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Abstract. ML algorithms are very effective tools for medical data an-
alyzing, especially at image recognition. Although they cannot be con-
sidered as a stand-alone diagnostic tool, because it is a black-box, it can
certainly be a medical support that minimize negative effect of human-
factors. In high-risk domains, not only the correct diagnosis is important,
but also the reasoning behind it. Therefore, it is important to focus on
trustworthiness which is a concept that includes fairness, data security,
ethics, privacy, and the ability to explain model decisions, either post-hoc
or during the development. One of the interesting examples of a medi-
cal applications is automatic SVD diagnostics. A complete diagnosis of
this disease requires a fusion of results for different lesions. This paper
presents preliminary results related to the automatic recognition of SVD,
more specifically the detection of CMB and WMH. The results achieved
are presented in the context of trustworthy AI-based systems.

Keywords: Machine Learning · Artficial Intelligence · Deep Learning ·
Small Vessels Disease · Explainable AI · Trustworthiness.

1 Introduction

Machine learning algorithms have achieved a tremendous success in various im-
age processing tasks. In particular, they obtain state-of-the-art performance in
exploring and analyzing huge and complex datasets, especially images. Ones of
the most important for society image recognition applications are the medical
ones as an imaging is an integral part of medical diagnostics [1]. They include
analysis of various type of image data, including 2D and 3D, from ultasonogra-
phy (USG), computed tomography (CT), magnetic resonance imagining (MRI),
endoscopy and others. In addition to careful analysis, a description of the exami-
nation and conclusions are needed. Medical data analysis is tedious and difficult.
Moreover, the importance and sensitivity of this field makes it extremely impor-
tant to describe it properly and clearly in order to make them trustworthy.

Accepted Manuscript of: Maria, F. et al. (2023). Trustworthy Applications of ML Algorithms in Medicine - Discussion and Preliminary Results for a Problem of 
Small Vessels Disease Diagnosis. In: Kowalczuk, Z. (eds) Intelligent and Safe Computer Systems in Control and Diagnostics. DPS 2022. Lecture Notes in 
Networks and Systems, vol 545. Springer, Cham. https://doi.org/10.1007/978-3-031-16159-9_1

https://doi.org/10.1007/978-3-031-16159-9_1


2 M. Ferlin et al.

The clinician’s description of the examination is biased in some ways. First
of all, the analysis is subjective and based on the one’s experience. Hence, some-
times it happens that two independent specialists assess the examination in
different way, resulting in low observer reliability. Next, in some cases, there is a
lack of standardized guidelines for evaluating the examination, while in others,
despite many guidelines and rules, there are still some inconsistencies between
descriptions provided by two specialists (e.g. for image data annotations). An-
other factor is the wide range of diagnostic equipment used, which varies de-
pending on the manufacturer consequently influencing user’s habits. Moreover,
there are plenty of human-factors that strongly affect the evaluation process such
as resting level, personal issues, and mood. Considering the above, the Clinical
Decision Support System (CDSS) based on machine-learning [2]. seems to be a
great opportunity to support clinicians in their daily work and minimize nega-
tive effect of human-factors while following guidelines. Such solutions can also
support diagnostics in areas where access to specialists is limited. What is more,
recent studies proved that the level of agreement of the AI tools with the ex-
perts was at least as good as agreement between two experts [3], and therefore,
although the ML algorithms cannot be considered as a stand-alone tool, it can
certainly be a valuable medical support.

In general, humans are reticent to adopt techniques that are not directly
interpretable, tractable and trustworthy even if they reduce the bias of human
participation. Deep learning (DL) models are such techniques. In high-risk appli-
cations like medical ones ceding medical decision-making to DL models without
understanding of diagnosis rationale may violate the principle of non-maleficence
and expose patients to harm. Therefore, in such applications, it is important to
pay attention to system trustworthiness. From the clinician’s point of view, in
order to be acceptable, ML-based systems should have a level of transparency
that allows their decisions to be verified by medical specialists in their level of
domain knowledge. Explainable AI (XAI) techniques can provide effective tools
to support this [4].

Small Vessel Disease (SVD) is a term which encompasses a variety of changes
in human brain which are attributed to pathological changes in the small ves-
sels. Anatomically, small vessels are arterioles, capillaries and venules. These
structures are too small to be visible in CT or MRI. For this reason we focus on
evaluating the lesions which appear as a result of pathologic changes to the small
vessels. Among the factors which can lead to SVD we can distinguish: arteri-
olosclerosis, cerebral amyloid angiopathy, inherited/genetic small vessel diseases,
CNS vasculitis, venous collagenosis or radiotherapy [5].

Basic tool for diagnosing SVD is neuroimaging, which makes it a task that
can be automated by machine learning algorithms analyzing the image. Neuro-
logical changes can be visualized in both CT and MRI, with the latter being
the current gold standard for diagnosis. For many years, there were no struc-
tured guidelines for reporting the imaging findings which was affecting the com-
munication between specialists. Comparing imaging studies without structured
reporting caused difficulties in evaluating the progress and severity of the dis-
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ease. In 2013, an international working group from the Centres of Excellence in
Neurodegeneration published Standards for Reporting Vascular changes on Eu-
roimaging (STRIVE). STRIVE provided a common advisory about terms and
definitions for the features visible on MRI as well as with structured reporting
of changes related to SVD on neuroimaging [6]. According to STRIVE, the MRI
scans, can detect a spectrum of white matter lesions which include: recent small
subcortical infarcts, lacunes, white matter hyperintensities, perivascular spaces
and microbleeds. Brain atrophy is another pathology observed in the course of
SVD [6, 7]. Reviewing diverse imaging findings can sometimes be difficult for
human eye to decide where the edges of the disease are and therefore to accu-
rately monitor the disease and assess its severity. To help in this case, automatic
solutions come to the rescue, which can provide expert’s support and therefore
speed up establishing patients diagnosis and providing appropriate treatment.

In this paper we highlight the challenge of creating an automatic tool for
diagnosis of SVD and present some preliminary results regarding this topic.
Moreover, together with medical practitioners, we have tried to cast this problem
into the trustworthy AI framework so that the achieved analysis results can be
accepted by the medical practitioners and applied to their practice.

2 Diagnosis of small vessel disease - fundamentals

SVD is a blanket term for lesions which appear in imaging studies secondarily
to damage of the small vessels endothelium. Their descriptions along with a
graphical representation (Fig. 1) are given below.

Fig. 1. Samples of SVD lesions

Recent small subcortical infarcts (RSSI) account for almost 25% of all
ischemic strokes [5, 8]. RSSIs occur in the areas supplied by a single perforating
artery, which are devoid of collateral circulation [6, 9]. According to STRIVE they
are best identified on DWI and their diameter is usually smaller than 20mm. On
DWI RSSIs are hyperintense focal lesions which strongly restrict water diffusion.
They are also hyperintense on T2 and FLAIR. RSSIs are often not visible on
CT. Over time, they can evolve into white matter hyperintensities or lacunes,
but complete regression is also a possibility [6, 10].
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White matter hyperintensities (WMH) are sometimes referred to as
leukoaraiosis. They are usually symmetrical, variable in size lesions, which are
hiperintense on T2 and FLAIR and isointense or slightly hipointense on T1.
Aetiology of WMHs differs depending on location, which can be either periven-
tricular white matter (PVWM) or the deep white matter (DWM). Lesions in
PVWM were found to be the result of one of the following: ependymal loss,
differing degrees of myelination in adjacent fiber tracts or cerebral ischemia with
associated demyelination, whereas DWM lesions are ischemic in nature and their
size corresponds with the increasing severity of tissue damage. To quantify the
severity of WMHs Fazekas scale is used. It divides WMH lesions based on their
location (either PVWML or DWML); lesions located in each of the areas receive
a grade from 0 to 3 based on the size of lesions [11].

Lacunes are oval or round lesions which appear at the location of previous
small subcortical infarcts or less frequently, microbleeds. They are hypointense
on FLAIR and T1 and their diameter is 3-15mm. Usually, lacunes have a hyper-
intense rim on FLAIR, which allows us to distinguish them from the perivascular
spaces [6, 10].

Perivascular spaces (PVS) are also known as Virchow-Robin spaces. They
are fluid-filled spaces which surround arterioles, capillaries and venules in the
brain. Once enlarged, PVSs become visible in imaging studies as a linear or round
hypointense lesions on FLAIR and T1 with basal ganglia being the most common
location. Rarely, they can become significantly enlarged and form tumefactive
perivascular spaces which can cause mass-effect on surrounding brain tissue [12].
Although, PVSs are normal anatomical structures, it was observed that their
number and size increases with the patients age and appearance of other lesions
associated with SVD. It was also reported, that there is an association between
PVS’s and subsequent onset of dementia [13].

Cerebral microbleeds (CMB) are lesions which are hipointense on T2*/
SWI sequences and isointense on T1, T2 and FLAIR. They are usually round or
ovoid and smaller than 10mm. The size of microbleeds may vary due to “bloom-
ing artifact” which may cause cause micro bleeds to appear larger than they ac-
tually are. Differential diagnosis includes intracranial calcifications, metastases
susceptible to bleeding and diffuse axonal injury [6, 10].

Brain atrophy is a common outcome of the disease process which affects
brain parenchyma and it can be either focal or generalised. Evaluating the change
in the size of the brain might be a valuable tool in monitoring the progress of
the disease [6, 10]. It is important to note the variety of these lesions in terms
of their nature, appearance, number of occurrences, and how they are diagnosed
and described by medical specialists. Different sequences such as SWI or FLAIR
are used to recognize them and different numbers of examinations are performed
to visualize the changes over time as in the case of brain atrophy. In addition,
with some lesions such as CMB the valuable information is the number of lesions,
while with brain atrophy it is its volume. Due to the factors described above,
in order to make a reliable diagnosis, many principles and standards must be
considered.
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Table 1. Simple and amended SVD score based on [14].

MRI feature Quantity Simple Amended
SVD score SVD score

Microbleeds ≥ 1 1 1
Lacunes 0 0 0

1-2 0 1
3-5 1 2
>5 1 3

White matter 0 0 0
hyperintensities 1 0 1
(Fazekas score) 2 1 2

3 1 3
Total SVD score (range) 0-3 0-7

Two scales, simple and amended SVD score, were developed to diagnose SVD,
they are visible in Table 1. In the case of both scales, any score higher than 0
indicates SVD. The higher the score, the more severe SVD is. It is obvious that
with such a complex and complicated issue, it is not easy to provide a clear-
cut diagnosis. Such diagnosis should be evaluated through the use of various
diagnostic tools and consultation with other specialists.

One of these tools may be AI algorithms, however, because of the diversity in
how each SVD component is evaluated, it is not possible to use a single universal
classifier for this purpose. A decision system that comprehensively diagnoses
SVD and assesses its level of severity must consist of an assembly of multiple
ML algorithms and a system that draws final conclusions based on it, such as a
fuzzy inference system, or a neural classifier.

3 The need for trustworthiness of AI-based systems

ML-based CDSS systems, despite their many advantages, still have many signifi-
cant flaws and weaknesses. The fully automated and complex data-driven nature
of AI models especially deep learning seems to be a double-edged sword. First
of all, the model performance strongly depends on provided training data. Un-
fortunately, the data are usually affected difficult to avoid bias [15]. Examples of
such bias include the type and settings of the imaging machine, reasons for the
examination, systematic errors by clinicians, and non-statistical appropriateness
of the examination group for a given disease due to age, associated diseases,
sex, race, etc. of the patients. Additionally, medical image data are usually high-
resolution and multidimensional complex structure, while ML algorithms work
with down-scaled input, resulting in blurring or even loss of important details
[16]. Another data problem is that the publicly available benchmark data that
would allow comparisons of the proposed approaches differ significantly from the
raw data e.g. from the hospitals. They are often already prepossessed/balanced
in some way or there is no information about the survey cohort and imaging
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Fig. 2. Terms that are included in trustworthiness

parameters. Furthermore, DNN architectures consist of hundreds of layers and
millions of parameters, resulting in a complex black-box model. Additionally,
these architectures also, similarly to data, suffer from bias such as evaluation
bias, deployment bias or illusion of control bias. Those pose problems related to
their robustness, transparency of operation, and ability to generalize, which in
turn implies problems related to their trustworthiness. [17, 18].

In the literature, the term trustworthiness includes many different terms.
Their definitions are shown in Fig. 2. From the computer science point of view
those terms means often something else then for the end users – the clinicians in
this case. The developers for example need tools for sanity check the information
system and in particularly AI models, mainly in terms of reliability, speed of
operation and performance. Medical specialists, on the other hand, need to be
shown and explained the links between the features extracted by AI algorithms
from the data and their decisions, often giving less attention to the accuracy.
It is important to pay attention to reliability of such a system because it might
gain trust from the end-users, so it is a key driver for its deployment in clinical
practice [18]. When thinking about the CDSS, an important question to consider
is what can be done better by AI and what can be done better by the (human)
clinician? Simple but time-consuming and tedious work should be left to the
algorithms to not waste clinicians time, whereas complex, uncertain problems
still require human expertise. In this regard, a reasonable approach is a fusion
of both – interactive machine learning with a "human in the loop" that would
combine the conceptual understanding and experience that clinicians have and
automation of simple tasks. However, the simplicity and intuitiveness of CDSS
should be taken into account so that the collaboration between the system and
the clinician does not consume the clinician’s mental resources [16].

The principle of non-maleficence in the context of medical, which states that
clinicians have a fundamental duty not to harm their patients either intentionally
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or not, creates the need for explainability. This is necessary in the context of
using these black-box models. In such vulnerable and fragile fields as medicine
any mistakes, especially false negative results, are a significant problem. The
ability of AI to explain its results enables disagreements between the system
and human experts to be resolved. It allows the latter to make an informed
decision whether or not to rely on the system’s recommendations and to provide
proper treatment, consequently increasing their trust in the system [17].

What is more, as a result of legal and forensic constraints, such as the Euro-
pean Union General Data Protection Regulations (GDPR), the Health Insurance
Portability and Accountability Act (HIPAA), and the U.S. Food and Drug Ad-
ministration (FDA), it is not allowed to use AI systems as black boxes [18,
16]. The clinician must be able to understand why a certain decision has been
reached. Due this future human AI interfaces should focus on explainability and
interpretability.

A relatively new but rapidly growing field of AI addressing these problems
is Explainable Artificial Intelligence (XAI). XAI covers a wide range of features,
that can be analysed and explained in different ways. One of them is post-hoc
explainability techniques, that suites bests for making AI-based medical tools
more transparent and understandable for medicans not familiar with software
and AI nuances. Post-hoc explainability include textual explanations, visual ex-
planation, local explanations, explanations by example, explanations by simpli-
fication, and feature relevance explanation. These techniques can be applied to
existing systems without changing their structure, algorithms, or other features.
In our opinion, such techniques should be applied on a wide scale, both to sys-
tems already being in use and those being developed, especially in the context
of medical applications to meet the described expectations of users and to solve
the problems highlighted above - user-centric approach.

4 ML-based system development

Nowadays, systems employing machine learning algorithms, and in particular
deep learning are black-box models. That means that we provide an input and
get the output, but we are not sure, what happens inside - on what ground the
decision is made.

Designing an algorithm for medical purposes is not particularly different from
ML algorithms in other fields. It consist of standard steps like: problem defini-
tion, data preparation, model design, evaluation and trustworthy assessment.
However, it requires special precautions, as it strongly affects a human health
and life. In order to have a reliable and robust system, we must make every effort
to eliminate as many biases as possible at each stage.

Problem definition: This step requires a comprehensive analysis regarding
the nature of the problem. Things that have to be considered are the solved
task from the technical point of view e.g. classification, detection, segmentation
or other; what data must be provided and in what form, what is the expected
output etc.
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In order to provide a responsible system it is crucial to consult with the
specialists in the field. When the specific problem is concerned it is probable
that ML specialist do not have enough knowledge to take into account the whole
nature of the problem.

For instance, considering small vessel disease, we assume that we want a
0-100% score describing the probability of SVD presence. However, there are
several markers that indicate SVD and each of them must be addressed. In case
of cerebral microbleeds the required information is their amount in the brain.
Therefore, a detection task is sufficient as each of CMBs must be found and
counted. When it comes to recent small subcortial infarcts, lacunes or white
matter hyperintensities there is a need for segmentation, because these abnor-
malities might be much bigger than CMB and have irregular shapes. Moreover,
the size is crucial regarding the assessment of the patient’s condition and it
can not be calculated only based on the detection information. In contrast, a
completely different approach should be taken to assess the presence of brain
atrophy. This symptom cannot be quantified directly, but relatively to previous
examinations. It is usually done by comparison of the white and grey matter
volume from two scans.

An important issue at this point is also to make a choice between a 3D and
2D space. Although, MRI images are in 3D form, they actually consist of many
2D images merged together. Current 3D ML algorithms have high computation
costs, so using a 2D space seems more suitable. However, it is important to
provide information from adjacent slices as they carry valuable information,
especially for distinguishing specific lesions from its mimics.

Another challenge is visibility of the lesions on different sequences of one
scan. Depending on the lesion characteristic and stage, it is visible on specific
sequence. For instance, to distinguish WMH from WML, a DWI sequence is
crucial - only WMH will be visible. On the other hand, RSSI will be probably
visible only for around 10 days at ADC map. Taking it into consideration, it
occurs, that proper SVD diagnosis system design is actually a merge of several
independent blocks.

Data preparation: Normally, physicians diagnose SVD based on the MRI
image analysis, particularly T2-weighted, T1-weighted and gradient echo/ T2*/
susceptibility-weighted sequences. In such case, the same images should be passed
as an input to the system. While human can adapt and change the image proper-
ties during the analysis, like for example Gamma value. In the automatic process
all the data have to be prepared before the process. It forces a careful data pre-
processing, including normalization, brightness and contrast adjustment, resize
etc. In case of 2D algorithm, this is also a step of introducing the knowledge
from adjacent slices.

Moreover, ML algorithms require properly labeled data for pattern recogni-
tion. It is often a problem as data labeling is a very laborious and time-consuming
process, however, it is a crucial step as it affects the whole training. Unfortu-
nately, it should be performed by radiologists, as ML specialists simply do not
have enough knowledge to create trustworthy annotations. Although it may seem
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a simple task, the annotating rules should be agreed: whether the lesion is an-
notated in every image that it is seen or only in one it is best seen; the level
of preciseness; the agreement between several raters etc. Any mistakes in labels,
new bias is introduced into the system and it leads to some incorrect features
generation. Lack of databases is a major obstacle regarding ML system synthe-
sis. Although medical facilities are in possession of huge amount of data, they
are not annotated. To the best of our knowledge, there are no publicly available
databases of SVD disease. Even for microbleeds - the simplest type of lesion
in this disease - there are only few, small ones. Therefore, even after designing
a system, it is hard to compare results with the state-of-the-art. Undeniably,
medical databases creation is essential for development of automatic diagnosis.

It is also worth mention, that there are some benchmarks regarding image
processing, that enable ML algorithms performance check. They mainly serve
for algorithms development and comparison. In case of such specific tasks, they
do not apply. Not only because of the problem nature, but also shortage in data
and its weaker preparation. Therefore, achieving results similar to those achieved
on benchmarks is extremely hard.

Model preparation and regularization: At this stage the actual machine-
learning model - or models must be prepared. Firstly, the decision regarding the
model has to be made. There is a number of already pre-trained models that
can be taken advantage of or alternatively a custom model can be designed. The
decision is usually made based on the problem specification. Some models deal
better with small objects - like Faster RCNN, other do a precise segmentation
and some are faster or have lower computational costs - like YOLO or MobileNet.
There is a wide range of architectures for detection [19] and segmentation [20].
At the time of decision, all the features of the model have to be taken into
account.

Next, the hyperparameters have to be carefully adjusted. Additionally, some
regularization techniques should be applied to improve the system performance.
There are plenty of solutions that can be added at this point. The base one
is data augmentation - although usefull, should be performed carefully, to not
produce images that has no connection with real examples, as it may introduce
additional bias.

In case of lack of labeled data, self-supervised learning seems to be a promis-
ing approach [21]. There is also a branch of providing a domain knowledge into
the system [22], which may be extremely useful, especially in medicine. It is obvi-
ous, that patient’s medical history and his health state are crucial for diagnosis.

Model evaluation: A proper model evaluation is integral with the system
design process. There are a lot of metrics describing the system performance.
They have to thoughtfully selected not only to show the results considering
various aspect, but also to enable comparison between proposed solutions for a
given problem. Different metrics are used for classification - accuracy, sensitivity
and specificity; detection - sensitivity, precision, F1 score, mAP; segmentation -
pixel accuracy, F1score or mAP.
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Depending on the problem additional matrics may be informative and should
be considered, like in case of microbleeds detection number of false positive
predictions per scan and per one CMB is often reported.

Further important issue is the system balance. For instance, sensitivity and
precision should be at the similar level. If sensitivity is relatively high and preci-
sion low, there is a high generation of false positive predictions. In other words,
system is looking for the exact lesion and does not distinguish it from its mim-
ics. On the other hand, when the precision is high and the sensitivity is low at
thesame time, probably not many objects of interest are found. Such events may
easily lead to radiologist’s lost of trust in the system’s performance.

It is worth remembering, that not only providing all the metrics is important,
proper interpretation is even more valuable as it can point out some features of
the system and be useful for improvement.

Regarding the limitations of training datasets, the good practice is to provide
a nameplate with the characteristic of the system and data that it is intended
for. It is obvious, that system trained on male Europeans in their 60s will not
be satisfying enough in case of Asian women in their 40s.

Model trustworthiness: In case of ML-based systems an inherent step in
system’s creation is providing its trustworthiness. Although it is an area that
still requires a lot of research, consideration of aspects mentioned in Section 3
should be taken. Unfortunately, without this step, even accuracy close to 100%
does not make a system able to be clinically used.

5 Small Vessels Disease diagnosis - Preliminary results

Our goal is to develop an automatic, trustworthy system for small vessel disease
diagnosis. As described in previous sections it is very complex and challenging
problem. One of the main elements of the system being developed is a system
for cerebral microbleeds detection [23]. Our solution utilizes the Faster RCNN
deep neural network, enhanced by the extra post-processing algorithm for false
positive and false negative predictions reduction. The algorithm is based on
comparison of predictions from adjacent slices and strongly improves system
performance. Our solution achieved 92,62% sensitivity, 89,74% precision and
90,84% F1 score. In the Fig. 3a we present an example of microbleeds detection
by the system.

Regarding issues related to the reliability and robustness of the system perfor-
mance, we conducted a comprehensive study of the factors affecting the model
development and learning process. The most important aspect is information
from adjacent slices inclusion by merging three one-channel images into one
three-channels. It enables using a two dimensional solution for three dimensional
problem, whereas 3D neural networks are much more computational demand-
ing. We also found out that, in case of CMBs, applying only one label in the
slice, where the lesion is the most visible, is more effective than multiple labels
in every slice, where the lesion is visible. Further, a larger image size improves
the sensitivity of detection, as the lesion occupies a larger absolute area. Unfor-

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Title Suppressed Due to Excessive Length 11

Fig. 3. Samples of detected: a) CMB b) WMH. Ground truth – red, prediction – blue.

tunately, such training has higher computational cost, so the balance between
these two aspects must be maintained. Next, by the number of experiments and
domain knowledge a proper threshold of prediction confidence score to maintain
a balance between sensitivity and precision.

Our current research focuses on a system for diagnosing white matter hyper-
intensities (WHM). We approached the problem using a similar method to that
used for the detection of CMBs. The preliminary results are presented in Fig. 3b.
However, it is clearly seen, that detection is not sufficient for this task. Although
areas of interest are found with quite good confidence score, any volume and
metrics count is inadequate in the current state. One reason is the lack of suffi-
cient amount of labeled data. However, it seems that a much more appropriate
approach is to use segmentation instead of detection.

Probably, lacunes, PVS or RSSI also will have to be segmented as WMH,
as they have similar geometrical properties, however, different sequences will be
considered. While, brain atrophy is a entirely different case - here the volume of
brain should be calculated and compared with previous examination.

6 Concluding remarks

The CDSS is first of all designed for clinicians, therefore it should be simple and
intuitive in usage, but also reliable and trustworthy.

In recent years, many research report improving metrics of examined algo-
rithms. Obviously, this is an crucial factor regarding AI development. However,
discussions with medical specialists suggest that they care more about reliabil-
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ity, transparency, and intuitiveness of that systems than about their, sometimes
only seemingly, high performance.

Biases are inevitable in ML systems, but all measures should be taken in order
to limit their influence. Interpretation of the system and all the rules standing
behind enables understanding of decision process making. Moreover, explanation
of a specific decision may ease the radiologist work as it not only suggest the
diagnosis, but shows the critical areas in the image.

Next essential issue states for results presentation. As long as there are med-
ical regulations regarding disease classification and progression assessment, the
system output should be presented in the same way - for example in case of
SVD in STRIVE scale. Hence, when designing an applicable diagnosis system
we need to pay a special attention to the matter of responsibility if we want it
to be used in medical practice.

There are a set of recommendations for ensuring designing of responsible
and trustworthy AI systems [24]: use a human-centered design approach; iden-
tify multiple metrics to assess training and monitoring; directly examine your
raw data, understand the limitations of the dataset and the model; conduct rig-
orous unit tests to test each component of the system in isolation and as a whole;
together with a field specialists design the model using concrete goals for fairness
and inclusion; use representative datasets to train and test the model, check the
system for biases; analyze performance by using different metrics; treat inter-
pretability as a core part of the user experience, understand the trained model;
provide explanations that are understandable and appropriate for the user.

We strongly believe, that matter of trustworthiness still requires a lot of
research and methods development, nevertheless it will finally enable wide usage
of ML algorithms in medicine.
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