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Abstract 

This work focuses on determining the influence of both ionic liquid type and redox 

couple concentration on Seebeck coefficient values of such system. Thanks to their properties 

(especially high thermal stability), ionic liquids are very promising alternative for the 

electrolytes used in the Thermoelectrochemical cells (TECs). Our work covers the experimental 

and theoretical approach on Seebeck effect phenomenon, which is one of the main features 

responsible for performance of TEC devices.  

The quantitative structure-property relationship (QSPR) and read-across techniques are 

proposed as the methods of identifying structural features of ionic liquids (ILs) (mixed with 

LiI/I2 redox couple), which influence the Seebeck coefficient (Se) values. ILs consisted of 

small, symmetric cations and anions indicating high values of the vertical electron binding 

energy are recognized as ones having the highest values of Se. 

In addition, the developed QSPR model enables predicting the values of Se for each IL 

that belongs to the applicability domain of the model. The influence of the redox couple 

concentration on the Seebeck coefficient values is quantitatively described as well. Thus, it is 

possible to calculate, how the value of Se will change with changing redox couple 

concentration. The presence of LiI/I2 redox couple in lower concentrations increases the values 

of Se as expected. 

 
 

Key Words: 
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1. Introduction 

In many industrial applications (melting furnaces, industrial kilns, incinerators, power 

plants, etc.) a large amount of heat energy remains unused. Conversion of unemployed heat 

energy to electricity is nowadays one of the most important tasks in the field of 

thermoelectricity. Optimization of the efficiency of energy converting devices (like 

thermoelectrochemical cells - TECs) is a big challenge of twenty-first century. The performance 

of such devices depends on different factors[1-4]. Recently, researches performing conversion 

from thermal to electrical energy have been focused on the solid-state devices using 

thermoelectric semiconductor materials, in which the energy could be converted via Seebeck 

effect.[5] The magnitude of Seebeck effect is described by the Seebeck coefficient (Se), which 

determines the open circle voltage that can be produced by the device at any given temperature 

differences (Equation 1): 

Se = -ΔV/ ΔT       (1) 

where: ΔV - is the voltage difference between the hot and cold electrodes. 

However the effectiveness of semiconductor devices depends largely on the quality of 

the thermoelectric material, which they are composed of. What is more, there is a limitation of 

obtained Se (≤ 1 mVK-1) for such generators.[6, 7] In this case, the liquid-based thermoelectrical 

technology is a promising alternative for direct energy conversion (from thermal to electric). 

The main advantage of this approach is the choice of a solvent, which may influence the kinetics 

of electron transfer reaction.[8, 9] Recently, aqueous electrolytes[10] and organic solvents[11] were 

utilized in the thermoelectrochemical devices. However, these types of solvents are limited 

because of their volatility and limited long-term durability. In this case, ionic liquids (ILs) – 

molten salts having its melting point lower than 100 °C, seem to be an ideal choice that can 

replace traditional electrolytes. ILs are characterized by low flammability, low vapor pressure, 
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enlarged stability at high temperatures and ability to retain the liquid state for a wide range of 

temperatures. Recent studies proved that ionic liquids in the presence of redox couple (RC) are 

used with a great success as electrolytes in liquid-based thermoelectrical cells,[9, 12, 13] but still, 

there is a strong need to look for ILs which can provide higher Seebeck coefficient. 

Experimental measurement focused on obtaining the Seebeck coefficient are very time 

consuming and expensive. In this case, the computational methods that enable predicting 

missing data in relatively short time, without necessity of performing additional experiments 

are very helpful. Here we applied the technique based on structural relation between substances 

(read-across) and structure-property relationship modeling (QSPR). 

In principle, the read-across approach is based on the assumption that chemicals that are 

structurally alike, or follow a regular structural pattern, should exhibit similar physicochemical 

and toxicological properties.[14] Once similar chemicals have been merged together, endpoint 

information (e.g. physicochemical property) for one, or more, chemical(s) (the so-called 

“source chemical(s)”) can be used to make predictions of the same physicochemical property 

for another chemical (the “target chemical”).[14] It needs to be highlighted that although 

qualitative read-across is usually applied at the first stage of data exploration, it can in fact lead 

to many valuable conclusions. It allows identifying structural features responsible for the 

specific physicochemical properties or classifying the chemicals according to their potential 

toxic effects.[15] 

Second computational method is structure-property relationship modeling (QSPR). QSPR 

approach is based on the assumption that the variance of physicochemical property in the group 

of similar compounds can be predicted using the variance of their chemical structures, 

represented by the range of numerical features, so-called molecular descriptors.[16]  

In this work, we focused on determining the effect of the structural features of cation 
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and anion, which influences the value of the Seebeck coefficient. First, we used the 

experimental values of Se for ILs with addition of LiI/I2 redox couple to defined classes of ionic 

liquids, based on structure-Seebeck coefficient relationship using read-across approach. Then, 

we developed a single QSPR model to estimate the Seebeck coefficient for ionic liquids (with 

0.01M LiI/I2 redox couple). Finally, we proposed a simple arithmetic relationship that can be 

employed to estimate Se values in different redox couple’s concentration. 

2. Results and discussion 

Since our experimental data for the Seebeck coefficient were obtained within the one 

protocol (the same experimental conditions – please see Experimental section), we started 

computational modeling. The molecular models of each ionic liquid were built and then 

optimized by employing the Density Functional Theory. We used the equilibrium structures of 

the cations and anions to calculate molecular descriptors. The most optimal combination of the 

molecular descriptors to be utilized in the read-across and QSPR modeling were selected by 

employing the genetic algorithm[17] implemented in the QSARINS software.[18] [19] Read-across 

analyses, as well as the QSPR modeling were performed using the values of Seebeck coefficient 

for ILs with addition of 0.01M LiI/I2 redox couple (for more details please see Experimental 

section). 

2.1. Approximating Seebeck coefficient with read-across technique 

The main goal of qualitative read-across technique is to identify classes containing 

chemicals of similar structure and properties, without using pre-established class memberships 

(so-called unsupervised pattern recognition approach).[15] Since majority of cluster analysis 

methods are based on the assumption that two samples (here: chemicals) are similar, when are 

located close (i.e., in terms of a given distance measure) to each other, two-ways hierarchical 

cluster analysis (t-HCA)[20, 21] was applied to explore similarity between the ionic liquids.  
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As previously mentioned, molecular descriptors that define the similarity of ILs have 

been selected with the genetic algorithm. There were GATSiA  (Geary autocorrelation of lag 1 

weighted by ionization potential for anion’s structure)[22] and piPC04C (molecular multiple path 

count of order 4 calculated for cation)[23]. The correlation coefficients between the descriptors 

and the Seebeck coefficient were -0.81 and -0.43 GATSiA and piPC04C, respectively. This 

means, GATSiA descriptor explains approximately 66% while, piPC04C descriptor explains 

18% of the total variance in the values of Se in the group of the studied ILs. 

Dendrogram (Figure 1A) resulted from t-HCA performed on the matrix containing two 

descriptors (GATSiA and piPC04C) and the Seebeck coefficient (in columns) calculated for the 

training set of ionic liquids (in rows) reveals four main classes of ILs. Compounds within each 

class are characterized by similar values of the Se. One can observe that the Se of ILs 

systematically decreases when moving from class I to class IV.  

In the next step, the identified classes have been used to predict the values of Seebeck 

coefficient ILs from the validation set (ILs not previously used for defining the classes). The 

compounds were assigned into the classes based on their structural similarity to the particular 

members of the training set. To make it possible, data from the validation set had to be scaled 

first. The scaling procedure was repeated for every descriptor. We subtracted the mean value 

calculated for the training set from every descriptor value in the validation set and divided the 

result by the standard deviation calculated for the training set.  We found that IL0011, IL0021 

and IL0012 were assigned to the class II, IL0134, and IL0009 to the class III, while IL0051 

was predicted to be a member of class IV. The obtained estimation for the majority of ILs was 

finally confirmed by two-dimensional hierarchical cluster analysis for all ionic liquids from 

both: training and validation sets (Figure 1B). 
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Figure 1. (A) - Two-dimensional cluster analysis. Four identified natural clusters 
(classes) in the data are presented. Colors represent the auto-scaled values of the selected 
descriptors and experimentally determined Se values, (B) - Two-dimensional cluster analysis 
for all ionic liquids from both: training and validation sets. 

By analyzing the results obtained, it can be seen that Seebeck coefficient systematically 

decreases when moving from class I to class IV. The observed trend is in accordance with the 

results of QSPR studies. Interestingly, there were false negative predictions for two ILs. The 

read-across model failed to predict the high Seebeck coefficient for IL0011 and IL0030. A 

possible explanation is that both ILs are extremely close to the lower limit of the appropriate 

class and that was the cause of the misclassification (for more details, please refer to Supporting 

Materials (Figure S1). 
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To verify goodness-of-fit and externally validated predictive ability of the read-across 

model for estimating the Seebeck coefficient the accuracy (A) and the error rate (E) were 

calculated. The results were as follows: Atraining=83.3%, Etraining=16.3%, Avalidation=100%, and 

Evalidation=0%. Since the value of accuracy was much higher than the error rate, the significance 

of the model was confirmed. 

Moreover, the predictive potential of the proposed approach was additionally confirmed 

by employing Spearman’s rank correlation test. It was found that the values obtained from the 

read-across technique did not differ significantly from those measured experimentally (ρS = 

0.648, p = 0.076), as well as from those predicted from the QSPR model (ρS = 0.918, p = 

0.0001). Therefore, the presented technique is sufficiently accurate to identifying groups of 

ionic liquids having similar properties as well as to filling data gaps in qualitative manner. For 

more details, please refer to Supporting Materials (Table S4 and Table S5). 

 

2.2. Predicting Seebeck coefficient with QSPR approach  

The developed QSPR model (Equation 2) describing the linear relationship between the 

molecular structure of ionic liquids and the Seebeck coefficient utilized the same two 

descriptors used in read-across analysis (piPC04C and GATSiA). Pairwise correlation coefficient 

between the selected descriptors was negligible (r = 0.04).  

Se = 0.41(±0.04) – 0.15(±0.04) piPC04 C + 0.26(±0.04) GATSiA   (2) 

n = 12 , k = 6, F = 31.05 , p = 9.13´10-5, R2 = 0.87, RMSEC = 0.11, Q2CV = 0.82, RMSECV = 0.13, 

Q2EXT = 0.97, RMSEP  = 0.05, CCC = 0.98 

The model was well fitted to the training data (R2 = 0.87) and was characterized by the 

low value of the root mean square error (RMSEC = 0.11). Both measures are calculated from 
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residuals (i.e. differences between the experimental values and the values predicted by the 

model) for the training set compounds (for equations please refer to the Supporting material, 

Table S1). Analogical statistics obtained based on the internal validation (Q2CV and RMSECV) 

confirmed the good flexibility of QSPR model. Finally, the prognostic ability of the model was 

confirmed by calculating of Q2Ext, CCC and RMSEP from residuals for the validation 

compounds. Since there were no significant differences between particular mean square errors 

(RMSEC, RMSECV and RMSEP) we can conclude that, the model is not overfitted and predicts 

Se correctly, not only in the space of training set, but also for other (new) ILs. Furthermore, the 

high visual correlation between the observed (experimental) and predicted values of the Se 

(Figure 2A) additionally supports the conclusions from the validation step. 

An integral part of the QSPR modeling is to determine and verify the applicability 

domain (AD) of the developed model. AD is a space, defined by the descriptors’ values (Xi) 

and the response of the model (y), in which the predictions are reliable. In this study, the 

applicability domain was verified based on the leverage approach with the Williams plot 

(Figure 2B). The plot visualizes the differences between the predicted and observed Se values 

(standardized residuals) versus the similarity of a given compound to the training set (leverage 

values). Boarders of the AD are determinate by the critical values of standardized residuals 

(threshold of three standard deviation units, 3σ) and the threshold leverage h* (h* = 3p’/n, 

where p’ is the number of model variables plus one, and n is the number of compounds in the 

training set) [24]. Interestingly, in the developed model, all compounds are situated in the range 

of residuals differing by ±3 standard deviations from zero. Moreover, there were no 

compounds, which leverage (similarity) value exceed the critical threshold value h* = 0.75.  

One compound (IL0043) from the training set is located on the border of the h*. The IL0043 is 

the only one ammonium ionic liquids contained in the training set, therefore it may differ in 

terms of structure compared to the other, most imidazolium ILs. However, the leverage value 
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of IL0043 and hence the similarity of a IL0043 to the training set do not exceed the threshold 

h*, thus this compound broaden the applicability domain of developed model. Therefore, we 

demonstrated the reliability of predictions for all ILs, for which the leverage value h value is 

smaller than h*.  
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Figure 2. (A) - Observed versus predicted values of Se.; (B) -  Williams plot describing 
applicability domain of developed model. Dash line indicates threshold value (h* = 0.75), solid 
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lines represent ±3 SD units; (C) - Y-scrambling results: average values of the square errors of 
calibration versus cross-validation of the real QSPR model and 100 random models. 

In addition, we applied dependent variable scrambling test (Y-scrambling) to reduce the 

possibility of so-called correlation-by-chance and confirmed the statistical significance of the 

presented QSPR model.[25] Following the Y-scrambling algorithm we utilized the same two 

descriptors (piPC04C, GATSiA) to build 100 random “models” – every time the descriptors were 

correlated with randomly shuffled values of the Se for the training compounds. Almost two 

times higher values of RMSEC and RMSECV calculated for the randomly generated models than 

these of the real QSPR model confirmed the relevance of the QSPR model and the lack of 

chance correlation (Figure 2C). 

According to the OECD quality standards for QSARs it is highly recommended to 

search for a mechanistic interpretation of the developed model. This can be made by 

interpreting the results of the descriptors selection. First one, piPC04C (molecular multiple path 

count of order 4 calculated for cation) [23], is a member of the walk and path family of 

descriptors. It is defined as the sum of weights of the paths of length 4 in the cation. In this case, 

4 edges of the cation’s structure were involved in the path calculations.[26] It delivers 

information about size, symmetry and branching of the cation. We noticed that piPC04C value 

increases proportionally with increasing size, branching, and length of carbon chains in cations 

(Table 1, Table S6). For instance, piPC04C increases from 0 for ethyloammonium (small and 

relatively symmetric cation), thought piPC04C = 2.833 for 1,3-dimethylimidazolium (bigger 

imidazolium cation with two methyl substituents) up to high value of piPC04C = 3.296 for 1-

methyl-3-octylimidazolium (unsymmetrical cation with a long carbon side chain). The values 

of piPC04C are inversely correlated with the Seebeck coefficient, i.e. smaller cations exhibiting 

low values of piPC04C are generally characterized by the highest Seebeck coefficients.  

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


14 

The origin of the voltage across the thermoelectric cell at ΔT-application is entirely 

based on the thermally-induced asymmetry of electrical double layers that are formed at 

electrode surfaces. The first layer at the electrode-surface charges comprises ions adsorbed onto 

the object due to chemical interactions. Towards the hot electrode the ions become more mobile 

and overcoming more and more molecular/electrostatic interaction. This leads to an increase of 

collision frequency on the hot electrode and therefore higher adsorption rate of ions can occur. 

Table 1. Values of piPC04C for different structure of the IL’ cations 

 

Second descriptor, GATSiA (Geary autocorrelation of lag 1 weighted by ionization 

potential for anion’s structures) comes from 2D-autocorrelation group of descriptors [22]. These 

descriptors are independent on the original numbering of atom. Moreover, size of the molecule 

does not affect the calculated length of correlation vector. Autocorrelation descriptors are 

calculated by summing up certain properties of two atoms, located at a given topological 

distance.[26] In our model, the vertical electron binding energy of the anion was used as a 

weighting property. We noticed that anions with higher vertical electron binding energy of the 

individual atoms in the anion have higher descriptor values (Table 2, Table S6). The GATSiA 

is simply proportional to Seebeck’s values, i.e. high values of the descriptor GATSiA increase 

the values of Seebeck coefficient.  

 Furthermore, adsorption capabilities of molecules at electrode interfaces are linked to 

polarization of the molecules and so far to the ionization potential. It is assumed that high 

vertical electronic stability of anions caused less adsorption rate. Less adsorption of anions at 
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the electrode is supposed to increase the positive potential at the hot electrode and therefore the 

Seebeck coefficient. 

Table 2. Values of GATSiA for different structure of the IL’ anions 

 

In the next step, we used the developed QSPR model to predict the unavailable values 

of Seebeck coefficient for 13 ILs (see Supplementary Materials, Table S2). In order to assess 

wheatear ILs from the prediction set are within the domain of model’s applicability we used 

Insubria graph[27] (Figure 3). The graph provides information about the leverage values for the 

prediction set and also about the relationship between the predicted values for the training set 

and the prediction set. For this purpose we plotted the leverages, calculated for the prediction 

set, versus the predicted values of the Se. Because all compound (except one) from the 

prediction set were located inside the square defined by the minimum (Ytmin) and maximum 

(Ytmax) Seebeck value from training set and by critical h* value, we concluded that the 

predictions for tested compounds are within the model’s applicability domain. There is only 

one ionic liquid (Trihexyltetradecylphosphonium chlorid), which has the predicted Se lower 

than the lowest experimental value in the training set. This ionic liquid consist of cation, which 

has relatively long alkyl side chains – such ionic liquids were not include in the training set, so 

in this case, the prediction should be treated with greater care as less reliable. The Se value for 

this IL has been extrapolated (not interpolated as for the remaining ILs). One should remember 

as well that the model is valid only for the system containing ILs with addition of the redox 

couple (LiI/I2) in the concentration of 0.01 M.  
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Figure 3. Insubria plot: Leverage values for the prediction set versus predicted values 
of Se. Dash line indicates the critical leverage value (h*=0.75), solid lines represent minimum 
and maximum values of experimental values of Se for the training set. 

 

2.3. How much the Seebeck coefficient of ILs depends on the concentration of redox 

couple? 

In our work we also intended to extend the predictions onto systems containing ILs and 

the redox couple (LiI/I2) in other concentrations than 0.01 M. Therefore, we additionally 

measured the Se for each IL in different concentration of the redox couple added to the system. 

In the previous paragraph, we pointed out, how we attempted to build a QSPR model for 

Seebeck coefficient prediction, basing only on IL’s molecular descriptors. It was possible to 

achieve, because in every case, both redox couple type as well as its concentration were the 

same. Therefore, we treated them as constant conditions, assuming the only parameter that 

could have any affection on the Se value was the varying structure of IL.  

In case of different redox concentration, we applied different approach that can be 

considered as the complementary to the first one. At this stage, we had a constant structure of 

IL as well as the constant type of a redox couple. The only factor varying in the system was the 
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concentration of the redox couple. Therefore, we attempted to describe the relationship between 

the concentration and the Se by means of an appropriate mathematic formula.  

The idea was to create an additional computational tool (correction equation) that could 

be added to the previously developed QSPR model, in order to extend its predicting 

performance onto different concentrations of the redox couple.  

We had the measurements performed for three LiI/I2 concentrations as follows: 0.01M 

(the one we developed QSPR model for), 0.1M and 0.2M. Since we were interested in the 

relation between 0.01M concentration with other concentrations, we constructed two scatter 

plots, in order to analyze their mutual relations (Figure 4A and 4B). We noticed that those 

relations are logarithmic. In order to simplify the calculations, we transformed the data by 

adding a constant value of 0.2 to every result. Using nonlinear regression method we calculated 

the proper equation’s parameters (Equation 3 and 4).[28]  

𝑆!0.1𝑀	𝐿𝑖𝐼/𝐼" = 0.1269 ∗ 	𝑒#.%"&%∗(   (3) 

𝑆!0.2𝑀	𝐿𝑖𝐼/𝐼" = 0.1358 ∗ 	𝑒#.)*"∗(    (4) 

where x is a value of Seebeck coefficient for 0.01M RC system. 
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Figure 4. Experimental values of Seebeck coefficient measured for different ionic 
liquids containing 0.01M redox couple vs. (A) 0.1M and (B) 0.2M redox couple. 

 

For parameters calculations we used only the compounds from the previously developed 

training set (see Experimental section), therefore at the end we were able to determine their 

predictive abilities as well using validation set. For the goodness-of-fit we calculated R2 values 

and, in order to determine whether our equations are statistically significant, we calculated F 

statistics for both of them. We received R2 = 0.928 and F =12.762 for correction equation 

Equation 3, and R2 = 0.981 and F = 44.307 for correction equation Equation 4 Those values 

proved that both equations are correct. The values of Q2EXT calculated for both equations (Q2EXT 
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= 0.898 for the first one and Q2EXT = 0.873 for the second one) proved good performance of 

both models and correctness of our approach.  

Thereafter, we used the joined QSPR + correction equations approach to verify, weather 

our holistic idea of predicting the Se is valid. For this purpose, we first calculated Se for different 

ILs with 0.01M redox concentration using the QSPR model, and used those predictions as x 

values in the correction equations. At the end, we compared the results obtained  from the 

complex QSPR – correction equation calculations with the experimental values (Figure 5) and, 

once again, calculated R2 and F parameters, in order to validate the method. The results (R2 = 

0.855 and F = 6.470 for the first equation, R2 = 0.847 and F = 5.985 for the second) proved high 

performance of our method. 

Trends of Seebeck coefficient changes occurring in the IL/redox couple system which 

we described in this work stay in a good accordance with previous reports available in the 

literature. Mixtures of ILs and the redox couple used as a thermoelectric energy source were 

already proven to indicate descending Se values with increasing redox couple concentration.[9, 

12, 29] This effect was observed not only for I-/I2 system but also for other redox couples tested.[12] 

It is believed that this fact is connected to the effect of redox ions solvation by the particles of 

the solvent. Smaller concentration of the redox couple grants more “independent” particles 

available to solvate the ions.[9] However, the exact interpretation of this phenomenon requires 

additional studies aimed at investigating the intermolecular interactions within the system and 

was beyond the scope of this work.  
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Figure 5. Observed values of Se versus predicted values of Se for ionic liquids 
containing (A) 0.1M redox couple and (B) 0.2M redox couple, obtained by QSPR – correction 
equation holistic approach.  

 

By developing the correction equations, we gained an opportunity to predict the Se for 

ILs with higher concentration of redox couple. The important conclusion coming from this 

observation is that we were able to confirm previous findings (Se decreasing with increasing 

redox couple concentration),[9, 12, 29] support them with a mathematical description, and take 

into account a broader set of ILs. It means that this trend is a global trend, valid for every ionic 

liquid.  
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3. Conclusions  

In our contribution, we carried out a qualitative and quantitative analysis of Seebeck 

coefficient values of the set of different ionic liquids in order to determine their potential 

application in the liquid-based thermoelectrical device. Based on the structural similarity, we 

have estimated the Seebeck coefficient values for ionic liquids with 0.01M redox couple, using 

read-across analysis and QSPR modeling.  

What is more, we found that the structural features of particular ions, consisting the IL 

could describe the Se. We have noticed that the size, symmetry and branching of cation and 

vertical electron binding energy of anion have a huge impact on Seebeck coefficient’s value. 

Based on the read-across analysis and developed QSPR model, we concluded that the highest 

Se values are observed for ionic liquids consisted of small, not so branching and relatively 

symmetric cations, and anions with a high vertical electron binding energy. 

Finally, on the basis on the simple correction equations, we conclude that the low redox 

couple concentration combined with the ILs is much more efficient in the energy conversion.  

4. Materials and methods 

4.1. Materials  

All ionic liquids were purchased from IoLiTec (Ionic Liquids Technologies, Germany). 

A total concentration of impurities was less than 2% and they were used as obtained. The iodine 

and lithium iodide powder (99.9%) was purchased from Sigma-Aldrich.   

4.2. Experimental data 

The crucial condition to obtain good results in modeling (QSPR and read-across 

analysis) is a high-quality of the experimental data.[30] This means that data used in modeling 
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should be obtained in a systematic way, by following the standardized protocol. Such procedure 

minimizes the risk of introducing additional sources of variance to the QSPR model. 

Measurements of Se have been performed in a specially designed test cell that is 

sketched in Figure 6 and represented in Figure 7. The IL container  (volume 0.8 ml) was sealed 

using a PDMS (Polydimethylsiloxane) ring that was squeezed (for tightness and electrical and 

thermal contacts between the electrodes and the IL) between two metallized sapphire disks and 

clamped by two aluminium blocs. The active electrode surface was 1.8cm2. The distance 

between the electrodes was 4mm. The aluminium parts were connected to a cooling circuit 

(Thermostat Frigiterm, J.P. Selecta S.A, Barcelona, Spain), and a heating system (thermal 

resistor, Vitelec, France). On both sides the temperature could be monitored by an closly to the 

surface inserted thermocouple (Type K, Jumo-Regulations, Metz, France). Sapphire was used 

due to its good thermal conductivity; the Rhodium-metallized side was in contact with the 

liquid.  

  

Figure 6. Setup of the test cell, used as the measurement system for characterization 
of the IOL-based TEGs with a sealed container.  
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Figure 7. Representation of the TEG characterization setup. The mounting of the two 
aluminium-bodies allows precise gap adjustment of the chamber 

 

The liquid has been filled into the sealed IL container and measured. The system was 

fully automatized and allowed measuring the potential difference, current and the 

heating/cooling dynamics, as well as the stabilization of the measured data. The maximum 

errors from the measurement system were less than 1 μV and ±1.5 K (Data Acquisition System 

34970A and 34901A, Agilent, Santa Clara, CA, USA; thermocouple Type K, Jumo-

Regulations, Metz, France). The drop of temperature over the distance between electrode 

surface and thermocouples causes a addition, however, negligible measurement error.  and a 

concentration inaccuracy of the added redox couple of less than ±10 %.  The inaccuracies in 

temperature measurements and of preparations of IL with redox-couple do not allow to 

determine an absolute Seebeck-coefficient. However it allows to observe tendencies for the 

chosen IL as they are characterized under same conditions. 

The determination of Seebeck-coefficient is based on a linear dependency between 

temperature and voltage and has been used subsequently to determine the relative Seebeck-

coefficient. The electrode was heated up by a heating-resistor and every 10 seconds the 

temperature and voltage were registered. The maximal and minimal cell potential as well as the 

maximal and minimal temperature difference between hot and cold electrode were read out. In 

our system we observed that during the heating-up and cooling-down the correlation of some 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


24 

ILs are not linear. After two temperature cycles the linear behavior was established for all ILs. 

For all the measured Seebeck Coefficients, the difference between heating-up and cooling-

down was less than 60μV/K).  The published values are taken from the cooling-down curves. 

The relative Seebeck coefficient was determined from the slope of the measured 

voltage-temperature curve as: 

 

α = (Umax - Umin) / (ΔTmax – ΔTmin)          (5) 

 

4.3. Molecular descriptors  

The equilibrium structures of the cations and anions (that the investigated ILs consist 

of) were obtained by employing the Density Functional Theory (DFT) with Becke's Three 

Parameter Hybrid Method with the LYP (Lee-Yang-Parr) correlation functional (B3LYP)[31, 32] 

as well as with the second-order Møller-Plesset (MP2) perturbational method. In both types of 

calculations we applied the 6-311++G(d,p)[33, 34] Pople’s style, one-electron basis set, whose 

usefulness has been proven in the previous studies of structurally similar ionic liquids.[35]  

All calculations were performed with the Gaussian09 (Rev.A.02) software package.[36] 

In order to avoid erroneous results from the default direct SCF calculations, the keyword 

SCF=NoVarAcc was used and the two-electron integrals were evaluated (without prescreening) 

to a tolerance of 10-20 a.u. The optimizations of the geometries were performed using relatively 

tight convergence thresholds (i.e., 10-5 hartree/bohr (or radian) for the root mean square first 

derivative). 

In the next step, we imported the optimized molecular structures into the DRAGON 

software[37] for calculating different groups of molecular descriptors. We obtained 2920 

descriptors: 1460 of cations’ and 1460 of anions’ structure, respectively. For selected group of 

calculated descriptors please refer to Table S3 in the electronic Supplementary Material). 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


25 

4.4. Data preparation for modeling 

Read-across analyses, as well as the QSPR modeling were performed using the values 

of Seebeck coefficient for ILs with addition of 0.01M LiI/I2 redox couple. In the first step of 

modeling, we divided the studied ILs into two separate parts called “training set” and 

“validation set”. The first one (training set) was used (i) to identify groups of structurally similar 

ILs in read-across analysis and (ii) to develop the QSPR model. Then, the second one 

(validation set) was used to evaluate the predictive ability of both approaches the read-across 

estimation and QSPR model.  

Data splitting has been performed as follows. Ionic liquids were sorted in the order of  

the increasing values of Se. Then, every third compound was moved to the validation set, 

whereas the remaining compounds formed training set. The second and the penultimate ILs 

were arbitrarily included in the validation set. In this way, two sets accurately represented the 

whole range of Se.[38, 39] Training set contained 12 ILs (67% of all studied ILs), whereas the 

validation set 6 compounds (33%). A table containing the results of splitting can be found in 

the electronic Supplementary Materials (Table S2). 

In order to select the most optimal combination of the molecular descriptors to be 

utilized in the read-across and QSPR modeling, we employed the genetic algorithm[17] 

implemented in the QSARINS software.[18, 19] The algorithm is controlled by the set of steering 

parameters. In our work we applied the following combination of the parameters: the size of 

the population: 100 and the mutation rate: 20%. All descriptors used in the study have been 

auto-scaled by subtracting the mean values and dividing by the standard deviations. 

4.5. Read-across 

Similarity between the studied ionic liquids was analyzed in the multidimensional space 

defined by p structural features (molecular descriptors) augmented by the experimentally 
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measured Seebeck coefficient. As such, every ionic liquid is described by p+1 coordinates, 

where p is the number of molecular descriptors. Ionic liquids located close each other in the 

p+1 dimensional space are similar, therefore belong to the same class. Such classes may be 

further used to predict Seebeck coefficient of other, untested ILs. They can be assigned to the 

same class, based on only its structural similarity to the other class members (the similarity in 

p dimensions).  

T-HCA was performed using Euclidean distance as the similarity measure and Ward's 

method of linkage. The Euclidean distance between the samples was calculated according to 

the Equation 6. 

d(ij)=4∑ (x(i)k-x(j)k)2p
k=1          (6) 

where: 𝑥(,)., 𝑥(/). are k-coordinate values for i and j object respectively. 

Ward's method merges together these clusters, for which the minimum increase in the 

total within-cluster variance is observed. This increase is a weighted squared distance between 

cluster centers.[40]  

To confirm goodness-of-fit as well as predictive ability of the developed read-across 

model the accuracy (A) reflecting the total number of compounds correctly classified (eq. 7) 

and the error rate (E) describing the total number of misclassified compounds (eq. 8) were 

applied. 

A=
∑ cgg

n  × 100%                                                           (7) 

E=
𝑛 − ∑ cgg

n  × 100%                                                       (8) 
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where: 

𝑔 - denotes the number of class,  

𝑐0 - is the number of compounds correctly classified to the given class g,  

𝑛 - is the total number of compounds. 

In order to verify, whether the predictions from the qualitative read-across technique 

differ significantly from the experimentally measured Seebeck coefficient, as well as from the 

predictions obtained by QSPR modeling, the non-parametric Spearman rank correlation test 

was applied.[41] The Spearman's rank correlation coefficient ρSwas calculated as an alternative 

to Pearson's correlation coefficient according to the Equation 9. 

ρS=1 - 6Σdi
2

N(N2 - 1)
																								      (9) 

where: rS – is Spearman's rank correlation coefficient; d2 - is the square of the difference 

between ranks; N - is the number of data pairs. 

 

4.6. QSPR modeling 

The high-quality of experimental data and optimal combination of the molecular 

descriptors led us to develop a QSPR model consistent with the recommendations of the 

Organization for Economic Cooperation and Development (OECD).[42] According to the five 

golden standards, correctly developed and validated model should be associated with: (i) a 

defined endpoint, (ii) an unambiguous algorithm, (iii) a defined domain of applicability (iv) 

appropriate measures of goodness-of-fit, robustness and predictivity and (v) a mechanistic 

interpretation, if possible[14, 24, 43].  
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We have applied multiple linear regression technique (MLR) assuming that there is a 

linear relationship between Se and the molecular descriptors (x1, x2) according to the Equation 

10. 

Se = b0 +b1x1 +b2x2           (10) 

where: b1, b2 are regression coefficient and b0 is the intercept. 

In order to verify the model’s goodness-of-fit we calculated the determination 

coefficient (R2) and the root mean square error of calibration (RMSEC) (Supplementary 

Materials, Table S1). Well-fitted model is characterized by R2 value close to unity and 

simultaneously, by low RMSEC value. The evaluation of the robustness of the model was 

performed during the internal validation. In this step we applied leave-one-out cross-validation 

method (LOO).[14, 43] As such, the model’s flexibility was assessed by using the cross-validation 

coefficient (Q2CV) and root mean square error of cross-validation (RMSECV). Finally, we carried 

out the external validation (the prediction of Se using the data from the validation set) to 

determine the predictive ability of the developed model. The external validation coefficient 

Q2EXT and root mean square error of prediction RMSEP were calculated based on the predictions 

for chemicals from the validation set.[24, 44-47] Q2EXT value close to unity as well as possibly low 

RMSEP value indicates that the model predicts correctly for new, untested chemical. In 

addition, we have calculated concordance correlation coefficient (CCC) as a complementary, 

more prudent measure of the external predictivity of the model.  

An integral part of QSPR modeling is a proper definition of the group of chemicals, for 

which the model can be successfully applied (applicability domain, AD). In our case, AD was 

verified by the use of two approaches called Williams[43] plot and Insubria graph[27]. Finally, 

after detailed validation, we applied the developed QSPR model to predict the values of 

Seebeck coefficient for ionic liquids, for which the experimental data have been unavailable.  
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