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Abstract 

Knowledge based support can play a vital role not only in the new fast emerging information 
and communication technology based industry, but also in traditional manufacturing. In this 
regard, several domain specific research endeavors have taken place in the past with limited 
success. Thus, there is a need to develop a flexible domain independent mechanism to 
capture, store, reuse, and share manufacturing knowledge. Consequently, innovative research 
to develop knowledge representation models of an engineering object and engineering process 
called Virtual engineering object (VEO) and Virtual engineering process (VEP) has been 
carried out and extensively reported. This paper proposes Virtual engineering factory (VEF), 
the final phase to create complete virtual manufacturing environment which would make use 
of the experience and knowledge involved in the factory at all levels. VEF is an experience 
based knowledge representation for a factory encompassing VEP and VEO within it. The 
novelty of this approach is that it uses manufacturer’s own previous experience and formal 
decisions to collect and expand intelligence for future production. The experience based 
collective computational techniques of Set of Experience Knowledge Structure (SOEKS) and 
Decisional DNA (DDNA) are used to develop aforesaid models. In this article the concept 
and architecture of VEF is explained as well as the integration of all three levels of virtual 
manufacturing i.e. VEO, VEP and VEF is presented. Furthermore, a case-study is presented 
to validate the practical implementation of the proposed concept. The benefits of this 
approach are manifold as it creates the environment for collective intelligence of a factory and 
enhances effective decision making. The models and research presented here embody the 
important first step into developing the future computational setting as required by the 
emerging next generation of cyber-physical systems. 

Keywords: Set of Experience Knowledge Structure, Decisional DNA, Virtual engineering 
object (VEO), Virtual engineering process (VEP), Virtual engineering factory (VEF) 

1 Introduction 
 

Industrial manufacturing is a complex process involving an environment characterised by a 
continuous exchange of myriads of data and information. Successful production requires the 
capability to design and manufacture a large number of product variants rapidly and 
collaboratively, based on design principles [1]. Efficient decision-making processes appear to 
be the best strategy to cope successfully with the variable nature of industrial manufacturing. 
Thus, practitioners must generate elements that support effective decision making for 
manufacturers. One such element is knowledge-based manufacturing. This practice involves 
the organisation’s most valuable asset: knowledge. If knowledge is managed in the right form 
and the right technology is used, manufacturers will be able to apply it as a powerful 
computational intelligence tool in the quest for efficiency, effectiveness and competitiveness 
[2, 3]. 

Manufacturing organisations are seeking knowledge-based support, not only to meet current 
market demands, but also to prepare for future industrial trends [4]. Many knowledge-based 
techniques used in the past aimed to organize past, present and future information [5, 6]. 
Some important objectives of these techniques include sharing information, forecasting and 
generating new knowledge [7-10]. Knowledge-based techniques used in the past had limited 
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success due to several shortcomings (e.g., they were time-consuming, and not very 
intelligent). Moreover, most of these knowledge systems were designed for a specific domain, 
which significantly reduces their applicability to any other area and makes them less flexible 
and versatile [11-14]. They also lack a standard knowledge representation (KR), as well as the 
ability to share and exchange information. Further, they fail to consider formal experience. 
Therefore, a comprehensive system that uses domain-independent KR and is able to extract, 
compute, and refine existing knowledge is yet to be fully explored and remains the focus of 
current research [15-17]. 

Furthermore, efforts are being made around the world to improve the productivity and 
efficiency in industrial manufacturing which can be achieved by integrating it with 
Information and Communication Technology (ICT). The main objective behind this 
integration is to reap the benefits created by the unprecedented advancement and new 
opportunities shaped in the field of ICT [18-20]. 

Our contribution to the above discussed scenario is based on the hypothesis that collecting, 
structuring, storing, and reusing past manufacturing experience and knowledge can 
significantly help in developing an intelligent system capable of optimal resource 
management and minimization of waste. Accordingly, Virtual engineering object (VEO) and 
Virtual engineering process (VEP) which are experienced based knowledge representation of 
engineering object and process have been already successfully developed and implemented 
[21-27]. In this paper, the concept of intelligent virtual manufacturing system having three 
broad levels of VEO, VEP and Virtual engineering factory (VEF) is proposed.  

The structure of this paper is as follows: section 2 gives the overview and the central idea of 
the proposed approach. Also, it deals with the basic concept, architecture and objectives of 
VEO, VEP and VEF. In section 3, a case-study is presented to demonstrate the 
implementation of the planned concept and the methodology to extract experience and to 
reuse it for decision making. Finally, section 4 outlines the potential benefits of this work, 
conclusions and future work. 

2 Methodology to collect experience for intelligent 
manufacturing 

 

The central aim of this work is to replicate the knowledge and experience of the 
manufacturing factory and represent it virtually. Figure 1 illustrates this objective. As shown 
in the figure, the physical manufacturing scenario can be divided into three levels: resources, 
processes, and factory. In the manufacturing domain, a factory performs various 
manufacturing processes, and a process in turn uses different resources. For the complete KR 
of a manufacturing system we divided it into three levels; the first is the resource/object level 
(VEO), the second is the process level (VEP) and the third is the factory/system level (VEF). 
Thus, a mechanism to store and reuse experience related to objects, processes and factory 
working has been developed. KR models of these levels have been developed both separately 
and in conjunction with each other. As outlined in Section 1, the main aim of this work is to 
develop a smart knowledge base platform to enhance industrial manufacturing. KR of 
engineering objects, processes, and system will help optimize assets, machines and whole 
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system, respectively. Critical, effective and creative decisions can be made based on these 
intelligent virtual manufacturing levels. 

 

 

Figure 1 Correlation of physical and the virtual manufacturing world 

As depicted in Figure1, a VEO is a representation at the individual object/resource/artefact 
level, and represents complete information at the machine level such as machining 
parameters, tolerances, and surface conditions. The VEP deals with information at the process 
or shop-floor level, such as operation sequences, process parameters, time, and cost. The VEF 
stores the experience and formal decisions related to various aspects at the system level, such 
as material handling, storage, quality control, and transportation. Besides representing 
knowledge at the factory level, the VEF also contains VEOs and VEPs. The combination of 
VEOs, VEPs and the VEF constitutes the virtual industrial manufacturing platform.  

However, industrial manufacturing is a highly complex, creative, and knowledge intensive 
process involving collaborative information exchange from various sources which changes 
with changing production conditions. Therefore, for representing such dynamic environment 
a flexible knowledge structure capable of handling varying nature of parameters at each level 
is required. The powerful knowledge representation structure facilitating experience based 
intelligence of Set of experience knowledge structure (SOEKS) and Decisional DNA 
(DDNA) is used as the technological base for this work. SOEKS-DDNA [28-32] is a unique 
and single structure for collecting, storing, improving, and reusing experience of intelligent 
decision-making. SOEKS is composed of variables, functions, constraints and rules 
associated in a DNA shape permitting the development of the Decisional DNA of an 
organization which embodies its collective intelligence. Variables normally implicate 
representing knowledge using an attribute-value language (i.e. by a vector of variables and 
values), and they are the centre root of the structure and the starting point for the SOEKS. 
Functions represent relationships between a set of input variables and a dependent variable; 
moreover, functions can be applied for reasoning about optimal states. Constraints are another 
way of associations among the variables. They are restrictions of the feasible solutions, 
limitations of possibilities in a decision event, and factors that restrict the performance of a 
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system. Finally, rules are relationships between a consequence and a condition linked by the 
logical statements IF-THEN-ELSE. They are conditional relationships that control the 
universe of variables. 

Decisional DNA (DDNA) is a metaphor related to natural DNA and the way it transmits 
genetic information and knowledge among individuals through time. The Decisional DNA 
consists of stored experienced decision events (i.e. experiential knowledge) that can be 
grouped according to areas of decision or categories. In other words, each SOE (short form 
for SOEKS) built after a formal decision event can be categorized and acts similarly to a gene 
in DNA. A gene guides hereditary responses in living organisms, as a SOE directs responses 
of certain areas of the organization. Furthermore, assembled genes create chromosomes and 
human DNA, as groups of categorized SOE create decisional chromosomes and Decisional 
DNA. The dynamic structure of SOEKS provides flexibility to the structure of VEO, VEP 
and VEF. Thus, the broad aim of this research is to develop manufacturing fingerprint or 
Manufacturing DNA of a company. 

As mentioned in section 1, Virtual Engineering Object and Virtual Engineering Process 
concepts are already developed, implemented and tested [23-25]. For the sake of 
completeness in the next section, a brief description of VEO and VEP is presented first and 
then the final phase of virtual manufacturing i.e. Virtual Engineering Factory is discussed 
along with the integration of all the three phases. 

2.1 Virtual engineering object  
 

A Virtual Engineering Object is knowledge representation of an engineering artefact and it 
has three main features: (i) the embedding of the decisional model expressed by the SOE (ii) a 
geometric representation, and (iii) the necessary means to relate this virtualization to the 
physical object being represented [21, 22, 24, 25]. 

A Virtual Engineering Object is a living representation of an object capable of capturing, 
adding, storing, improving, sharing, and reusing knowledge through experience in a way 
similar to a human expert. A VEO can encapsulate knowledge and experience of every 
important feature related with an engineering object. This can be achieved by gathering 
information from six different aspects (manufacturing chromosomes) of an object, namely 
VEO-Characteristics, VEO-Functionality, VEO-Requirements, VEO-Connections, VEO-
Present State, and VEO-Experience as illustrated as cloud architecture in Figure 2. 

Virtual Engineering Object is developed on the cradle-to-grave approach, which means that 
the contextual information and decision making regarding an engineering object right from its 
inception until its useful life is stored or linked in it. The changing machining conditions such 
as spindle thermal deformation, tool failure, chatter and work-piece deformation induced by 
clamping force, cutting force, material inner stress and so on significantly impact machining 
quality and efficiency. The VEO will cater to these problems relating to decision making that 
may emerge during the machining process due to complex conditions at the machining level. 
The technique of SOEKS-DDNA allows VEO not to adhere to any rigid arrangement of 
parameters which provides dynamicity and flexibility to the structure; such a feature enables 
VEO to represent complex and discrete engineering objects. 
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Figure 2 Structure of Virtual Engineering Object (VEO)  

2.2 Virtual engineering process  
 

A Virtual Engineering Process is a KR of a manufacturing process/process planning of an 
artefact that gathers and stores entire shop-floor-level information regarding the operations 
required, their proper sequence, and the resources (VEOs) needed to manufacture it [23, 24]. 
The VEP selects the necessary manufacturing operations and determines their sequences, as 
well as selecting the manufacturing resources needed to transform a design model into a 
physical component economically and competitively. In addition to this, information of all the 
VEOs of the resources associated with the process is also linked in VEP. Therefore, to 
encapsulate knowledge of the above mentioned areas the Virtual Engineering Process is 
designed having following three main modules (Figure 3): 

1. VEP-Operations: All of the information related to the operations that are required to 
manufacture an engineering component is stored in this VEP module. This includes 
knowledge in the form of SOEKSs related to operational processes and scheduling. 
Functional dependencies between operations are also part of VEP-Operations. These 
are subcategorised and their interaction planning functions are given below: 
 

• Scheduling route: based on global and local geometry. 
• Processes: process capabilities, process cost. 
• Process parameters: tolerance, surface finish, size, material type, quantity 

and urgency. 
 

2. VEP-Resources: Information based on past experience of resources used to 
manufacture a component mentioned in the VEP-Operations module is stored here. 
The machine-level knowledge stored in this section is as follows: 
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• Machine and tool selections: machine availability, cost, capability, size, 
length, cut length, shank length, holder, materials, geometry, roughing, 
and finishing. 

• Fixture selection: fixture element function, locating, supporting, 
clamping surfaces, and stability. 

Moreover, the Virtual Engineering Object information categorised under VEO-
Characteristics, VEO-Requirements, VEO-Functionality, VEO-Present State, VEO-
Connections and VEO-Experience is also linked in this section. 

3. VEP-Experience: Links to SOEKSs of VEOs along with VEPs containing past formal 
decisions relating to manufacture engineering components are stored in this module. 
Thus, the information in this module represents links to SOEKSs based on past 
experience of that particular machine performing a given operation along with 
operational and routing parameters. 

 

Figure 3 Architecture of Virtual Engineering Process (VEP)  

 

2.3  Virtual Engineering Factory  
 

In this section, the extension of the VEO-VEP concept to the factory level (i.e., Virtual 
Engineering Factory) is discussed, and a unified architecture covering all three aspects of a 
manufacturing unit is proposed. A manufacturing factory is a collection of integrated 
equipment and human resources whose function is to perform one or more processing and/or 
assembly operations starting with a raw material, part, or set of parts [26, 27]. The main 
components of a manufacturing system as identified in the literature can be broadly classified 
as: 

• production machines and tools, 
• material handling and work-positioning devices, 
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• computer systems and 
• human resources required either full-time or periodically to keep the system running. 

Based on the components and their functionality at the factory level, the architecture of 
Virtual Engineering Factory is conceived. A VEF comprises six elements, each linked to the 
associated VEPs and VEOs representing complete knowledge and experience related to a 
manufacturing factory. The arrangement of these six VEF elements, along with their VEOs 
and VEPs, is shown in Figure 4. The Virtual Engineering Factory elements are as follows: 

• VEF-Loading/Unloading: Information related to loading and unloading work units at 
each station along with the positioning of work units at each station is stored in this 
module. 

• VEF-Transportation: This module deals with information about transporting work 
units between stations in a multi-station system. Work units either flow through the 
same sequence of workstations or are moved through a variety of different station 
sequences. This knowledge is stored in this module. 

• VEF-Storage: This module stores all knowledge related to the permanent and 
temporary storage of tools, objects, raw materials, and work during the manufacturing 
process. 

• VEF-Quality Control: This module contains the quality control strategy adopted, its 
implementation method, and outcome. 

• VEF-Experience: In this module, the entire history of formal decisions made at the 
factory level, along with links to the VEPs and VEOs related to those decisions is 
stored. In other words, all past experience is captured in this module. 

 

Figure 4 Virtual Engineering Factory architecture linking VEOs and VEPs 

Each factory level experience (i.e. VEF-SOEK) is associated with a component (VEP-
SOEKS) to be manufactured and that component in turn needs machines/objects (VEO-
SEOKS) for its manufacturing. This idea is shown in Figure 4; VEF-DDNA is created by 
collecting, connecting, and linking VEF-SOEKS, VEP-SOEKS and VEO-SOEKS. Therefore, 
a Virtual Engineering Factory can be defined as experience-based manufacturing DNA or 
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manufacturing footprints bearing traces of all decisions made at the product, process, and 
factory levels. 

 

2.4 Salient features of proposed virtual engineering object, process and 
factory 

 

As mentioned in the previous sections VEO, VEP and VEF are based on the knowledge 
representation technique of SOEKS and Decisional DNA. This technique is capable of 
creating Manufacturing DNA (collective computational manufacturing intelligence) as it has 
manufacturing nucleotides (variables, function, constraints, rules), manufacturing genes 
(collection of SOEKS), and  manufacturing chromosomes (collections of manufacturing 
genes namely VEO-Characteristics, VEO-Requirement, VEO-Functionality, VEO-Present 
State, VEO-Connections, VEO-Experience, VEP-Resources, VEP-Operations, VEP-
Experience, VEF-Loading/Unloading, VEF-Transportation, VEF-Storage, VEF-Quality 
Control, VEF-Experience).  Experimental case-studies [23, 24] have proven that a DDNA-
based VEO-VEP-VEF knowledge system has the following features: 

• a versatile and dynamic knowledge structure, which provides the flexibility necessary to 
change according to the changing situation; 

• the ability to store day-to-day explicit experiences in a single structure, which will 
continuously evolve; 

• transportable, adaptable, and shareable knowledge; 
• prediction and decision-making abilities based on collected past experience, and 
• the ability to achieve decisional trust by having the right quality and quantity of 

knowledge at the right time. 

As shown in Figure 2, 3 and 4, the VEO-VEP-VEF system is also envisaged on a cloud 
computing platform to facilitate the delivery of information related to multifaceted 
interrelationships within the modelled state. 

3 Case-Study: Creating Manufacturing DNA 
 

The objective of this case-study is to create Manufacturing DNA with retaining, predicting, 
and decision making capabilities based on the collected past experience.  

The Virtual Engineering Factory concept is demonstrated and implemented in a case study of 
a manufacturing system to produce an engineering component. This case study extends the 
VEF part of the previous VEP and VEO case studies, which were based on manufacturing a 
simple combustion chamber in a conventional machining setup [23-25]. The basic operations 
required to manufacture this combustion chamber are turning, taper turning, and drilling; this 
information is stored in the Virtual Engineering Process, which is shown as a work-in-process 
assignment (‘WIPA’) in Figure 5. The manufacturing setup in this case study has two 
different lathe and drilling machines each. Factory-level information about work-piece 
loading/unloading, quality control, transportation, storage, and previous experience are stored 
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in the VEF (see Figure 4) and presented as the Set of Experience structure in the Appendix 
Table 1. 

 

Figure 5 Framework for the case-study involving VEOs, VEPs and VEF 

First, VEOs of the machines required to produce the engineering component are developed. 
Then, the VEPs to produce an engineering component are built based on the case-specific 
experiences of that manufacturing unit. Finally, the VEF having all of the factory-level 
knowledge along with links to the VEPs and VEOs is constructed. The VEOs along with 
experience of the engineering processes (VEPs) form the experience repository of a 
manufacturing unit. Table 1 (in the Appendix) illustrates the structure of the VEF. Comma 
separated value (CSV) files storing formal decisions related to VEF-Loading/Unloading, 
VEF-Transportation, VEF-Storage, VEF-Quality Control, and VEF-Experience were built for 
the component to be made, that is, a combustion chamber. Although TXT and XML formats 
can also be used for managing and storing data, but CVS format is selected as data transfer 
among programs is simpler in it. VEO-DNA and VEP-DNA were already developed in 
previous case studies [21, 22]. The next objective is to develop VEF-DNA and link it with 
VEO-DNA and VEP-DNA to create a complete Manufacturing DNA. 

Having the CSV files, a parser is written in Java programming language to read information 
and convert them into SOEKS. The reason for selecting JAVA is because in future this 
approach can be extended as a web based application. The parser looks for the CSV file, in 
that file it looks for the word ‘variables’  and starts reading the first row under ‘variables’. 
After reading all of the variables in the first row, the parser looks for the word ‘functions’ and 
reads all of the rows under ‘functions’. Next, it looks for the word ‘constraints’ and reads all 
of the rows under ‘constraints’. All of this information (i.e., the first row under ‘variables’, 
and all of the rows under ‘functions’ and ‘constraints’) is stored as a single SOE. This cycle is 
repeated for each row under ‘variables’, along with those under ‘functions’ and ‘constraints’, 
creating a SOEKS. 

The same parsing procedure is repeated for the all other CSV files. Each file representing a 
category, collection of SOEKS of same category forms a chromosome of either of VEO, VEP 
or VEF (see Figure 2, Figure 3 and Figure 4). Collection of all chromosomes forms a 
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Decisional DNA of a VEF,  i.e. VEF-DNA. Once the VEF-DNA is constructed, DDNA has a 
feature that it can be queried [28]. 

Given a pair of SOE vefDNAi (the entire VEO-DNA repository) and querySOEj (a SOE made 
up of the query) ∈ S, it is possible to generate a similarity metric of the variables called SV ∈ 
[0,1] by calculating the distance measure between each of the pairwise attributes k ∈ vefDNAi 
and querySOEj. The Euclidean distance measure has been selected on account of its 
simplicity and extensive use. A normalisation form was also included in keeping with the 
notion of a range of comparison, that is, the maximum function. The similarity metric takes 
the following equation: 

𝑆𝑆𝑉𝑉�𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝐴𝐴𝑖𝑖, 𝑞𝑞𝑞𝑞𝑣𝑣𝑞𝑞𝑞𝑞𝑆𝑆𝑞𝑞𝐸𝐸𝑗𝑗� =  ∑ 𝑤𝑤𝑘𝑘𝑛𝑛
𝑘𝑘=1 �

�𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝐴𝐴𝑖𝑖𝑖𝑖
2 −𝑞𝑞𝑞𝑞𝑣𝑣𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝐸𝐸𝑗𝑗𝑖𝑖

2 �

𝑚𝑚𝑚𝑚𝑚𝑚�|𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝐴𝐴𝑖𝑖𝑖𝑖|,�𝑞𝑞𝑞𝑞𝑣𝑣𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝐸𝐸𝑗𝑗𝑖𝑖��
2�
0.5

 ∀𝑘𝑘 ∈ 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝐴𝐴𝑖𝑖 ∧

 𝑞𝑞𝑞𝑞𝑣𝑣𝑞𝑞𝑞𝑞𝑆𝑆𝑞𝑞𝐸𝐸𝑗𝑗              (1) 

Where vefDNAik and querySOEjk are the kth
 attribute of the sets vefDNAi and querySOEj, wk is 

the weight given to the kth attribute, (in this case variable) and n is the number of variables in 
vefDNAi. 

When a query is generated by a GUI, it is programmatically converted into a query SOE 
(querySOE of Equation 1). Depending whether it is related to the object, process or factory 
level, the program will continue calculating the similarity of the querySOE with each SOEKS 
stored in the VEF-DNA. Finally, the calculated similarities are sorted and the five most 
similar SOEKSs are returned. 

Figure 6 explains the method used to extract VEF-VEP-VEO knowledge. The experience 
repository of a variety of components produced in a manufacturing system is first stored in a 
structured format (see Table 1). When there is a need to produce a new component, the VEF 
repository is scanned for similar components (a combustion chamber in this case). The VEF 
reads the experience of that component in its repository and returns information relating to the 
previous most similar manufacturing experience stored. Next, the query relating to specific 
factory-level details required for the component is specified. For this query, the VEF returns 
VEP-SOEKS for process/process planning and VEOs for each operation, along with the SOE 
that best suits the queried resources details. 
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Figure 6 Extracting information from VEF, VEP and VEO 

The most similar VEO-SOEKSs are gathered and combined with the most similar VEP-
SOEKSs. This information combined with the most similar VEF-SOEKSs forms the solution 
to the query. 

A simple user friendly GUI (see Figure 7) is designed to build queries; user specifies 
information regarding the product, its variables and variable values. Information is extracted 
from the VEF-DNA for most similar VEF-SOEKS and further details of VEP-SOEKS and 
VEO-SOEKS corresponding of that experience can be viewed through GUI.  
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Figure 7 Building a query from GUI 

 Figure 7 shows execution of a sample query. As depicted in the result section of GUI the user 
can see the similarity index along with codes of most similar VEF, VEP and VEO SOEKS 
corresponding to the query. The user can also view the complete VEF-SOE corresponding to 
the code displayed in the ‘VEF Experience Code’ text box by clicking on ‘View VEF 
Experience’. Figure 8 shows the following VEF-SOE details: VEF_Code = 24, vepName = 
COMBUSTIONCHAMBER, vepCode_Exp = 24, Loading_Code = 1, Transportation_Code = 
2, Storage_Code = 2, QualityControl_Code = 2, Total Machining Time = 109, Total Idle 
Time = 273, WIP = 146 and MST = 528. 

 

 

Figure 8 Most similar VEF-SOEKS in the VEF-DNA repository 
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Likewise, all of the VEP-SOEKSs and VEO-SOEKSs corresponding to ‘VEP Experience 

Code’ and ‘VEO Experience Code’ can be displayed by clicking the ‘View VEP Experience’ 

and ‘View VEO Experience’ buttons, respectively. 

Princples of this case-study can be  followed to effectively scale-up the knowledge 

represenation of complex industrial set-ups. Thus, flexible and dynamic  structures of SOEK-

DDNA, VEO, VEP and VEF are capable to representing any manufacturing environment.  

3.1 Results and discussion 
 

The implementation of this study was carried on a DELL laptop with the Windows 7 
Enterprise operating system, Intel (R) Core (TM) i5-3210M CPU @ 2.50 GHz processor and 
8 GB of RAM. The significance of the VEO-VEP-VEF models used in the case study are 
analysed by doing the following: 

• assessing the time taken to create SOEKSs from the VEO, VEP and VEF CSV files 
• obtaining the most similar SOE to a query and calculating query execution time 
• analysing changes in similarity patterns due to varying query input parameters. 

 

3.1.1 Time taken to create set of experience knowledge structure from the virtual 
engineering object, process and factory comma-separated values files 

 

The present VEF study comprises SOEKSs from VEF-Loading/Unloading, VEF-
Transportation, VEF-Storage, VEF-Quality Control and VEF-Experience having a minimum 
of 47 variables and 10 constraints (see Appendix Table 1). In addition, VEP-DNA comprises 
SOEKSs from VEP-Resources, VEP-Operations and VEP-Experience, having a minimum of 
20 variables and 12 constraints. Moreover, the VEO-DNA comprises SOEKSs from VEO-
Characteristics, VEO-Functionality, VEO-Requirements, VEO-Present State, VEO-
Connections and VEO-Experience, having 53 variables, 3 functions and 28 constraints. For 
testing purposes, we queried VEO-Drilling Machine from a repository of 2256 SOEKSs, 
VEO-Lathe Machine from 1920 SOEKSs, VEP from 320 SOEKSs and VEF from 26 
SOEKSs. 
 
The parsing process of the VEF, VEP and VEO decisional chromosomes were executed, 
producing a parsing time of 664.0 ms for VEO_Drilling, 504.0 ms for VEO_Lathe, 161.0 ms 
for the VEP and 10 ms for the VEF (see Figure 9). This is considered an excellent time taking 
into account the fact that these SOEs are very complex due to the number of variables, 
functions and constraints involved, adding up to a total of 141 key features per formal 
decision event. 
 
The model is fairly effective as far as the time taken to parse VEO, VEP and VEF is 
concerned.  
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Figure 9 Time taken to parse VEO, VEP and VEF 

 

3.1.2 Obtaining the most similar set of experience to a query and calculating 
execution time 

 

Table 2 in Appendix provides a list of sample queries that were executed to find the most 
similar SOEs. For example, in Query 1, VEF similarity is calculated for ‘Combustion 
Chamber’ where MST = 528 min, WIP = 146 mins, Machining Time = 109 mins and Idle 
Time = 273. 

Figure 10 illustrates the execution of this query. VEF-DNA returns the five most similar 
SOEKSs, which in this particular case are VEF_Code no 24, 23, 22, 21 and 20 having 
similarities 0.43934, 0.45154, 0.45384, 0.45537 and 0.45654, respectively. The time taken to 
execute this query is 6.766 ns which is fairly short. 

To determine the performance and robustness of our model, a set of queries having a 
decreasing number of variables and all other parameters the same were executed. As 
illustrated in Figure 10, as the number of query variables decreases the similarity value 
increases, which validates the efficiency of the model. 
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Figure 10 Calculating similarity for queries and corresponding time taken for query execution 

3.1.3 Analysing the change in similarity pattern with varying query input 
parameters 

 

The behaviour of the model was also analysed by executing queries having varying input 
variables (see Appendix Table 3). As discussed above, a similar pattern of the five most 
similar SOEKSs for each query was calculated as depicted in Figure 11. The similarity 
calculation was found to be quite accurate and the execution time of this set of queries was 
fairly short as well. 

 

Figure 11 Similarity calculation for varying variable values 
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4 Conclusions and future work 
 

The main contribution of this work is to demonstrate and implement knowledge based virtual 
engineering environment. The Manufacturing DNA which is the representation of 
manufacturing process collective computational intelligence is created by capturing 
experience of engineering objects, engineering processes, and factory and then using this 
information for the construction of Virtual Engineering Object, Virtual Engineering Process 
and Virtual Engineering Factory. The Set of Experience Knowledge Structure and Decisional 
DNA were applied as the knowledge representation structure for gathering the experience. 
Further, VEF-VEP-VEO were used as a tool for decision making processes that can enhance 
different manufacturing systems with predicting capabilities and facilitate knowledge 
engineering processes. Further, the VEO-VEP-VEF system readily copes with self-organizing 
production and control strategies; this is a significant example of linking product lifecycle 
management, industrial automation,  and semantic technologies. The next step is to develop a 
network of manufacturing experience repositories by integrating diverse Manufacturing 
DNAs. The idea is to make experience shareable and transferable among different 
manufacturing set-ups as required by the future generation of cyber-physical systems.  
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Appendix  
Table 1 SOEKS based Virtual Engineering Factory Structure 

 Variables Functions Constraints Rules 

V
EF

-L
oa

di
ng

/U
nl

oa
di

ng
 vefCode_LU 

vepName 
vepCode_Exp 
Product Volume 
Amount 
Loading Period 
Station1 
Loading Freq 
Unloading Freq 
Timing 

 vepCode_Exp є vepDNA  

V
EF

-T
ra

ns
po

rt
at

io
n 

vefCode_Trans 
vepName 
Priority 
vepCode_Exp 
AVG 
Distance 
Frequency 
No_Product 
Start Point 
End Point 
Route 
Pickup Priority 

 vepCode_Exp є vepDNA 
AVG є veoDNA 

if Priority = Low, 
 then pickup = FCFS 
if Priority = High,  
then pickup = FS 

V
EF

-S
to

ra
ge

 

vefCode_Stor 
PartType 
vepCode_Exp 
Location 
Time_Storage 
Method 
Condition 
Quantity 

 vepCode_Exp є vepDNA if PartType = VEP, 
 then StorageLocation = S1 
if PartType = Tool and Die,  
then StorageLocation = S2 
if PartType = Consumables,  
then StorageLocation = S3 
if PartType = WIP, 
 then StorageLocation = T1 
 

V
EF

-Q
ua

lit
yC

on
tr

ol
 

vefCode_QC 
vepCode_Exp 
QC_Type 
Input 
I_QC Method 
Output 
O_QC Method 

  if QC_Type = Low,  
then O_QC Method = Manual 
if QC_Type = High,  
then O_QC Method = Machine 

V
EF

-E
xp

er
ie

nc
e 

VEF_Code 
vepName 
vepCode_Exp 
Loading_Code 
Transportation_Code 
Storage_Code 
QualityControl_Code 
Total Machining Time 
Total Idle Time 
MakespanTime 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑇𝑇𝑖𝑖𝑖𝑖𝑣𝑣 =
� (veoMachiningTime)𝑛𝑛

𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣=1   
vepCode_Exp є vepDNA 
Loading_Code є 
vefCode_LU 
Transportation_Code є 
vefCode_Trans 
Storage_Code є 
vefCode_Stor 
QualityControl_Code є 
vefCode_QC 
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Table 2 Set of queries with decreasing number of variables  

 

 Input Output 
 

Query# Product VEF Variables 
VEF Variable 
Values 

Top 5  VEF  
Similarity 

VEF 
Code 

VEP 
Code 

VEO1 
Code 

VEO2 
Code 

VEO3 
Code 

VEO4 
Code 

Time 
Taken 

1 Combustion Chamber MST 528 0.439345102 24 24 434 114 397 1600 6.77E+14 

  
WIP 146 0.451549464 23 23 

     

  
Total Machining Time 109 0.453842284 22 22 

     

  
Total Idle Time 273 0.455370726 21 21 

     

    
0.456546179 20 20 

     2 Combustion Chamber MST 528 0.51508188 24 24 1313 434 619 1591 6.77E+14 

  
WIP 146 0.529206153 23 23 

     

  
Total Machining Time 109 0.531856754 22 22 

     

    
0.533622089 21 21 

     

    
0.534978474 20 20 

     3 Combustion Chamber MST 528 0.623123445 24 24 1313 434 619 1591 6.78E+14 

  
WIP 146 0.638332798 23 23 

     

    
0.638332798 22 22 

     

    
0.643085159 21 21 

     

    
0.644543996 20 20 

     4 Combustion Chamber MST 528 0.79146728 24 24 1313 434 619 1591 6.79E+14 

    
0.80467767 23 23 

             0.807162215 22 22           

        0.808819983 21 21           

        0.810096086 20 20           
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Table 3 Set of queries with the same number of variables with varying values 

 

 Input 
 

Output 
 

Query# Product VEF Variables 
VEF Variable 
Values 

Top 5  VEF  
Similarity 

VEF 
Code 

VEP 
Code 

VEO1 
Code 

VEO2 
Code 

VEO3 
Code 

VEO4 
Code 

Time 
Taken 

1 Combustion Chamber MST 528 0.439345102 24 24 434 114 397 1600 6.77E+14 

    WIP 146 0.451549464 23 23           

    Total Machining Time 109 0.453842284 22 22           

    Total Idle Time 273 0.455370726 21 21           

        0.456546179 20 20           

2 Combustion Chamber MST 400 0.444905349 1 1 1313 434 619   6.83E+14 

    WIP 100 0.449565847 2 2           

    Total Machining Time 55 0.456875457 3 3           

    Total Idle Time 250 0.458931983 4 4           

        0.46033116 5 5           

3 Combustion Chamber MST 480 0.446987743 12 12 588 623 283 1071 6.87E+14 

    WIP 122 0.456977656 13 13           

    Total Machining Time 97 0.456989075 11 11           

    Total Idle Time 161 0.458823166 14 14           

        0.458856013 10 10           
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