

X = 0

X = 1

Y = 0

Y = 1

Z = 0

Z = 1

Z = 0

Z = 1

Z = 0

Z = 1

Y = 0

Y = 1

Y = 0

Y = 1

5/11

6/11

2/5

3/5

1/3

2/3

1/2

1/2

2/3

1/3
1/2

1/2

4/5

1/5

c)

O = 1

X = 0

X = 1

Y = 0

Y = 1

Z = 0
Z = 1

Z = 1

Z = 0

Z = 0

Z = 1

Y = 0
Y = 1

Y = 0

Y = 1

d)

 
Figure 1: Probability trees. 
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algorithms, such as joint probability, conditional probability, intervention operation, 

and counterfactual reasoning. PTM possesses clean semantics and can represent 

context-specific causal dependencies, which are crucial for causal induction  

(Genewein et al., 2020). The semantics are self-explanatory: each node in the tree 

corresponds to a potential state of the process, and the arrows indicate both the 

probabilistic transitions and the causal dependencies between them.  

HUMAN CHROMOSOME KNOWLEDGE ENGINE 

A. Chromosome Part Description (CPD)  

This section introduces the CPD, a novel chromosome representation method based on 

cytogenetics expertise. It contains the characteristics of a chromosome by describing 

the features of the chromosome's three parts: centromere, q-arm, and p-arm.  

The centromere is a specific feature on chromosomes. Chromosomes can be 

divided into three groups based on the position of the centromere: metacentric 

chromosome, submetacentric chromosome, and acrocentric chromosome (Moradi, 

2003). In addition, the position of centromeres splits a chromosome into two parts, the 

longer part is called the q-arm, and the shorter part is the p-arm (Hanamura, 2021).  

A CPD carries a feature description of one chromosome part. In our proposed 

method, a description consists of two entities and a relation (entity_1, relation, 

entity_2). There are three relations (HAS, IS, LOCATED IN) and two types of entities 

(part entity and feature entity). Part entities include p-arm, q-arm and centromere, while 

feature entities consist of deep-band, shallow-band, variation, constriction, and 

centromeric position. For example, we can define the CPD as (p-arm, has, variation) to 

describe a chromosome's p-arm has variation. Moreover, a chromosome part may have 

more than one feature. In other words, each part can have multiple CPDs.  
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B. Knowledge Base 

According to cytogenetics' knowledge about chromosome features and types, we build 

the PTMs for each type and integrate the PTMs as a knowledge base. Here,  

chromosome features are defined as CPDs and taken as binary nodes (0 or 1) or 

observational variables in the PTMs representing the occurrence of the features, while 

edges are probabilities between features and types calculated based on clinic data. Let 

𝑌𝑌 be the outcome variable, and (𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛) represent the CPDs of a chromosome. 

The probability of a given chromosome is 𝑌𝑌 can be expressed as 𝑃𝑃(𝑌𝑌|𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛) 

(see Figure 2).  

To simplify the PTMs, we build two probability trees for any given type: a q-arm 

tree and a p-arm tree, and the features related to centromeres are embedded into both 

trees. Dividing into two trees can significantly reduce the number of nodes in the tree 

due to the constraint of the causal reasoning algorithms (Genewein et al., 2020) on 

variables, which requires the number and type of variables between branches of the tree 

must be the same. 

Furthermore, the built PTMs are validated using counterfactual reasoning (Kusner 

et al., 2017). In a probability tree, a counterfactual is a statement about a subjunctive 

 
Figure 2: The probability tree models constructed with CPDs. The leaf nodes represent 
the final reasoning outcomes, such as Chromosome Type, and the ancestor nodes 
represent the occurrence of any related features. And the probability tree models of each 
chromosome type consists two trees for the p-arm and the q-arm respectively. 
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(i.e., possible or imagined) event that could happen had the stochastic process taken a 

different course. This operation allows evaluation probabilities of the form 𝑃𝑃(𝐴𝐴𝐶𝐶  | 𝐵𝐵). 

That is, "Given that B is true, what would the probability of A be if C were true?". Here, 

𝐴𝐴𝐶𝐶  denotes the subjunctive event A under the counterfactual assumption that event C 

has occurred (i.e., a potential response), and B is the indicative (i.e., factual) 

assumption. For our chromosome PTMs, we compare the conditional probability 

𝑃𝑃𝑐𝑐( 𝑌𝑌𝐶𝐶  | ( 𝑋𝑋1 ,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛) )  with 𝑃𝑃(𝑌𝑌|𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛) , if 𝑃𝑃𝑐𝑐  is smaller, the probability 

tree is correct. Otherwise, the CPD corresponding to counterfactual assumption C is 

unnecessary and hence shall not be a node in the PTM. 

C. Inference 

This section introduces chromosome classification based on the PTMs with causal 

reasoning. The inference consists of three steps: 1) infer the given chromosome's 

conditional probabilities for each type, 2) score the probabilities for each type, and 3) 

determine the chromosome type according to the highest score (Figure 3). 

 

Figure 3: The main process of chromosome classification. 
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Specifically, given the CPDs of an unknown chromosome 𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛, one can measure 

the probability of the unknown chromosome being type 𝑚𝑚 by:  

First, inference 𝑓𝑓𝑝𝑝  and 𝑓𝑓𝑞𝑞  through type-m's p-arm tree and q-arm tree via 

interventions (Lattimore et al., 2016), respectively, as follows: 

𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛 = ( 𝑥𝑥′1 , 𝑥𝑥′2, … , 𝑥𝑥′𝑛𝑛)                                           (1) 

𝑀𝑀 = (1, 2, … , 24)                                                     (2) 

𝑓𝑓𝑝𝑝(𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛,𝑚𝑚) = 𝑃𝑃𝑝𝑝(𝑌𝑌𝑚𝑚|𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛) , 𝑚𝑚 ∈ 𝑀𝑀                           (3) 

𝑓𝑓𝑞𝑞(𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛 ,𝑚𝑚) = 𝑃𝑃𝑞𝑞(𝑌𝑌𝑚𝑚|𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛) ,           𝑚𝑚 ∈ 𝑀𝑀                          (4) 

where M represents the set of chromosome types, a total of 24 classes. 

Then, score the probability of the unknown chromosome being type 𝑚𝑚 as the mean 

of the two inference outcomes: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛,𝑚𝑚) =
𝑓𝑓𝑝𝑝(𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛,𝑚𝑚) + 𝑓𝑓𝑞𝑞(𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛,𝑚𝑚)

2
                     (5) 

Finally, the type of the unknown chromosome can be determined by inferring the 

probability scores for all 24 types and assigning it to the type that produces the most 

significant score:  

𝑌𝑌 = arg max
m∈M

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛,𝑚𝑚)                                    (6) 

THE INITIAL EXPERIMENT 

To examine the performance of our knowledge engine in identifying chromosome 

types, we conduct the initial experiment. For each type, we randomly pick CPDs and 

send them incrementally to our engine to evaluate the knowledge engine's classification 

results. Our primary concerns are the effects of different amounts of CPDs and certain 

CPDs on accuracy. Table 1 shows the results of the initial experiment. 
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Table 1: The results of our initial experiment. 

Chromosome Type Amount of CPDs Accuracy 

Chromosome 1 

1 30% 

2 66% 

3 100% 

Chromosome 2 

1 43% 

2 60% 

3 100% 

… … … 

Chromosome Y 

1 45% 

2 68% 

3 100% 

As Table 1 shows, we learn that the accuracy improves significantly as the amount of 

CPDs increases. When there are three or more  CPDs, the proposed knowledge engine 

can identify the chromosome type precisely with 100% accuracy. Since we pick the 

CPDs randomly, the results suggest that the engine can work robustly with different 

CPDs and does not depend on certain CPDs. 

CONCLUSIONS AND FUTURE WORK 

This paper introduces the knowledge engine for human chromosome 

classification. We propose a novel representation structure, Chromosome Part 

Description, for chromosome feature representation and utilize the probability tree 

model for classification. Experimental results show that the proposed knowledge 

engine achieves 100% classification accuracy with more than three CPDs, suggesting 

that our knowledge engine is promising. 

As this research is at its early stage, further research and refinement remain to be 

done: 
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1) Further design and development of the CPDs: add more entities and relations 

and introduce n-tuples (n-greater than 3) to represent more complex features. 

2) Further design and development of the probability tree model: add more causal 

relations and extend to first-order logic to enrich the relationship among 

entities and explore temporal logic (Øhrstrøm & Hasle, 2007) and probabilistic 

programming (Brémaud, 2012) for expanded reasoning functionality. 

3) Refinement and further development of the chromosome type inference 

algorithms: introduce temporal information to probabilistic inference. 
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