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a b s t r a c t

The Turán number ex(n,G) is the maximum number of edges in any n-vertex graph that
does not contain a subgraph isomorphic to G. A wheel Wn is a graph on n vertices obtained
from a Cn−1 by adding one vertex w and making w adjacent to all vertices of the Cn−1. We
obtain two exact values for small wheels:

ex(n,W5) =

⌊n2

4
+

n
2

⌋
,

ex(n,W7) =

⌊n2

4
+

n
2

+ 1
⌋
.

Given that ex(n,W6) is already known, this paper completes the spectrum for all wheels
up to 7 vertices. In addition, we present the construction which gives us the lower bound
ex(n,W2k+1) > ⌊

n2
4 ⌋ + ⌊

n
2 ⌋ in general case.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, all graphs considered are undirected, finite and contain neither loops nor multiple edges. Let G be such a
graph. The vertex set of G is denoted by V (G), the edge set of G by E(G), and the number of edges in G by e(G). Let dG(v) be
the degree of vertex v in G, δ(G) and ∆(G) be the minimum andmaximum degree of vertices of G, ω(G) be the clique number
of a graph G and χ (G) be the chromatic number of graph G. Define G[S] to be a subgraph of G induced by a set of vertices
S ⊆ V (G) and G[S, R] to be a bipartite subgraph of Gwith the bipartition {S, R}. G1 ∪ G2 denotes the graph which consists of
two disconnected subgraphs G1 and G2. We will use G1 +G2 to denote the join of G1 and G2 defined as G1 ∪G2 together with
all edges between G1 and G2. Cm denotes the cycle of length m. A wheel Wn is a graph on n vertices obtained from a Cn−1 by
adding one vertex w and making w adjacent to all vertices of the Cn−1.

The Turán number ex(n,G) is the maximum number of edges in any n-vertex graph that does not contain a subgraph
isomorphic to G. A graph on n vertices is said to be extremal with respect to G if it does not contain a subgraph isomorphic to
G and has exactly ex(n,G) edges. EX(n,G) is the set of all extremal graphs of order nwith respect to G.

Amainmotivation for proving results for Turán numbers is that they are often useful in Ramsey Theorywhere the original
extremal statements would not suffice (see [3] for example). Our goal is to determine the Turán numbers of wheels Wk for
odd k. We describe families of extremal graphs for k = 5, 7 and present a very simple lower bound for all odd k.
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2. Known results

First, we recall the result which was proved by Mantel in 1907.

Theorem 1 (Mantel, [5]). The maximum number of edges in an n-vertex triangle-free graph is ⌊
n2
4 ⌋.

By Theorem 1 and sinceW3 = C3, it is easy to have the property that for all integers n, n ≥ 3, ex(n,W3) = ⌊
n2
4 ⌋. The famous

Turán’s theorem may be stated as follows.

Theorem 2 (Turán, [8]). Let G be any subgraph of Kn such that G is Kr+1-free. Then the number of edges in G is e(G) = ⌊
(r−1)n2

2r ⌋.
In particular, ex(n, K4) = ⌊

n2
3 ⌋.

As a special case, for r = 2, one obtains Mantel’s theorem. Since W4 = K4, we obtain that for all integers n, n ≥ 3,
ex(n,W4) = ⌊

n2
3 ⌋. In 1964 Erdős proved the following theorem.

Theorem 3 (Erdős, [4]). Let G be any graph such that |E(G)| ≥ ⌊
n2
4 ⌋ + ⌊

n
4⌋ + ⌊

n+1
4 ⌋ + 1. Then G contains a W5.

By Theorem 3 we immediately obtain the upper bound for ex(n,W5), namely ex(n,W5) ≤ ⌊
n2
4 ⌋ + ⌊

n
4⌋ + ⌊

n+1
4 ⌋ + 1. The

first author [2] proved that for all k ≥ 3 and n ≥ 6k − 10, if G is a graph that contains no subgraph isomorphic to W2k, then
ex(n,W2k) = ⌊

n2
3 ⌋. In addition, he showed that ex(n,W6) = ⌊

n2
3 ⌋.

If G is an arbitrary graph whose chromatic number is r > 2, then by Erdős–Stone–Simonovits theorem [7] we have that
ex(n,G) = ( r−2

r−1 + o(1))
( n
2

)
. This result determines the asymptotic behavior of ex(n,Wk).

It is interesting that exact values for ex(n, C4) and ex(n, C6), i.e. for rims of wheelsW5 andW7 remain unknown in general.
Even in the case of the C4 cycle values are known only for n ≤ 32 (the last result being ex(32, C4) = 92, obtained in 2009 by
Shao, Xu and Xu), whereas for larger n only the upper or lower bounds are known.

3. Progress on ex(n,W2k+1)

3.1. ex(n,W5)

If G andH havemaximumdegree 1, then the join G+H does not containW5. So defineMn by taking K⌊n/2⌋,⌈n/2⌉ and adding
a maximummatching within each partite set.

Lemma 4. The graph Mn does not contain a W5 as a subgraph.

Proof. Every subgraph induced on 3 vertices ofW5 is connected. If i, j, k have the same parity then, by definition ofMn, graph
Mn[vi, vj, vk] has at most one edge, so it is a disconnected graph. If we assume that Mn has a subgraph W5, then at least 3
vertices of this subgraph W5 are indexed by numbers which have the same parity (we denote the vertices of Mn as in the
definition). A graph induced in W5 by these three vertices is connected, but a graph induced in Mn by these vertices is not
connected. This means thatMn does not contain a subgraphW5. □

Theorem 5. The graph Mn is an extremal graph with respect to W5.

Proof. Weknow thatM1 = K1,M2 = K2,M3 = K3 andM4 = K4 are extremal. Assume that eachMn is extremal for n < N . We
will show thatMN is also extremal. Let G be an extremal graph of order N . Let H be a 4-vertex subgraph of Gwith maximum
possible number of edges. □

Lemma 6. A graph G of order 5 contains W5 as a subgraph if and only if δ(G) ≥ 3.

Proof. If G contains W5, it must be a spanning subgraph and so δ(G) ≥ 3. If δ(G) ≥ 3, then G contains a vertex of degree 4
and G contains aW5. □

Consider the graph G \ V (H). From Lemma 6 we know that each vertex from G \ V (H) is adjacent to at most 2 vertices
fromH . If any v ∈ G\V (H) was adjacent to three vertices ofH , then the graph G[V (H)∪{v}]would containW5 as a subgraph
or a 4-vertex subgraph with a greater number of edges than H . From the above it follows that

e(G) ≤ e(H) + 2 · |V (G \ V (H))| + e(G \ V (H))

≤

(
4
2

)
+ 2 · (N − 4) + ex(N − 4,W5) = e(Mn).

If G is extremal, then MN does not containW5. In addition, e(MN ) ≥ e(G), soMN is also extremal. □
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Table 1
The values of ex(n,W7) and |EX(n,W7)| for all 7 ≤ n ≤ 26.

n 7 8 9 10 11 12 13 14 15 16

ex(n,W7) 17 21 25 31 37 43 50 57 65 73
|EX(n,W7)| 2 1 5 1 1 2 1 2 1 2

n 17 18 19 20 21 22 23 24 25 26

ex(n,W7) 82 91 101 111 122 133 145 157 170 183
|EX(n,W7)| 1 2 1 2 1 3 2 3 1 2

Corollary 7.

ex(n,W5) =

⌊n2

4
+

n
2

⌋
.

Bataineh, Jaradat and Jaradat [1] presented a very extensive characterization of all extremalW5-free graphs.

3.2. ex(n,W7)

It is not hard to verify that if G has maximum degree 1 and H has maximum degree 2 and does not contain P5, then the
join G + H does not contain W7. So let Gm be the graph formed from m isolated vertices by adding a maximum matching.
Further, let Hm be any 2-regular m-vertex graph formed by the disjoint union of copies of 3- or 4-cycles. (It can be checked
that Hm exists form ≥ 6.) Then define the graph Nn as Gk−1 + Hk+1 if n = 2k, and Gk + Hk+1 if n = 2k + 1. It can be checked
that Nn has k2 + k + 1 edges if n = 2k, and k2 + 2k + 2 edges if n = 2k + 1.

From this construction we see that ex(2k,W7) ≥ k2 + k + 1 and ex(2k + 1,W7) ≥ k2 + 2k + 2.

Theorem 8. For all k ≥ 5, if ex(2k,W7) = k2 + k + 1, then ex(2k + 1,W7) ≤ k2 + 2k + 2.

Proof. Let G be a graph of order 2k + 1 which does not containW7 and assume that e(G) = k2 + 2k + 3.
Observe that δ(G) ≥ e(G) − ex(2k,W7) = k + 2. Since e(G) ≥

(2k+1)(k+2)
2 > k2 + 2k + 3 = e(G) for all k ≥ 5, we deduce

the result. □

Theorem 9. For all k ≥ 5, ex(2k,W7) = k2 + k + 1.

Proof. The cases 5 ≤ k ≤ 8 were checked by computational calculations (see Table 1).
Suppose that k > 8 is the smallest number such that ex(2k,W7) > k2 + k + 1, then for all 5 ≤ l < k we have

ex(2l,W7) = l2 + l + 1 and by Theorem 8 ex(2l + 1,W7) = l2 + 2l + 2.
Let G be a graph of order 2k with e(G) = k2 + k + 2 edges and G does not contain W7 as a subgraph. We see that

δ(G) ≥ e(G) − ex(2k − 1,W7) = k + 1. If δ(G) ≥ k + 2, then e(G) ≥
2k(k+2)

2 > e(G) for all k > 2. So we have δ(G) = k + 1.
The remaining part of the proof is divided into four cases according to the value of ω(G). Clearly ω(G) < 7.

Case 1. ω(G) = 6
Let K be a clique of order 6 in G andW = V (G)\V (K ). To avoidW7, every vertex inW is joined to K by at most two edges.

We have(
6
2

)
+ 2(2k − 6) + ex(2k − 6,W7) = k2 − k + 10 < e(G),

a contradiction.

Case 2. ω(G) = 5
Let K = {v1, v2, v3, v4, v5} be a maximum clique and W = V (G) \ K . Consider the edges of the bipartite graph

H = G[K ,W ]. Let W 4
= {v ∈ W : dH (v) = 4}, W 3

= {v ∈ W : dH (v) = 3} and W r
= W − W 4

− W 3, obviously if
v ∈ W r then dH (v) < 3.

One can easily verify that if |W 4
| ≥ 2, then we immediately have W7. If |W 4

| = 1, then to avoid W7 in G we have that
|W 3

| = 0. Since e(H) ≤ 4 + 2(2k − 6) < 5(k − 3) = 5(δ(G) − 4) ≤ e(H) for k > 7, we obtain that in fact W 4
= ∅. Note

that W 3 in G is an independent set and each edge in G[K ,W 3
] is adjacent to the same three vertices of K , say {v1, v2, v3}.

From δ(G) = k + 1, it follows that |W r
| + 3 ≥ δ(G), so |W 3

| ≤ k − 3. In fact |W 3
| = k − 3 because of the inequality

e(G) ≤ 10 + 3|W 3
| + 2|W r

| + ex(2k − 5,W7) = k2 + 5 + |W 3
|.

Note that for every vertex v in W 3 we have that dG(v) = k + 1. The bipartite graph G[W r ,W 3
] is complete, therefore

∆(G[W r
]) ≤ 2. If not, then we have W7 in G[W ]. Hence, e(G[W ]) ≤ |W 3

||W r
| +

2|W r
|

2 = k2 − 4k + 4 and e(G) ≤

10 + 3|W 3
| + 2|W r

| + e(G[W ]) ≤ k2 + k + 1, a contradiction.
We haveW 4

= W 3
= ∅, |W r

| = 2k − 5 but e(G[K ,W ]) ≤ 2(2k − 5) < 5(k − 3) = 5(δ(G) − 4) < e(G[K ,W ]) for k > 5, a
contradiction.
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Case 3. ω(G) = 4
Let K = {v1, v2, v3, v4} be a maximum clique andW = V (G) \ K .
Let Ui be the set of vertices from W such that they are adjacent to all vertices from V (K ) \ {vi}. This means that if v ∈ Ui

then dG[K ,W ](v) = 3. To avoid K5 all Ui are independent. Let the remaining vertices ofW be W r .
First observe that if Ui, Uj, Ul are not empty for i ̸= j ̸= l ∈ {1, 2, 3, 4}, then we immediately have W7. Without loss of

generality, let us assume that U3, U4 are empty. Observe that if |U1 ∪ U2| > 2, then the set U1 ∪ U2 is independent.

Subcase 3.1 U1 = U2 = ∅

We have e(G) ≤ ex(2k − 4,W7) + 6 + 2(2k − 4) = k2 + k + 1 < e(G), a contradiction.

Subcase 3.2 |U1 ∪ U2| = 1
Without loss of generality, let w ∈ U1. To avoid a contradiction similar to the previous subcase, for all vertices v ∈ W r

we have dG[K ,W ](v) = 2. This means that one vertex from K has degree k + 2 and the remaining three vertices have degree
k + 1 in G, so at least one vertex fromW has degree greater than or equal to k + 2 in G.

Let X be all vertices fromW r adjacent tow and Y = W r
\X . Obviously |X | ≥ k−2. It is not hard to see that ifG[X] contains

P4 or K3 as a subgraph, then G[K ∪U1 ∪ X] containsW7 as a subgraph. If |X | ≥ 4, then there exist at least 3 vertices of degree
1 in G[X]. These vertices are adjacent to all vertices in Y , therefore ∆(G[Y ]) ≤ 2, |X | = k − 2, |Y | = k − 3, subsequently
δ(G[X]) = 1, δ(G[Y ]) ≥ 1 and ∆(G[Y ]) ≤ 2, so each vertex from Y is adjacent to all or all except one vertex from X .

If there exists a vertex p ∈ Y such that dG(p) > k + 1, then dG[Y ](p) = 2 and p is adjacent to every vertex in X . Let p1, p2
be the vertices adjacent to p in Y . If there exists P3 in G[X], then one end-vertex of the path is adjacent to p1 and the other
to p2, then the graph induced by the path, p1, p2, p and an additional vertex from X adjacent to p1 and p2 contains W7 as a
subgraph. Contrary, there exist two independent edges in G[X] such that their vertices are adjacent to p1 or p2. These edges
with p1, p2 and p induce a graph withW7 as a subgraph.

If there exists a vertex p ∈ X such that dG(p) > k + 1, then dG[X](p) ≥ 2. If dG[X](p) = 2 then p is adjacent to every vertex
in Y . Let p1 and p2 be the adjacent vertices to p in X . Note that p1, p2 have degree 1 in G[X]. There exist two independent
edges in G[Y ]. Since p, p1 and p2 are adjacent to vertices incident to these independent edges, then they both with w induce
a graph with a subgraphW7. If dG[X](p) > 2, then vertex w, three vertices adjacent to p in X and two vertices adjacent to p in
Y induce a graph with a subgraphW7.

From the above arguments, every vertex ofW has degree k + 1 in G, so e(G[W ]) < ex(2k − 5,W7), a contradiction.

Subcase 3.3 |U1 ∪ U2| = 2
Let w1, w2 ∈ U1. There exists a vertex p ∈ W r adjacent to w1 and two vertices of K , v1 and another vertex. A graph

induced by K ∪ U1 and p containsW7 as a subgraph.
Let w1 ∈ U1, w2 ∈ U2 and Q1, Q2 be the set of neighbors of w1, w2 in W r , respectively. Every vertex of W r is adjacent to

at least one vertex of K .
Let s1 ∈ Q1 ∩ Q2 such that s1 is adjacent to a vertex in K and s2 ∈ Q1 is adjacent to two vertices in K . The graph induced

by K ∪ U1 ∪ U2 ∪ {s1, s2} contains a subgraph W7.
If there are no vertices in Q1 ∩ Q2 adjacent to one vertex in K then every vertex in Q1 or Q2 is adjacent to two vertices

in K . Without loss of generality, let Q1 be such a set. It is easy to see that the set Q1 is independent. The maximal degree
of w1 in G[K ∪ U] is 4. From the assumption δ(G) ≥ k + 1, we conclude |Q1| ≥ k − 3. Let X = W r

\ Q1. Since each
vertex from Q1 has degree at least k + 1 in G and Q1 is independent, we conclude |X | ≥ k − 3, |Q1| = |X | = k − 3 and
w1 is adjacent to w2. If Q1 ̸= Q2, then a vertex from Q2 \ Q1, any two vertices from Q1, vertices w1, w2 and K induce a
graph which contains W7 as a subgraph. Since k ≥ 7, we have that ∆(G[X]) ≤ 2. From all previous considerations we have
e(G) ≤ 6 + 7 + 2(2k − 6) + 2(k − 3) + (k − 3) + (k − 3)(k − 3) = k2 + k + 1, a contradiction.

Subcase 3.4 |U1 ∪ U2| > 2
Let W 2

= {v ∈ W : dG[K ,W ](v) = 2}, W 1
= {v ∈ W : dG[K ,W ](v) ≤ 1} and U = U1 ∪ U2. At least one of the sets U1, U2

has order greater than or equal to 2, say U1 is such a set. Let u1, u2 ∈ U1. If there exist vertices w1, w2 ∈ W 2 (not necessarily
different) such that u1 is adjacent to w1 and u2 is adjacent to w2, then the graph G[K ∪ {u1, u2, w1, w2}] contains W7. In the
opposite case, one of the vertices u1, u2 is not adjacent to any vertex from W 2 and since U is an independent set, we have
W 1

≥ k − 2. By the inequalities e(K ) + 3|U | + 2|W 2
| + |W 1

| + ex(2k − 4,W7) ≥ e(G) and |U | + |W 2
| + |W 1

| = 2k − 4, we
have |U | ≥ |W 1

| + 1, so |U | + |W 1
| ≥ 2k − 3, a contradiction.

Case 4. ω(G) = 3
Let K = {v1, v2, v3} be the clique in G and the remaining vertices are W . Let Ui be a set of all vertices from W such that

they are adjacent to vertices K − vi. This means that if v ∈ Ui then dG[K ,W ](v) = 2. To avoid K4 all Ui are independent. Let the
remaining vertices ofW beW r and U1 ∪ U2 ∪ U3 = U .

First observe that if there is a K2 ∪ K2 between Ui and Uj where i ̸= j ∈ {1, 2, 3}, then we immediately have W7. Since
3(δ(G) − 2) ≤ e(G[K ,W ]) ≤ (2k − 3 − |U |) + 2|U |, we have |U | ≥ k. There exists a vertex in U adjacent to at most two
vertices in U . This vertex is adjacent to at least k − 3 vertices in W r . The equalities |U | = k and |W r

| = k − 3 are obtained
by the above inequalities and the property |W r

| + |U | = 2k − 3.
If there is a vertex of degree at most 1 in U , then we have a contradiction with δ(G) = k + 1. Since graphs G[Ui ∪ Uj] do

not contain K2 ∪ K2, the only graph with the property is Kk−2,1,1.
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Note that all vertices of degree 2 in U are joined to every vertex of W r but none of the vertices of degree k − 1 in U are
joined to any of vertices W r . Moreover, to avoid W7 we have ∆(G[W r

]) ≤ 2, so none of the vertices in G has degree greater
than k + 1, a contradiction. □

Corollary 10.

ex(n,W7) =

⌊n2

4
+

n
2

+ 1
⌋
.

At the end of this subsection we enumerate all of the extremal graphs for 7 ≤ n ≤ 26. An important property to generate
these graphs is that if they exist, then they can be selected from the sets of all W7-free graphs with the number of edges
greater than or equal to ⌈

n2
4 +

n
2 − 1⌉. The sets were generated using the modified McKay’s graph generation program

geng [6].
For the cases when n ∈ {7, 8, 9}, the example of the extremal graph is C4 + (K2 ∪ (n − 6)K1). More precisely, the sets

EX(n,W7) for these values of n are as follows:

• EX(7,W7)={C4 + (K2 ∪ K1), K2 + (K4 ∪ K1) }
• EX(8,W7)={C4 + (K2 ∪ 2K1)}
• EX(9,W7)={C4 + (K2 ∪ 3K1), (K3 ∪ K2) + (K2 ∪ 2K1), (C4 ∪ K1) + (K2 ∪ 2K1), C5 + 4K1, 2C3 + (K2 ∪ K1)}.

3.3. ex(n,W2k+1), where n ≥ 2k + 1 and k ≥ 4

Let us recall that we denote by aG the graph consisting of a disconnected subgraphs G. It is not hard to see that the graph
(K2 ∪ aK1) + bKk does not contain W2k+1 as a subgraph for all a, b ∈ N. We will try to maximize the number of its edges.
We need to determine the number of disconnected copies of Kk. Consider the situation when b = ⌊

n+k+1
2k ⌋. In this case,

a = n − 2 − k⌊ n+k+1
2k ⌋ and ex(n,W2k+1) ≥ e(Kk)b + kb(n − kb) + 1.

Theorem 11. Assume that k ≥ 4 and n ≥ 2k + 1. Then

ex(n,W2k+1) ≥

⌊
n + k + 1

2k

⌋((
k
2

)
+ kn −

⌊
n + k + 1

2k

⌋)
+ 1 >

⌊
n2

4

⌋
+

⌊n
2

⌋
.
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