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Two overlapping bipartite binary Bell inequalities cannot be simultaneously violated as this would contradict
the usual no-signaling principle. This property is known as monogamy of Bell inequality violations and generally
Bell monogamy relations refer to trade-offs between simultaneous violations of multiple inequalities. It turns
out that multipartite Bell inequalities admit weaker forms of monogamies that allow for violations of a few
inequalities at once. Here we systematically study monogamy relations between correlation Bell inequalities both
within quantum theory and under the sole assumption of no signaling. We first investigate the trade-offs in Bell
violations arising from the uncertainty relation for complementary binary observables, and exhibit several network
configurations in which a tight trade-off arises in this fashion. We then derive a tight trade-off relation which cannot
be obtained from the uncertainty relation showing that it does not capture monogamy entirely. The results are
extended to Bell inequalities involving different numbers of parties and find applications in device-independent
secret sharing and device-independent randomness extraction. Although two multipartite Bell inequalities may be
violated simultaneously, we show that genuine multiparty nonlocality, as evidenced by a generalized Svetlichny
inequality, does exhibit monogamy property. Finally, using the relations derived we reveal the existence of flat
regions in the set of quantum correlations.
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I. INTRODUCTION

Measurements on spatially separated entangled systems
lead to correlations that do not conform to local realism,
as evidenced by the violation of Bell inequalities [1]. This
nonlocality of quantum systems is of great interest, not only
for fundamental reasons but also as a resource in applications
such as device-independent randomness generation [2] and key
distribution [3,4], in reductions of communication complex-
ity [5], etc. In the applications of quantum nonlocal correlations
to cryptography, a key role is played by the phenomenon of
“monogamy” of nonlocal correlations [6].

Any two quantum systems that exhibit maximally nonlo-
cality with each other, cannot exhibit nonlocal correlations
(or even classical correlations) with any other third system.
Therefore, nonlocality is a resource that cannot be freely
shared among different parties. Tight quantitative trade-off
relations for Bell-inequality violations have been shown in
some cases such as the well-known CHSH inequality [7].
Moreover, the limited shareability property of correlations
has even been shown to extend beyond quantum theory to
general no-signaling theories (the class of theories which do
not allow for arbitrarily fast signaling) [8]. In this context, it is
pertinent to point out recent results that show that derivation of
monogamy relations from relativistic causality alone depends
on the space-time configuration of the measurement parties [9].

While the shareability of two-party nonlocality is well
studied, much less is known about the trade-off relations in the
case of multiparty nonlocality. A preliminary study was carried

out in [10] where an uncertainty-type relation for dichotomic
quantum observables termed correlation complementarity was
shown to underlie many multiparty monogamy relations for
correlation Bell inequalities involving two dichotomic ob-
servables per party. This question has gained importance
with the development of cryptographic protocols involving
many parties, as well as with the substantial experimental
progress in the engineering and detection of such correlations
[11–13].

In consideration of the intrinsic relevance of the notion of
monogamy to the foundational core of quantum correlations, it
has become a worthwhile objective to deeply explore the char-
acteristics of multipartite nonlocality distributed over many
parties, and to establish what usefulness to multi-user quantum
communication protocols can such a resource provide. In this
paper we carry out a detailed study of trade-offs in the violation
of such multiparty correlation inequalities in qubit networks
(as we shall see by the well-known Jordan lemma [14] no
loss of generality in restricting to qubits). We first investigate
following [10] the trade-offs in such violations arising from
an uncertainty relation for complementary binary observables,
and exhibit novel constructions of network configurations
in which a tight trade-off arises from this complementarity.
We then go beyond the analysis in [10] and show that the
uncertainty relation does not capture monogamy entirely by
deriving a tight trade-off relation in a ladder network con-
sisting of an arbitrary odd number of qubits. We extend the
considerations to deriving trade-offs between Bell violations
for different numbers of parties, with potential applications for
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device-independent secret sharing. We apply the derived trade-
off relations to bound the guessing probability of any party’s
outcome by an adversary, a quantity of central importance
in device-independent randomness extraction [15,16]. We
consider a generalization of the well-known Svetlichny in-
equality [17] that witnesses genuine multiparty nonlocality
to an arbitrary number of inputs. We then use it to show
that while multiparty Bell-inequality violation is by itself not
monogamous, the notion of genuine multiparty nonlocality as
evidenced by the well-known Svetlichny inequality does ex-
hibit monogamy, any violation beyond the threshold required
to witness genuine multiparty nonlocality by a subset of the
parties precludes its violation by any other subset of the parties
with nonzero overlap with the first set. The trade-off relations
also give rise to Tsirelson bounds on a class of inequalities
with few-body correlators, we show that these inequalities
can be violated by multiple distinct quantum boxes detecting
certain flat regions in the set of quantum correlations (see also
further results in [18]). Finally, we investigate the no-signaling
analogs of the tight hypersphere monogamy relations within
quantum theory, and derive a general linear no-signaling trade-
off relation for arbitrary Bell inequalities extending the analysis
for two-party inequalities in [19].

II. PRELIMINARIES

The (n,m, d ) Bell scenario denotes the situation where n

parties choose from among m measurements each obtaining
one of d outcomes. While one may also consider a scenario
with a different number of inputs and outputs per party,
this will not concern us in this paper. The phenomenon
of monogamy of violation of the famous Clauser-Horne-
Shimony-Holt (CHSH) [20] inequality was quantitatively
shown by Toner in [8] in general no-signaling theories,
while the exact trade-off in its violation within quantum
theory was shown by Toner and Verstraete in [7]. This mani-
fested in the (3,2,2) Bell scenario where three parties Alice,
Bob, and Charlie each measure one of two binary observ-
ables {A1, A2}, {B1, B2}, and {C1, C2}, respectively. Quanti-
tatively, the correlations between their measurement results
obey

〈CHSH〉AB + 〈CHSH〉AC � 4 in gen. NS theories,
(1)

〈CHSH〉2
AB + 〈CHSH〉2

AC � 8 in quantum theory,

for the CHSH-Bell expression 〈CHSH〉AB := 〈A1B1 +
A2B1 + A1B2 − A2B2〉 � 2.

Here we generalize this result to the correlation based Bell
inequalities in the (n, 2, 2) scenario (also known as multiparty
binary XOR games). In the (n, 2, 2) Bell scenario, the ith
party measures the binary observables A(i)

xi
with i ∈ [n] and

xi ∈ {1, 2}. The entire class of (n, 2, 2) inequalities involving
n-body correlation functions E(x1, . . . , xn) = 〈⊗n

i=1A
(i)
xi

〉 was
derived by Werner and Wolf in [21] and independently by
Żukowski and Brukner in [22]. These inequalities define the
facets of a polytope which is isomorphic to the hyperoctahe-
dron (also known as the cross polytope). The 22n

facet-defining
inequalities can all be described by a single inequality given

as ∑
s1,...,sn=−1,1

∣∣∣∣∣ ∑
x1,...,xn=1,2

s
x1−1
1 · · · sxn−1

n E(x1, . . . , xn)

∣∣∣∣∣ � 2n.

(2)

Note that due to the isomorphism with the cross polytope,
these facets are all simplices. Notable inequalities that are part
of the family (2) are the Mermin inequalities introduced in [23]
and further developed by Ardehali, Belinskii, and Klyshko in
[24,25], the violation of Bell inequalities from the class in (2)
by n-qubit states has also been well studied, see for instance
[26,27].

A well-known result known as the Jordan Lemma [14] states
that any pair of Hermitian unitaries admit a common block
diagonalization in blocks of dimension no more than 2. We can
thus set A(i)

xi
= ⊕k (A(i)

xi
)k , where the observables (A(i)

xi
)k for all

k are still binary Hermitian and of dimension at most 2. This
reduces the problem of finding the optimal quantum strategy
to considering qubit subspaces on each party. We therefore
assume that each party possesses a qubit and measures the
binary observable A

(j )
xj

= �n(j )
xj

· �σ on it. An arbitrary mixed
state of n qubits is given as

ρ = 1

2n

3∑
k1,...,kn=0

Tk1,...,kn
σ

(1)
k1

⊗ · · · ⊗ σ
(n)
kn

, (3)

where σ
(j )
kj

are the usual Pauli operators {1, σx, σy, σz}, �σ =
(σx, σy, σz) and the real coefficients Tk1,...,kn

form the corre-
lation tensor T̂ . The two measurement directions for each
party �n(j )

1 and �n(j )
2 span a plane and can be described by the

orthogonal measurement directions �o(j )
1 ⊥ �o(j )

2 by

�n(j )
1 = �o(j )

1 cos

(
θj + π

2

)
− �o(j )

2 cos (θj + π ),

(4)

�n(j )
2 = �o(j )

1 cos

(
θj + π

2

)
+ �o(j )

2 cos (θj + π ).

We thus arrive at the following lemma derived originally
in [22] describing a necessary and sufficient condition for the
existence of a local model for the n-body correlation functions
of any n-qubit state, as well as a sufficient condition obtained
from it by the application of the Cauchy-Schwarz inequality.

Lemma 1 ([22]). An n-qubit state ρ with correlation tensor
T̂ satisfies the general correlation Bell inequality (2) if and only
if for any set of local measurement planes span (�o(j )

1 , �o(j )
2 ) and

measurement angles {θj } there holds

∑
k1,...,kn=1,2

∣∣Tk1,...,kn

∣∣ n∏
j=1

cos

(
θj + kj

π

2

)
� 1. (5)

A sufficient condition for the local realistic description of the
n-qubit correlation function is given by∑

k1,...,kn=1,2

T 2
k1,...,kn

� 1. (6)

Note that the local bound has been normalized to unity
for all the (n, 2, 2) correlation inequalities. Lemma 1 is the
generalization of the well-known Horodecki criterion [28]
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relating the quantum violation of the CHSH inequality to the
correlation tensor as

〈CHSH〉2
AB �

∑
kA,kB=1,2

4T 2
kA,kB

. (7)

Therefore, as far as the quantum violation is concerned, it
suffices to consider the sum of squares of the correlation tensor
elements of a general n-qubit state in a plane which we take to
be the x-z plane without loss of generality.

III. TRADE-OFFS IN QUBIT NETWORKS FROM
UNCERTAINTY RELATIONS FOR COMPLEMENTARY

OBSERVABLES

We are interested in deriving trade-off relations for the
violation of the general multipartite correlation Bell inequality
(binary XOR game) given in Eq. (6). In particular, we derive
trade-off relations for the n-party Bell expression I2

l1,...,ln
=∑

kl1 ,...,kln=1,2 T 2
kl1 ,...,kln

played by the players labeled l1, . . . , ln,
the local bound of the Bell expression being 1. To simplify
notation, we will denote the players by a qubit network
represented by a hypergraph H with vertex set V (H ) and edge
set E(H ). Each edge of the hypergraph e ∈ E(H ) will denote
the subset e = (l1, . . . , ln) of players taking part in a single
game, and the value of the game achieved by the players will
be denoted by Ie. The trade-off relations we derive will be of
the form ∑

e∈E(H )

〈I〉2
e � |E(H )|, (8)

where |E(H )| denotes the size of the edge set (i.e., the number
of Bell expressions considered in the hypergraph H ) and we
will refer to them as “hyperspherical trade-off relations” in
what follows. As a first method to derive relations of this
form following [10], we employ the following uncertainty-type
relation for complementary observables

Lemma 2 ([10,29]). Let A1, . . . , Am be binary Hermitian
observables satisfying {Ai,Aj } = 2δi,j 1. Then for any quan-
tum state ρ it holds that

m∑
i=1

Tr[Aiρ]2 � 1. (9)

In particular, we employ Lemma 2 with observables
⊗m

l=1O
(l)
kl

for kl = 1, 2 with each O
(l)
kl

∈ {σx, σz}, i.e., observ-
ables corresponding to the correlation tensor element Tk1,...,kn

from the Bell expression (6).
Let us illustrate the method by rederiving with it the CHSH

monogamy relation of Toner and Verstraete [7]. The CHSH
monogamy relation corresponds to the first graph in Fig. 1 and
is given from Eqs. (1) and (7) as∑

kA,kB=1,2

T 2
kA,kB

+
∑

kA,kC=1,2

T 2
kA,kC

� 2. (10)

The eight correlation tensor elements can be grouped
into two sets of mutually anticommuting elements as
{XXI, XZI, ZIX, ZIZ} and {XIX, XIZ, ZXI, ZZI} where we
use the notation X ≡ σx , Z ≡ σz, and I ≡ σ0. By Lemma 2,
the sum of squares of the four correlation tensor elements in

(a)

v1

v2

v3

(b)

v1 v2

v3v4

(c)

v1

v2

v3

v4

v5

v6

(d)

v1v2

v3

v4

v5

v6

v7

FIG. 1. Examples of qubit networks where tight trade-offs arise
due to the uncertainty relation for anticommuting observables (see
also [10] where similar trade-offs were derived). Vertex vi refers to
a ith qubit in a considered qubit network with correlations modeled
by hyperedges. This leads to the following examples of monogamy
relations: (a) For any 3-qubit state, it holds that 〈I〉2

12 + 〈I〉2
13 � 2.

(b) For any 4-qubit state, it holds that 〈I〉2
123 + 〈I〉2

234 + 〈I〉2
341 +

〈I〉2
412 � 4. (c) For any 6-qubit state, it holds that 〈I〉2

123 + 〈I〉2
345 +

〈I〉2
561 + 〈I〉2

135 � 4. (d) For any 7-qubit state, it holds that 〈I〉2
123 +

〈I〉2
124 + 〈I〉2

156 + 〈I〉2
157 � 4.

each set is bounded by unity giving the CHSH monogamy
relation (10).

One method to derive trade-off relations between k sets of
n-party correlation inequalities is therefore to list the k · 2n

correlation tensor elements appearing in the inequality (6) and
group them into sets of mutually anticommuting elements. If
a grouping into k such sets exists, then a monogamy relation
holds between the inequalities. In what follows, we investigate
qubit networks represented by hypergraphs where such trade-
off relations exist.

Examples of hypergraphs with monogamy relations are
given in Fig. 1. A mathematical technique to derive relations of
this form is to represent the observables O := ⊗n

l=1O
(l)
kl

corre-
sponding to the correlation tensor elements Tk1,...,kn

as vertices
vO ∈ V (�) of a graph � with an edge between two vertices
denoting anticommutation of the associated operators, i.e.,
vO ∼ vO′ ⇔ {O,O′} = 0. Equivalently, following the litera-
ture on error-correcting codes, one could also represent an op-
erator O [with O = exp (iφ) XaZb, Xa = Xa1 ⊗ Xa2 ⊗ · · · ⊗
Xan , Zb = Zb1 ⊗ Zb2 ⊗ · · · ⊗ Zbn ] as a 2n-bit binary vector
(a|b) = (a1, . . . , an|b1, . . . , bn) with bits ai, bj ∈ {0, 1} for
all i, j = 1, . . . , n. The vertices then correspond to 2n-bit
binary strings and two vertices are connected by an edge if
their symplectic inner product is 1, where the symplectic inner
product  is defined by (a|b)  (a′|b′) = a · b′ + a′ · b, where
· denotes the usual binary inner product. Remarkably, this exact
structure has been studied in the mathematical literature as the
unitary self-adjoint representation of a graph. The problem of
grouping these operators into sets of mutually anticommuting
ones then becomes equivalent to the problem of finding a
clique cover of the graph, i.e., partitioning the vertices of the
graph into cliques (recall that a clique in a graph is a subset of
mutually adjacent vertices).
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We first analyze the structure of the anticommutation graphs
that arise from hyperspherical monogamy relations of the type
(8). In particular, we observe properties of the anticommutation
graph in relation to its clique size (maximal number of mutually
adjacent vertices) and vertex clique cover number (smallest
number of cliques needed to cover all the vertices of the
graph). We will restrict our attention to the scenario of a
uniform hypergraph of degree r (H ) = log [|E(H )|] + 1 as in
the CHSH monogamy relation (1). Note that each hyperedge
in H corresponds to a Bell expression so that the total number
of Bell expressions in the trade-off relation is |E(H )|, and the
degree r (H ) denotes the number of parties participating in
a single expression with each expression involving the same
number of parties due to the uniformity of the hypergraph.

Proposition 1. The anticommutation graph � of a hyper-
sphere monogamy relation arising from correlation comple-
mentarity for an n-party correlation Bell inequality arranged in
a configuration given by a uniform hypergraph H with degree
r (H ) = log [|E(H )|] + 1 is characterized by: (i) |V (�)| =
2|E(H )|2, (ii) clique size ωc(�) = 2|E(H )|, (iii) vertex clique
cover number cp(�) = |E(H )|, and (iv) regularity with degree
22(n−1) − 1.

Proof. The first property is immediate: (i) each hyperedge
corresponds to 2r (H ) operators from Eq. (6), the hypergraph
being uniform each edge contains the same number of vertices.
The second property follows from the fact that to derive a
monogamy relation we group the operators into sets of size
2r (H ) which is a clique in the graph. To see that the clique
is of maximal size, it suffices to observe that within each Bell
expression in (6) there are at most two mutually anticommuting
operators. The vertex clique cover number cp(�) = |E(H )|
follows from |V (�)| and ω(�). Each operator from a given
Bell expression anticommutes with 2r (H )−1 − 1 operators from
within the same expression due to the fact that the tensor
products of Pauli operators either commute or anticommute
and each operator commutes with exactly half of the others.
Similarly, the operator anticommutes with exactly half of
the operators from each of the other Bell expressions [recall
that in order to have ω(�) = 2|E(H )| each operator must
anticommute with at least two operators from every other Bell
expression].

We now proceed to derive the smallest size of a qubit
network in which one might expect to derive monogamy
relations among (n, 2, 2) correlation inequalities for given n

using the formalism of anticommutation graphs.
Proposition 2. The smallest size of a qubit network for

which a hypersphere monogamy relation for the n-party cor-
relation Bell expression can be derived by the method outlined
above is 2n−1.

Proof. The unitary self-adjoint representations of anti-
commutation graphs have been studied by Samoilenko [30].
The following lemma was shown for the irreducible unitary
representations in a given dimension.

Lemma 3 ([30]). An n-vertex graph � has 2p(�) [0 �
p(�) � n] unitarily inequivalent irreducible unitary self-
adjoint representations of equal dimension 2m(�) where
2m(�) + p(�) = n.

The exact values of m(�) and p(�) for a given graph �

can be computed using a construction used in the proof of the
Lemma 3 in [30].

Now, in deriving monogamy relations using correla-
tion complementarity, we encounter graphs with clique size
ω(�) = 2|E(H )| = 2n for an (n, 2, 2) inequality. The proof
rests on the fact that the smallest dimension of the Hilbert space
in which one can have a unitary self-adjoint representation
of the complete graph Km on m vertices (for even m) is
2m/2. Let us first show that such a representation of Km

exists in dimension 2m/2. We pick an edge (v1, v2) ∈ E(Km),
the associated binary observables O1 and O2 in the Hilbert
space H anticommute. We decompose H = C2 ⊗ H1 and set
O1 = σx ⊗ 1H1 and O2 = σz ⊗ 1H1 . Let us now consider every
other vertex vk (3 � k � m) adjacent to v1 and v2. Since the
associated Ok is required to anticommute with both O1 and
O2, we assign Ok = σy ⊗ O

(1)
k . The representation problem

for the graph Km is now reduced to that for the graph Km−2

obtained from Km by deleting the vertices v1 and v2. We
proceed as above until we arrive at the single edge K2 at which
point we end with the operators On−1 = (⊗m/2−1

i=1 σy ) ⊗ σx and
On = (⊗m/2−1

i=1 σy ) ⊗ σz. Note also by Lemma 3, the above
construction gives the unique unitary self-adjoint representa-
tion of the complete graph Km on m vertices in dimension
2m/2 up to unitary equivalence. Moreover, by the proof of
Lemma 3 every unitary self-adjoint representation of Km in any
dimension up to 2m/2 is obtainable up to unitary equivalence
by the above construction if it exists. This gives p(Km) = 0
so that no unitary self-adjoint representation of Km exists in
a lower-dimensional Hilbert space. Therefore, the smallest
dimension in which such a representation exists for the clique
of size 2n is 22n−1

proving the claim. �
An example of a qubit network saturating the minimal size

imposed by Proposition 2 for n = 3 is the square network from
Fig. 1 with the associated trade-off relation Eq. (13).

IV. ITERATIVE CONSTRUCTIONS OF QUBIT NETWORKS
OBEYING TIGHT TRADE-OFF RELATIONS

We will now provide a way to derive infinite families of
trade-off relations using a generalization of the family of Bell
operators introduced in [10]. We start with providing a couple
of examples and then formalize the construction and prove the
trade-offs. The method of [10] allowed to derive the 7-qubit
tree network from Fig. 1 for which

〈I〉2
123 + 〈I〉2

124 + 〈I〉2
156 + 〈I〉2

157 � 4. (11)

The 32 operators occurring in (11) are divided into 4 groups
of 8 operators on a Hilbert space H of dimension 27 (the size
of the qubit network is 7). The next member of this family
consists of 8 groups of 16 anticommuting operators, and gives
the trade-off:

〈I〉2
1,2,3,4 + 〈I〉2

1,2,3,5 + 〈I〉2
1,2,6,7 + 〈I〉2

1,2,6,8 + 〈I〉2
1,9,10,11

+〈I〉2
1,9,11,12 + 〈I〉2

1,9,13,14 + 〈I〉2
1,9,13,15 � 8. (12)

While the method (of grouping together sets of mutually
anticommuting observables) of [10] works for general tree
networks, it is computationally expensive to implement for
more general qubit networks. The construction in this section
serves to generalize the result in [10] to other qubit networks
besides the tree network.
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Using Lemma 2 one may check that the following
monogamy relation holds:

〈I〉2
123 + 〈I〉2

234 + 〈I〉2
341 + 〈I〉2

412 � 4, (13)

which follows from dividing the operators in 4 groups of 8
anticommuting elements. The construction given below uses
existing sets of anticommuting operators to “glue” them in a
similar way as in (11) to get larger groupings of operators. For
example, one may take two trivial groups, {σ1} and {σ2}, and
the grouping leading to (13) to derive the following trade-off:

〈I〉2
1234 + 〈I〉2

1345 + 〈I〉2
1452 + 〈I〉2

1523 + 〈I〉2
1678

+〈I〉2
1789 + 〈I〉2

1896 + 〈I〉2
1967 � 8. (14)

The construction thus gives a qubit network of size 9 with
8 groups of 16 operators each. An example of such a
grouping is XIIIIXXXI, XIIIIYYYI, XIIIIXYIX, XIIIIYXIY,
XIIIIXIYY, XIIIIYIXX, XIIIIIXYX, XIIIIIYXY together with
YXXXIIIII, YYYYIIIII, YXYIXIIII, YYXIXIIII, YXIYYIIII,
YYIXXIIII, YIXYXIIII, YIYXYIIII.

Now, let us formalize the construction. For a set S let {�S
i :

S → S}|S |
i=1 be an arbitrary set of permutations over the set S

with a property that for any pair s1, s2 ∈ S there exists exactly
one value i such that �S

i (s1) = s2. Let [n] ≡ {1, . . . , n}.
Let �(X) be a set of self-adjoint operators on a Hilbert space

H(X), and {ω(X)
i }N (X)

i=1 be an equal disjoint partition (grouping)

of �(X), i.e., ω
(X)
i ∩ ω

(X)
j = ∅ and �(X) =⋃N (X)

i=1 ω
(X)
i , where

|ω(X)
i | = n(X) for all i, and operators within each set ω

(X)
i

anticommute.
Let us consider a Hilbert spaceH = H(0) ⊗⊗n(0)

i=1 H(i) with
defined sets of self-adjoint operators �(i) grouped into groups
{ω(i)

j }N (j )

j=1 each of size n(i). Using these operators one can
construct the following set of operators on H:

� ≡
⋃

i∈[n(0)·N (0)]

⋃
k∈[n(0)]

⎛
⎝ ⋃

j∈[n(k)·N (k)]

{Ti,j,k}
⎞
⎠, (15)

where Ti,j,k ≡ o
(0)
i ⊗ o

(k)
j , and o

(k)
j denotes j th operator on kth

space (for some fixed ordering of operators). Let us assume
that for all i � 1 we have N (i) = N for some N � 1. We have
|� | = n(0) · N (0) · N · (

∑
l∈[n(0)] n

(l) ).
We show that the operators from the set � can be grouped

into n(0) · N (0) · N disjoint sets of anticommuting operators,
each of the same size

∑
l∈[n(0)] n

(l). Indeed, for i ∈ [n(0)], j ∈
[N (0)], and k ∈ [N ] let us define the set:

ωi,j,k ≡
⋃

l∈[n(0)]

⋃
σ (l)∈ω

(l)
k

{(
�

ω
(0)
j

i

[
o

(0)
j,l

])⊗ o(l)
}

⊂ �, (16)

where σ
(m)
j,l denotes lth operator in the set ω

(m)
j (for some fixed

ordering). We have |ωi,j,k | =∑l∈[n(0)] n
(l). It is easy to see that

all operator within this set anticommute since they either differ
at the space H(0) and commute at other spaces, or they have
the same operator at the space H(0) and anticommute at H(l),
for some l.

The sets ωi,j,k are disjoint. Indeed, for different values of
j and k, the operators o

(0)
j,l and o(l), respectively, are take from

different groups. For different values of i the operators on H(l)

v1

v2

v3

v4

v5

FIG. 2. The ladder network consisting of 2n − 1 qubits (shown
for n = 3 in the figure). The ladder depicts a single player Alice
playing an arbitrary binary XOR game with two Bobs, two Charlies,
etc. The sum of squares of the quantum values that the players can
achieve in the 2n−1 games (depicted by the hyperedges in the graph)
obeys a tight trade-off relation that goes beyond the uncertainty
relation for anticommuting observables.

are related with different operators on H(0). Thus, comparing
the sizes of sets we get

� =
⋃

i∈[n(0)]

⋃
j∈[N (0)]

⋃
k∈[N]

ωi,j,k. (17)

V. BELL MONOGAMY RELATIONS BEYOND
CORRELATION COMPLEMENTARITY

We have seen how trade-off relations for correlation Bell
inequalities in certain qubit networks can be derived by means
of the complementarity principle of anticommuting observ-
ables. In this section we consider trade-off relations arising
from beyond this complementarity principle and analyze an
explicit ladder network where we show that a hyperspherical
monogamy relation holds.

Proposition 3. Let n ∈ Z with n � 2. Consider the ladder
network shown in Fig. 2 of 2n − 1 qubits. For any n-partite
full-correlation Bell inequality I there holds∑

e∈E
〈I〉2

e � 2n−1. (18)

This relation is tight.
Proof. Let σ�l ≡⊗ σli , li ∈ {0, 1, 2, 3}. Let S1 ≡ {(1), (3)}

and S2n+1 ≡ S2n−1 ⊗ {(0, 1), (0, 3), (1, 0), (3, 0)} = {�l}, so
that, e.g.,

S3 = {(1, 0, 1), (1, 0, 3), (1, 1, 0), (1, 3, 0),

(3, 0, 1), (3, 0, 3), (3, 1, 0), (3, 3, 0)}. (19)

Let us also define the operators μ1 := σ0 ⊗ σ1, μ2 := σ0 ⊗ σ3,
μ3 := σ1 ⊗ σ0, and μ4 := σ3 ⊗ σ0. Thus, we have∑

�l∈S2k+1

σ�l =
∑

�l∈S2k−1

4∑
r=1

σ�l ⊗ μk. (20)

Let |ψ (n)〉 denote a state in 2n dimensional Hilbert space.
We start the proof by noting the following simple fact:

∀∣∣ψ (1)
1

〉
,

∣∣ψ (1)
2

〉
∈C2

〈
ψ

(1)
1 , ψ

(1)
2

∣∣∑
k∈S1

σk ⊗ σk

∣∣ψ (1)
2 , ψ

(1)
1

〉
= ∣∣〈ψ (1)

1

∣∣σ1

∣∣ψ (1)
2

〉∣∣2 + ∣∣〈ψ (1)
1

∣∣σ3

∣∣ψ (1)
2

〉∣∣2 � 1. (21)

In particular for |ψ (1)
1 〉, |ψ (1)

2 〉 ∈ R2 the equality holds. This
can be seen by a direct computation.

022133-5

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


RAVISHANKAR RAMANATHAN AND PIOTR MIRONOWICZ PHYSICAL REVIEW A 98, 022133 (2018)

Now we proceed by induction to prove the monogamy
relation for larger values of n. We assume that the following
holds for some n:

max∣∣ψ (2n−1)
1

〉
,

∣∣ψ (2n−1)
2

〉
∈(C2 )(2n−1)

〈
ψ

(2n−1)
1 , ψ

(2n−1)
2

∣∣
⎛
⎝ ∑

�l∈S2n−1

σ�l ⊗ σ�l

⎞
⎠

× ∣∣ψ (2n−1)
2 , ψ

(2n−1)
1

〉 = 2n−1. (22)

Let us now derive the following Lemma.
Lemma 4. For any set S indexing an arbitrary set of Her-

mitian operators {Mk}k∈S acting on a Hilbert space H we have

max
|φ1〉,|φ2〉,|φ3〉,|φ4〉∈H

∑
k∈S

〈φ1|Mk|φ2〉〈φ3|Mk|φ4〉

= max
|φ1〉,|φ2〉∈H

〈φ1, φ2|
∑
k∈S

Mk ⊗ Mk|φ2, φ1〉. (23)

Proof. For given |φ1〉, |φ2〉, |φ3〉, |φ4〉 ∈ H let �u, �v ∈ C|S|
be defined by uk ≡ 〈φ2|Mk|φ1〉 and vk ≡ 〈φ3|Mk|φ4〉. The
left-hand side of Eq. (23) can be rewritten as max�u,�v �u† · �v.
From Cauchy-Schwarz inequality we see that the maximum is
attained when �u = �v, and thus we have |φ1〉 = |φ4〉 and |φ2〉 =
|φ3〉. After relabeling and noting that 〈φ1|Mk|φ2〉〈φ2|Mk|φ1〉 =
〈φ1, φ2|Mk ⊗ Mk|φ2, φ1〉, this yields the equality (23).

Note that an arbitrary (2n + 1)-qubit state |ψ (2n+1)
i 〉 ∈

(C2)(2n+1) can be written as∣∣ψ (2n+1)
i

〉 = ∑
j,k=0,1

βi,j,k

∣∣ψ (2n−1)
i,j,k

〉|j, k〉, (24)

with βi,j,k ∈ R,
∑

j,k=0,1 β2
i,j,k = 1 for all i, |ψ (2n−1)

i,j,k 〉 ∈
(C2)(2n−1) and {|j, k〉} being the computational basis of C2 ⊗
C2.

Using the Lemma 4 and the inductive equations (20)
and (22) we have

max∣∣ψ (2n+1)
1

〉
,

∣∣ψ (2n+1)
2

〉
,

∣∣ψ (2n+1)
3

〉
,

∣∣ψ (2n+1)
4

〉
∈(C2 )(2n+1)

〈
ψ

(2n+1)
1 , ψ

(2n+1)
2

∣∣
⎛
⎝ ∑

�l∈S2n+1

σ�l ⊗ σ�l

⎞
⎠∣∣ψ (2n+1)

3 , ψ
(2n+1)
4

〉

= max∣∣ψ (2n+1)
1

〉
,

∣∣ψ (2n+1)
2

〉
∈(C2 )(2n+1)

〈
ψ

(2n+1)
1 , ψ

(2n+1)
2

∣∣
⎛
⎝ ∑

�l∈S2n+1

σ�l ⊗ σ�l

⎞
⎠∣∣ψ (2n+1)

2 , ψ
(2n+1)
1

〉

= 2n−1 max
{βi,j,k}

∑
j1, j2, j3, j4
k1, k2, k3, k4

=0,1

β1,j1,k1β2,j2,k2β2,j3,k3β1,j4,k4〈j1, k1, j2, k2|
4∑

r=1

μr ⊗ μr |j3, k3, j4, k4〉

= 2n−1 max
{βi,j,k}

[
2 − 2p2

1 − p2
2 − p2

3

] = 2n, (25)

where

p1 = β1,0,0β2,1,1 − β1,0,1β2,1,0 − β1,1,0β2,0,1 + β1,1,1β2,0,0,

p2 = β1,0,0β2,1,0 + β1,0,1β2,1,1 − β1,1,0β2,0,0 − β1,1,1β2,0,1, (26)

p3 = β1,0,0β2,0,1 − β1,0,1β2,0,0 + β1,1,0β2,1,1 − β1,1,1β2,1,0.

Assuming βi,j,k = βj,k we get p1 = 2(β0,0β1,1 − β0,1β1,0),
p2 = p3 = 0.

It is easy to see that the above maximum can be at-
tained with |ψ (2n+1)

1 〉 = |ψ (2n+1)
2 〉 ∈ R2n+1. For example, if

we take |ψ (1)
i,j,k〉 ∈ R2 and β0,0β1,1 = β0,1β1,0 for all induction

steps (24). This shows the claimed monogamy relation for the
ladder network in Fig. 2.

As an example of the above trade-off relation, we have

〈Mermin〉2
A,B (1),C (1) + 〈Mermin〉2

A,B (1),C (2) + 〈Mermin〉2
A,B (2),C (1)

+〈Mermin〉2
A,B (2),C (2) � 16, (27)

for the usual Mermin inequality given as

〈Mermin〉AB (1)C (1) = 〈−A1B
(1)
1 C

(1)
1 + A1B

(1)
2 C

(1)
2

+A2B
(1)
1 C

(1)
2 + A2B

(1)
2 C

(1)
1

〉
� βc, (28)

where βc = 2 is the classical bound and βq = 4 is the quantum
value.

A brute force search over the operators appearing in the
trade-off relation in Prop. 3 (for small values of n) reveals
that there do not exist anticommuting sets of sufficient size
to imply this tight trade-off relation. Interestingly, the above
hyperspherical relation has a hyperplane analog in general
no-signaling theories, providing an exact generalization of
the CHSH monogamy found by Toner and Verstraete in [7].
Namely, we have

Proposition 4. Let n ∈ Z with n � 2. Consider the ladder
network shown in Fig. 2 of 2n − 1 qubits. For any n-partite
full-correlation Bell inequalityI there holds in all no-signaling
theories the following trade-off relation:

∑
e∈E

〈I〉 � 2n−1. (29)

The above proposition is a corollary of the more general
result in the (n,m, d ) setting shown in Prop. 10.
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VI. TIGHTNESS OF THE TRADE-OFF RELATIONS

Having derived general trade-off relations for correlation
inequalities in qubit networks, we proceed to investigate the
tightness of these relations. When the bound on the sum of
several distinct Bell expressions is saturated by a quantum
strategy, we say that the relation is tight. When a quantum
strategy exists to achieve every possible tuple of the Bell values
saturating the trade-off relation, we say that the relation is
spherically tight. The following proposition serves to identify
the form of the monogamy relations that are spherically tight,
and serves to generalize the result of [10] where such tightness
was shown for the qubit tree network.

Proposition 5. A monogamy relation involving k-partite
Bell parameters Ie for odd k is spherically tight if and only
if it is of the form

m∑
e=1

〈I〉2
e � 2k−1 for 2 � m � 2k−1. (30)

Proof. Consider a spherically tight trade-off relation of the
form

m∑
e=1

〈I〉2
e � βc, (31)

for some constant βc. Since the possible algebraic values of
〈I〉2

e that are allowed range from 0 to 2k−1, βc is at most
2k−1. This is simply due to the fact that a larger value of βc

would imply that setting the value of all but one of the Bell
expressions in the trade-off to 0, the remaining expression
could not achieve the bound set by βc as required for a
spherically tight relation. That the maximum of any single 〈I〉2

e

is at most 2k−1 follows from the fact that the Bell expression
for 〈I〉2

e can be rewritten as the sum of squares of 2k correlation
tensor elements, which can be grouped into 2k−1 pairs of
anticommuting elements. Moreover, all values from 0 to 2k−1

are realized by some quantum states (notably the maximum
value of 2k−1 arises in the well-known algebraic violation
of the Mermin inequalities [23]), thus βc � 2k−1. Therefore
βc = 2k−1 and all spherically tight Bell monogamies are of the
form (30).

We prove that that the monogamy relation (30) is spherically
tight by considering the following state:

|ψ〉 = 1√
2

m∑
e=1

αe

∣∣∣ 0 · · · 0︸ ︷︷ ︸
v

1 · · · 1
〉
+ 1√

2
|1 · · · 1〉, (32)

where the zeros in the summed kets are at the positions of the
k qubits involved in the eth Bell parameter, and we choose
positive reals αe such that α2

1 + · · · + α2
m = 1. It is convenient

to define |e〉 ≡ |0 · · · 01 · · · 1〉 having zeros for the parties of
the eth Bell parameter. For this state, the bound on every single
Bell inequality is given by the sum of squared correlation tensor
elements Tj1···jk0...0 = 〈ψ |σj1 ⊗ · · · ⊗ σjk

|ψ〉 in the xy plane of
the correlation tensor. Since Pauli operators σx and σy flip the
eigenstates of the σz operator, the state σj1 ⊗ · · · ⊗ σjk

|e〉 is
equal up to a global phase to at most one other state |e′〉. The
equality can only happen if the number of 1’s after the flip
is the same as before the flip, i.e., exactly half of the 0’s in
|e〉 are flipped. Therefore, if k is odd, this equality cannot
happen and we conclude that every single Bell expression

v1

v2

v3

v4

v5

v6

v7

FIG. 3. A network of 2n − 1 qubits in which a tight trade-off
relation holds between the quantum values of binary XOR games
played by subsets of different sizes as shown in Prop. 6.

obeys 〈I〉2
e = 2k−1α2

e . The spherical tightness then arises by
the normalization of the state |ψ〉. �

VII. QUANTUM MONOGAMIES FOR BINARY XOR
GAMES PLAYED BY DIFFERENT NUMBERS OF PARTIES

Proposition 6. Consider 2n − 1 parties arranged in the
configuration represented by the hypergraph in Fig. 3 . Let
I (k)

l1,...,lk
denote a k-party binary XOR game played by the

players l1, . . . , lk ∈ [2n − 1]. The following trade-off relation
holds for the value of any such game within quantum theory

〈I (2)〉2
1,2 + 〈I (2)〉2

1,3 + 〈I (3)〉2
1,2,4 + 〈I (3)〉2

1,3,5

+〈I (4)〉2
1,2,4,6 + 〈I (4)〉2

1,3,5,7 + · · ·
+ 〈I (n)〉2

1,2,4,...,2n−2 + 〈I (n)〉2
1,3,5,...,2n−1 � 2n−1. (33)

Proof. Explicitly, we are required to prove the following
bound on the correlation tensor elements for any 2n − 1
qubit state |ψ〉 ∈ (C2)⊗2n−1 in the network configuration
represented by the hypergraph in Fig. 3:

∑
k1,k2=1,2

T 2
k1,k2,0,...,0 +

∑
k1,k3=1,2

T 2
k1,0,k3,0,...,0

+
∑

k1,k2,k4=1,2

T 2
k1,k2,0,k4,0,...,0 +

∑
k1,k3,k5=1,2

T 2
k1,0,k3,0,k5,0,...,0

+ · · · +
∑

k1,k2,k4,...,k2n−2=1,2

T 2
k1,k2,0,k4,0,k6,...,0,k2n−2

+
∑

k1,k3,k5,...,k2n−1=1,2

T 2
k1,0,k3,0,k5,0,...,0,k2n−1

� 2n−1. (34)

Here we encounter a list of 2 × (22 + 23 + · · · + 2n) =
8(2n−1 − 1) operators which we would like to group into
2n−1 sets of mutually anticommuting operators. We do this
by splitting the 8(2n−1 − 1) operators into 2n−l+1 sets of 2l

anticommuting operators each for 3 � l � n and an additional
2 sets of 2n anticommuting operators [exploiting the iden-
tities

∑n
l=3 2n−l+12l + 4n ≡ 8(2n−1 − 1) and

∑n
l=3 2n−l+1 =

2n−1 − 2].
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We explicitly identify one set of anticommuting operators
in Fig. 4 to be read as

XXIXI · · · XIXIXI ZIXIX · · · IXIXIX
XXIXI · · · XIXIZI ZIXIX · · · IXIXIZ
XXIXI · · · XIZIII ZIXIX · · · IXIZII
XXIXI · · · ZIIIII ZIXIX · · · IZIIII

· · · · · ·
XXIZI · · · IIIIII ZIXIZ · · · IIIIII
XZIII · · · IIIIII ZIZII · · · IIIIII

Each of the other sets is obtained from the first by inter-
changing Xi ↔ Zi in all nodes of each leaf but the last node
(where the leaves are the two sets of parties {2, 4, 6, . . . , } and
{3, 5, 7, . . . }), and deleting redundant operators (i.e., operators
that occur more than once in the construction). Note that
interchanging Xi ↔ Zi in all operators in a set preserves their
commutation relations and that performing this interchange in
the n − 1 nodes barring the last node of each leaf gives 2n−1

sets exhausting the entire list of operators. By Lemma 2 then,
the sums of squares of the expectation values of the operators
in each of the 2n−1 sets is bounded by unity, so that the claimed
bound follows.

v1

v2

v3

v4

v5

v6

v7

x

x

x

x

z

x

x

z

1

x

z

1

1

1 1 1

v1

v2

v3

v4

v5

v6

v7

z

x

x

x

z

x

x

z

1

x

z

1

1

1 1 1

FIG. 4. An explicit set of anticommuting operators used in the
proof of Prop. 6. Following the numbering of the seven qubit example
in the figure, the operators are to be read as XXIXIXI, XXIXIZI,
XXIZIII, XZIIIII, ZIXIXIX, ZIXIXIZ, ZIXIZII, ZIZIIII.

Note that while the trade-off relations in the previous
sections were spherically tight, the above trade-off is not
spherically tight. Thus, while the bound of 2n−1 can be reached,
for instance by a n-qubit GHZ state achieving the maximum
value of 2(n−1)/2 for I (n)

1,2,4,...,2n−2, it is not the case that every
tuple of values achieving the bound is realizable by a quantum
strategy.

A special case of the above proposition is when n = 3. We
then have a monogamy relation between bipartite and tripartite
Bell parameters:

〈CHSH〉2
AB (1) + 〈CHSH〉2

AB (2) + 〈Mermin〉2
AB (1)C (1)

+〈Mermin〉2
AB (2)C (2) � 16. (35)

We remark that the bound in Proposition 6 is 2n−1 = 22 = 4
in this case. This however assumes that the local bound of
each game has been normalized to 1. One gets the bound of
16 in Eq. (35) by multiplying the bound of 4 by the square
of the largest local bound of the Bell inequalities in question,
in this case 22 = 4, see Eq. (7). To see Eq. (35), observe that
one can group the operators into four groups of six mutually
anticommuting ones as

{XXIXI, XXIZI, ZIXIX, ZIXIZ, XZIII, ZIZII},
{XZIXI, XZIZI, ZIZIX, ZIZIZ, XXIII, ZIXII},

(36)
{ZXIXI, ZXIZI, XIXIX, XIXIZ, ZZIII,XIZII},
{ZZIXI, ZZIZI, XIZIX, XIZIZ, ZXIII, XIXIX}.

Each of the CHSH and Mermin expressions has a local bound
of 2 so that one can find a local box that achieves the bound
of 16 above. The square of a single Mermin expression has
a quantum mechanical value of up to 16 so that the bound
can be saturated therein. However, note that unlike the trade-
off relations in the previous sections, the bound above is not
“spherically tight,” i.e., the corresponding linearized relation
in spherical coordinates cannot be saturated for every value of
the spherical angles.

Interestingly, the no-signaling trade-off between the four
Bell expressions is given as

〈CHSH〉AB (1) + 〈CHSH〉AB (2) + 〈Mermin〉AB (1)C (1)

+〈Mermin〉AB (2)C (2) � 10. (37)

This bound follows by direct computation by a linear program.
Secret sharing [31] is a task where a dealer (Alice) sends a
secret S to n (possibly, dishonest) players so that the cooper-
ation of a minimum of k � n players is required to decode
the secret. Protocols that accomplish this are called (k, n)-
threshold schemes. Quantum secret sharing (QSS) schemes
have been proposed to securely accomplish this task, by
exploiting multipartite entanglement to secure and split the
classical secret among the players. In a QSS scheme, Alice’s
goal is to establish a secret key with a joint degree of
freedom of the players. The players can only retrieve Alice’s
key and decode the classical secret when they collaborate
and communicate to each other their local measurements to
form the joint variable. The trade-offs between Bell-inequality
violations with different numbers of parties established in
Prop. 6 lends itself naturally as a security check for this task,
a study which we pursue elsewhere.
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VIII. APPLICATIONS OF THE TRADE-OFF RELATIONS

A. Flat nonlocal regions in the set of quantum correlations

The above monogamy relations can evidently be used to
derive Tsirelson-type bounds on the quantum values of the
corresponding correlation inequalities. A linear version of
the hyperspherical relations (obtained by parametrizing the
relations in hyperspherical coordinates) also gives us novel in-
equalities whose maximal violation unlike the usual correlation
inequalities is not achieved by a GHZ state. A natural question
therefore arises whether such Bell expressions also serve to
self-test the resulting optimal states. Recall that self-testing is a
device-independent task in which the aim is to characterize the
quantum state (and measurements) solely from the observed
correlations. In other words, in many cases it has been observed
that the maximal violation of a Bell inequality certifies that
the state shared by the parties is (up to local isometries) a
specific quantum state pertinent to that Bell inequality, for
instance the singlet state for the CHSH inequality [32]. In
this section we show that in fact the new inequalities obtained
from the monogamy relations serve to provide first examples
of Bell inequalities with the property that multiple quantum
boxes attain their optimal violation, showing the presence of
flat regions in the set of quantum correlations. Since there
are multiple distinct optimal quantum boxes (the probability
tables in the different boxes do not match), these inequalities
cannot serve as self-tests. In what follows, we restrict attention
to the (3,2,2) scenario consisting of three parties measuring
two binary observables each, and denote the set of quantum
correlations in this scenario as Q(3, 2, 2).

Proposition 7. There exist nontrivial Bell inequalities in
the (3,2,2) scenario which are maximally violated by multiple
distinct quantum boxes, i.e., there exist flat nonlocal regions in
the boundary of the quantum set Q(3, 2, 2).

Proof. We consider the Bell inequality in the (3,2,2) sce-
nario of the form

cos θ 〈CHSH〉AB + sin θ 〈CHSH〉AC � 2(cos θ + sin θ ),

(38)

where CHSHAB := A1B1 + A1B2 − A2B1 + A2B2 and
CHSHAC := A1C1 + A1C2 − A2C1 + A2C2. The classical
value of the inequality is given by 2(cos θ + sin θ ). The
quantum bound (2

√
2) of the inequality in (38) is obtained

as a linearization of the spherical monogamy relation found
by Toner and Verstraete [7], i.e., for any quantum state and
measurements it holds that

〈CHSH〉2
AB + 〈CHSH〉2

AC � 8. (39)

The maximum classical value of the Bell expression is evi-
dently 2(cos θ + sin θ ) following from the classical bound on
the individual CHSH expressions, which are each individually
bounded in classical theories to be at most 2. The quantum
bound of the expression in (38) is 2

√
2, this follows from (39).

The maximum value of the expression in all no-signaling the-
ories is 4 cos θ for θ ∈ [0, π/4] and 4 sin θ for θ ∈ [π/4, π/2].
This follows from the corresponding CHSH trade-off relation
〈CHSH〉AB + 〈CHSH〉AC � 4 in general no-signaling theo-
ries. Let us now exhibit two distinct boxes (together with the

corresponding quantum state and measurements) that achieve
the maximal quantum value of (38).

(1) For θ ∈ [0, π/4], measure on the state |ψ1〉 =√
1−√

2 sin θ

2 (|010〉 + |011〉) +
√

1+√
2 sin θ

2 (|100〉 + |101〉), the
observables given by A1 = σx , A2 = σz, B1 = cos φ1σx +
sin φ1σz,B2 = cos φ2σx + sin φ2σz, C1 = σx ,C2 = −σx , with
φ1 = −φ2 = φ = arcsin sec θ√

2
. Direct calculation shows that

the resulting box has the correlators 〈A1B1〉 = 〈A1B2〉 =
cos 2θ sec θ√

2
, 〈A2B1〉 = −〈A2B2〉 = − sec θ√

2
, 〈A1C1〉 = 〈A1C2〉 =

0, 〈A2C1〉 = −〈A2C2〉 = −√
2 sin θ . This achieves the val-

ues 〈CHSH〉AB = 2
√

2 cos θ and 〈CHSH〉AC = 2
√

2 sin θ and
therefore the value 2

√
2 of (38). Also, for θ ∈ [π/4, π/2],

to get the same values we measure on the state |ψ2〉 =√
1−√

2 cos θ

2 (|001〉 + |011〉) +
√

1+√
2 cos θ

2 (|100〉 + |110〉), the
observables given by A1 = σx , A2 = σz, B1 = σx , B2 =
−σx , C1 = cos φ1σx + sin φ1σz, C2 = cos φ2σx + sin φ2σz,
with φ1 = −φ2 = φ = arcsin sec θ√

2
.

(2) A different quantum box which achieves
the same values is given by the state |χ〉 =

1√
2
[cos θ |001〉 + sin θ |010〉] + 1√

2
|111〉 and the

measurements A1 = σx , A2 = σy , B1 = 1√
2
(σx + σy ),

B2 = 1√
2
(σx − σy ), C1 = 1√

2
(σx + σy ), C2 = 1√

2
(σx − σy ).

Once again a calculation reveals that these measurements
on |χ〉 achieve the values 〈A1B1〉 = 〈A1B2〉 = −〈A2B1〉 =
〈A2B2〉 = cos θ√

2
, 〈A1C1〉 = 〈A1C2〉 = −〈A2C1〉 = 〈A2C2〉 =

sin θ√
2
. This gives 〈CHSH〉AB = 2

√
2 cos θ and 〈CHSH〉AC =

2
√

2 sin θ and therefore the maximum quantum value 2
√

2 of
(38).
Evidently any mixture of the boxes from (1) and (2) above
also achieve the maximum quantum value 2

√
2 of the Bell

expression (38).
Note that the boxes (1) and (2) in the proof do not exhibit

genuine tripartite nonlocality, as such an interesting open
question is whether there exist flat regions in the quantum set
where all the boxes in the region exhibit genuine three-party
nonlocality.

B. Bounds on the guessing probability

The derivation of monogamy relations enables us to derive
bounds on the guessing probability, an important quantity
in device-independent cryptographic tasks such as random-
ness expansion and amplification [15,16,33]. A central aim
in these tasks is to quantify the randomness generated by
the boxes from the amount of Bell-inequality violation seen
by the honest parties alone, independently of the possible
underlying quantum realizations compatible with this viola-
tion. Accordingly, we model the initial state of the n honest
parties and Eve as ρA1,...,An,E upon which they act with sets
of measurement operators {Mai |xi

} and {Me|z}. After Alice’s
measurement x∗

1 , the correlations between her classical output
a1 and the quantum information held by Eve are described by
the classical-quantum state

∑
a1

pA1 (a1|x∗
1 )|a1〉〈a1| ⊗ ρ

a1,x
∗
1

E ,

with ρ
a1,x

∗
1

E being the reduced state of Eve given x∗
1 , a1. The

guessing probability quantifies the randomness of Alice’s
output given this quantum side information of Eve, i.e., the
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probability that Eve correctly guesses Alice’s output using an
optimal strategy described by the POVM {Me|z}. The guessing
probability is thus given as

Pguess(A1|X1 = x∗
1 , E )

= max
Q,{Me|z}

∑
a1

P (A1 = a1|X1 = x∗
1 ,Q)

×P (E = a1|X1 = x∗
1 , Z = z,A1 = a1,Q). (40)

Here X1, A1 are the input-output random variables of Alice’s
system, Z,E are the input-output random variables of Eve’s
system, E denotes the side information held by Eve, and Q

denotes a quantum box {P (a1, . . . , an, e|x1, . . . , xn, z)} whose
marginal on the honest parties is compatible with the observed
Bell violation. Note that for the case of binary outcomes, the
guessing probability above is directly related to the correlation
function between Alice’s observable X1 and Eve’s optimal
observable Z as 〈X1Z〉 = 2Pguess(A1|X1 = x∗

1 , E ) − 1. The
previously derived trade-off relations will enable us to bound
the correlation function and hence to obtain a bound on Eve’s
guessing probability given an observed value of the multiparty
Bell-inequality violation.

Before moving on to the general case, let us illustrate this by
applying a trade-off relation to derive a bound on the guessing
probability of Alice’s outcome upon the observed violation of
a hybrid Mermin-CHSH inequality. Consider a Bell scenario
with four parties, A(1), A(2), A(3) being the honest parties and
A(4) denoting the adversary Eve. A slight modification of the
trade-off relation from Eq. (35) gives that

〈Mermin〉2
1,2,3 + 〈CHSH〉2

1,2 + 2〈CHSH〉2
1,4 � 16. (41)

For completeness, observe that the four sets of mutually
anticommuting operators is given as

{XXXI, XXZI, XZII, ZIIX, ZIIZ},
{XZXI, XZZI, XXII, ZIIX, ZIIZ},

(42)
{ZXXI, ZXZI, ZZII, XIIX, XIIZ},
{ZZXI, ZZZI, ZXII, XIIX, XIIZ}.

To derive a bound on the guessing probability, we set A
(4)
1 =

A
(4)
2 (where A

(4)
1 denotes Eve’s optimal measurement) and

obtain

Pguess(A1|X1 = 1, E )

� 1
2

[
1 +
√

2 − (1/8)〈Mermin〉2
1,2,3 − (1/8)〈CHSH〉2

1,2

]
.

(43)

Upon observing the maximal violation of the Mermin inequal-
ity [〈Mermin〉1,2,3 = 4], the guessing probability reduces to a
random guess, while for the classical value [〈Mermin〉1,2,3 =
〈CHSH〉1,2 = 2], the value of Alice’s outcome can be perfectly
guessed. The honest parties can thus check for the violation of
an inequality of the form

cos (θ )〈Mermin〉1,2,3 + sin (θ )〈CHSH〉1,2

� 2[cos (θ ) + sin (θ )], (44)

to use the bound (43) in a device-independent application.
The above considerations can be extended to derive bounds

on the guessing probability in the case of n honest parties.
Following the proof of 6 the resulting bound is then seen to be

Pguess(A1|X1 = 1, E ) � 1

2

⎡
⎣1 +

√√√√2n−2 − (1/2n)〈Mermin(n)〉2
1,2,...,n −

n−1∑
j=2

(1/2j+1)〈Mermin(j )〉2
1,2,...,j

⎤
⎦, (45)

where Mermin(j ) denotes the j -party Mermin expression with
local bound 2(j−1)/2 for odd j and 2j/2 for even j . At the
maximum quantum value of 〈Mermin(n)〉1,...,n = 2n−1, we get
Pguess(A1|X1 = 1, E ) � 1

2 .

C. Quantum monogamies for a class of inequalities
with more than two inputs

Suppose that Alice and Bob receive inputs x, y ∈ [m] for
even m and output a, b ∈ {0, 1}. We consider the correlation
Bell inequality Im described by the coefficient matrix C =
(ty−x )mx,y=1 with

tl =
⎧⎨
⎩

1, if |l| � (m/2) − 1 ∨ l = (m/2),
−1, if |l| � (m/2) + 2 ∨ l = −(m/2) − 1,

0 else.
(46)

As shown in [34], we have the bound βc = m2/2 for all
classical theories, so that

〈In〉 =
n∑

x,y=1

Cx,y〈AxBy〉 � m2/2. (47)

This value is achieved when Alice and Bob deterministically
set a, b = 0 giving 〈AxBy〉 = 1 for all x, y. Equation (47) is
proven by writing the coefficient matrix C as a sum of m2/4
CHSH expressions (each with a classical bound of 2), given as

〈Aj+l−1(Bj + Bj+(m/2)) + Aj+(m/2)+l−1(Bj+(m/2) − Bj )〉
� 2 ∀j ∈ [m/2], l ∈ [m/2]. (48)

The quantum value of the inequality is given by [34]

βq = m csc

[
π

2m

]
, (49)

and is achieved when the two parties perform measurements
in the equatorial plane on their half of a shared singlet state.
Therefore, for large m, we have

βq

βc

m→∞−−−→ 4

π
. (50)

Proposition 8. The generalized chain inequality Im satis-
fies

〈Im〉2
AB + 〈Im〉2

AC � m4/2, (51)
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for any quantum state and measurements. In all no-signaling theories, the inequality satisfies the relation

〈Im〉AB + 〈Im〉AC � m2. (52)

Proof. We know that

2
√

21 − cos θ (Aj+l−1 ⊗ Bj ⊗ 1 + Aj+l−1 ⊗ Bj+(m/2) ⊗ 1 + Aj+(m/2)+l−1 ⊗ Bj+(m/2) ⊗ 1 − Aj+(m/2)+l−1 ⊗ Bj ⊗ 1)

− sin θ (Aj+l−1 ⊗ 1 ⊗ Cj + Aj+l−1 ⊗ 1 ⊗ Cj+(m/2) + Aj+(m/2)+l−1 ⊗ 1 ⊗ Cj+(m/2) − Aj+(m/2)+l−1 ⊗ 1 ⊗ Cj ) � 0, (53)

for θ ∈ [0, π/2] and “�” denotes the positive semidefiniteness of the operator. This can for instance be seen by a sum-of-squares
decomposition of the operator

1√
2

{[
1 − cos θ

(
Aj+l−1 + Aj+(m/2)+l−1√

2
⊗ Bj+(m/2) ⊗ 1

)
− sin θ

(
Aj+l−1 − Aj+(m/2)+l−1√

2
⊗ 1 ⊗ Cj

)]2

+
[

1 − cos θ

(
Aj+l−1 − Aj+(m/2)+l−1√

2
⊗ Bj ⊗ 1

)
− sin θ

(
Aj+l−1 + Aj+(m/2)+l−1√

2
⊗ 1 ⊗ Cj+(m/2)

)]2}
� 0. (54)

Summing the above expression over all j, l ∈ [m/2] gives the linear version of the spherical relation (51). Analogously, to derive
the no-signaling monogamy relation, we apply the same technique as above using as a building block the CHSH monogamy
relation in such theories, namely

4 − 〈Aj+l−1Bj + Aj+l−1Bj+(m/2) + Aj+(m/2)+l−1Bj+(m/2) − Aj+(m/2)+l−1Bj 〉
−〈Aj+l−1Cj + Aj+l−1Cj+(m/2) + Aj+(m/2)+l−1Cj+(m/2) − Aj+(m/2)+l−1Cj 〉 � 0. (55)

Summing over j, l ∈ [m/2] gives the no-signaling trade-off.�
In fact, from the proof above, we see that not only the

generalized chain inequality but any Bell expression that can
be decomposed into a sum of facet CHSH expressions obeys
a hyperspherical monogamy relation within quantum theory.
Other inequalities of this type are the well-known class of
XOR introduced by Slofstra [35] as games requiring a large
amount of entanglement to play optimally. For a graph G with
v vertices and e edges, the coefficient matrix AG for the game
is constructed as having two rows for each edge of G, and
columns indexed by the vertices. For (u, v) an edge in G

with u < v, the first row corresponding to (u, v) contains a
1/(4e) in the uth column, a −1/(4e) in the vth column, and
zeros everywhere else. The second row corresponding to (u, v)
contains a 1/(4e) in both the uth and the vth column, with zeros
everywhere else. One can directly see that this inequality is a
convex combination of multiple CHSH inequalities in which
Alice does not know exactly which of these CHSH games
she is playing. From this convex decomposition, it follows
that a spherical monogamy relation of the type in Prop. 8
holds for this class of games. This observation also readily
extends to the derivation of trade-off relations for multiparty
correlation expressions with more than two inputs per party,
when these can be decomposed into a convex combination of
facet-defining binary XOR games.

D. Monogamy of genuine multiparty nonlocality

Compared with the scenario of two-party nonlocality where
PA,B|X,Y is either local or nonlocal, in the multiparty scenario,
different kinds of nonlocality can be distinguished. In the
tripartite scenario, the fully local correlations PA,B,C|X,Y,Z

are those that can be written as PA,B,C|X,Y,Z (a, b, c|x, y, z) =∑
λ q�(λ)PA|X,�(a|x, λ)PB|Y,�(b|y, λ)PC|Z,�(c|z, λ). Corre-

lations not in the above form are nonlocal, however different
kinds of nonlocality may be distinguished. In seminal work,

Svetlichny introduced the notion of genuine three-way nonlo-
cal correlations, which are those PA,B,C|X,Y,Z that cannot be
written in the form

PA,B,C|X,Y,Z (a, b, c|x, y, z)

= rAB|C
∑

λ

q�(λ)PA,B|X,Y,�(a, b|x, y, λ)

×PC|Z,�(c|z, λ) + perm., (56)

with rAB|C, rAC|B, rBC|A � 0, rAB|C + rAC|B + rBC|A = 1, and∑
λ q�(λ) =∑γ q� (γ ) =∑υ qϒ (υ ) = 1, where the bipartite

correlations can be arbitrary signaling ones. Svetlichny in-
troduced an inequality, the violation of whose bilocal bound
guarantees that the correlations are Svetlichny nonlocal, i.e.,
not of the form in (56). The Svetlichny expression for an
arbitrary number of parties was shown in [36] in terms of the
family of Mermin-Klyshko polynomials Mn [25,37]. Letting
M1 = A

(1)
1 , the MK polynomials Mn for n parties are defined

recursively by

Mn = 1
2Mn−1

(
A

(n)
1 + A

(n)
2

)+ 1
2M̃n−1

(
A

(n)
1 − A

(n)
2

)
, (57)

where M̃ is obtained from M by swapping the observables
1 ↔ 2 for all the parties. The Svetlichny polynomial Sn is
defined in terms of Mn by

Sn =
{

Mn n even,
1
2 (Mn + M̃n) n odd.

(58)

We now introduce a generalization of the Svetlichny poly-
nomial to the case of an arbitrary number of inputs. This
inequality is a modification of a different generalization with
algebraic violation introduced in [38,39] to show that the GHZ
correlations can be fully genuine multipartite nonlocal. Ac-
cordingly, we let the ith party receive m inputs xi ∈ {1, . . . , m}
for even m, whereupon they measure the binary observable A(i)

xi

and obtain the outcome ai ∈ {±1}. We then define the Bell
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expression to be

Sgen
n,m :=

m∑
x1,...,xn=1

Cx1,...,xn

〈
n∏

i=1

A(i)
xi

〉
� βc. (59)

The coefficient tensor Ĉ of our generalized Svetlichny expres-
sion Sgen

n,m is constructed recursively starting from

C1,...,1,jn
=
{

−1 if jn � m
2 + 1,

1 if jn > m
2 + 1,

with C1,...,1,1+jn−r ,jn−r+1,...,jn−1,jn

=
{
C1,...,1,jn−r ,(jn−r+1−1) mod m,jn−r+2,...,jn−1,jn

if jn−r+1 > 1,

−C1,...,1,jn−r ,(jn−r+1−1) mod m,jn−r+2,...,jn−1,jn
if jn−r+1 = 1,

for r = 1, . . . , n − 1. Note that in contrast to the chained
Svetlichny expression introduced in [38,39], the inequality
in (59) corresponds to a total function, i.e., all mn possible
n-tuples of measurement settings (x1, . . . , xn) appear in the
inequality.

We claim that the bilocal value for the inequality is

βbl = mn/2. (60)

This follows by an inductive argument similar to the one
considered in [39]. For n = 2, the inequality Sgen

2,m reduces to
Im from the previous section so that the classical bound m2/2
follows. Suppose the bound mk−1/2 holds for Sgen

k−1,m. For each
setting xk of the kth party, the inequality Sgen

k,m(xk ) reduces to
Sgen

k−1,m up to input-output relabelings so that the bound mk−1/2
holds for each of the m settings xk . Summing this bound over
all the m settings gives the bilocal value mk/2 for Sgen

k,m. The
general bound mn/2 then follows by induction.

We now present a quantum strategy for the n parties
and prove that it achieves optimal violation of the inequal-
ity. The parties share the n-qubit GHZ state |GHZn〉 =

1√
2
[|0〉⊗n + |1〉⊗n] and measure observables in the x-y plane,

i.e.,

A(i)
xi

= cos
(
θ (i)
xi

)
σx + sin

(
θ (i)
xi

)
σy. (61)

For a given number of parties n, we set

θ (i)
xi

=

⎧⎪⎪⎨
⎪⎪⎩

(−1)n(xi−1)π
m

if i = 1, 3, . . . , n − 2, xi ∈ [m],
(−1)n+1(xi−1)π

m
if i = 2, 4, . . . , n − 1, xi ∈ [m],

(2m−(−1)n−2xn )π
2m

if i = n, xn ∈ [m].

The quantum value achieved by the strategy is given by

βq � 2mn−1
m/2∑
i=1

cos
(2i − 1)π

2m
= mn−1 csc

(
π

2m

)
. (62)

This again closely follows an inductive argument for an
analogous quantum strategy in [39] showing that the value
of Sgen

n,m is equal to m times the value of Sgen
n−1,m. The value then

follows from the quantum value (m csc [ π
2m

]) of Im from the
previous section. We now show that the strategy is optimal. To
do this, we show that it achieves the upper bound on βq given
as [40–43]

βq � m

m∑
x3,...,xn=1

∥∥C∗,∗,x3,...,xn

∥∥, (63)

where‖ · ‖denotes the spectral norm (maximal singular value).
Now, by construction, fixing x3, . . . , xn gives the coefficient
matrix C = (ty−x )nx,y=1 from Eq. (46) up to input-output rela-
belings. The spectral norm of this matrix was calculated in [34]
and shown to be given by (setting k = m/2 in the expression
in [34]) ‖C∗,∗,x3,...,xn

‖ = m csc ( π
2m

). Summing over x3, . . . , xn

gives the value mn−1 csc ( π
2m

). The quantum strategy using the
n-qubit GHZ state achieves this upper bound, so we conclude
that it is optimal.

Proposition 9. Genuine multiparty nonlocality evidenced
by the generalized Svetlichny polynomial Sgen

n,m for even n is
monogamous, i.e.,

〈
Sgen

n,m

〉2
P1

+ 〈Sgen
n,m

〉2
P2

� 2β2
bl, (64)

where P1 and P2 are two sets of players with |P1| = |P2| = n

and P1 ∩ P2 �= ∅.
Proof. We first show the bound for the case m = 2, the

general bound then follows from the technique in the proof
of Prop. 8, i.e., by decomposing the general expression as
a sum of the Svetlichny expressions for m = 2. The bilocal
bound βbl of the m = 2 Svetlichny expression for any partition
k | (n − k) of the parties for even n is given by 2

n−2
2 . The

corresponding optimal quantum value is given by 2
n−1

2 . Being
a full-correlation inequality in the (n, 2, 2) scenario it can
be decomposed into the facet inequalities, specifically into
the Mermin-Klyshko polynomials, so that the hyperspherical
trade-off relations derived in the previous sections holds for this
inequality. In particular, from Prop. 3 and Prop. 6 we know that
if the two sets intersect at one party 1, we have

〈
Sgen

n,2

〉2
1,2,4,...,2n−2 + 〈Sgen

n,2

〉2
1,3,5,...,2n−1 � 2n−1, (65)

which is equivalent to the bound 2β2
bl[= 2(2

n−2
2 )2 = 2n−1].

The bound for any arbitrary intersection of the two player
sets essentially follows from the above case. Namely, we
have two sets of 2n operators which we would like to group
into 2n−1 sets of four mutually anticommuting operators
each. From the construction in the proof of Prop. 6, we
see that these sets are obtained as X⊗|P1∩P2|−k ⊗ Z⊗k ⊗
{XXIXI · · · XI, XXIXI · · · ZI, ZIXIX · · · IX, ZIXIX · · · IZ}
for fixed 0 � k � |P1 ∩ P2|, i.e., we augment the
anticommuting set in the situation |P1 ∩ P2| = 1 by all
combinations of tensor product of X,Z operators at the
remaining positions of intersection. �

E. Monogamies within general no-signaling theories

In previous sections we had derived the trade-offs in vio-
lation for the (n, 2, 2) correlation inequalities within quantum
theory. In this section we derive the no-signaling bound on
these trade-offs, in the more general (n,m, d ) scenario. In
doing this, we correct an error in [19] where such general
multipartite no-signaling monogamy relations were derived.

Consider a general Bell scenario with n parties A1, . . . , An.
The ith party chooses one among mi inputs Xi = xi ∈ [mi]
and obtains one of di outcomes Oi = oi ∈ [di]. Denoting o :=
{o1, . . . , on} and x := {x1, . . . , xn}, the general Bell expression

022133-12

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


TRADE-OFFS IN MULTIPARTY BELL-INEQUALITY … PHYSICAL REVIEW A 98, 022133 (2018)

is given as

IA1,...,An
≡
∑
o,x

γo,xP (o|x) � βc, (66)

where βc denotes the optimal classical value. General
monogamy relations for arbitrary two-party inequalities were
derived in [19]. However, the generalization to the multiparty
scenario in that paper contained an error which we now rectify
in the following proposition.

Proposition 10. Consider the generalized ladder network
of 1 +∑n

i=2 mi parties depicted by the hypergraph in Fig. 5.
Alice attempts to violate the general Bell expression I from
Eq. (66) with m2 “Bobs” A

(k2 )
2 , m3 “Charlies” A

(k3 )
3 , etc. in∏n

i=2 mi simultaneous Bell experiments. In this scenario, the
following trade-off relation holds in all no-signaling theories:

m2,...,mn∑
k2,...,kn=1

I
A1,A

(k2 )
2 ,...,A

(kn )
n

� βc

n∏
i=2

mi. (67)

Proof. We write

vA

vB1

vB2

vB3

vC1

vC2

vC3

FIG. 5. Illustration of the hypergraph from Prop. 10 with 32 = 9
hyperedges of the form {vA, vBi

, vCj
}, i, j ∈ {1, 2, 3}, 5 hyperedges

shown. Generic trade-off relations hold for the no-signaling values of
arbitrary Bell inequalities in such a configuration of players.

m2,...,mn∑
k2,...,kn=1

I
A1,A

(k2 )
2 ,...,A

(kn )
n

=
m2,...,mn∑
k2,...,kn=1

∑
o,x

γo,xP
(
O1 = o1,O

(k2 )
2 = o2, . . . , O

(kn )
n = on|X1 = x1, X

(k2 )
2 = x2, . . . , X

(kn )
n = xn

)

=
m2,...,mn∑
k2,...,kn=1

∑
o,x

γo,xP
(
O1 = o1, . . . , O

(xn+kn mod mn )
n = on|X1 = x1, X

(x2+k2 mod m2 )
2 = x2, . . . , X

(xn+kn mod mn )
n = xn

)

=
m2,...,mn∑
k2,...,kn=1

Ĩk2,...,kn

A1,A2,...,An

� βc

n∏
i=2

mi. (68)

Here Ĩk2,...,kn

A1,A2,...,An
denotes the Bell expression I written such that for fixed k2, . . . , kn each of the parties A

(li )
i measures a single

fixed input li − ki mod mi . As such, a joint probability distribution for the measurement outputs of all the parties can readily be
constructed. For instance, for any fixed k2, . . . , kn, the following joint probability distribution given by

P
(
O1,O

(1)
2 , . . . , O

(m2 )
2 , . . . , O (mn )

n

∣∣X1, X
(1)
2 = 1 − k2, . . . , X

(m2 )
2 = m2 − k2, . . . , X

(mn )
n = mn − kn

)
:

=
∏m1

l1=1 P
(
O1,O

(1)
2 , . . . , O

(m2 )
2 , . . . , O (mn )

n

∣∣X1 = l1, X
(1)
2 = 1 − k2, . . . , X

(m2 )
2 = m2 − k2, . . . , X

(mn )
n = mn − kn

)
P
(
O

(1)
2 , . . . , O

(m2 )
2 , . . . , O

(mn )
n

∣∣X(1)
2 = 1 − k2, . . . , X

(m2 )
2 = m2 − k2, . . . , X

(mn )
n = mn − kn

)m1−1 (69)

can be directly seen to reproduce all the observable marginal
distributions so that a local realistic model exists for the
expression Ĩk2,...,kn

A1,A2,...,An
. Here the no-signaling assumption im-

poses that each of the marginals on the right-hand side of
the expression is well defined and independent of the other
parties’ inputs. Therefore, each Ĩk2,...,kn

A1,A2,...,An
obeys the bound βc

in any no-signaling theory, from which the bound on their sum
follows. �

Applied to the ladder network from Fig. 2, we see that the
above relation exactly gives the hyperplane in Prop. 4 bounding
the quantum hyperspherical trade-off relation thus extending
the relationship between the quantum and no-signaling trade-
off relations for the CHSH inequality found by Toner and Ver-
straete [7]. While the no-signaling trade-off relation is general,
it is an open question whether it is tight, i.e., whether there
exists a Bell expression for which a network with

∏n
i=2 mi + 1
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parties is needed before such a monogamy relation manifests
itself. For instance, it has been found that for general two-party
correlation inequalities, monogamy relations hold in networks
with far fewer number of parties [44].

IX. CONCLUSIONS

In this paper we have studied the trade-offs in quantum
violations of n-party full correlation inequalities. Employing
an uncertainty relation for complementary binary observables,
we derived trade-off relations in several network configurations
and showed their tightness by specifying explicit quantum
strategies achieving the respective bounds. We then showed
that the uncertainty relation does not capture Bell monogamies
in their entirety by proving a tight trade-off in a qubit ladder
network that does not arise from the uncertainty relation.
In deriving a generic trade-off relation between correlation
inequalities on different numbers of parties, we discussed
how these trade-offs help to characterize a portion of the
boundary of the set of quantum correlations. The trade-offs
enabled us to show the existence of flat regions in this set,
i.e., the existence of Bell inequalities which are optimally
violated by multiple distinct quantum strategies (boxes) not
related by an isometry (see also further results in [18]). We
then studied the trade-offs in violations of a class of Bell
inequalities with an arbitrary number of inputs, and showed that
genuine multiparty nonlocality as evidenced by the generalized
Svetlichny polynomial is monogamous. In these cases, our

analysis extends to arbitrary full correlation inequalities for
any number of parties and inputs, the initial analysis of Toner
and Verstraete [7] for the CHSH inequality. Finally, we clarified
an error in [19] in the derivation of multiparty monogamy re-
lations based upon no-signaling constraints and compared the
hyperspherical quantum trade-off relations with the hypercube
relations obtained from general no-signaling constraints alone.
Important open questions remain. A mathematical question is
to characterize the precise configurations of qubits in which
tight trade-off relations among quantum correlations exist.
A practical task of immediate importance is to apply these
trade-off relations in devising device-independent protocols
for secure multiparty communications such as secret sharing
in the specific network configurations presented here.
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Gdańsk University of Technology.

[1] N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner,
Bell nonlocality, Rev. Mod. Phys. 86, 419 (2014).

[2] A. Acin and Ll. Masanes, Certified randomness in quantum
physics, Nature (London) 540, 213 (2016).

[3] N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Quantum
cryptography, Rev. Mod. Phys. 74, 145 (2002).

[4] V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dusek, N.
Lutkenhaus, and Mo. Peev, The security of practical quantum
key distribution, Rev. Mod. Phys. 81, 1301 (2009).

[5] H. Buhrman, R. Cleve, S. Massar, and R. de Wolf, Nonlocal-
ity and communication complexity, Rev. Mod. Phys. 82, 665
(2010).

[6] V. Coffman, J. Kundu, and W. K. Wootters, Distributed
entanglement, Phys. Rev. A 61, 052306 (2000).

[7] B. Toner and F. Verstraete, Monogamy of Bell correlations and
Tsirelson’s bound, arXiv:quant-ph/0611001.

[8] B. Toner, Monogamy of nonlocal quantum correlations,
Proc. R. Soc. London Ser. A 465, 59 (2009).

[9] P. Horodecki and R. Ramanathan, Relativistic causality vs no-
signaling as the limiting paradigm for correlations in physical
theories, arXiv:1611.06781.

[10] P. Kurzynski, T. Paterek, R. Ramanathan, W. Laskowski, and
D. Kaszlikowski, Correlation Complementarity Yields Bell
Monogamy Relations, Phys. Rev. Lett. 106, 180402 (2011).

[11] C. Erven, E. Meyer-Scott, K. Fisher, J. Lavoie, B. Higgins,
Z. Yan, C. Pugh, J.-P. Bourgoin, R. Prevedel, L. Shalm et al.,
Experimental Three-particle quantum nonlocality under strict
locality conditions, Nat. Photon. 8, 292 (2014).

[12] T. Monz, P. Schindler, J. T. Barreiro, M. Chwalla, D. Nigg, W. A.
Coish, M. Harlander, W. Hänsel, M. Hennrich, and R. Blatt,
14-Qubit Entanglement: Creation and Coherence, Phys. Rev.
Lett. 106, 130506 (2011).

[13] S. Armstrong, J.-F. Morizur, J. Janousek, B. Hage, N. Treps, P. K.
Lam, and H.-A. Bachor, Programmable multimode quantum
networks, Nat. Commun. 3, 1026 (2012).

[14] C. Jordan, Essai sur la géométrie à n dimensions, Bull. Soc.
Math. Fr. 3, 103 (1875).

[15] A. Acín, S. Massar, and S. Pironio, Randomness vs Non-
locality and Entanglement, Phys. Rev. Lett. 108, 100402
(2012).

[16] S. Pironio et al., Random numbers certified by Bell’s theorem,
Nature (London) 464, 1021 (2010).

[17] G. Svetlichny, Distinguishing three-body from two-body
nonseparability by a Bell-type inequality, Phys. Rev. D 35, 3066
(1987).

[18] K. T. Goh, J. Kaniewski, E. Wolfe, T. Vertesi, X. Wu, Y. Cai,
Y.-C. Liang, and V. Scarani, Geometry of the set of quantum
correlations, Phys. Rev. A 97, 022104 (2018).

[19] M. Pawłowski and C. Brukner, Monogamy of Bell’s Inequality
Violations in Non-Signaling Theories, Phys. Rev. Lett. 102,
030403 (2009).

[20] J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, Proposed
Experiment to Test Local Hidden-Variable Theories, Phys. Rev.
Lett. 23, 880 (1969).

[21] R. F. Werner and M. M. Wolf, Bell inequalities and entanglement,
Quantum Inf. Comput. 1, 1 (2001).

022133-14

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

https://doi.org/10.1103/RevModPhys.86.419
https://doi.org/10.1103/RevModPhys.86.419
https://doi.org/10.1103/RevModPhys.86.419
https://doi.org/10.1103/RevModPhys.86.419
https://doi.org/10.1038/nature20119
https://doi.org/10.1038/nature20119
https://doi.org/10.1038/nature20119
https://doi.org/10.1038/nature20119
https://doi.org/10.1103/RevModPhys.74.145
https://doi.org/10.1103/RevModPhys.74.145
https://doi.org/10.1103/RevModPhys.74.145
https://doi.org/10.1103/RevModPhys.74.145
https://doi.org/10.1103/RevModPhys.81.1301
https://doi.org/10.1103/RevModPhys.81.1301
https://doi.org/10.1103/RevModPhys.81.1301
https://doi.org/10.1103/RevModPhys.81.1301
https://doi.org/10.1103/RevModPhys.82.665
https://doi.org/10.1103/RevModPhys.82.665
https://doi.org/10.1103/RevModPhys.82.665
https://doi.org/10.1103/RevModPhys.82.665
https://doi.org/10.1103/PhysRevA.61.052306
https://doi.org/10.1103/PhysRevA.61.052306
https://doi.org/10.1103/PhysRevA.61.052306
https://doi.org/10.1103/PhysRevA.61.052306
http://arxiv.org/abs/arXiv:quant-ph/0611001
https://doi.org/10.1098/rspa.2008.0149
https://doi.org/10.1098/rspa.2008.0149
https://doi.org/10.1098/rspa.2008.0149
https://doi.org/10.1098/rspa.2008.0149
http://arxiv.org/abs/arXiv:1611.06781
https://doi.org/10.1103/PhysRevLett.106.180402
https://doi.org/10.1103/PhysRevLett.106.180402
https://doi.org/10.1103/PhysRevLett.106.180402
https://doi.org/10.1103/PhysRevLett.106.180402
https://doi.org/10.1038/nphoton.2014.50
https://doi.org/10.1038/nphoton.2014.50
https://doi.org/10.1038/nphoton.2014.50
https://doi.org/10.1038/nphoton.2014.50
https://doi.org/10.1103/PhysRevLett.106.130506
https://doi.org/10.1103/PhysRevLett.106.130506
https://doi.org/10.1103/PhysRevLett.106.130506
https://doi.org/10.1103/PhysRevLett.106.130506
https://doi.org/10.1038/ncomms2033
https://doi.org/10.1038/ncomms2033
https://doi.org/10.1038/ncomms2033
https://doi.org/10.1038/ncomms2033
https://doi.org/10.24033/bsmf.90
https://doi.org/10.24033/bsmf.90
https://doi.org/10.24033/bsmf.90
https://doi.org/10.24033/bsmf.90
https://doi.org/10.1103/PhysRevLett.108.100402
https://doi.org/10.1103/PhysRevLett.108.100402
https://doi.org/10.1103/PhysRevLett.108.100402
https://doi.org/10.1103/PhysRevLett.108.100402
https://doi.org/10.1038/nature09008
https://doi.org/10.1038/nature09008
https://doi.org/10.1038/nature09008
https://doi.org/10.1038/nature09008
https://doi.org/10.1103/PhysRevD.35.3066
https://doi.org/10.1103/PhysRevD.35.3066
https://doi.org/10.1103/PhysRevD.35.3066
https://doi.org/10.1103/PhysRevD.35.3066
https://doi.org/10.1103/PhysRevA.97.022104
https://doi.org/10.1103/PhysRevA.97.022104
https://doi.org/10.1103/PhysRevA.97.022104
https://doi.org/10.1103/PhysRevA.97.022104
https://doi.org/10.1103/PhysRevLett.102.030403
https://doi.org/10.1103/PhysRevLett.102.030403
https://doi.org/10.1103/PhysRevLett.102.030403
https://doi.org/10.1103/PhysRevLett.102.030403
https://doi.org/10.1103/PhysRevLett.23.880
https://doi.org/10.1103/PhysRevLett.23.880
https://doi.org/10.1103/PhysRevLett.23.880
https://doi.org/10.1103/PhysRevLett.23.880
http://mostwiedzy.pl


TRADE-OFFS IN MULTIPARTY BELL-INEQUALITY … PHYSICAL REVIEW A 98, 022133 (2018)

[22] M. Żukowski and C. Brukner, Bell’s Theorem for General
N -Qubit States, Phys. Rev. Lett. 88, 210401 (2002).

[23] N. D. Mermin, Quantum mysteries revisited, Am. J. Phys. 58,
731 (1990).

[24] M. Ardehali, Bell inequalities with a magnitude of violation that
grows exponentially with the number of particles, Phys. Rev. A
46, 5375 (1992).

[25] A. Belinskii and D. Klyshko, Interference of light and Bell’s
theorem., Phys. Usp. 36, 653 (1993).

[26] Y.-C. Liang, D. Rosset, J.-D. Bancal, G. Putz, T. J. Barnea, and N.
Gisin, Family of Bell-Like Inequalities as Device-Independent
Witnesses for Entanglement Depth, Phys. Rev. Lett. 114, 190401
(2015).

[27] M. Zukowski, C. Brukner, W. Laskowski, and M. Wiesniak,
Do All Pure Entangled States Violate Bell’s Inequalities for
Correlation Functions?, Phys. Rev. Lett. 88, 210402 (2002).

[28] R. Horodecki, P. Horodecki, and M. Horodecki, Violating Bell
inequality by mixed spin- 1

2 states: Necessary and sufficient
condition, Phys. Lett. A 200, 340 (1995).

[29] S. Wehner and A. Winter, Higher entropic uncertainty relations
for anti-commuting observables, J. Math. Phys. 49, 062105
(2008).

[30] A. M. Samoilenko, Spectral Theory of Families of Self-Adjoint
Operators, Mathematics and its Applications (Springer, Nether-
lands, 1991), Vol. 57.

[31] M. Hillery, V. Buzek, and A. Berthiaume, Quantum secret
sharing, Phys. Rev. A 59, 1829 (1999).

[32] C.-E. Bardyn, T. C. H. Liew, S. Massar, M. McKague, and V.
Scarani, Device independent state estimation based on Bell’s
inequalities, Phys. Rev. A 80, 062327 (2009).

[33] R. Augusiak, M. Demianowicz, M. Pawłowski, J. Tura, and A.
Acín, Elemental and tight monogamy relations in nonsignaling
theories, Phys. Rev. A 90, 052323 (2014).

[34] J. Łodyga, W. Kłobus, R. Ramanathan, A. Grudka, M.
Horodecki, and R. Horodecki, Measurement uncertainty from
no-signaling and nonlocality, Phys. Rev. A 96, 012124
(2017).

[35] W. Slofstra, Lower bounds on the entanglement needed to play
XOR nonlocal games, arXiv:1007.2248.

[36] D. Collins, N. Gisin, S. Popescu, D. Roberts, and V. Scarani,
Bell-Type Inequalities to Detect True n-Body Non-Separability,
Phys. Rev. Lett. 88, 170405 (2002).

[37] N. D. Mermin, Extreme Quantum Entanglement in a Superpo-
sition of Macroscopically Distinct States, Phys. Rev. Lett. 65,
1838 (1990).

[38] J.-D. Bancal, C. Branciard, N. Brunner, N. Gisin, and Y.-C.
Liang, A framework for the study of symmetric full-correlation
Bell-like inequalities, J. Phys. A 45, 125301 (2012).

[39] L. Aolita, R. Gallego, A. Cabello, and A. Acín, Fully Nonlocal,
Monogamous, and Random Genuinely Multipartite Quantum
Correlations, Phys. Rev. Lett. 108, 100401 (2012).

[40] M. Epping, H. Kampermann, and D. Bruß, Designing Bell
Inequalities from a Tsirelson Bound, Phys. Rev. Lett. 111,
240404 (2013).

[41] S. Wehner, Tsirelson bounds for generalized Clauser-Horne-
Shimony-Holt inequalities, Phys. Rev. A 73, 022110 (2006).

[42] R. Ramanathan, R. Augusiak, and G. Murta, Generalized XOR
games with d outcomes and the task of nonlocal computation,
Phys. Rev. A 93, 022333 (2016).

[43] G. Murta, R. Ramanathan, N. Móller, and M. Terra Cunha, Quan-
tum bounds on multiplayer linear games and device-independent
witness of genuine tripartite entanglement, Phys. Rev. A 93,
022305 (2016).

[44] R. Ramanathan and P. Horodecki, Strong Monogamies of No-
Signaling Violations for Bipartite Correlation Bell Inequalities,
Phys. Rev. Lett. 113, 210403 (2014).

022133-15

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

https://doi.org/10.1103/PhysRevLett.88.210401
https://doi.org/10.1103/PhysRevLett.88.210401
https://doi.org/10.1103/PhysRevLett.88.210401
https://doi.org/10.1103/PhysRevLett.88.210401
https://doi.org/10.1119/1.16503
https://doi.org/10.1119/1.16503
https://doi.org/10.1119/1.16503
https://doi.org/10.1119/1.16503
https://doi.org/10.1103/PhysRevA.46.5375
https://doi.org/10.1103/PhysRevA.46.5375
https://doi.org/10.1103/PhysRevA.46.5375
https://doi.org/10.1103/PhysRevA.46.5375
https://doi.org/10.1070/PU1993v036n08ABEH002299
https://doi.org/10.1070/PU1993v036n08ABEH002299
https://doi.org/10.1070/PU1993v036n08ABEH002299
https://doi.org/10.1070/PU1993v036n08ABEH002299
https://doi.org/10.1103/PhysRevLett.114.190401
https://doi.org/10.1103/PhysRevLett.114.190401
https://doi.org/10.1103/PhysRevLett.114.190401
https://doi.org/10.1103/PhysRevLett.114.190401
https://doi.org/10.1103/PhysRevLett.88.210402
https://doi.org/10.1103/PhysRevLett.88.210402
https://doi.org/10.1103/PhysRevLett.88.210402
https://doi.org/10.1103/PhysRevLett.88.210402
https://doi.org/10.1016/0375-9601(95)00214-N
https://doi.org/10.1016/0375-9601(95)00214-N
https://doi.org/10.1016/0375-9601(95)00214-N
https://doi.org/10.1016/0375-9601(95)00214-N
https://doi.org/10.1063/1.2943685
https://doi.org/10.1063/1.2943685
https://doi.org/10.1063/1.2943685
https://doi.org/10.1063/1.2943685
https://doi.org/10.1103/PhysRevA.59.1829
https://doi.org/10.1103/PhysRevA.59.1829
https://doi.org/10.1103/PhysRevA.59.1829
https://doi.org/10.1103/PhysRevA.59.1829
https://doi.org/10.1103/PhysRevA.80.062327
https://doi.org/10.1103/PhysRevA.80.062327
https://doi.org/10.1103/PhysRevA.80.062327
https://doi.org/10.1103/PhysRevA.80.062327
https://doi.org/10.1103/PhysRevA.90.052323
https://doi.org/10.1103/PhysRevA.90.052323
https://doi.org/10.1103/PhysRevA.90.052323
https://doi.org/10.1103/PhysRevA.90.052323
https://doi.org/10.1103/PhysRevA.96.012124
https://doi.org/10.1103/PhysRevA.96.012124
https://doi.org/10.1103/PhysRevA.96.012124
https://doi.org/10.1103/PhysRevA.96.012124
http://arxiv.org/abs/arXiv:1007.2248
https://doi.org/10.1103/PhysRevLett.88.170405
https://doi.org/10.1103/PhysRevLett.88.170405
https://doi.org/10.1103/PhysRevLett.88.170405
https://doi.org/10.1103/PhysRevLett.88.170405
https://doi.org/10.1103/PhysRevLett.65.1838
https://doi.org/10.1103/PhysRevLett.65.1838
https://doi.org/10.1103/PhysRevLett.65.1838
https://doi.org/10.1103/PhysRevLett.65.1838
https://doi.org/10.1088/1751-8113/45/12/125301
https://doi.org/10.1088/1751-8113/45/12/125301
https://doi.org/10.1088/1751-8113/45/12/125301
https://doi.org/10.1088/1751-8113/45/12/125301
https://doi.org/10.1103/PhysRevLett.108.100401
https://doi.org/10.1103/PhysRevLett.108.100401
https://doi.org/10.1103/PhysRevLett.108.100401
https://doi.org/10.1103/PhysRevLett.108.100401
https://doi.org/10.1103/PhysRevLett.111.240404
https://doi.org/10.1103/PhysRevLett.111.240404
https://doi.org/10.1103/PhysRevLett.111.240404
https://doi.org/10.1103/PhysRevLett.111.240404
https://doi.org/10.1103/PhysRevA.73.022110
https://doi.org/10.1103/PhysRevA.73.022110
https://doi.org/10.1103/PhysRevA.73.022110
https://doi.org/10.1103/PhysRevA.73.022110
https://doi.org/10.1103/PhysRevA.93.022333
https://doi.org/10.1103/PhysRevA.93.022333
https://doi.org/10.1103/PhysRevA.93.022333
https://doi.org/10.1103/PhysRevA.93.022333
https://doi.org/10.1103/PhysRevA.93.022305
https://doi.org/10.1103/PhysRevA.93.022305
https://doi.org/10.1103/PhysRevA.93.022305
https://doi.org/10.1103/PhysRevA.93.022305
https://doi.org/10.1103/PhysRevLett.113.210403
https://doi.org/10.1103/PhysRevLett.113.210403
https://doi.org/10.1103/PhysRevLett.113.210403
https://doi.org/10.1103/PhysRevLett.113.210403
http://mostwiedzy.pl



