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Abstract 

The present work aims at modeling a viscoelastic nanobeam with simple boundary conditions at 

the two ends with the introduction of the Kelvin-Voigt viscoelasticity in a nonlocal strain 

gradient theory. The nanobeam lies on the visco-Pasternak matrix in which three characteristic 

parameters have a prominent role. A refined Timoshenko beam theory is here applied, which is 

only based on one unknown variable, in accordance with the Euler-Bernoulli theory, whereas 

the Hamilton’s principle is applied to derive the equations of motion. These are, in turn, solved 

for a carbon nanotube with some fixed material properties. An analytical method has been used 

to discretize the equations in the displacement field and time, while computing the time-

response of the system. For validation purposes, the results based on the proposed formulation 

are successfully compared to several references. A final parametric investigation focuses on the 

sensitivity of the time-response of a nanotube under simple boundary conditions, to different 

parameters such as the length scale, the viscoelasticity coefficients or the nonlocal parameter. 

Keywords: Nonlocal strain gradient theory; Refined Timoshenko beam theory; Simple 

boundary conditions; Viscoelastic nanobeam 
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Carbon nanotubes are one of the most widely used carbon structures recently discovered, with 

unique properties and features, namely, the excellent flexibility and twistability, in addition to 

their high strength. The most important property of the nanotubes, however, is related to their 

electrical conductivity, which depends on the order of the atoms. They are cylindrical carbon 

molecules with open or closed ends. The structure of the nanotubes is rolled like a graphite 

sheet. Consider a graphite layer to better understand the structure of the nanotube. To place a 

pipe from a plane, it would be enough to place a point on the other. A nanotube is like a graphite 

sheet that is in the shape of a pipe. Depending on how the two sections of the graphite sheet are 

connected to each other, we will have different types of nanotubes. For the application of 

nanotubes and their properties, we can refer to the use of these compounds as "continuous 

fibers" in composites. The most important applications of such materials include airplanes, 

helicopter bodies, tennis rackets, etc. [1].  

Therefore, given these remarkable applications, high mechanical properties have been 

increasingly required for many practical purposes, in the last decades. Arghavan and Singh [2] 

investigated the natural frequencies of single-walled carbon nanotubes (SWCNTs) based on a 

molecular mechanics method for clamped-free and clamped-clamped boundary conditions. A 

further application of the molecular mechanics is proposed by Ansari et al. [3] for a numerical 

study about the natural frequencies of nanotubes. Zhen et al. [4] examined the free vibrations of 

double-walled carbon nanotubes (DWCNTs), by applying the Euler-Bernoulli beam model and 

the nonlocal continuum theory of Eringen. In addition, Brischetto [5] analyzed the free 

vibrations of a SWCNT based on three-dimensional elasticity using a nonlocal continuum 

theory. In another work, Wang and Li [6] studied the free vibrations of nanotubes based on the 

nonlocal elasticity theory of Eringen placed in a viscous matrix. Torkaman-Asadi et al. [7] 

studied natural frequencies of carbon nanotubes on the basis of the nonlocal theory of Eringen 
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embedded on a Winkler foundation. El-Borgi et al. [8] formulated analytically the nonlinear 

equations for small-scale free longitudinal vibrations of SWCNTs placed on the Winkler-

Pasternak foundation under several boundary conditions. Malikan et al. [9] studied the damping 

excited vibrations of SWCNTs bridged on a visco-Pasternak substrate while considering 

possible thermal effects. They used a higher-order nonlocal strain gradient theory in conjunction 

with a novel one variable beam model. Ren et al. [10] modeled the nanotubes as a porous 

material and studied the free vibrations of such a model using a refined beam theory in 

conjunction with the nonlocal strain gradient size-dependent theory. Shamani and Aghdam [11] 

analyzed the nonlinear buckling and post buckling of a lipid supramolecular micro- and 

nanotubes. They used the nonlocal theory of strain gradient to capture the small scale influences. 

Also the third-order theory of shear deformation was employed to derive constitutive equations. 

In a further research, Shamani and Aghdam [12] considered some nanoporous biomaterials 

under a static transverse loading. A modified truncated cube cell was also taken into account. 

The small scale equations were formulated by a nonlocal strain gradient model and an explicit 

analytical model was proposed to solve the differential relations governing the problem. 

Mohammadi et al. [13] calibrated a nonlocal theory of strain gradient for a shell model of 

nanotubes which conveyed a viscous fluid. The work was solved by means of the molecular 

dynamics and an amplitude was introduced to tune the nonlocal parameter. Wang et al. [14] 

examined the natural frequencies of a nanobeam moved axially, while deriving the differential 

equations of the problem according to the nonlocal theory of strain gradient, and the Euler-

Bernoulli theory. Arefi and Zenkour [15] in a complete research, analyzed wave propagation 

and natural frequencies and also tensioning of a composite micro/nano rod in under electric field. 

Pasternak medium was embedded as a pedestal for the system. The model of Love's rod was 

employed to derive the Hamilton principle. They used strain gradient theory to investigate micro 
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and nanoscale influences. Arefi [16] showed the small scale effects by considering surface 

impacts and nonlocal elasticity theory for vibrational analysis of a functionally graded nano rod 

with considering piezoelectricity impacts. Arefi and Zenkour [17] presented a deep study on the 

bending and vibrations of a piezomagnetic laminated nanoscale beam. They considered both 

electric and magnetic fields whilst the model was placed on an elastic matrix. The Timoshenko 

beam theory was combined with the nonlocal theory of elasticity to derive the equations. Arefi 

[18] modeled vibrational of a functionally graded nano rod by using nonlocal theory of elasticity 

when the effects of magnetoelectric were taken into account. Arefi and Zenkour [19] applied 

couple stress and surface elasticity models for investigating wave propagation of a functionally 

graded nanoscale rod with taking piezoelectricity influences.  

Further relevant works on the topic can be found in [20-54], where different nanostructures have 

been considered for varying external conditions.  

Based on the available literature, in this work we focus on the transient response of oscillating 

nanotubes resting on a viscoelastic support, where both the internal and external damping has 

been taken into account. Thus, structural damping (hysteresis) is examined, and a new beam 

theory is applied to solve the vibrational problem, that has only one unknown variable, as in the 

classical model. In detail, the behavior of the nanomaterial on a small-scale is here studied 

according to the theory of nonlocal strain gradient, and the Navier’s solution is proposed for the 

numerical examples, instead of an high-costly numerical solution. A large parametric 

investigation is finally presented to check for the sensitivity of the history response of 

oscillations for varying input parameters, i.e. lengths scale, viscoelasticity coefficients, nonlocal 

parameters. 

2. Mathematical relations 
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Fig. 1 shows a single-walled carbon nanotube (SWCNT) resting on a visco-Pasternak 

foundation, as analyzed in what follows. The model has length L, outer diameter d and thickness 

h in the rectangular coordinate system. 

A new refined beam theory (OVFSDT) derived in the past research by the authors [55-56] is 

here adopted to approach the problem, as in the following 
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where u  and w  are the displacement components of the neutral axis in the x- and z-directions, 

and   refers to the twisting angle around the y-axis, at time t . 

Based on a simple FSDT, the following expression for the deflection w  is assumed 

 , ( , ) ( , )b sx tw w x t w x t 
                                                                                         

(2) 

 ,bw x t  and  ,sw x t  being its bending and shear components, respectively. On the other hand, 

the rotation   is defined as  
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By replacing Eqs. (2), (3) in Eq. (1), the displacement field of the simple FSDT can be rewritten 

as 
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The adoption of Eq. (2) might not be cognizable. Hence, the simple FSDT is refined in the 
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(5) 

where 'W  denotes an indirect effect for  ,sw x t that has to be determined. 

According to the constitutive equations of FSDT, we can compute  ,sw x t  as a functions of 

 ,bw x t  after manipulating the following relations 

0 x
x
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(6) 

combined with the stress resultants expression of the simple FSDT, i.e. 
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where E   is the elastic modulus, G is the shear modulus, and  2

c
A

I z dA   is the moment of 

area of the cross-section A  of the nanotube. 

integrating Eq. (7) regarding x , and neglecting the integral constant terms, after a mathematical 

manipulation, the 'W  can be defined as 
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where B is defined as 

cEI
B

AG
                                                                                                                     (9) 

Therefore, according to the OVFSDT, the displacement field becomes as follows 
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Based on the Hamiltonian rule, the potential energy of the domain V is employed in the 

variational case, as below [57-63] 

 
0

0

t

V S T dt                                                                                                             (11) 

Here, the virtual strain energy δS, the virtual kinetic energy δT, and the work of external forces 

δΩ are used to derive the governing equations in the following steps.  

First, the virtual strain energy is obtained as below 

0ij ij

v

S dV                                                                                                                    (12) 

where the strain tensor is expressed as 
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On the other hand, the kinetic energy is computed as follows [57] 
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                                                                                  (14) 

If the virtual kinetic energy is expanded, it is 

4 2 6 4
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                             (15) 

where Im  m cI I , m0  0
A

m dA  and ρ, are the mass moment of inertia, volumetric mass 

density and sectional density, respectively.  

The visco-Pasternak foundation was applied as an external force which is defined as follows 

[64]:  
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where Cd, kw and kG are the external damper parameter, stiffness and shear modules in the visco-

Pasternak foundation, respectively. By applying the variational method (i.e. δV=0), we obtain 

the following equation of motion  
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where Mx, Qx, and Nx are nonlocal stress resultants, respectively. The quantity xN refers to the 

in-plane axial resultant, here neglected in what follows. The stress resultants in the local form 

can be expanded as follows: 

x x
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                                                                                                                  (18)

 

By inserting Eq. (13) into Hookean stress-strain elasticity relation and substituting it into Eq. 

(18) the local stress resultants are presented as: 
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As far as the nonlocal strain gradient model is concerned, the following relations are applied 

[65-66] 
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                                           (20) 

l and μ, being the length scale and the nonlocality parameters, respectively. Based on Eq. (20), 

the nonlocal stress resultants are governed by the following relations
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It is well known that the mechanical properties of viscoelastic models are usually defined by 

some linear relations, which means the formulated differential equations are completely time-

dependent. In this paper, the linear Kelvin-Voigt model is considered within the equilibrium 

equation as detailed in the following procedure. 

The stress-strain equation for the viscoelastic beam has been defined as  

E Ep q                                                                                                                                 (23) 

where
Ep  and

E q are the viscoelastic operators. The Kelvin-Voigt model incorporates the 

Newtonian damper and the Hookean elastic spring connected in a parallel shape [67] 

   1, 1E Ep  q E g t E g t
t t

  
      

  
                                                                 (24) 

In which g is an internal structural damping parameter.  

By combining Eqs. (21), (22), (23), (24) with the Eq. (17), the free damped oscillation equation 

is obtained as 

 

 

 

4 6
2 2 20 0

4 6

4 2 6 4
2 20 0 0 0

02 2 2 4 2 2 2

2 2 0
0 0

1 1

1 2

1 0

c

m

G w d

w w
l g EI AGB

t x x

w w w w
I m B B

x t t x t x t

w
k w k w C

t

    
      

      

       
          

           

 
        





                                   (25) 

3. Analytical solution 
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In this study, we assume a nanotube with simply-supported boundary conditions at both ends. 

Thus, the solution based on the Navier’s approach is considered as follows [67] 

   
1

, exp sin , 10 m n

m

m
w x t W i t  i=

L








 
  

 
                                                                        (26) 

where Wm and ωn represent the displacement parameter and vibration frequency, and m is half-

wave. By substitution of Eq. (26) into Eq. (25), after a mathematical manipulation, we get the 

following equation of motion  

  2 1 0i ig      M C K W                                                                                            (27) 

where K, C, M refer to the stiffness, damping and the mass quantities, respectively. 

4. Numerical examples 

A preliminary check in terms of accuracy of the present formulation is done, by comparing its 

results with respect to other formulations available in literature. Some results are summarized in 

Tab. 1, while comparing our formulation with respect to the Euler-Bernoulli beam theory (EBT), 

the Timoshenko beam theory (TBT), and the Sinusoidal beam theory (SBT) [68-69]. According 

to this comparative evaluation, it is worth noticing the good agreement between our formulation 

with the SBT and TBT for which there was no use any shear correction factor. The current 

formulation makes the solution easier and simpler than both SBT and TBT because of the 

presence of only one variable in the displacement field. On the other hand, the EBT features 

some consistent differences with the other formulations. This is mainly related to the neglected 

transverse shear strains in EBT, which are instead important, especially for moderately thick 

and thick models. As also shown in Tab. 1, EBT-based results for L/h=40, are in good 

agreement with shear deformation models. This proved that whilst the model is a narrow beam, 

the transverse shear strains can be negligible.  
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As second investigation, we want to prove the capability of the present formulation to study 

transient vibration problems of carbon nanotubes. The material and mechanical properties of the 

selected single-walled carbon nanotube is reported in Tab. 2, whereas the main results are 

plotted in Fig. 2. More specifically, Fig. 2a indicates the effect of the external damping 

coefficient on the time-history. As clearly visible in Fig. 2, with the presence of the damping, 

the vibrational motion of the system is damped and the initial displacement amplitude is 

completely lost in a few nano seconds. In addition, the larger Cd parameter makes the vibrations 

damped without a delay. To study the effects of the elastic section of the visco-Pasternak base 

on the frequency response of the system, Fig. 2b is also plotted. This figure is presented with the 

same parameters mentioned before, with the only difference that the stiffening and shearing 

effects of the foundation have been halved. It is interesting to note that the number of periodic 

cycles of the system will be reduced to a complete damping, when the elastic effects of the 

foundation become weaker. This means that the stronger elastic base increases the natural 

frequency of the system, and consequently the number of cycles increases in the same time 

increment.  

Figs. 3a and b show respectively the effects of the nonlocal parameter and the length scale on 

the frequency behavior of the nanotube system. As visible in Fig. 3, an increasing delay in 

periodic cycles occurs for lower values of the nonlocal parameter. As a result, smaller nonlocal 

coefficients result in longer vibration time of the system and the local system is damped later 

than the nonlocal system. From a physical point of view, nonlocality leads to a certain weakness 

of the stiffness of the nanotubes, thus leading to a decrease in the natural frequency and an 

overall increase in the rate of damping.  

 

Figure 3b demonstrates quite reversible results, compared to the previous figure. It should be 

pointed out that the larger length scale parameter leads to an increase in damping time. Indeed, 
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an increasing the length scale increases the internal energy of the system, which leads, in turn, 

to a delay in the damping of the oscillations. 

Figs. 4a and 4b describe the nanotubes with different thicknesses. It is worth mentioning that if 

the nanotube is narrower, the number of periodic cycles will go up. In fact, in thicker nanotubes, 

due to an higher elastic energy, we can notice a certain decrease in the number of amplitudes of 

motion, which is associated to a lower delay. This can be due to the ratio of mass values to the 

external damper. 

The effect of internal damping is presented in Fig. 5 by examining several viscoelastic 

parameters. First, we compare the results of the internal viscosity with the external one. 

According to Fig. 5a, if the viscosity is removed, the system with the initial amplitude and 

without damping features an infinite cycle (without considering friction in the system). 

However, with the presence of both interior and exterior viscoelasticity, the system will be 

damped, with different rates of damping. To achieve an appropriate comparison, the condition 

based on a complete absence of the external damper is considered, while assuming an internal 

damping g=5 Ns/m (first) or an external damping Cd=5 N.s/m (second). The two cases are 

identical in values with a clear influence of the external viscosity compared to the internal one. 

As a matter of fact, for the present nanotube system, the effect of the external damping is greater 

than the one related to the internal damping. This result is related to the delay in damping for the 

case Cd=0, g=5 N.s/m, differently from the case Cd=5 N.s/m, g=0. This means that the external 

damping has a marked role in the vibrational systems, despite the great importance of the 

internal damping. Moreover, the amplitudes for case 1 is clearly lower than the ones for case 2, 

which enforces the relevance of the internal damping. On the other hand, Fig. 5b illustrates that 

the vibrations are damped in a shorter time for an increasing internal viscoelasticity parameter, 
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and the system will be damped faster. It is also worth noting that the amplitude of motion 

reduces for increasing values of g. 

To investigate the influence of the initial displacement enforced to the system, Fig. 6 plots the 

time-history response for three different values of the initial amplitude. It can be seen that 

higher values of the initial displacement yield to increasing amplitudes, and more cycles are 

required to lose the initial energy, up to a complete standstill of the system. An interesting point 

is that an increasing value of the initial displacement results in a more pronounced reduction of 

the global domains, which means that the larger the initial displacement, the greater the effect of 

the external damper. To have a further validation between the internal and external damping 

Figs. 6b and 6c are also shown. These figures represent that the number of periodic cycles, for 

the same time-history, is about 4.5 cycles, when Cd=0, g=5N.s/m, and of about 5 cycles, when 

Cd=5N.s/m, g=0. These cases confirm that the internal damping makes the system reasonably 

slower, due to an increasing viscidity in the model’s molecules. 

5. Conclusions 

This work focuses on the vibrational behavior of a carbon nanotube in the presence of internal 

and external viscoelasticity. Based on a modified Timoshenko’s beam theory together with a 

nonlocal strain gradient model, we obtain the frequency equations in a nanoscale form. The 

Navier’s solution procedure is here employed to solve analytically the partial differential 

equations of the problem, and to determine the time increment of the modeled system. The main 

conclusions can be summarized as follows: 

 A weaker elastic foundation yields to a reduced number of periodic cycles.  

 A decrease of the nonlocal parameter and an increase of the length scale parameter 

introduce a delay in the damping of the nanotube system. 
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 It is very important to use an internal damping in vibrating mechanical systems. It was 

found that the external damping increases the damping rate of the system, whereas the 

internal damping reduces significantly the amplitudes of the motion. 
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Table 1. Comparison of nondimensional natural frequencies.  
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n n
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  , m= (0.9 to 1.1), E=1TPa, υ= 0.3, h=1nm, ks=5/6 for TBT. 

 

L/h (e0a)2 Present 

Euler-

Bernoulli 

theory (EBT) 

[69] 

Timoshenko beam theory 

(TBT) 

Sinusoidal beam theory 

(SBT) 

[68] [69] [68] [69] 

5 

0 9.2943 9.7112 9.2740 9.2740 9.2752 9.2752 

1 8.8587 9.2647 8.8477 8.8477 8.8488 8.8488 

2 8.4788 8.8747 8.4752 8.4752 8.4763 8.4763 

3 8.1495 8.5301 8.1461 8.1461 8.1472 8.1472 

4 7.8693 8.2228 7.8526 7.8526 7.8536 7.8536 

10 

0 9.7209 9.8293 9.7075 9.7075 9.7077 9.7077 

1 9.2666 9.3774 9.2612 9.2612 9.2614 9.2614 

2 8.8857 8.9826 8.8713 8.8713 8.8715 8.8715 

3 8.5483 8.6338 8.5269 8.5269 8.5271 8.5271 

4 8.2320 8.3228 8.2196 8.2196 8.2198 8.2198 

20 

0 9.8377 9.8595 9.8281 9.8281 9.8282 9.8282 

1 9.3840 9.4062 9.3763 9.3763 9.3764 9.3764 

2 8.9917 9.0102 8.9816 8.9816 8.9816 8.9816 

3 8.6456 8.6604 8.6328 8.6328 8.6329 8.6329 

4 8.3329 8.3483 8.3218 8.3218 8.3218 8.3218 
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Table 2. Mechanical characteristics of the nanotube [70-74] 

 

 

 

 

 

 

 

 

 

Fig. 1. Molecular scheme of a SWCNT resting on a visco-Pasternak matrix. 

 

 

 

 

 

 

E=1 TPa, ν=0.19 

h=0.34 nm, d=0.7 nm,  

ρ=2300 kg/m3 
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(a)  kG=1GN, kw=1GPa 

 

(b) kG=0.5GN, kw=0.5GPa 

Fig. 2. Variation of the time-history with the external damping (e0a=1nm, l=2h, m=1, g=5N.s/m, L=10d). 
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(a) l=2h 

 

(b) e0a=1nm 

Fig. 3. Variation of the time-history with the length scale (Cd=5N.s/m, m=1, kG=1GN, kw=1GPa, 

g=5N.s/m, L=10d). 
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(a) 

 

(b) 

Fig. 4. Variation of the time-history with the length-to-thickness ratio (e0a=1nm, l=2h, Cd=5N.s/m, m=1, 

kG=1GN, kw=1GPa, g=5N.s/m). 
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(a) Cd=0; 5N.s/m 

 

(b) Cd=5N.s/m 

Fig. 5. Variation of the time-history with the external (a) and/or internal (b) damping coefficients 

(e0a=1nm, l=2h, m=1, kG=1GN, kw=1GPa, L=10d, Cd=5N.s/m). 
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(a) Cd=5N.s/m, g=5N.s/m 

 

(b)  Cd=0 N.s/m, g=5N.s/m 

 

(c) Cd=5N.s/m, g=0N.s/m 

Fig. 6. Variation of the time-history with the initial amplitude (e0a=1nm, l=2h, m=1, kG=1GN, kw=1GPa, 

L=10d). 
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