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Abstract. In this paper, we propose a knowledge sharing oriented approach 

to enable a robot to reuse other robots' knowledge by adapting itself to the 

inverse dynamics model of the knowledge-sharing robot. The purpose of 

this work is to remove the heavy fine-tuning procedure required before 

using a new robot for a task via reusing other robots' knowledge. We use 

the Neural Knowledge DNA (NK-DNA) to help robots gain empirical 

knowledge and introduce a Knowledge Adaption Module (KAM) utilizing 

the deep neural networks (DNN) for knowledge reuse. The initial 

experiment shows that the target robot can adapt to the inverse dynamic 

model of the source robot via our KAM and reuse the knowledge shared by 

the source robot. 
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INTRODUCTION 

Nowadays, machine learning is becoming increasingly popular for solving robot 

control problems (Zhou et al., 2019). It helps robots perform various tasks well in 

uncertain and complex conditions (Bokeno et al., 2018; Liang, 2019; Sajedi & Liang, 

2019). However, training a robot for particular tasks are still time-consuming and 

expensive (Ding et al., 2016; Liang et al., 2018). 

In order to reduce the costs of the learning process, extensive efforts have been 

made ( Dai et al., 2008; Taylor & Stone, 2009). Approaches such as learning invariant 

features (Gupta et al., 2017) and manifold alignment (Ammar et al., 2015; Daftry et al., 

2016) are introduced. These methods aim to improve the efficiency of robot learning by 

sharing knowledge among robots. Additionally, transferred knowledge can accelerate 

the training of target robots and help improve the target robot's performance in 

untrained tasks (Taylor & Stone, 2009). Knowledge sharing or migration learning 

problems have been studied in various fields (Bocsi et al., 2013). Knowledge sharing in 

robotics is divided into two directions: (i) transfers across robots and (ii) transfer across 

tasks. The former is about transferring the collected knowledge to another robot (Devin 

et al., 2017; Gupta et al., 2017; Pereida et al., 2018). In contrast, the latter focuses on 
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transferring knowledge learned from an old task to a new task on the same robot 

(Cavallo et al., 2014; Wang et al., 2008). Nevertheless, existing approaches almost 

always encounter the problem that the target robot does not adapt well to the source 

robot's knowledge in practice (Adlakha & Zheng, 2020; Kim et al., 2020; Taylor & 

Stone, 2009). Therefore, it remains challenging to enable the target robot to adapt to 

other robots' inverse dynamics. This paper introduces a novel approach to address the 

adaption problem in sharing knowledge between robots with different dynamics.  

The rest of the paper is organized as follows: In Section 2, we introduce the idea 

of the NK-DNA. Section 3 presents the proposed Knowledge Adaptation Model 

(KAM), including its architecture and methodology. The experiment and results are 

explained and discussed in Section 4. Finally, Section 5 concludes the paper.  

THE NEURAL KNOWLEDGE DNA 

The Neural Knowledge DNA (NK-DNA) is proposed to store and represent 

knowledge captured in intelligent systems that use artificial neural networks as the 

central power of its intelligence (Zhang et al., 2017). It utilizes the ideas underlying the 

success of deep learning (LeCun et al., 2015) to the scope of knowledge representation. 

The NK-DNA is constructed similarly to DNA formed (Sinden 1994): built up by 

four essential elements. As the DNA produces phenotypes, the Neural Knowledge 

DNA carries information and knowledge via its four fundamental elements: States, 

Actions, Experiences, and Networks (see Figure 1). 
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Fig. 1. The conceptual structure of the NK-DNA. 

The NK-DNA's four-element combination is designed to carry detailed 

information of decisions: States are situations in which a decision or a motion can be 

made or performed. Actions are used to store the decisions or activities the domain can 

select. While Experiences are the domain's historical operation segments with 

feedbacks from outcomes, And Networks hold the description of neural networks for 

training and using such knowledge, such as the network structure, weights, bias, and 

deep learning framework used. 

Generally, knowledge is acquired as models after training in deep learning 

systems. The model usually stores information about weights and biases of the 

connections between neurons of the neural network and the hierarchy of the neural 

network in detail. Once the neural network has been trained, it will give results 

straightforward through the computation of its network layers after feeding it with 

inputs—similarly, the NK-DNA stores knowledge using the same idea. Figure 2 shows 

the concept of knowledge carried by the NK-DNA. 
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Fig. 2. Concept of the NK-DNA-carried knowledge. 

In the NK-DNA, a neural network is used to carry the relation between actions and 

states: as we can see in Figure 2, each state (represented as S1, S2 … Sn) can have 

connections with a set of actions (defined as a1, a2, … an). If an action is connected with 

a state, the connected action is available in that state; in other words, the agent can 

choose the action to perform if it is in that state. The trained neural network provides 

the knowledge of which action is the best choice for a specific state. The states here are 

the inputs, which can be the raw sensory data or data describing the agent's current 

situation. 

Another essential feature of this approach is that the NK-DNA uses previous 

decisional experience as the primary source to collect and expand intelligence for future 

decision making. Experience in the NK-DNA is stored as the Set of Experience 

Knowledge Structure (SOEKS) (Sanin & Szczerbicki, 2006). Usually, the agent 

transitions from one state to another during its operation. It makes decisions (picks 
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actions) in each state and receives feedback from its operation; these states, actions, 

feedbacks, and transitions make up the so-called 'experience'.  

THE KNOWLEDGE ADAPTION MODULE 

A. The System Overview 

Our research concentrates on the problem of transfer across robots, which is to 

share one robot's knowledge about one specific task with another robot. In order to 

ensure the target robot's performance in reusing the source robot's knowledge, we 

design an add-on module, which we call the knowledge adaption module (KAM), to the 

target robot's control system to enhance the adaptability of the NK-DNA-based 

knowledge reusing. Together with the NK-DNA module and the target robot's 

controller, these three parts comprise the knowledge sharing oriented system (see 

Figure 3).  

 

 Fig. 3. The architecture of the knowledge sharing oriented system. 

The NK-DNA module is used to store and infer the knowledge received from the 

source robot. It also enables the target robot to learn new knowledge through its new 
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experience (Zhang et al., 2017). When a desired output is received, the system sends it 

to the NK-DNA module and the KAM. The NK-DNA module reuses the source robot's 

knowledge to give a control reference. Then KAM adjusts this reference according to 

the desired output and the robot's current state. 

B) Knowledge Adaption 

We considered the knowledge adaption problem as the problem of trajectory 

tracking. Precisely, the target robot must track the trajectory given as the control 

reference of the NK-DNA Module in the system. We consider the dynamics of the  

source robot and the target robot can be represented by  

𝑢(𝑡 + 1) =  𝑦�𝑢(𝑡)�  +  𝑔�𝑢(𝑡)� 𝑥(𝑡)                                   (1) 

𝑓(𝑡) =  𝑝�𝑢(𝑡)�                                                                (2) 

𝑓(𝑡 + 𝑘) = 𝑀�𝑢(𝑡)�  + 𝐻�𝑢(𝑡)� 𝑥(𝑡)                                    (3) 

where the state of the system is 𝑢 ∈ ℝ𝑛, the system's input (i.e. the control reference) 

and output are 𝑥 ∈ ℝ and 𝑓 ∈ ℝ respectively. The discrete-time index is 𝑡 ∈ ℝ ≥ 0, 

and y(·), g(·), and p(·) are smooth functions, 𝑀�𝑢(𝑡)� = 𝑝 ∙ 𝑦�𝑢(𝑡)� and 𝐻�𝑢(𝑡)� =

 𝜕
𝜕𝜕

 𝑝 ∙  𝑦𝑘−1� 𝑢(𝑡 + 1)� . According to Equation 3, the ideal reference to track for the 

target robot controller is 

 𝑥𝑖𝑖𝑖𝑖𝑖(𝑡) =  �𝑓𝑖𝑖𝑑𝑖𝑑𝑖𝑖(𝑡 + 𝑘) −𝑀�𝑢(𝑡)� � 𝐻�𝑢(𝑡)�                           (4)�  

 where 𝑓𝑖𝑖𝑑𝑖𝑑𝑖𝑖(𝑡 + 𝑘) represents the desired output the system received. 

Based on SOEKS knowledge representation, the source robot's inverse dynamics 

model is learned through NK-DNA. Specifically, the robot's state changes after the 
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controller execute a control reference. The state-control relationship can be discovered 

using a deep neural network inside the NK-DNA. In the NK-DNA, the association of 

states and controls is linked through the Experience and represented as SOEKS. In 

order to have a sufficient amount of experience for learning and to improve the inverse 

dynamics modelling, we generate random control references and send them to the robot 

for experience collection. Every time the robot is given a control reference, we collect a 

specific experience of applying the reference and store them as [ 𝑥𝑡 ,𝑢𝑡 ,𝑓𝑡 ] where 𝑥𝑡 

is the control reference executed at that time and 𝑢𝑡 is the original state at that time, 

and the 𝑓𝑡 is the source robot's output. We use the experience to train an inverse 

dynamics model for the source robot.  

Similarly, such experience can be collected by the KAM on the target robot. Then, 

the accumulated experience is used to train a DNN approximating the control law f (∙) 

for accurate trajectory tracking and online adaption control. Specifically, in the KAM 

module, a 3-layer neural network is used to model the relationship between the desired 

output 𝑓𝑖𝑖𝑑𝑖𝑑𝑖𝑖(𝑡), the NK-DNA's control reference 𝑥𝑛𝑘𝑖𝑛𝑖(𝑡), actual output 𝑓(𝑡) 

with the adjusted control reference 𝑥𝑖𝑖𝑖𝑖𝑖(𝑡)  (i.e. the system reference in Fig.3) 

based on Equations (1-4). 

INITIAL EXPERIMENTS 

To examine our proposed approach, we use KAM to learn about the inverse 

dynamics difference between the target robot and the source robot. Then, we use the 
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learned knowledge as an add-on module to the control system of the target robot. The 

dataset is collected as 𝐷 = {𝑢(𝑡), 𝑓𝑖𝑖𝑑𝑖𝑑𝑖𝑖(𝑡), 𝑥𝑛𝑘𝑖𝑛𝑖(𝑡), 𝑓(𝑡)} where the current 

state is 𝑢(𝑡), the desired output is 𝑓𝑖𝑖𝑑𝑖𝑑𝑖𝑖(𝑡), the control reference given by the 

source robot's knowledge is 𝑥𝑛𝑘𝑖𝑛𝑖(𝑡), the actual output is 𝑓(𝑡). As shown in Figure 4, 

a total of approximately 10,000 datasets are collected.  

 

 Fig. 4. The dataset collected on the target robot. 

To get the adaption control reference (i.e. the system reference in Fig. 3), we 

calculate it as 𝑥𝑖𝑖𝑖𝑖𝑖(𝑡) = 𝑥𝑘𝑖𝑘(𝑡) +  𝑥𝑛𝑘𝑖𝑛𝑖(𝑡).We can optimize the actual 𝑓(𝑡) 

towards 𝑓𝑖𝑖𝑑𝑖𝑑𝑖𝑖(𝑡) by tuning the 𝑥𝑘𝑖𝑘(𝑡) through stochastic gradient descent during 

the KAM training process. The experiment results are illustrated in Figure 5, as we can 

see that without the KAM adjustment (the blue line), the original system can barely 
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follow the source robot's reference. In contrast, the target robot achieves high 

performance following the source robot's reference when the KAM is applied to its 

controller. The original system's root-mean-square (RMS) errors (without KAM) and 

use of the KAM are about 3.4509 and 0.1140, respectively. It illustrates how a trained 

KAM module can facilitate knowledge sharing among robots. 

 

Fig. 5. The tracking control performance comparison. 

CONCLUSIONS AND FUTURE WORK 

In this paper, we propose an adaptive control method oriented to promote 

knowledge sharing between different robot systems. In order to ensure the target robot's 

performance in reusing the source robot's knowledge, we design an add-on module, 
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which we call the knowledge adaption module (KAM), to the target robot's control 

system to enhance the adaptability of the NK-DNA-based knowledge reusing. Our 

approach uses the NK-DNA to acquire knowledge of the robot's inverse dynamics and 

then reuse such knowledge in other robot's control systems by utilizing the KAM. The 

initial experiment shows that the proposed KAM is promising for knowledge sharing 

between different robots. 

As this study is still at an early stage of research, there are further studies and 

improvements to be done, some of which are:  

- Further optimization and design of the KAM. 

- To examine the method under uncertain and complex dynamics. 

- Improvement and further development of the KAM-based robots. 
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