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We consider two-photon double ionization of helium with 100, 200, and 400 eV excess energy for the two
ejected electrons, corresponding to photon energies of 89.5, 139.5, and 239.5 eV, respectively. We focus on the
case of ultrashort pulses (two oscillations of the field) and develop an approach to calculate the two-photon
transition matrix elements within the lowest order of the time-dependent perturbation theory. One of the major
difficulties in calculating such amplitudes is the infinite summation over a complete set of intermediate states.
In the subfemtosecond regime, however, this summation can be performed accurately by means of the closure
approximation. This results in a simple expression for the two-photon amplitude that contains a dipole term and a
quadrupole term. The dipole term can be clearly associated to a process in which each electron absorbs a photon
whereas the quadrupole term is associated to a process in which one electron absorbs two photons and ejects the
second one by collision. We analyze in detail how the relative weight of both processes influences the behavior
of the electron energy and angular distributions. In particular we study how the shape of these distributions
changes with the amount of electron correlations taken into account in both initial and final states. For 100 eV
excess energy, our results for the electron energy distribution are compared with those obtained by solving the
time-dependent Schrödinger equation. All these results unveil the crucial role of electron correlations in this
transient regime of ionization which is neither sequential nor direct.
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I. INTRODUCTION

Multiple ionization of atoms or molecules by projectiles of
high energy (electrons, ions, or photons) is, in many cases, far
from being well understood in spite of numerous theoretical
and experimental investigations. For example, let us consider
the collision of fast electrons with heavy atoms (Ne, Ar,
Kr), which is characterized by a small transfer of energy and
momentum from the projectile to the target electrons. At first
glance, multiple ionization should be described by successive
ionizations of bound electrons (the so-called ladder process,
or independent ionization process); however, this is not the
case. The comparison of calculations based on the model of
the ladder process for the n-electron ionization total cross
section [1] with experimental results [2] shows that the simple
first Born approximation (Bethe formula [3]) seems sufficient
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to describe multiple electron release [1]. Yet the mechanism
of 2,3,4, . . . electron ejection following the emission of a first
slow electron after a direct collision of the projectile with the
target electron is not clear. A theoretical analysis of the matrix
element requires the calculation of n > 2 electron continuum
wave functions; this problem is not properly solved (see, for
example, [4]).

Analogous difficulties exist in the multiphoton multiple
ionization of atomic targets. Suppose that the energy of one
photon is not enough for an electron to reach the ionization
threshold. To escape, an electron has to absorb successively a
few photons according to the energy conservation law. Again,
simple arguments suggest the theoretical calculations should
be based on the model of independent (sequential) absorptions.
In recent experiments, where Xe atoms were interacting with
xuv photons of 93 eV, Xe21+ ions were observed [5]. The corre-
sponding calculations of Makris et al. [6] show that sequential
absorption of photons does not describe the experimental
results well. Even the “simple case” of two-photon double
ionization (TPDI) is presently the subject of intense debate.
Indeed, significant discrepancies between various theoretical
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results exist and the few experimental results that are available
are not accurate enough to draw clear conclusions about
the validity of the different theoretical approaches [7]. It is
therefore necessary to pursue these investigations, on both
experimental and theoretical sides.

With the development of xuv free-electron pulsed laser
sources like the Linac coherent light source (SLAC National
Accelerator Laboratory) [8] and x-ray free-electron laser
(Deutsches Elektronen-Synchrotron) [9], the production of
dense photon fluxes with photon energies close to a few keV
will soon be available. High-order harmonic generation from
surfaces may also provide attosecond or even zeptosecond [10]
pulses, allowing extremely high intensities to be reached [11].
In this context, the study of multiphoton processes involving
more than one electron has emerged as a major research
field in the community. As a result, the question of multiple
ionization of simple atoms or more complex structures in
xuv fields has received considerable attention these last years,
particularly related to experiments performed around the laser
source FLASH (i.e., the free-electron laser at Hamburg). One
interesting aspect of these sources is the generation of pulses or
pulse trains in the femtosecond and subfemtosecond domains,
opening the route to explore dynamical effects at the time scale
of electron correlations. The aim of this paper is to pursue our
investigations of TPDI in the xuv domain at the attosecond
time scale.

First, let us recall that two mechanisms exist for TPDI;
direct double ionization (DI) and sequential double ionization
(SI). If we consider a laser field with an average photon energy
of ω0, a double ionization threshold EDI for the atom A and
a single ionization threshold ESI for its parent ion A+, direct
ionization occurs for EDI/2 < ω0 < ESI. For helium, EDI =
79 eV (2.903 a.u.) and ESI = 54.42 eV (2 a.u.). For ω0 > ESI,
sequential ionization dominates over direct ionization [12];
that is, He absorbs one photon, then a second photon ionizes
the residual ion He+. Note that, in contrast with DI, SI does not
require correlations. It is important to stress that the distinction
between direct and sequential transitions is only valid for long
pulses. For ultrashort pulses like those considered here, the
concepts of sequential and direct double ionization lose their
pertinence [13]. Until now we have mainly focused on the
vuv photon energy domain (40–60 eV in the helium case).
In a recent publication [14], we have shown that TPDI can
be expressed in a very simple form for ultrashort pulses. We
focused on an average photon energy of 50 eV (i.e., just below
the threshold for sequential TPDI). In this contribution, we
examine the case of much higher photon energies (i.e., a regime
of TPDI where a single photon has enough energy to doubly
ionize the atom).

This paper is organized as follows. In Sec. II, we recall
and discuss briefly the basic formulas for the calculation of
the TPDI amplitude within the lowest order of the time-
dependent perturbation theory. Then we examine different
approximations related to the ultrashort durations of the pulses,
focusing our discussion on the treatment of the electron
interactions. A simple expression of the TPDI amplitude is
proposed that involves direct couplings between the initial and
final states. The physical meaning of this simple expression
is discussed in detail. In Sec. III, we calculate the TPDI
amplitude for various approximations of the initial and

final states. Finally, Sec. IV is devoted to the angular and
energy distributions that are calculated for photon energies of
3.29 a.u. (89.5 eV), 5.13 a.u. (139.5 eV), and 8.8 a.u.
(239.5 eV), corresponding to excess energies of 100, 200,
and 400 eV, respectively. The laser has few oscillations, so the
pulse duration is shorter than 100 as. The results are discussed
as a function of the approximation used for the initial and final
states and are compared with distributions extracted from the
time-dependent Schrödinger equation (TDSE). We conclude
in Sec. V. Atomic units are used throughout unless otherwise
stated.

II. THEORY

The two-photon transition matrix element calculated by
means of the second order of the time-dependent perturbation
theory in the length gauge may be written as follows [15]:

A
(2)
f i = E2

0

(
1

i

)2 ∫ ∞

−∞
dτ2

∫ ∞

−∞
dτ1F (τ2)eiEf τ2θ (τ2 − τ1)

×F (τ1)e−iEiτ1〈f |DLe−i(τ2−τ1)HDL|i〉, (1)

where E0 is the field amplitude and

DL = �e · (�r1 + �r2),

where �e is the field polarization vector. In the following, we
assume the field is polarized linearly along the z axis (�e = �ez).
Hence,

DL = z1 + z2.

In this expression, subscripts 1 and 2 refer to the electrons.
H is the atomic Hamiltonian (we consider here a two-active-
electron atom). The function F (τ ) is given by

F (τ ) = sin(ω0τ + ϕ)ζ (τ ), − T/2 � τ � T/2,

where ω0 is the average carrier frequency and T is the pulse
duration given by T = n2π/ω0 (2π/ω0 is the duration of one
optical cycle). The envelope function ζ (τ ) is supposed to be
smooth and equal to zero for |τ | > T/2, as usual. In the present
case, the envelope has a cosine-squared shape.

Within the context of ultrashort pulses, we can make further
approximations. First, we assume that the resonance condition
Ef − Ei ≈ 2ω0 (energy conservation) is fulfilled. We write

〈f |DLe−i(τ2−τ1)HDL|i〉
= e−i(τ2−τ1)Er 〈f |DLe−i(τ2−τ1)(H−Er )DL|i〉
=

∑
k

e−i(τ2−τ1)Er 〈f |DL|k〉〈k|e−i(τ2−τ1)(Ek−Er )DL|i〉, (2)

with Er − Ei = ω0; |k〉, |f 〉, and |i〉 are eigenstates of H , with
eigenvalues Ek , Ef , and Ei , respectively. We can now rewrite
Eq. (1) as follows:

A
(2)
f i = −E2

0

∫ ∞

−∞
dτ2

∫ ∞

−∞
dτ1 F (τ2)eiEf τ2θ (τ2−τ1)F (τ1)e−iEiτ1

×
∑

k

e−i(τ2−τ1)Er 〈f |DL|k〉〈k|e−i(τ2 − τ1)(Ek−Er )DL|i〉.

(3)
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Our assumption is that, for ultrashort pulse durations, the
contribution of intermediate states |k〉 with T |Ek − Er | � 1
dominates. Therefore, since |τ2 − τ1| < T , we write

|(τ2 − τ1)(Ek − Er )| < T |Ek − Er | = 2πn|Ek − Er |
ω0

� 1.

Replacing Er by Ei + ω0 in the above inequality, it is clear
that the above assumption is valid provided the interme-
diate states |k〉 with |Ek − Ei | � ω0 do not contribute in
Eq. (3). Consequently, e−i(τ2−τ1)(Ek−Er ) can be replaced by 1 in
expression (3).

Using this closure relation, the two-photon transition matrix
amplitude can be written as

A
(2)
f i ≈ −E2

0

∫ ∞

−∞
dτ2

∫ ∞

−∞
dτ1 F (τ2)eiEf τ2θ (τ2 − τ1)

×F (τ1)e−i(Ei−Er )τ1〈f |D2
L|i〉

= K(E0,ω0,ϕ,Ei,Er,Ef )〈f |D2
L|i〉. (4)

Physically the latter approximation means that, for ul-
trashort pulse durations, one photon is absorbed from the
ground state, populating with equal probability a large band
of intermediate single continuum states, while the remaining
bound electron absorbs a second photon, populating the
double continuum. We recall that we have assumed the
resonance condition Ef − Ei ≈ 2ω0. Far from this region,
the above assumption is not valid, but this latter case is less
interesting since the two-photon transition matrix element
is small.

III. COMPUTATIONAL APPROACH

Keeping in mind the context of ultrashort pulse durations
discussed in the preceding section, we calculate the term
〈f |D2

L|i〉 = 〈f |(z1 + z2)2|i〉 [see Eq. (4)]. First, we evaluate
the matrix element:

A12 = 〈�−( �p1, �p2)|z1z2|�0〉, (5)

where �pi is the momentum vector associated with electron
i. In the following, �pi is characterized by its norm pi and
by its polar and azimuthal angles θi and φi , respectively. We
use a correlated wave function [16] for the initial state and
three two-body Coulomb wave functions (3C) for the final
state [17]:

�0(�r1,�r2) =
∑

j

Dj (e−aj r1−bj r2 + e−aj r2−bj r1 )e−γj r12 ,

�r12 = �r1 − �r2, (6)

�−∗
3C ( �p1, �p2; �r1,�r2)

= ei �p12·�r12ϕ−∗
1 ( �p1,�r1)ϕ−∗

2 ( �p2,�r2)ϕ−∗
12 ( �p12,�r12), (7)

where

ϕ−∗
x ( �px,�rx) = R(ξx)e−i �px ·�rx

1F1(−iξx,1; i(pxrx + �px · �rx)),

is a Coulomb wave function with the Sommerfeld parameter
ξx and

�p12 = 1

2
( �p1 − �p2), ξ12 = 1

2p12
,

ξi = − Z

pi

(i = 1,2), Z = 2,

R(ξ ) = e−πξ/2 �(1 + iξ ).

In order to calculate the matrix element (5), it is convenient
to use the following analytical formula:

Ix( �px, �A; λ) =
∫

d3r

r
e−λrϕ−∗

x ( �px,�r)ei �A·�r

= 4πR(ξx)
[(λ − ipx)2 + A2]iξx

[( �A − �px)2 + λ2](1+iξx )
. (8)

We denote

g∗( �p12, �p; γj ) =
∫

d3r12e
−γj r12ϕ−∗

12 ( �p12,�r12) ei( �p+ �p12)·�r12 (9)

and rewrite Eq. (5) in the following way:

A12 =
∑

j

Dj

∫
d3p

(2π )3
g∗( �p12, �p; γj )[G1( �p1, − �p,�e; aj )

×G2( �p2, �p,�e; bj ) + (aj ←→ bj )], (10)

where

Gx( �px,�q,�e; λ) =
∫

d3rei �q·�rϕ−∗
x ( �px,�r)(�e · �r)e−λr . (11)

According to Eq. (8), we obtain

g∗( �p12, �p; γj ) = − ∂

∂γj

I12( �p12, �p12 + �p; γj ). (12)

The integral (8) can be used to calculate the integral (11). It is
done by writing the potential vector �A = �q + ε�e, by expanding
the left- and right-hand sides of integral (8) in series in ε, and
by comparing the terms of the same degree. We obtain

Fx( �px,�q,�e; λ)

=
∫

d3r

r
ei �q·�rϕ−∗

x ( �px,�r)(�e · �r)e−λr

= −8πiR(ξx)
[(λ − ipx)2 + q2]iξx

[(�q − �px)2 + λ2](1+iξx )

×
[
iξx

�e · �q
(λ − ipx)2 + q2

− (1 + iξx)
�e · (�q − �px)

(�q − �px)2 + λ2

]
.

(13)

Correspondingly,

Gx( �px,�q,�e; λ) = − ∂

∂λ
Fx( �px,�q,�e; λ). (14)

Finally we get

A12 = −
∑

j

Dj

∂3

∂aj ∂bj ∂γj

∫
d3p

(2π )3
I12( �p12, �p12 + �p; γj )

× [F1( �p1, − �p,�e; aj )F2( �p2, �p,�e; bj ) + (aj ←→ bj )].

(15)
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The second step consists of calculating the matrix element

A1 = 〈�−( �p1, �p2)|z2
1|�0〉. (16)

For this, we define a new function:

Sx( �px,�q,�e; λ) =
∫

d3r

r
ei �q·�rϕ−∗

x ( �px,�r)(�e · �r)2e−λr . (17)

Following the scheme presented above, one easily gets

A1 = −
∑

j

Dj

∂3

∂aj ∂bj ∂γj

∫
d3p

(2π )3
I12( �p12, �p12 + �p; γj )

× [S1( �p1, − �p,�e; aj )I2( �p2, �p,�e; bj ) + (aj ←→ bj )].

(18)

Analogously,

A2 = −
∑

j

Dj

∂3

∂aj∂bj ∂γj

∫
d3p

(2π )3
I12( �p12, �p12 + �p; γj )

× [I1( �p1, − �p,�e; aj )S2( �p2, �p,�e; bj ) + (aj ←→ bj )].

(19)

The differential probability is now expressed as follows [with
K given in Eq. (4)]:

d4W

dE1dE2d�1d�2
= 2p1p2

(2π )6

∣∣A(2)
f i

∣∣2 ≈ 2p1p2

(2π )6
|K|2|2A12

× ( �p1, �p2) + A1( �p1, �p2) + A2( �p1, �p2)|2.
(20)

FIG. 1. Differential probability [see Eq. (20)] in a.u. vs the scattering angle θ2 of the second ejected electron, assuming that the first electron
is ejected with a momentum vector �p1 parallel to the polarization vector �ez (θ1 = 0◦). The electron energies in the double continuum are
E1 = E2 = 200 eV. Solid line, results obtained by including all terms in Eq. (20); dashed line, results obtained by neglecting the quadrupole
term A1 + A2 in Eq. (20). (a) The double continuum is described with the 3C wave function and the initial state by a correlated wave function;
see Eqs. (6) and (7). (b) The double continuum is described by a simple product of two Coulomb functions and the initial state by a correlated
wave function [Eq. (7) with ξ12 = 0 and Eq. (6)]. (c) The double continuum is a simple product of two Coulomb functions [Eq. (7) with ξ12 = 0]
and the initial state is a product of two screened orbitals [Eq. (22)]. |K| = 0.0000184 in Eq. (4).
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In order to put the following section in perspective, we
now discuss the meaning of the various terms in the above
expression. The dipole term A12 describes a process in which
each electron absorbs one photon. The term A1 + A2 is
a quadrupole term that describes a process in which one
electron absorbs two photons and ejects the other electron
by collision. Therefore, expression (20) shows clearly that,
in the present regime of ultrashort pulse durations, both
processes can be disentangled. It also shows that in this
very-high-frequency regime, the double ejection mechanism
is not purely sequential. In a purely sequential process, the
process in which one electron absorbs two photons does not
take place. In fact, for ultrashort pulse durations, we are in a
transient regime where the distinction between purely direct
and sequential processes loses its meaning [18]. In the next
section, we use expression (20) to calculate and to study
the electron angular and energy distributions as a function
of the amount of electron correlations included in the initial
and/or final states. The results, which are also compared to a
TDSE calculation, shed light on the actual role of the electron
correlations.

IV. RESULTS AND DISCUSSION

We start by analyzing how electron correlations in the initial
and final states influence the electron angular distributions
calculated by means of Eq. (20). We recall that we consider
a total pulse duration of two optical cycles, with an intensity
of 1013 W/cm2. The values of K [see Eqs. (4) and (20)] are
indicated in the figure captions. Figures 1(a), 2(a), and 3(a)
give the results of our calculations with electron correlations
treated fully in both the initial and the final states for various
pairs of electron energy. Figure 1(a) corresponds to E1 = E2 =
200 eV, Fig. 2(a) to E1 = E2 = 100 eV, and Fig. 3(a) to E1 =
E2 = 50 eV. In all cases, we consider a coplanar geometry
(φ1 = φ2) where one of the electrons (say electron 1) moves
along the polarization direction (i.e., θ1 = 0) while the other
electron is emitted at an angle θ2. The solid curves are the
results given by expression (20), while the dashed ones are
obtained by neglecting the quadrupole contribution, namely
A1( �p1, �p2) + A2( �p1, �p2) in Eq. (20).

These results show that the probability with all terms
included in Eq. (20) is noticeably bigger than that without

FIG. 2. The same as in Fig. 1, but E1 = E2 = 100 eV; |K| = 0.0000542 in Eq. (4).
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FIG. 3. The same as in Fig. 1, but E1 = E2 = 50 eV; |K| = 0.000132 in Eq. (4).

the quadrupole interactions, and the difference decreases as
the total energy E1 + E2 also decreases. We also observe
a local minimum around θ2 = 90◦. In fact, fully neglecting
the electron correlations would give a zero at 90◦ [19]. With
electron correlations in the initial and/or final states, the zero
is transformed into a minimum around θ2 = 90◦. The deep
minimum at small angles θ2 ∼ θ1 results from the presence
of the so-called Gamov factor R(ξ12) in function (7); |R|2 is
exponentially small when �p2 → �p1.

In Figs. 1(b), 2(b), and 3(b), we present results of the fully
differential probability where only the ground helium wave
function is correlated, whereas the final state is the product of
two Coulomb wave functions. We consider the same geometry
and the same energy distributions as in the previous case.
The results are rather similar to the previous ones, although
the different curves exhibit a more complicated structure. The
minimum about θ2 = 65◦, which is well visible at all selected
energies, becomes more pronounced as the electron energies
decrease. Similarly, the maximum around θ2 = 105◦ becomes
more marked with decreasing electron energies.

FIG. 4. Differential probability (in a.u.) calculated by resolving
the TDSE from −T/2, the initial time of the laser pulse, to t > T/2,
that is, after propagation of the free wave packet (see text). The
kinematical conditions are the same as in Fig. 3.
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FIG. 5. Differential probability [see Eq. (20)] in a.u. vs the energy sharing variable x (see text). The angles are θ1 = 0◦, θ2 = 180◦;
E = E1 + E2 = 400 eV. Solid line, results obtained by including all terms in Eq. (20); dashed line, results obtained by neglecting the
quadrupole term A1 + A2 in Eq. (20). (a)–(c) Various choices of both the initial and final states as in Fig. 1.

In all the cases considered above, the presence or absence of
the quadrupole terms does not affect the positions of maxima
and minima. In general, the differential probability may be
written as a combination of Legendre polynomials:

d4W ∼ |c̃ + ãP1(cos θ2) + b̃P2(cos θ2)|2. (21)

Note that P1(cos θ2) = 0 at θ2 = 90◦, and P2(cos θ2) = 0 at
θ2 = 54.7◦ and 125.3◦. As explained below, this may lead to
new selection rules.

Finally, Figs. 1(c), 2(c), and 3(c) present results for the fully
differential probability d4W for the same geometry and the
same electron energies as before. In this case, both electrons
are nearly independent and the shapes of all curves do not
depend on the energies of the outgoing electrons. Here,

�0(r1,r2) = ϕ0(r1)ϕ0(r2), ϕ0(r) =
√

Z3

π
e−Zr , Z = 27/16,

(22)

and the final state is a product of two Coulomb waves. In this
particular case of a symmetric distribution of electron energies,
we have

A12 = 〈ϕ−( �p1)|z1|ϕ0〉〈ϕ−( �p2)|z2|ϕ0〉
= aP1(cos θ1)P1(cos θ2), (23)

A1 = 〈ϕ−( �p1)|z2
1|ϕ0〉〈ϕ−( �p2)|ϕ0〉 = c + bP2(cos θ1), (24)

A2 = 〈ϕ−( �p2)|z2
2|ϕ0〉〈ϕ−( �p1)|ϕ0〉 = c + bP2(cos θ2). (25)

The terms A1 and A2 should be zero if the electronic
correlations in the initial state are fully absent: 〈ϕ−( �pi)|ϕ0〉 =
0, or c = b = 0 in Eqs. (24) and (25). Taking into account the
fact that θ1 = 0 and inserting Eqs. (23)–(25) into Eq. (20), we
obtain

d4W ∼ |(2c + b) + 2aP1(cos θ2) + bP2(cos θ2)|2. (26)

At θ2 = 90◦, P1(cos θ2) = 0, the dashed curve reaches zero,
and the solid curve is also close to zero. This means that
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FIG. 6. The same as in Fig. 5, but E = E1 + E2 = 100 eV.

2c + b/2 ≈ 0. Considering the behavior of d4W (θ2) for θ2 =
0◦ and θ2 = 180◦, we have

d4W (180◦) − d4W (0)

d4W (180◦) + d4W (0)
≈ − 2Reζ

1 + |ζ |2 , ζ = 5

4

b

a
. (27)

Equation (27) shows that b and c are not small any more in
comparison with a; instead they are quite comparable. There-
fore, even “weak electron correlations” like those taken into
account within the mean-field Hartree-Fock approximation for
the ground state play a rather important role. When electron
correlations are taken fully into account in both the initial
and final states, the expression of the amplitude in terms
of Legendre polynomials becomes much more complicated.
However, our results show that it is essentially the interplay
between the various terms that determines the general structure
of peaks and dips of the differential probability.

Regarding now the case of 100 eV excess energy (E1 =
E2 = 50 eV), it is interesting to compare our results with the
distributions calculated by resolving the TDSE. The method
has been described in numerous papers and here we give only
a very brief description. We solve the TDSE using a spectral

method, the wave functions being developed onto a set of B

splines [18,19] defined in a “box” of given radial length. After
propagating the initial wave packet until the interaction with
the pulse has ceased, we are left with the task of calculating
the probability of double ionization. In our approach we use
a simple projection of the wave packet onto a product of
Coulomb functions at t > T/2, that is, at a time where electron
interaction in double continuum is weak [14]. It is worth noting
that the wave packet should not reach the limit of the box,
making the TDSE difficult to apply for high-energy photons.
Regarding the problem of propagation, one can formulate it
in the context of second-order perturbation theory. First we
write

Ã
(2)
f i (t) =

∑
k

〈f̃ |k〉ei(Ef −Ek )(t−T/2)A
(2)
ki (T/2), t > T/2,

(28)

with A
(2)
ki (T/2) given by Eq. (1). If |f̃ 〉 = |f 〉 (i.e., |f̃ 〉 is an

eigenstate of H with appropriate asymptotic conditions), it
is easy to show that |Ã(2)

f i (t > T/2)| = |A(2)
f i (T/2)|. If |f̃ 〉 is

only an approximate solution (e.g., |f̃ 〉 is an eigenstate of
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FIG. 7. Three-dimensional energy distributions: result from
TDSE calculations. The contribution of the dominant channel (L = 2
with l1 = l2 = 1) is shown.

H̃ = H − V ), in general |Ã(2)
f i (t > T/2)| �= |A(2)

f i (T/2)|. As a
matter of fact, depending on the properties of V (in particular
its asymptotic behavior), |Ã(2)

f i (t > T/2)| may be close to

|A(2)
f i (T/2)|. This point is discussed in detail in [20] in the

context of single and double ionization. Although the question
of extracting TPDI probabilities from TDSE calculations is
still open [19], here we consider that (most of the) electron
interactions in the double continuum have vanished at t (i.e.,
the time where the projection onto Coulomb functions is
performed). Therefore, the present TDSE calculations should
include (most of the) electron correlations in all channels. We
return to this point in the following.

In Fig. 4, we present the fully differential probability
d4W for the same kinematical conditions as in Fig. 3 and
calculated by solving numerically the TDSE. We note an
overall agreement with Figs. 3(a) and 3(c), as far as the
shape and the order of magnitude are concerned. A closer
examination shows that the minimum and maximum (around
θ2 = 60◦,90◦) in Fig. 3(a) are in better agreement with the
results given in Fig. 4. This is expected since these figures refer
to calculations including electron correlations in both initial
and final states. Nevertheless, in contrast with Fig. 3(a), TDSE
calculation shows a nonzero TPDI differential probability at
θ2 = 0◦. According to the above discussion, one expects that
TDSE calculations have not converged in the latter region,
where electron correlations are strong (the electrons are both
emitted in the forward direction with equal velocities). TDSE
calculations should be performed in a much larger box to allow
the propagation of the wave packet for a long time after the
pulse end. Figure 3(b) shows a strong emission in the forward
direction, which is unphysical when both electrons have equal
energy.

Let us now turn to the energy distributions of the electrons.
In Figs. 5 and 6, d4W is presented versus a variable x, where
E1 = Ex, E2 = E(1 − x) with 0 � x � 1. Here we keep θ1 =
0◦, θ2 = 180◦ which corresponds to a back-to-back electron
emission. In Figs. 5(a), 5(b), and 5(c), the energy distribution
is given for 400 eV total energy of the two electrons. Figures
6(a), 6(b), and 6(c) correspond to a total energy of 100 eV. For
Figs. 5 and 6, we use approximations for the initial and final

states similar to those in Figs. 1, 2, and 3. Note that

d4W

dE1 dE2 d�1 d�2
= d4W

E dE dx d�1 d�2
.

In all figures, we see again a noticeable contribution of the
quadrupole terms A1 + A2. In Figs. 5(b) and 6(b), the local
maximum is reached at x = 0.5, whereas in Figs. 5(c) and 6(c)
we see a minimum instead. Remember that the amplitudes in
both these cases differ only by trial helium wave functions.
Figures 5(a) and 6(a) are also rather different from Figs. 5(b)
and 6(b). This leads to a first conclusion, namely that possible
energy-sharing experiments can supply us with valuable
information both on the initial state of the quantum system and
on the mechanisms of its interaction with the strong laser pulse.
The comparison of Figs. 5(a), 5(b), and 5(c) clearly indicates
that the electron correlations in both initial and final states play
a crucial role. In the case of nearly independent electrons, the
energy distribution exhibits a pronounced U shape, meaning
that both electrons are ejected with very different energies. This
is in complete contradiction with the results (inverse U shape)
obtained when electron correlations are taken into account
either in the initial state or in both the initial and final states.
Let us note that, within the time-dependent perturbation theory,
both the initial and the final states should be eigenstates of the
atomic Hamiltonian. In the case of the final state, the correlated
3C wave function has the correct asymptotic behavior but only
approximately describes electron correlations in the region
where both electrons are still at short distances from the
nucleus. The same conclusion about electron correlations can
be drawn from Fig. 6. In the case where the total energy of
the two ejected electrons is 100 eV, we performed TDSE
calculations. They are shown in Fig. 7; in agreement with
Fig. 6(a), both electrons tend to be emitted with the same
energy. This is a further illustration of electron correlations.

V. CONCLUSIONS

In this work, we have investigated two-photon double
ionization of helium in the xuv and ultrashort pulse duration
regimes. We have calculated angular and energy distributions.
In the case of attosecond pulses, it is possible to express the
TPDI probabilities with a simple expression. It contains two
terms: the first one is related to one-photon absorption by each
electron and the other one refers to two-photon absorption by
electron 1 or 2 and the other electron being ejected through
correlations effects. Under these approximations, the main
problem is to express the initial and final stationary states
of helium; the representation of double continuum is the
main difficulty here. Several models have been employed to
represent the initial (ground) and final (double continuum)
states of helium. We have investigated situations where the
excess energies in the double continuum are 100, 200, and
400 eV, corresponding to photon energies of 3.29, 5.13, and
8.8 a.u., respectively. We have found that, even in the present
high-frequency regime, the two processes are important in
contrast to a purely sequential double-ejection mechanism
where each electron absorbs, independently, a single photon.
Furthermore, the inclusion of electron correlations in both
the initial and final states leads to a back-to-back electron
emission along the polarization axis with clear equipartition of
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the energy. These investigations will be pursued in the direction
of heavy atoms, where x rays directly ionize the inner electrons.
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