Anna GOLIJANEK-JĘDRZEJCZYK

GDANSK UNIVERSITY OF TECHNOLOGY, G. Narutowicza 11/12, 80-233 Gdańsk

Uncertainty estimation of loop impedance measurement determined by the vector method

PhD Anna GOLIJANEK-JĘDRZEJCZYK

Assistant professor in the Department of Metrology and Information Systems, Faculty of Electrical and Control Engineering, Gdansk University of Technology. Field of interest: loop impedance measurement, measurement and control systems, designing useful interfaces and uncertainty estimation.

e-mail: a.golijanek@ely.pg.gda.pl

Abstract

This paper presents a detailed analysis of the uncertainty estimation of loop impedance measurement determined by the vector method. The analysis includes the following estimates: resistance variance, voltage variance and time measurement variance. The paper presents a methodology for estimating the combined standard uncertainty of the loop impedance.

Keywords: loop impedance, vector method, measurement uncertainty, analysis, measurement, meter.

Szacowanie niepewności pomiaru impedancji pętli zwarciowej wyznaczonej metodą wektorową

Streszczenie

Metoda wektorowa umożliwia wyznaczenie impedancji petli zwarcia w oparciu o składowe ortogonalne napięcia. Autorka niniejszego referatu przeprowadziła analizę metrologiczną tej metody stosując teorię błędów [1, 2, 3, 4, 5]. Aktualnie przeprowadzane są szczegółowe analizy szacowania niepewności pomiaru impedancji pętli zwarciowej metodą wektorową. W niniejszym artykule zaprezentowano metodę wektorową, zgodnie z którą impedancja pętli zwarciowej wyznaczana jest na podstawie pomiaru fazorów dwóch napięć [2, 3, 4, 5]: napięcia E panującego w miejscu badanym przy odłączonym obciążeniu oraz napięcia <u>U</u> – jakie występuje przy włączonym obciążeniu pomiarowym o znanej wartości rezystancji R₀. Referat zawiera wyniki szczegółowego szacowania niepewności pomiaru impedancji pętli zwarcia uwzględniając wariancję rezystora obciążenia pomiarowego $u^2(R_0)$, wariancję pomiaru napięć $u^2(E)$ i $u^2(U)$ oraz wariancję wyznaczenia chwil czasowych $u^2(t_1)$, $u^{2}(t_{2}), u^{2}(t_{3}), u^{2}(t_{4})$. Wyznaczona wartość niepewności standardowej u_{c} , potwierdza, iż metoda wektorowa jest znacznie bardziej dokładna od metod klasycznych wyznaczania impedancji pętli zwarcia. Wyniki oszacowanej niepewności pomiaru są zbieżne z wynikami uzyskanymi przez autorkę referatu z eksperymentu, w którym wykorzystano prototyp miernika impedancji pętli realizującego metodę wektorową [4].

Słowa kluczowe: impedancja pętli, metoda wektorowa, niepewność pomiaru.

1. Introduction

The vector method is a method for determining loop impedance based on the orthogonal voltage components. The advantages of this method are as follows: much more accurate measurement of loop impedance in comparison with classical methods as well as pure resistant measurement load. Thanks to that, a meter used in this method is characterized by a smaller size and lower weight than the one used in classical methods. The paper presents the results of total uncertainty estimation of loop impedance measurement determined by the vector method.

2. The vector method

A measured value of loop impedance is expressed with the formula: $\underline{Z} = R + j X$, where *R* stands for resistance and *X* stands for inductive reactance. Fig. 1 shows the equivalent tested circuit.

Fig. 1. The principle of loop impedance measurement [4] Rys. 1. Zasada pomiaru impedancji pętli zwarciowej [4]

This circuit consists of a series connection of an ideal sinusoidal supplying voltage source E_z (with constant amplitude and frequency f), the loop impedance Z and resistance load R_0 [2, 3, 4, 5].

A measured value of loop impedance by the vector method is calculated on the basis of: the orthogonal voltage components [2, 3, 4, 5] the voltage \underline{E} measured with the disconnected load R_0 and the voltage \underline{U} - measured when the load R_0 is switched on, and equals one of the known resistance values R_0 .

Voltage vector measurement: the voltage \underline{E} before, and the voltage \underline{U} after switching on the load resistance R_0 - consists in determining the orthogonal components of the two voltages: $E_{\rm b}$, $E_{\rm c}$, $U_{\rm b}$, $U_{\rm c}$ (Fig. 2).

Fig. 2. The orthogonal voltage diagram – the vector method [5] Rys. 2. Fazorowy wykres napięć - metoda wektorowa [5]

On the basis of the four momentary voltage values, one can calculate the values of the voltage vectors \underline{E} and \underline{U} , using the following equations:

$$E_c + jE_b = E\cos\omega t + jE\sin\omega t = \underline{E}, \qquad (1)$$

$$U_{c} + jU_{b} = U\cos\omega t + jU\sin\omega t = \underline{U}.$$
 (2)

The voltage vector \underline{E} is determined on the basis of two momentary values of no load voltage source: $E_{\rm b}$ i $E_{\rm c}$. The first value of $E_{\rm b}$ obtained at time t_1 is determined by the following formula:

$$E_b = e(t_1) = \sqrt{2} E \sin \omega t_1 . \tag{3}$$

The second sample voltage E_c obtained at time t_2 shifted by 0.25T(T- the signal period) over the first t_1 , that is $t_2=t_1+0.25T$:

$$E_c = e(t_2) = \sqrt{2} E \cos \omega t_1.$$
⁽⁴⁾

The same procedure is used when determining the phasor U, which is calculated on the basis of two momentary voltage values: U_b and U_c – with the resistance R_0 (Fig. 1), whereas these values are shifted relative to E_b and E_c for mT (m = 1,2,3...), that is $t_3=t_1+mT$. This delay has been introduced in order to eliminate the transient states caused by the switching measurement load R_0 . The voltage U_b taken at time t_3 is defined by the following dependence:

$$U_{b} = u(t_{3}) = \sqrt{2} \frac{ER_{0}}{\sqrt{(R+R_{o})^{2} + X^{2}}} sin\omega(t_{1}+\varphi), \qquad (5)$$

where φ is a phase angle for the tested circuit of Fig. 1, defined as:

$$tg\,\varphi = \frac{X}{R+R_0} \,. \tag{6}$$

While the voltage U_c , determined at time $t_4=t_1+0.25T+mT$ (analogous to the voltage value E_c), is described by the formula:

$$U_{c} = u(t_{4}) = \sqrt{2} \frac{ER_{0}}{\sqrt{(R+R_{o})^{2} + X^{2}}} \cos \omega (t_{1} + \varphi).$$
(7)

On the basis of the equations describing the voltage state of the tested circuit (Fig. 1), and knowing the dependencies determining the instantaneous values of voltage E_b , E_c , U_b and U_c , a loop impedance module can be determined [2, 3, 4] as follows:

$$Z_w = R_0 \sqrt{\frac{(E_c - U_c)^2 + (E_b - U_b)^2}{U_c^2 + U_b^2}}$$
(8)

3. Uncertainty estimation of loop impedance measurement

The combined standard uncertainty of impedance Z_w was determined on the basis of a measurement function, which depends on the following parameters: $Z_w = f(R_0, E, U, t_1, t_2, t_3, t_4)$.

According to the principle of uncertainty propagation [6, 9], the combined standard uncertainty u_c of determining the loop impedance is defined as follows (assuming no correlation between the uncertainties of the measured values):

$$u_{c} = \begin{cases} \left| \frac{\partial Z_{w}}{\partial R_{0}} \right|^{2} u^{2} \left(R_{0} \right) + \left| \frac{\partial Z_{w}}{\partial E} \right|^{2} u^{2} \left(E \right) + \\ + \left| \frac{\partial Z_{w}}{\partial U} \right|^{2} u^{2} \left(U \right) + \left| \frac{\partial Z_{w}}{\partial t_{1}} \right|^{2} u^{2} \left(t_{1} \right) + \\ + \left| \frac{\partial Z_{w}}{\partial U} \right|^{2} u^{2} \left(t_{2} \right) + \left| \frac{\partial Z_{w}}{\partial t_{1}} \right|^{2} u^{2} \left(t_{3} \right) + \end{cases}$$
(9)

$$\begin{vmatrix} + \frac{\partial Z_{w}}{\partial t_{2}} & u^{2}(t_{2}) + \frac{\partial Z_{w}}{\partial t_{3}} & u^{2}(t_{3}) + \\ + \frac{\partial Z_{w}}{\partial t_{4}} & u^{2}(t_{4}) \end{vmatrix}$$

The uncertainty analysis was conducted under the following assumptions:

- the measured loop impedance Z consists of resistance and inductive reactance. In practice, the values of the loop impedance are usually smaller than 1 Ω , hence it was assumed that Z is equal to 1 Ω .
- the supplying voltage source E_z is an ideal sine with constant amplitude and frequency during the measurement. Typically, in a low voltage network, the supply voltage is equal to 230V of frequency 50 Hz.
- the tested circuit is linear when the load R_0 is disconnected,
- the voltage <u>U</u> is measured in steady state; m=6.
- the measurement current should be of the largest possible value, therefore load R₀ equal to 10 Ω was used for computing in the meter prototype.
- the limiting error of the resistor R_0 includes the temperature drift.

The first step of the uncertainty analysis was to estimate the sensitivity of the vector method to main error sources: the load resistor R_0 , voltages measurement <u>E</u> and <u>U</u>, determination of the instantaneous moments of t_1 , t_2 , t_3 , t_4 . The weight coefficients in equation (9) (partial derivatives) were determined and are given in Table 1.

Tab. 1. Values of partial derivatives counted for the following data: E_z =230 V, Z=1 Ω , R_0 =10 Ω , t_1 =10 µs

Tab. 1. Wartości pochodnych cząstkowych wyznaczone dla danych: E_z =230 V, Z=1 Ω , R_0 =10 Ω , t_1 =10 µs

		(50)		
	Partial	$\phi[\circ]$		
	derivatives	0	45	75
1	$\left \frac{\partial Z_w}{\partial R_0}\right ^2 \left[-\right]$	1.00E-02		
2	$\left \frac{\partial Z_{w}}{\partial E}\right ^{2} \left[\frac{\Omega^{2}}{V^{2}}\right]$	2.23E-03	1.56E-03	4.83E-04
3	$\left \frac{\partial Z_w}{\partial U}\right ^2 \left[\frac{\Omega^2}{V^2}\right]$	1.81E-04	1.22E-03	3.11E-04
4	$\left \frac{\partial Z_{w}}{\partial t_{1}}\right ^{2} \left[\frac{\Omega^{2}}{s^{2}}\right]$	2.70E-02	7.10E-02	6.40E-02
5	$\frac{\left \frac{\partial Z_{w}}{\partial t_{2}}\right ^{2} \left[\frac{\Omega^{2}}{s^{2}}\right]$	2.70E-02	1.92E-03	2.63E-03
6	$\frac{\left \frac{\partial Z_{w}}{\partial t_{3}}\right ^{2} \left[\frac{\Omega^{2}}{s^{2}}\right]$	2.70E-02	7.50E-02	7.50E-02
7	$\left \frac{\partial Z_{w}}{\partial t_{4}}\right ^{2} \left[\frac{\Omega^{2}}{s^{2}}\right]$	2.70E-02	2.62E-03	8.60E-04

The angle ϕ , stands for the argument of the loop impedance *Z*, and is defined by the following formula:

$$\phi = \operatorname{arctg} \frac{X}{R}.$$
 (10)

The next step of the uncertainty analysis was to estimate the following variances:

a) the load measurement resistor $u^2(R_0)$,

b) voltage measurement $u^2(E)$ and $u^2(U)$,

c) determination of the instantaneous moments of $u^2(t_1)$, $u^2(t_2)$, $u^2(t_3)$, $u^2(t_4)$.

The resistance variance $u^2(R_0)$ was estimated under the assumption of the uniform probability distribution [7] of the fabrication tolerance of the load measurement resistance R_0 as:

$$u^2(R_0) = \left(\frac{\Delta R_0}{\sqrt{3}}\right)^2,\tag{11}$$

where ΔR_0 is the limiting error of the resistor R_0 , resulting from the fabrication tolerance of the load measurement resistor R_0 . It is associated with the accuracy class specified by a resistor producer.

When R_0 is equal to 10 Ω , and it is made with the fabrication tolerance of 0.1%, the variance $u^2(R_0)$ is equal to 0.03 m Ω^2 .

The voltage variance $u^2(E)$ defined as a sum of the voltage variance $u^2(\Delta E_{\text{przetw}})$ resulting from the processing error of the measurement transducer and the voltage variance $u^2(\Delta E_{\text{DAQ}})$ determined by the Data Aquision Card, can be given by:

$$u^{2}(E) = u^{2}(\varDelta E_{przetw}) + u^{2}(\varDelta E_{DAQ}).$$
(12)

The voltage variance $u^2(\Delta E_{\text{przetw}})$ resulting from the processing error of the voltage transducer was determined under the assumption of the uniform probability distribution of the sensor processing error ΔE_{przetw}

$$u^{2}\left(\Delta E_{przetw}\right) = \left(\frac{\sqrt{\left(E_{in}\right)^{2} + \left(\delta k \cdot E_{in}\right)^{2}} - E_{in}}{\sqrt{3}}\right)^{2}.$$
 (13)

where ∂k is a determined percentage of the rms value of the input voltage E_{in} (this value is specified by a transducer producer).

The voltage variance $u^2(\Delta E_{\text{DAQ}})$ was determined under the assumption of the uniform probability distribution of the a/c conversion error ΔE_{DAQ} , as:

$$u^{2}\left(\Delta E_{DAQ}\right) = \left(\frac{\Delta E_{DAQ}}{\sqrt{3}}\right)^{2},$$
(14)

where the limiting error ΔE_{DAQ} is defined by the following formula [4]:

$$\Delta E_{DAQ} = \pm \begin{bmatrix} (E_{inDAQ} \cdot \delta E_{96R}) + \\ + (\Delta E_{offset} + \Delta E_{noise+quant} + \Delta E_{temp}) \end{bmatrix}.$$
 (15)

It is assumed that the a/c conversion error ΔE_{DAQ} depends on: the input signal level E_{inDAQ} , the relative error $\delta E_{\%R}$ (depending on the actual measured value), the additive error of zero offset δE_{offset} , quantization and noise error $\delta E_{noisequant}$ and the temperature drift δE_{temp} .

When considering the following hardware configuration of the measurement system: a meter for measuring the loop impedance as a voltage transducer - the transducer LEM CV-500, a data acquisition card - the National Instruments PCI – 6024E, the voltage variance $u^2(\Delta E_{\text{przetw}})$ equals 0.018 μ V² and variance $u^2(E_{\text{DAQ}})$ for the input voltage E_{inDAQ} =10 V is 0.125 mV².

The total uncertainty voltage u(E) calculated by means of the formula (12), for the previously assumed conditions of the measurement, is ± 11.2 mV, while the measurement voltage is equal to 230 V. Due to the fact that the voltage U - with the load resistor R_0 connected - is measured and processed by the same circuits as the measured voltage E, it was assumed that the variance $u^2(U) = u^2(E)$.

In order to estimate the total measurement uncertainty of the loop impedance by the vector method, it was also necessary to determine the time measurement variance $u^2(t_1)$, $u^2(t_2)$, $u^2(t_3)$, $u^2(t_4)$, in which the voltage samples were taken. The moments of the time variance, in the general form $u^2(t_1)$, were estimated by means of the uniform probability distribution of the time measurement error, as:

$$u^{2}(t_{i}) = \left(\frac{\Delta t_{i}}{\sqrt{3}}\right)^{2}, \qquad (16)$$

where l=1, 2, 3, 4 appropriate for the sample voltages $E_{\rm b}, E_{\rm c}, U_{\rm b}, U_{\rm c}$.

The accuracy of determining the time instants in which the momentary voltage values are measured, depends on the period measurement error ΔT , the sampling time T_p and location of the samples [4]:

$$\Delta t_l = \frac{t_l}{N} \Delta T + T_p \,. \tag{17}$$

The equation (16) shows that the limiting error grows linearly with increase in the distance from the first sample. Assuming that $T_p=0.5\mu$ s, N = 20000 (the period contains 200 samples, which is sufficient for an ideal sine signal), $\Delta T=0.3\mu$ s and concluding that $t_1=20T_p$, $t_2=70T_p$, $t_3=1220T_p$, $t_4=1270T_p$, gives $\Delta t_1=\Delta t_2=0.5\mu$ s, $\Delta t_3=\Delta t_4=0.5002\mu$ s. The variance of the measurement time $u^2(t_1)$ is equal to 80 fs².

The combined standard uncertainty of the loop impedance measurement u_c was determined using equation (9) by means of computer simulations in the MathCad, for the following instrument configuration: the load resistor R_0 with a resistance of 10 Ω and maximum relative error 0.1%, LEM CV-500 transducer, National Instruments PCI – 6024E Data Acquision Card.

Fig. 3 illustrates the dependence of the measurement uncertainty u_c on the argument of the loop impedance ϕ .

The value of measurement uncertainty u_c decreases with increase in the loop impedance argument ϕ . The smallest value of the measurement uncertainty $u_c \pm 0.658 \text{ m}\Omega$, for argument ϕ equal to 75°, when the measurement is taken near the transformer (inductive nature of the loop impedance Z).

The maximum value of the impedance measurement uncertainty $u_c \pm 0.916 \text{ m}\Omega$, occurs in the case of a fault loop resistance, that is when argument ϕ equals 0°.

Fig. 3. Graph $u_c=f(\phi)$, for data $E_z=230$ V, Z=1 Ω , $R_0=10$ Ω Rys. 3. Przebieg $u_c=f(\phi)$, dla danych $E_z=230$ V, Z=1 Ω , $R_0=10$ Ω

Fig. 4. shows the elements of the impedance measurement uncertainty u_c , according to formula (9), connected with: the load measurement resistor R_0 , voltage measurement E and U and determination of the instantaneous moments of t_1 , t_2 , t_3 , t_4 .

Fig. 4. Share of particular components of impedance measurement uncertainty for data E_z =230V, Z=1 Ω , R_0 =10 Ω , ϕ =0°

Rys. 4. Udział poszczególnych składowych niepewności pomiaru u_c impedancji pętli zwarcia, dla danych E_z =230 V, Z=1 Ω , R_0 =10 Ω , ϕ =0°

The most essential uncertainty factor is the uncertainty of voltage \underline{E} and \underline{U} measurements, which proves that the voltage measurement system of the meter prototype should be characterized by high precision.

The load resistor should also be chosen as a high precision one.

4. Conclusions

This paper presents a methodology for estimating the combined standard uncertainty of loop impedance by the vector method. The vector method allows determining the loop impedance based on the orthogonal voltage components, which makes a loop impedance measurement much more accurate than in the case of conventional methods. The estimated value of the combined standard uncertainty u_c , confirms that the vector method is more accurate than the classical ones [2, 3].

The results of the uncertainty estimated from MathCad simulations were compared with the experimental results obtained by the author of this paper. A loop impedance meter prototype implemented with the vector method was used in the experiment. The meter prototype consisted of: the LEM CV-500 transducer, the PCI 6024E data acquisition card and the load resistor 10 Ω of accuracy class 0.1. The simulation and experimental results (when $E_z=230$ V, Z=1 Ω) are convergent. For these measurement conditions, the loop impedance was calculated as (1000.00±1.83) m Ω for the coverage factor k = 2 at the confidence level of 95%.

5. References

 Jaworski J. M.: Niedokładność, błąd i niepewność pomiaru. Przegląd Elektrotechniczny nr 80 2/2004.

- [2] Roskosz R.: Nowe rozwiązania pomiaru impedancji pętli zwarciowej przy odkształceniu krzywej napięcia w miejscu badania. Zeszyty Naukowe Politechniki Gdańskiej, Elektryka nr 79, Gdańsk 1995.
- [3] Roskosz R.: A new method for measurement of earth fault loop impedance". IEEE Power Engineering Review, April 1991, p. 57.
- [4] Golijanek-Jędrzejczyk A.: Badanie metody pomiaru impedancji pętli zwarciowej wykorzystującej składowe fazora napięcia. Monografie Politechniki Gdańskiej nr 117, Gdańsk 2012.
- [5] Golijanek-Jędrzejczyk A.: Przegląd sposobów pomiaru pętli zwarcia. PAK 2011 nr 12, s. 1586-1588.
- [6] Golijanek-Jędrzejczyk A.: Wpływ pomiaru dokładności napięć na wyznaczenie impedancji pętli zwarciowej metodą z przesu-nięciem ψ. Electrical Engineering Poznan University of Technology Academic Journals, 2012.
- [7] Warsza Z., Dorozhovets M.: Doskonalenie metod wyznaczania niepewności wyników pomiaru w praktyce. Przegląd Elektrotechniczny 1/2007.
- [8] Golijanek-Jędrzejczyk A.: Analiza metrologiczna metody z przesunięciem ψ do pomiaru impedancji pętli zwarciowej, Przegląd Elektrotechniczny 2/2009.
- [9] Evaluation of measurement data Guide to the expression of uncertainty in measurement JCGM 100:2008, GUM 1995.

otrzymano / received: 23.08.2012 przvieto do druku / accepted: 01.10.2012

artykuł recenzowany / revised paper

INFORMACJE

Szanowni Autorzy artykułów publikowanych w PAK

W trosce o jak najwyższy poziom punktacji miesięcznika PAK zwracam się z prośbą o cytowanie artykułów opublikowanych w PAK w innych artykułach, zwłaszcza tych publikowanych w czasopismach z listy filadelfijskiej. Ma to bezpośredni wpływ na współczynnik IF (Impact Factor) miesięcznika PAK.

W algorytmach oceny czasopism współczynnik IF ma największą wagę. Na zwiększenie wartości współczynnika IF redakcja czasopisma nie ma żadnego wpływu, ale wszystko zależy od Autorów cytujących. W przypadku miesięcznika PAK aktualnie każde cytowanie zwiększa IF o około 0,002. Oczywiście cytowanie artykułu tylko wtedy jest uzasadnione, jeżeli jest on tematycznie związany z artykułem cytującym, a autor korzystał z niego przy przygotowaniu pracy.

Aby ułatwić Autorom korzystanie z artykułów opublikowanych w PAK (a także możliwość cytowania) została opracowana przez redakcję PAK "Wyszukiwarka", umożliwiająca wyszukiwanie artykułów według nazwiska autora, słowa tytułu artykułu, albo frazy kluczowej.

Aby skorzystać z "Wyszukiwarki" należy:

- wejść na stronę: www.pak.info.pl
- w menu "Wyszukiwarka" (po lewej stronie ekranu) wybrać "Artykuły".

Strona zawiera również szereg innych łatwo dostępnych funkcjonalności, m.in. wykazy artykułów opublikowanych w PAK, a cytowanych w artykułach opublikowanych w czasopismach z listy filadelfijskiej.

Zdaję sobie sprawę, że redakcje niektórych czasopism usuwają cytowania artykułów publikowanych w czasopismach spoza listy filadelfijskiej, np. argumentując, że są one mało dostępne. Taka argumentacja będzie mniej uzasadniona, jeżeli tytuł naszego miesięcznika oraz tytuły artykułów będą podane w cytowaniach w języku angielskim. Proszę zauważyć, że oficjalny tytuł anglojęzyczny miesięcznika PAK (występujący na okładce) ma formę: Measurement, Automation and Monitoring (MA&M), a wszystkie artykuły naukowe publikowane w PAK są napisane albo w języku angielskim, albo mają rozszerzone abstrakty w tym języku.