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Abstract. In this paper, we propose the Neural Knowledge DNA, a framework that tailors the ideas underlying the success of 
neural networks to the scope of knowledge representation. Knowledge representation is a fundamental field that dedicates to 
representing information about the world in a form that computer systems can utilize to solve complex tasks. The proposed 
Neural Knowledge DNA is designed to support discovering, storing, reusing, improving, and sharing knowledge among 
machines and computing devices. It is constructed in a similar fashion of how biological DNA formed: built up by four 
essential interconnected elements. As the DNA produces phenotypes, the Neural Knowledge DNA carries information and 
knowledge via its four interdepended rudiments, namely, Networks, Experiences, States, and Actions. These components store 
the detail of the artificial neural networks for training and knowledge reusing purposes. The novelty of this approach is that it 
uses previous decisional experience to collect and expand intelligence for future decision making formalized support. The 
experience based collective computational techniques of Set of Experience Knowledge Structure (SOEKS) and Decisional 
DNA (DDNA) are used to develop aforesaid decisional sustenance. Together with artificial neural networks and reinforcement 
learning, the proposed Neural Knowledge DNA is used in an experiment to catch knowledge during the solution of a simple 
illustrative maze problem.  The tryout results show that our Neural Knowledge DNA is a very promising knowledge 
representation approach for artificial neural network-based intelligent systems. 
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1. Introduction

Knowledge representation is a fundamental field
that dedicate to representing information about the 
world in a form that computer systems can utilize to 
solve complex tasks [4]. It is the study of thinking as 
a computational process. Then, what is knowledge? 
This is a question that has been discussed by philoso-
phers since the ancient Greeks, and it is still not total-
ly demystified. Drucker P. F. defines it as “infor-
mation that changes something or somebody - either 
by becoming grounds for actions, or by making an 
individual (or an institution) capable of different or 
more effective action” [5]. While the Oxford Dic-
tionary defines Knowledge as “facts, information, 

and skills acquired through experience or education; 
the theoretical or practical understanding of a sub-
ject” [19]. O'Dell and Hubert claim that Knowledge 
is not knowledge until the information inside itself 
has been taken and used by people [18]. And for sci-
entists and researchers in the AI field, we can argue it 
as “knowledge is not knowledge until the information 
inside itself has been taken and used by computers, 
machines, and agents”.  

Consequently, an appropriate knowledge represen-
tation shall be easy used by different systems to al-
low storing, reusing, improving, and sharing 
knowledge among these systems. A survey [11] car-
ried out by Liao found that there were generally sev-
en categories of knowledge-based technologies and 
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applications developed until 2002. Another study 
presented in [14], after analyzing 30 published arti-
cles between 2003 and 2010 from high quality jour-
nals, found nine core theories in the knowledge-
based area. However, there are following limitations 
to these technologies:  

1. most of them are designed for one specif-
ic kind of a prod-
uct/system/implementation, 

2. they don’t have standard knowledge 
presentation,  

3. most systems lack the capability for in-
formation sharing and exchange, and 

4. most of these systems focus only on sup-
porting a particular stage of a product 
lifecycle [10]. 

Recent studies [6] [8] [9] in artificial neural net-
works (ANN) and psychology have found that the 
image representations in ANN are very similar to 
those in biological brains. This   was our initial inspi-
ration leading to the question:  why shouldn’t we try 
to organize and store knowledge in a way similar to 
the way it exists in the human brain?  

In this paper, we propose and introduce the initial 
concept the Neural Knowledge DNA (NK-DNA), a 
framework adapting ideas underlying the success of 
neural networks to the scope of knowledge represen-
tation for neural network-based knowledge discover-
ing, storing, reusing, improving, and sharing. 

2.  Neural Networks and Deep Learning 

Machine learning is one of today’s most rapidly 
growing technical/cybernetic fields. It is the corner 
stone of artificial intelligence that addresses the ques-
tion of how to build computer systems improving 
themselves automatically through experience [13]. 
The recent progress of new theories and learning 
algorithms, especially in the filed of artificial neural 
networks (ANN), has become the new driving force 
in machine learning. 

 ANN is a biologically-inspired programming par-
adigm which enables a computer to learn from ob-
servational/exemplar data [15]. It consists of a net-
work where the information can be passed from one 
node to another, and these nodes in the network are 
called artificial neurons. The network typically is 
structured hierarchically, and its neurons are usually 
organized into layers such that each neuron in layer l 
connects to every neuron in layer l+1. Any layers in 
between the input layer and output layer are called 
hidden layers. The forward pass of an ANN is where 

information flows from the input layer, through any 
hidden layers, to the output. ANN learns during the 
backwards pass, which updates the connection’s 
weights of the network [13]. 

Deep learning is a powerful set of techniques for 
learning in the ANN domain [15]. It allows computa-
tional models that are composed of multiple pro-
cessing layers to learn representations of data with 
multiple levels of abstraction [8].  

Deep learning learns sophisticated structures and 
patterns in large data sets by using the backpropaga-
tion algorithm to reveal how a neural network should 
change its internal parameters that are used to com-
pute the representation in each layer from the repre-
sentation in the previous layer [7] [15]. The essential 
aspect of deep learning is that these layers of features 
are not human-designed; they are learned from data 
using a general-purpose learning procedure. Deep 
learning has dramatically improved the state-of-the-
art in image recognition, natural language process, 
object detection and many other domains such as 
drug discovery and genomics [8] [26]. 

3. Deep Reinforcement Learning 

Reinforcement learning is a branch of machine 
learning concentrated upon using experience ob-
tained via interacting with the world and evaluative 
feedback to improve a system’s capability to make 
decisions [12] [17]. Reinforcement-learning algo-
rithms [29] are inspired mainly by our perception of 
human's decision making in which learning is hap-
pening through the use of reward signals in response 
to the observed results of actions. It has been called 
the artificial intelligence problem in a microcosm 
because learning algorithms must operate autono-
mously to perform well and to achieve their objec-
tives. Partly driven by the increasing availability of 
rich data, recent years have seen exciting advances in 
the theory and practice of reinforcement learning, 
including developments in fundamental technical 
areas such as empirical methodology, exploration, 
planning, and generalization, leading to increasing 
applicability to real-life problems [16]. 

Reinforcement learning can be represented as an 
interaction between a learner (i.e. the decision mak-
ing agent) and an environment that gives evaluative 
outcomes to the learner. The environment in this case  
is often seen and defined from the perspective of a 
Markov decision process [1] [20]. 

A Markov decision process is composed by a set 
of actions A (the decisions the decision maker can 
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choose), and states S (situations in which a decision 
can be made). These quantities of actions and states 
can be limited, but spaces with continuous actions 
and states are often more valuable for capturing in-
teractions in important reinforcement learning appli-
cations, such as for example performing physics 
tasks. Function P (sʹ| s, a) defines the probability of 
the state transforming from s to sʹ by taking the ac-
tion a [1] [16]. 

A reward function R(s, a) and discount factor  
γ Є [0, 1] are used to describe the decision making 
agent’s performance:  for each time-step, the agent 
chooses an action, and the environment returns a re-
ward and transitions into the next state. The goal be-
hind this process is to maximize the cumulative dis-
counted expected reward. More specifically, the 
agent is looking for a behavior policy π*(a t | s t ;θ) 
mapping states to action creating a reward sequence 
r0, r1, r2, r3, … such that Er0, r1, … [r0 + γr1 + γ2

r2 + γ3
r3 

+ …] is as large as possible [16]. The relation be-
tween the cumulative discounted expected reward 
and the environmental interaction (state, action, re-
ward, state, action, reward, …) is captured by the 
Bellman equation [1] for the optimal state–action 
value function Q*. The solution to the Bellman equa-
tion can be used to optimize the agent’s behavior by 
calculating π*(s) = arg maxaQ*(s, a). The expected 
cumulative discounted reward for the policy that 
takes action a from state s and then behaving opti-
mally thenceforth is the immediate reward received, 
and the expected discounted value of the cumulative 
discounted expected reward from the resulting state 
sʹ given that the best action is chosen [16][20]. 

Deep reinforcement learning is the method that us-
es deep neural networks (DNN) in combination with 
reinforcement learning to address learning about the 
environment and gaining the best control policy. 
DNNs can be used to directly approximate a control 
policy, a = π(s) from example data points (si, ai) as 
generated by some other control process. Control 
policies based on DNNs have been trained and 
learned to control agents in many ways as reported in 
[8][12][17]. 

Deep learning can be further enhanced by support-
ing its process with learning experience. The tools 
needed for this enhancement are presented next. 

4. Set of Experience Knowledge Structure and 
Decisional DNA 

The presented approach towards constructing Neu-
ral Knowledge DNA is a vision that aims to address 

complex issues and challenges that arise from the 
pervasive nature of digital technologies as witnessed 
in recent years in our everyday life. One of such ma-
jor challenges is the need for nature-like cognitive 
blueprints for man-made systems as required by the 
incoming semantic-focused society and the “Internet 
of Things” [3] [27] [30]. Our past research delivers 
the cutting-edge component of the above challenge 
and at the same time the fundamental notion behind 
the proposed Neural Knowledge DNA – the Deci-
sional DNA (DDNA) technology. 

In a broader sense, the above research direction 
plays an important role in our effort to bridge the gap 
between current society and the one fully embedded 
in semantic networks. The fully linked Semantic 
Web concept offers a future vision of the Web where 
both humans and machines are able to communicate 
and exchange information and knowledge [2]. 

The Decisional DNA is a novel knowledge repre-
sentation theory that carries, organizes, and manages 
experiential knowledge stored in the Set of Experi-
ence Knowledge Structure (SOEKS or SOE for 
short) as illustrated in Figure 1 [21] [22] [25]. 

 
 

 
 

Fig. 1.  SOE is the combination of 4 components that characterize 
decision making actions (variables V, functions F, constraints C, 
and rules R) and it comprises a series of mathematical concepts 

(logical element), together with a set of rules (ruled based element), 
and it is built upon a specific event of decision-making (frame 

element). 

The SOE has been developed to capture and store 
formal decision events in an explicit way [23]. It is a 
flexible, standard, and domain-independent 
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knowledge representation structure [24]. And it is a 
model based upon available and existing knowledge, 
which must adapt to the decision event it was built 
from (i.e. it is a dynamic structure that depends on 
the information provided by a formal decision event); 
moreover, SOEKS can be stored in XML or OWL 
files as ontology in order to make it transportable and 
shareable [21].   

SOEKS consists of variables, functions, con-
straints and rules associated in a DNA shape enabling 
the integration of the Decisional DNA of an organi-
zation/system. Variables normally implicate repre-
senting knowledge using an attribute-value language 
(i.e. by a vector of variables and values), and they are 
the centre root and the starting point of SOEKS. 
Functions represent relationships between a set of 
input variables and a dependent variable; besides, 
functions can be applied for reasoning optimal states. 
Constraints are another way of associations among 
the variables. They are restrictions of the feasible 
solutions, limitations of possibilities in a decision 
event, and factors that restrict the performance of a 
system. Finally, rules are relationships between a 
consequence and a condition linked by the statements 
IF-THEN-ELSE. They are conditional relationships 
that control the universe of variables [21]. 

Additionally, SOEKS is designed similarly to bio-
logical DNA at some important features. First, the 
combination of the four components of the SOE 
gives uniqueness, just as the combination of four 
nucleotides of DNA does. Secondly, the elements of 
SOEKS are connected with each other in order to 
imitate a gene, and each SOE can be classified, and 
acts like a gene in DNA. As the gene produces phe-
notypes, the SOE brings values of decisions accord-
ing to the combined elements. Then, a decisional 
chromosome storing decisional “strategies” for a 
category is formed by a group of SOE of the same 
category. Finally, a diverse group of SOE chromo-
somes comprise what is called the Decisional DNA 
(DDNA) as illustrated in Figure 2 [21]. 

 
 

 
 

Fig. 2. Sets of Experience (Decisional Genes) are grouped accord-
ing to their phenotype, creating Decisional Chromosomes, and 

groups of chromosomes create the Decisional DNA. 

   SOEKS-Decisional DNA is a general technique to 
capture, store and reuse the experience and the for-
mal decisions taken in day to day activities. It can be 
implemented on various platforms (e.g. ontology, 
reflexive ontology, software based, fuzzy logic etc.) 
in multi domains, which makes it a universal ap-
proach. A DDNA based knowledge system will al-
ways have following advantages after its implemen-
tation: 

(1) Versatility and dynamicity of the knowledge 
structure, which provides flexibility to 
change according to the situation. 

(2)  Storage of day-to-day explicit experience in 
a single structure, which makes it ever 
evolving. 

(3)  Transportability, adaptability and shareabil-
ity of the knowledge. 

(4) Predicting and decision making capabilities 
based on the collected past experience. 

(5) Achieving decisional balance; having right 
quality and quantity of knowledge at the 
right time 

   Human experience, as a form of knowledge, is 
commonly suggested as a possible way to improve 
decision-making processes.  Our extensive  DDNA-
based  computational experiments described in [23] 
[24] and [25] provide strong support for similarities 
between this artificial system and  human experience 
and its role in enhancing decision making processes, 
clarifying that DDNA model actually acts in a similar 
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way as the natural human decisional making experi-
ence-based support does. 
   Our proposed DDNA empowers the vision of the 
Neural Knowledge DNA by providing smart tech-
nology for experience-based storage of information 
and knowledge in intelligent systems.  
   The concept of the neural knowledge DNA is pre-
sented next. 

5. The Neural Knowledge DNA 

Recent progress in deep learning has been notably 
improving the performance of artificial intelligence 
systems in the continuous control domain and high-
dimensional space decision making. However, 
knowledge acquired in these systems is still isolated, 
and hard to be accessed, reused, and shared as an 
experience among different systems. Therefore, we 
propose the Neural Knowledge DNA (NK-DNA) in 
order to address  this problem. 

5.1. Concept and Features  

The Neural Knowledge DNA is proposed as a 
framework that tailors the ideas underlying the suc-
cess of neural networks to the scope of knowledge 
representation based on past experience. It is de-
signed to store and represent knowledge captured in 
intelligent systems that uses artificial neural network 
as the central power of its intelligence. There are five 
distinctive features of this novel idea and they are 
presented next. 

 
1) Neural Network-based:  
Generally, knowledge is acquired after training in 

deep learning systems, which is often called the 
model. The model usually stores information about 
the hierarchy of the neural network plus weights and 
biases of the connections between neurons of the 
neural network in detail. Once the neural network is 
trained, giving input, the network will send back a 
result via the computation from the input layer to the 
output layer. 

Similarly, our NK-DNA stores knowledge of an 
agent using the same idea. Figure 3 shows the con-
cept of knowledge carried by the NK-DNA architec-
ture. 

 
 

 

Fig. 3. Concept of the NK-DNA-carried knowledge. 

In the NK-DNA, a neural network is used to carry 
the relation between actions and states.  As illustrated 
in the Figure 3, each state (represented as S1, S2 … Sn) 
can have connections with a set of actions (represent-
ed as a1, a2, … an). If an action is connected with a 
state, it means the connected action is an available 
action in that state; in other words, the agent can 
choose the action to perform if it is in that state.  

The trained neural network provides the 
knowledge of which action is the best choice to a 
specific state. The states here are the inputs, which 
can be the raw sensory data, or data describing the 
current situation of the agent. 

 
2) Experience Oriented: 
Another important feature of this approach is that 

the NK-DNA uses previous decisional experience to 
collect and expand intelligence for future decision 
making formalized support. 

Experience, as a certain form of information and 
knowledge gained from current and past practice, is 
the supreme knowledge source for learning and im-
proving performance of agents. Usually, the agent 
transitions from one state to another during its opera-
tion, and it makes decisions (picks actions) in each 
state and receives feedbacks from its operation.  
These states, actions, feedbacks, and transitions make 
up what we call ‘experience’. Inspired by the Markov 
Decision Processes [20], the experience of an agent is 
stored as et = (st, at, rt, st+1) at each time-step t: where 
st is the current state at the time-step, at is the action 
the agent chooses at that time-step, rt is the reward 
(feedback) for undertaking the action, and st+1 is the 
transition state after the chosen action. This experi-
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ence is represented in the form of SOEKS introduced 
in Section 4 of this paper. 

As the result, experience is collected as the main 
source for learning support in our NK-DNA. Basical-
ly, the experience is treated as samples for doing su-
pervised learning. Additionally, experience in the 
form of SOEKS  is also possible to be shared be-
tween different NK-DNA systems, which allows 
much larger scale of learning in the cloud (discussed 
in the following third feature).  

 
3) Sharable: 
Very similar to human society, the NK-DNA is 

designed to allow agents to share knowledge and 
experience among each other so that the knowledge 
and experience can be accessed and reused in a much 
larger scope. 

Figure 4 shows the overview of the envisaged  
NK-DNA cloud platform. The platform integrates 
different agents and their tasks as illustrated in two 
major levels: local and global.  

At the bottom of the platform (see Figure 4), there 
is the local level storing an agent’s knowledge, while 
the global level is at the top storing knowledge from 
all NK-DNA based systems. Agents can share, down-
load, and evolve their knowledge via this cloud plat-
form. For more details about this concept of 
knowledge sharing, please refer to our previous work 
introducing DDNA as a knowledge sharing platform 
[25]. 

 

 
Fig. 4. Overview of the NK-DNA cloud platform. 

 
 

 
4) Flexible: 
As stated before, machine learning is the core of 

artificial intelligence, which addresses the question of 
how to build computer systems that can automatical-
ly improve themselves through experience. However, 
there are many different machine learning methods 
and they are used for different problems. Therefore, 
the NK-DNA must be flexible to enable itself being 
used by different systems. It needs to be easily and 
efficiently tailored for various domain applications. 

Because the NK-DNA is neural network-based, all 
varieties of machine learning method based on neural 
networks would be suitable to use it, such as normal 
neural networks, convolutional neural networks, re-
current neural networks, etc. To allow for this flexi-
bility, we designed the DNA like structure holding 
details of the neural network in which an agent’s 
knowledge was acquired.  

Consequently, any agent can reuse another agent’s 
knowledge as long as it has the information about 
another agent’s neural networks. 

 
5) DNA like Structure: 
The NK-DNA is constructed in a similar fashion 

of how biological DNA is formed [28]: built up by 
four essential interconnected elements. As the DNA 
produces phenotypes, the Neural Knowledge DNA 
carries information and knowledge via its four fun-
damental elements, namely, States, Actions, Experi-
ences, and Networks (Figure 5). 

 

 

Fig. 5. Structure of the NK-DNA. 
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The NK-DNA’s four-element combination is able 
to carry detailed information of reinforcement learn-
ing and Markov Decision Processes:  

1. States are situations in which a decision 
or a motion can be made or performed, 

2.  Actions are used to store the decisions or 
motions the domain can select, 

3. Experiences are domain’s historical op-
eration segments with feedbacks from 
outcomes, and  

4. Networks store the detail of neural net-
works for training and using such 
knowledge, like network structure, con-
nections, weights, bias, and deep learning 
framework used (if a third-party deep 
learning framework is used, such as 
MxNet, Caffe, etc.).  

5.2. Initial Experiment 

5.2.1. Experiment Overview 
We examined our NK-DNA proposed framework  

for solving a simple illustrative maze problem. In this 
initial experiment, the agent is asked to explore, learn 
and store the knowledge about the maze (Figure 6) 
by using NK-DNA. After the training, the agent is 
expected to find the shortest path from the initial 
block 1 to the final block 8 (Figure 6). 

 
 

 

Fig. 6.  The maze case study for initial experiments. 

5.2.2. Methods 
We consider tasks in which the agent interacts 

with an environment through a sequence of states, 
actions, and rewards.  

First, the states and actions are pre-defined, for ex-
ample, there are 8 states (8 blocks in Figure 6), and 
for state 1, the agent can either “go to block 2” or “go 
to block 4” (i.e. these are the actions of state 1). Then, 
the agent starts from state 1, and randomly picks an 
action of its current state to explore the maze as long 
as it reaches the state 8, and the agent gets a reward 
for reaching state 8. Meanwhile, the agent stores eve-
ry single movement (i.e. from one state to another 
state) with reward from it as an experience (st, at, rt, 
st+1) during the whole exploration process of the 
maze.  

The goal of the agent is to select actions in a fash-
ion that maximizes cumulative future reward. More 
formally, we use a neural network to approximate the 
optimal action-value function [17] given as 

 

Q*(s,a)= maxE[rt + γ rt+1 + γ2 rt+2 + … | st =s, at =a, π], 
                π  

 
which is the maximum sum of rewards rt discounted 
by γ at each time-step t, achievable by a behaviour 
policy π(a|s), after making an observation (s) and 
taking an action (a). For more details about the  algo-
rithms and methods (these are well established and 
verified tools) that are used  in this initial experiment, 
please refer to reference positions [12] [17].  

5.2.3.  Results 
After exploring the maze and training the agent via 

the methods and approaches described above, the 
agent gained knowledge about the maze, and stored it 
in the NK-DNA as Actions, States, Experiences, and 
Networks.  

When reusing the knowledge, the agent just sends 
current state to its neural network, and the neural 
network gives the output representing the action 
which the agent shall choose. In this initial case study, 
after training, the agent put into the current state as 
‘block 1’, is directed by the proposed NK-DNA to go 
to ‘block 4’ as the best choice, then to choose to go to 
‘block 7’, and finally,  to go to ‘block 8’ (the destina-
tion) which represents the optimal (the shortest) step 
sequence from start to finish. 
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6. Conclusions and Future Work 

In this paper, we proposed the Neural Knowledge 
DNA, a framework adapting ideas underlying the 
success of neural networks to knowledge representa-
tion for neural network-based knowledge discovering, 
storing, reusing, improving, and sharing. By taking 
advantages of neural networks, set of experience 
knowledge structure, and reinforcement learning, the 
NK-DNA stores the knowledge gained through do-
main’s daily operation, and provides an easy way for 
future accessing, reusing, and sharing such 
knowledge. After introducing the proposed concept 
and architecture, we tested our proposal idea in an 
initial experiment, and the results show that the NK-
DNA remains a very promising novel approach to 
knowledge representation, reuse, and sharing among 
neural network-based AI systems. 

 
For further work, we will continue our research as 

follows: 
  
1) Refinement and further development of the neu-
ral networks engine;  
2) Further design and development of the NK-
DNA framework, especially, for supporting a 
range of third-party deep learning outlines;  
3) Conceptual design and development of the 
cloud server for NK-DNA knowledge manage-
ment. 
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