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Abstract For two- and three-dimensional elastic structures made of families of flexible elastic fibers under-
going finite deformations, we propose homogenized models within the micropolar elasticity. Here we restrict
ourselves to networks with rigid connections between fibers. In other words, we assume that the fibers keep
their orthogonality during deformation. Starting from a fiber as the basic structured element modeled by the
Cosserat curve beammodel, we get 2D and 3D semi-discrete models. These models consist of systems of ordi-
nary differential equations describing the statics of a collection of fibers with certain geometrical constraints.
Using a specific homogenization technique, we introduce two- and three-dimensional equivalent continuum
models which correspond to the six-parameter shell model and the micropolar continuum, respectively. We
call two models equivalent if their approximations coincide with each other up to certain accuracy. The two-
and three-dimensional constitutive equations of the networks are derived and discussed within the micropolar
continua theory.

1 Introduction

Lattice beam structures are widely used in civil, mechanical, and aerospace engineering; see, e.g., [17,32,57].
They are formed from a periodic network of interconnected beams or rods as shown in Fig. 1 where two-
dimensional (2D) and three-dimensional (3D) networks are presented. In a certain sense, these structures
mimic crystalline lattices and their properties. Among very perspective properties such as a light weight,
relatively high stiffness and flexibility, they have also many other useful characteristics such as an acoustic
response and thermal insulation that make these materials very interesting for applications. One can meet such
architectured materials for very wide ranges of scales, from nano- and microscales up to macrostructures. It is
worth mentioning the famous Shuchov’s tower and other lattice structures; see, e.g., [4,36]. Among examples
of beam lattice materials, it is worth mentioning open cell foams [3,33,53] and aerogel [48,72].

As the basic structural element of considered structures is a beam, in Sect. 2we briefly consider the nonlinear
beam theory. Let us note that mechanics of one-dimensional structures has a long history of development after
such names as Euler and Bernoulli. Mechanics of rods and beams is summarized in many books; see, for
example, [1,22,41,43,51,67,77,81]. Nowadays, the rod and beam structures are widely used in engineering
as relatively simple robust models; see, e.g., [5,20,83]. Here we use the model originally introduced by the
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80-233 Gdańsk, Poland
E-mail: victor.eremeev@pg.edu.pl; eremeyev.victor@gmail.com

V. A. Eremeyev
Don State Technical University, Gagarina sq., 1, Rostov on Don, Russia 344000

http://orcid.org/0000-0002-8128-3262
http://crossmark.crossref.org/dialog/?doi=10.1007/s00707-019-02527-3&domain=pdf


V. A. Eremeyev

Fig. 1 2D and 3D structures made of fibers

Fig. 2 Scheme of a metal net with rigid connections

Cosserat brothers and nowadays known as a Cosserat curve. Within this direct approach, the mechanics of
rods was developed in seminal papers by Ericksen and Truesdell [29], Green et al. [38,39], DeSilva and
Whitman [15], and Kafadar [44]. Let us note that despite their one-dimensional nature for the solution of
the nonlinear beam equations we require a proper numerical tool; see, e.g., [10,11,14,37,54,79,82] and the
references therein. Here we consider the Cosserat model with certain constraints. In particular, we neglect
shear deformations. The equilibrium equations consist of a system of ordinary differential equations.

In Sect. 3, we consider a 2D elastic network similar to a fishnet made of orthogonal flexible fibers. The
mechanics of elastic networks was studied in many works; see, e.g., the seminal works by Rivlin [66], Pipkin
[61–63], Steigmann and Pipkin [76]. Recently, the further developments in this topic have resulted in the model
of lattice shell presented in [16,34,70,73–75]. Here we restrict ourselves to a particular class of a network
assuming the orthogonality of network beams during deformations. In other words, we assume that beams are
connected to each other by rigid joints. A typical example of such a structure is given in Fig. 2, where a scheme
of a metal net widely used in modern civil engineering as a fence is presented. The case of an elastic network
with inextensible fibers was considered in [23].

For this net, we introduce an averaged continuummodel that is a deformablematerial surfacewith particular
material properties described within the framework of the six-parameter shell theory [13,49,50]. Within the
six-parameter shell theory, the kinematics of a shell is described by three translations and three rotations as
in the rigid body dynamics or in the Cosserat (micropolar) continuum [30]. So, the model is also called the
micropolar shell theory [24,26]. In the theory, only forces and moments including drilling ones are considered
as stress characteristics which are also used in the static boundary conditions. Within the theory, solutions
of many problems were given numerically and/or analytically; see, e.g., [8,9,13,60,85]. We briefly recall
the basic equations of the micropolar shell statics paying the most attention to the constitutive relations and
possible constraints for deformations. Let us note that usually shell equations are derived for a solid shell-like
body; see, for example, the through-the-thickness integration technique presented in [13,49,50]. As here we
consider deformations of completely different structures similar to a fishnet, one needs another approach; see,
e.g., [45,64,86] for lattice shells.

Comparing discrete models for a 2D network and shell in Sect. 4, we present the constitutive equations for
the shell which is equivalent in certain sense to the considered network. In fact, the homogenized constitutive
equation for an elastic network has a particular form of strain energy of a six-parameter shell. The obtained
results can be relatively easy generalized for networks made of extensible, shear deformable, initially curved
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Two- and three-dimensional elastic networks as micropolar continua

and naturally twisted fibers. The only crucial point for the derivation is the orthogonality of fibers during
deformations. This assumption results in the possibility to describe rotations of all fibers using one rotation
tensor field.

Finally, in Sect. 5 we consider 3D structures made of three orthogonal families of flexible elastic fibers.
In a similar way, comparing the discretization for the 3D network and a micropolar continuum we derive
the continuous nonlinear micropolar model. As was mentioned in [26], homogenization is one of the main
sources for derivation of the constitutive equations of micropolar solids; see, e.g., [6,18,19,31,35,69] and the
references therein.

2 Cosserat curve as a fiber model

Following [1,22,26,81], we briefly consider the Cosserat curve model as a model of a single fiber (beam).
This approach is also known as the directed curve model. From the mathematical point of view, the model
can be treated as a one-dimensional (1D) Cosserat continuum. In other words, we consider 1D medium with
kinematically independent fields of translations and rotations. The deformation of the beam is described as
a mapping from a reference placement into a current (deformed) one. In the reference placement, the beam
occupies a volume located in the vicinity of a base curve C0 which transforms after deformation into another
curve C; see Fig. 3. For C0, we use the natural parametrization given by the formula R = R(s), where s is the
referential arc-length parameter. In order to describe the cross-sectional orientation of the beam, we introduce
the unit orthogonal vectorsDk = Dk(s) called directors,Dk ·Dm = δkm , where δkm is theKronecker symbol, the
centered dot stands for the scalar product and Latin indices take values 1, 2, 3. Inwhat follows, we use the direct
tensor calculus as introduced in [25,47,52,71]. Without loss of generality, we assume that D1 is tangent to C0.

The position and orientation of the beam in the current placement are described by vectorial fields

r = r(s), dk = dk(s), k = 1, 2, 3, (1)

where r and dk are the position vector in the current placement and the current directors, respectively. Note
that here we also used s as a coordinate.

i1

i2

i3

r

R

s

C0

C

d3

d1

d2

D2

D1

D2

Fig. 3 Deformations of a beam
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V. A. Eremeyev

In order to introduce relative deformations, we use the displacement vector u and the proper orthogonal
tensor P = dk ⊗ Dk , where ⊗ denotes the dyadic product. So a deformation of a directed curve is described
by the vector- and tensor-valued fields

u = r(s) − R(s), P ≡ dk ⊗ Dk = P(s). (2)

The Lagrangian equilibrium equations take the following form [1,22,26,81]:

t′(s) + f = 0, m′(s) + r′(s) × t(s) + c = 0 (3)

where t and m are vectors of forces and moments, f and c are external forces and moments given along C0,
× stands for the cross product, and the prime denotes the derivative with respect to s, (. . .)′ = ∂(...)

∂s .
Considering hyperelastic materials only, we introduce the line strain energy density as follows:

U = U(e,k), e = PT · r′ − D1, k = −1

2
(PT · P′)× (4.1-3)

where e and k are vectorial strain measures, T× denotes the vectorial invariant of a second-order tensor T
introduced by Gibbs [84, p. 275] and defined as follows:

T× = (Tmnim ⊗ in)× = Tmn im × in

for any basis im ,m = 1, 2, 3. Vectors of internal forces and moments relate to the strain energy by the relations

t = ∂U
∂e

· PT, m = ∂U
∂k

· PT. (5)

Let us note that the line strain energy density given by (4.1-3) is the straightforward application of the material
frame-indifference principle [78]. Indeed, let us consider the general form of U as a function of r and P and
their derivatives,

U = U(r, r′,P,P′). (6)

The material frame-indifference principle says that U should be invariant under transformations

r → O · r + a, P → O · P (7)

where O and a are arbitrary constant orthogonal tensor and vector, respectively; see [26,59] for more details
in the case of micropolar solids. Considering O = I, where I is the 3D unit tensor, and arbitrary a, we get the
following invariance property:

U(r, r′,P,P′) = U(r + a, r′,P,P′), ∀ a. (8)

So U does not depend on r itself. Taking O = PT, we have the dependence

U(r′,P,P′) = U(PT · r′,PT · P,PT · P′). (9)

Obviously, relation (9) is invariant under transformations (7), so it satisfies the material frame-indifference
principle. As P is orthogonal, tensor PT · P′ is skew-symmetric. As any skew-symmetric tensor, it can be
represented by its axial vector k,

PT · P′ = k × I,

which is given by (4.3). Finally, we take strain measures that vanish if r = R and P = I and get (4.1-3).
The system of Eqs. (3)–(5) complemented by the corresponding boundary conditions constitutes a bound-

ary value problem, which describes finite deformations of an elastic beam taking into account its stretch-
ing/elongation, bending, torsion, and transverse shear deformations. So this model is rather general. Never-
theless, let us also note that in the case of beams we have even more complex models which take into account
also warping, such as in the case of beams of thin-walled cross section [22,41,51] or spatial beamlike lattice
structures [12,40,55,56]. In what follows, we neglect transverse shear deformations. In this case, d1 will be
tangent to C. So e takes the form e = εD1, and U depends on scalar and vectorial strains [22,81],

U = U(ε,k). (10)
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Two- and three-dimensional elastic networks as micropolar continua

For inextensible beams, we have that ε = 0 and T becomes a vectorial Lagrange multiplier related to the
constraint e = 0. Using further simplifications, one can get even more simple beam theories. For example, the
following quadratic form can be used as a strain energy density:

U = 1

2
Ksε

2 + 1

2
k · D · k (11)

where Ks and D are stiffness moduli responsible for stretching, bending, and torsion, respectively. For the
derivation of the constitutive equations for beams undergoing large deformations, we refer to the numerous
works; see, e.g., [2,7,21,22,41,81] and the references therein.

3 Discrete beam lattice

Using the above presented above beam model, we consider a structure made of two orthogonal families of
beams as shown in Fig. 4 called the beam lattice. For simplicity, we assume that the beams have the same
geometrical and physical properties and the cells of the lattice are squares. Here we have n horizontal and m
vertical beams with distance h between intersection points. Using the orthogonality, we can chose directors
D1 and D2 as tangent vectors to the first and second family of beams, respectively. In what follows, we denote
the quantities related to these two families by indices 1 and 2. Introducing the Cartesian coordinates s1 and s2
and numbering nodes as in Fig. 4, we get the formulae for the position of (i, j)-node,

s(i)
1 = (i − 1)h, s( j)

2 = ( j − 1)h, i = 1, . . .m + 1, j = 1, . . . n + 1.

As for a single beam considered above, here for each beam we again have two kinematical descriptors r
and P which are defined on the lattice lines s1 = s(i)

1 , s2 = s( j)
2 , i = 1, . . .m, j = 1, . . . n. In other words, the

complete kinematics of the beam lattice is described by a set of vector- and tensor-valued functions

r =r1 ≡ r( j)
1 (s1), P = P1 ≡ P( j)

1 (s1), j = 1, . . . n,

r =r2 ≡ r(i)
2 (s2), P = P2 ≡ P(i)

2 (s2), i = 1, . . .m.

Here P1 = d(1)
k (s1) ⊗Dk , P2 = d(2)

k (s2) ⊗Dk , where D
(α)
k and d(α)

k are the referential and current directors of

the α-family of the beams. Note that in the nodes, i.e., in points (s(i)
1 , s( j)

2 ), we have

d(1)
k (s(i)

1 ) = d(2)
k (s( j)

2 ).

As a result, we get the following geometrical constraints:

r( j)
1 (s(i)

1 ) = r(i)
2 (s( j)

2 ), P( j)
1 (s(i)

1 ) = P(i)
2 (s( j)

2 ). (12)

D1

D2

D3

s1

s2

(i, j) (i+ 1, j)

(i, j + 1) (i+ 1, j + 1)

h

h (m − 1)h

(n− 1)h

(1, 1)

(m, n)

Fig. 4 Rectangular beam lattice in a reference placement
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In other words, in the nodes we can use the same values of position vectors and rotation tensors. From the
physical point of view, this means that the infinite rigidity of beams connections results in consistent bending
and torsion of the beams. In particular, the orthogonality condition also imposes that torsion in one of the
beams is consistent with the inclination of the axis of the other one.

The Lagrangian equilibrium equations of the beam lattice consist of the system of static equations for every
beam, that is,

t′1,1(s1) + f1 = 0, (13)

m′
1,1(s1) + r′

1,1 × t1(s1) + c1 = 0, (14)

t′2,2(s2) + f2 = 0, (15)

m′
2,2(s2) + r′

2,2 × t2(s2) + c1 = 0. (16)

Here tα and mα are vectors of forces and couples related to the α-family, α = 1, 2, fα and cα are external
fields of forces and moments, and (. . .)′,α = ∂(...)

∂sα
is the differentiation with respect to sα , where sα plays a role

of the arc-length parameter of the α-family of beams.
Numbering nodes as in Fig. 4, we write the total energy functional of the beam lattice as a sum

E =
n∑

j=1

m−1∑

i=1

∫ s(i+1)
1

s(i)1

U(s1) ds1 +
m∑

i=1

n−1∑

j=1

∫ s( j+1)
2

s( j)2

U(s2) ds2 (17)

where m and n are numbers of beams in these families, and we introduced the line strain energy densities

U(sα) = U(εα,kα), (18)

and the following strain measures are introduced:

ε1 = r,1 · P · D1 − 1, ε2 = r,2 · P · D2 − 1, kα = −1

2
(PT · P′

,α)×. (19)

In what follows, we consider finite difference approximation of (17). Using the trapezoidal rules

∫ s(i+1)
1

s(i)1

U(s1) ds1 = h

2

[
U(s(i)

1 ) + U(s(i+1)
1 )

]
,

∫ s( j+1)
2

s( j)2

U(s2) ds1 = h

2

[
U(s( j)

2 ) + U(s( j+1)
2 )

]
,

we transform (17) into a discrete form,

E = h

2

n∑

j=1

[
U(s(1)

1 ) + U(s(m)
1 ) + 2

m−1∑

i=2

U(s(i)
1 )

]

+h

2

m∑

i=1

⎡

⎣U(s(1)
2 ) + U(s(n)

2 ) + 2
n−1∑

j=2

U(s( j)
2 )

⎤

⎦ .

Let us note that the trapezoidal rule corresponds to linear approximation of the integrands. As a result, the total
energy of the lattice shell is expressed by the values of U in the nodes, that is, in the points (s(i)

1 , s( j)
2 ):

E =
m∑

i=1

n∑

j=1

ci j
[
U(s(i)

1 ) + U(s( j)
2 )

]
. (20)

Here ci j are weight coefficients which can be obtained after summation procedure. Using (18), Eq. (20) takes
the form

E =
m∑

i=1

n∑

j=1

ci j
[
U

(
ε
(i j)
1 ,k(i j)

1

)
+ U

(
ε
(i j)
2 ),k(i j)

2

)]
(21)
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Two- and three-dimensional elastic networks as micropolar continua

with the explicit dependence on the strain measures calculated in the nodes.
Motivating by constraints (12) instead of the functions of one variable, we introduce surface fields r =

r(s1, s2) andP = P(s1, s2) such that these fields coincidewith the latter when s1 = s(i)
1 , s2 = s( j)

2 , i = 1, . . .m,
j = 1, . . . n, respectively,

r(s1, s2)
∣∣
s2=s( j)2

= r( j)
1 (s1), P(s1, s2)

∣∣
s2=s( j)2

= P( j)
1 (s1), (22)

r(s1, s2)
∣∣
s1=s(i)1

= r(i)
2 (s2), P(s1, s2)

∣∣
s1=s(i)1

= P(i)
2 (s2). (23)

Replacing double summation in (21) by double integration, we get the continuous analogue of the beam
lattice total energy,

E =
∫∫

ω

Ũ dω, Ũ = U(ε1,k1) + U(ε2,k2), (24.1,2)

where for simplicity we keep the same notations for the energy densities. One can see that the approximation
of (24.1,2) up to certain accuracy leads to (21). As the discretization of total energy functionals of the discrete
beam lattice (17) and its continuous analogue (24.1,2) lead to the same formulae up to a certain accuracy, we
call these models equivalent. In order to characterize the equivalent continuous beam lattice shell, we consider
the nonlinear resultant shell theory.

4 Continuous beam lattice shell: micropolar shell

Following [24,26], let us briefly introduce the governing equations used within the six-parameter shell theory.
Here the kinematics of a shell is described by six scalar degrees of freedom that are three translations and
three rotations as in the case of the Cosserat (micropolar) continuum [26,30]. So the model is also called the
micropolar shell theory. The basic equations of the six-parameter shell theory can be derived using through-
the-thickness integration of the 3D equations of motion [13,49,50,58] or within the so-called direct approach
[24,26]. In a current placement, the base surface of the shell has the position vector x = x(q1, q2), whereas its
orientation is determined by the rotation tensor Q(q1, q2). Here q1 and q2 are Lagrangian surface convective
coordinates.

Lagrangian equilibrium equations on the base surfaceω and typical boundary conditions along its boundary
∂ω = �1 ∪ �2 = �3 ∪ �4 take the form

∇s · T + f = 0, ∇s · M + [
FT
s · T]

× + c = 0, (25)

�1 : x = x0(s), (26)

�2 : ν · T = τ (s), (27)

�3 : Q = H(s), (28)

�4 : ν · M = μ(s) (29)

where T and M are the stress resultant and surface couple stress tensors of the first Piola–Kirchhoff type,
Fs = ∇sx is the surface deformation gradient, and f and c are external surface forces and couples, respectively.
Here we introduced the surface nabla and divergence operators by the formulae

∇s(. . .) =Xα ⊗ ∂(. . .)

∂qα
, ∇s · (. . .) = Xα · ∂(. . .)

∂qα
, α, β = 1, 2,

Xα · Xβ =δα
β , Xβ = ∂X

∂qβ
, N = X1 × X2

|X1 × X2| , Xα · N = 0

where X = X(q1, q2) is the position vector of the shell base surface in the reference placement and N is the
unit vector of the normal. In boundary conditions (26)–(29), x0(s), H(s), τ (s), and μ(s), are given along the
corresponding parts of the shell contour position vector, rotation tensor, forces and moments, respectively, and
ν is the vector of unit outer normal to ∂ω such that ν · N = 0.
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For a hyperelastic shell, there exists the surface strain energy densityW as a function of two surface strain
measures E and K,

W = W(E,K), (30)

E = Fs · QT − A, K = 1

2
Xα ⊗

(
∂Q
∂qα

· QT
)

×
(31)

where A = I − N ⊗ N is the surface metric tensor. For hyperelastic shells, T andM are given by

T = ∂W
∂E

· QT, M = ∂W
∂K

· QT. (32)

In order to compare the homogenized constitutive relation (24.2) with one for shells (30) as well as strain
measures (19) and (31), we identify qα with sα , r with x and P with Q:

qα = sα, r = x, P = Q.

So we get

Xα = Xα = Dα, A = Xα ⊗ Xα = Dα ⊗ Dα, Fs = Dα ⊗ r,α,

E = Dα ⊗ r,α · PT − Dα ⊗ Dα, K = 1

2
Dα ⊗ (

P,α · PT)
× = Dα ⊗ kα.

As a result, we can conclude that

ε1 = D1 · E · D1, ε2 = D2 · E · D2, kα = Dα · K.

According to the geometrical meaning of E andK [59], ε1 and ε2 describe stretching/elongation along two
orthogonal directions related to the beams axes, whereas kα describes the changes of curvature.

Finally this identification leads to the following strain energy density of a micropolar shell:

W = U(D1 · E · D1,D1 · K) + U(D2 · E · D2,D2 · K). (33)

So (24.2) is a particular case of (30). In other words, the homogenized model of a beam lattice can be modeled
within the framework of six-parameter shell theory.

In [27], the detailed analysis of constitutive relations for shells was provided considering the material
symmetries and the invariance properties of W . Here the material symmetry group contains rotations about
D3 = N of angles ±π

2 and mirror reflections I − D1 ⊗ D1 and I − D2 ⊗ D2. So (33) belongs to the class of
orthotropic shells.

Let us also note that the form of (33) is similar to one used in the nonlinear elasticity and given by

W = f (λ1) + f (λ2) + f (λ3) (34)

where λi are principal stretches and f is a given function; see Valanis and Landel [80].

5 3D elastic network and its continuous counterpart

The derivation of the constitutive relations for 3D elastic networks with rigid joints mimics the above presented
above2Dcase.Let us consider an elastic networkwith cubic cells as shown inFig. 1.We introduce the referential
directors Dk , k = 1, 2, 3, as the unit tangent vectors to corresponding beam axes; see Fig. 5. The considered
network occupies in the reference placement a parallelepiped given by the inequalities

0 ≤ x ≤ mh, 0 ≤ y ≤ nh, 0 ≤ z ≤ lh

where x , y, and z are Lagrangian Cartesian coordinates, h is the cell size, and m, n, and l are the numbers of
beams in x-, y-, and z-directions, respectively.
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Two- and three-dimensional elastic networks as micropolar continua

D1

D2

D3

h

h

h

x

y

z

Fig. 5 Cubic cell and directors

Here we have the following kinematical descriptors:

r = r(i)
1 (x), P = P(i)

1 (x), i = 1, . . . ,m, (35)

r = r( j)
2 (y), P = P( j)

2 (y), j = 1, . . . , n, (36)

r = r(k)
3 (z), P = P(k)

1 (z), k = 1, . . . , l. (37)

In what follows, we again assume that the beams have the same material and geometrical properties, so we can
use the same strain energy function U for each beam. As a result, the constitutive relations differ from each
other in their arguments only,

U = U(ε1,k1), U = U(ε2,k2), U = U(ε3,k3), (38)

where the strain measures are derived as follows:

ε1 = D1 · r,1 · P · D1 − 1, ε2 = D2 · r,2 · P · D2 − 1, (39)

ε3 = D3 · r,3 · P · D3 − 1, ka = −1

2

(
PT · P,a

)
× , a = 1, . . . , 3, (40)

and for εa and ka we use the corresponding kinematical descriptors from (35)–(37).
The total energy functional takes the following form:

E =
l∑

k=1

n∑

j=1

m−1∑

i=1

∫ x (i+1)

x (i)
U(x) dx

∣∣∣∣
y=y( j),z=z(k)

+
l∑

k=1

n−1∑

j=1

m∑

i=1

∫ y( j+1)

y( j)
U(y) dy

∣∣∣∣
x=x (i),z=z(k)

+
l−1∑

k=1

n∑

j=1

m∑

i=1

∫ z(k+1)

z(k)
U(z) dz

∣∣∣∣
x=x (i),y=y( j)

(41)

where for cubic cells we have x (i) = (i − 1)h, y( j) = ( j − 1)h and z(k) = (k − 1)h. Using the trapezoidal
rule for the integrands in (41), we get an approximation

E =
l∑

k=1

n∑

j=1

m∑

i=1

ci jk
[
U(x (i)) + U(y( j)) + U(z(k))

]
, (42)
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which uses the values of U in the nodes only. Here ci jk are weight coefficients which can be obtained after
summation. Replacing U(x (i)), U(y( j)), and U(z(k)) by their expressions by the strain measures, we get

E =
l∑

k=1

n∑

j=1

m∑

i=1

ci jk
[
U(ε

(i jk)
1 ,k(i jk)

1 )

+ U(ε
(i jk)
2 ,k(i jk)

2 ) +U(ε
(i jk)
3 ,k(i jk)

3 )
]
. (43)

In order to find the continuous counterpart of (43), we introduce fields

r = r(x, y, z), P = P(x, y, z),

in which restrictions coincide with (35)–(37). As a result, we get a continuous counterpart of (43) given by
the relation

E =
(m−1)h∫

0

(n−1)h∫

0

(l−1)h∫

0

[U(ε1,k1) + U(ε2,k2) + U(ε3,k3)] dxdydz. (44)

This energy functional can be characterized within the micropolar elastic continuum model.
Following [30,59], let us briefly recall the constitutive theory for micropolar solids. The kinematics is

described by the fields

x = x(X), Q = Q(X)

where x and X are the position vectors in current and reference placements, respectively, and Q is the micro-
rotation tensor. The strain energy density of a 3D micropolar elastic body is given by

W = W(E,K) (45)

where the natural strain measures E and K are defined as follows:

E = F · QT − I, (∇Q) · QT = −K × I, F = ∇x (46)

where F is the deformation gradient and ∇ is the 3D Lagrangian nabla operator.
If we identify as previously x as r and Q as P, we get relations between the couples εa , ka and E, K:

ε1 = D1 · E · D1, ε2 = D2 · E · D2, ε3 = D3 · E · D3, ka = Da · K. (47)

Obviously, these relations are straightforward generalizations of the 2D case considered above.
Thus the homogenized model of 3D elastic networks with rigid joints can be characterized as a micropolar

elastic solid with the strain energy density given by

W = U(D1 · E · D1,D1 · K) + U(D2 · E · D2,D2 · K) + U(D3 · E · D3,D3 · K). (48)

This constitutive relation inherits symmetry of the beam lattice. Indeed, according to [28] this material belongs
to the class of micropolar solids with cubic symmetry.

It is worth noting that (48) has the form proposed for the nonlinear elasticity by Valanis and Landel [80].
So (33) and (48) can be treated as a generalization of the Valanis–Landel hypothesis for micropolar solids.

For example, considering (11) we get the following constitutive relations:

W = 1

2
Ks(ε

2
1 + ε22 + ε23) + 1

2
ka · D · ka

= 1

2
Ks(Da · E · Da)

2 + 1

2
(Da · K) · D · (Da · K)

= 1

2
E : C : E + 1

2
K : G : K (49)

where C and G are the fourth-order tensors of elastic moduli given by

C = KsDa ⊗ Da ⊗ Db ⊗ Db, G = DpqDa ⊗ Dp ⊗ Da ⊗ Dq ,

Dpq are the components of D in the basis {Dk}, and : stands for the double dot product defined as follows:

(a ⊗ b) : (c ⊗ d) = (a · c)(b · d)

for any vectors a, b, c, and d.
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6 Conclusions

In the paper, we discussed the governing equations for an elastic network which consists of flexible fibers
undergoing large deformations. Here we restrict ourselves to networks with orthogonal fibers with rigid con-
nections such that the fibers keep their orthogonality during deformations. Let us note that this assumption
plays a key role in the analysis, as it gives the possibility to describe the rotations of the fibers using one
rotation tensor. As similar assumption was used for the derivation of the micropolar beam model consider-
ing the homogenization of beamlike lattice structures by Noor and Nemeth [55,56]. As a result, we came
to a special case of micropolar materials with the strain energy density which inherits all properties of the
fibers. Let us note that in the case of micropolar materials as for any generalized medium the derivation of
the constitutive equations is a rather complex quest. In addition to rather rare direct experimental data, see,
e.g., [46,68], the homogenization of highly inhomogeneous materials brings us the constitutive equations of
micropolar materials; see [6,18,19,31,35,69] and the references therein. Here we also consider a certain type
of homogenization for the finite deformations as we replaced the semi-discrete network by a homogeneous
medium. The presented constitutive equations can also be treated as a generalization of the Valanis–Landel
hypothesis [80] for the case of micropolar shells and solids. Relaxing the assumption of orthogonality, we can
obtain more general models of the equivalent medium such as strain gradient and micromorphic ones; see,
e.g., [16,42,65].

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate
if changes were made.
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