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We construct a single observable, measurement of whose mean value on four copies of an unknown two-
qubit state is sufficient to determine unambiguously whether the state is separable or entangled. In other words,
there exists a universal collective entanglement witness detecting all two-qubit entanglement. The test is
directly linked to a function that characterizes the entanglement quantitatively to some extent. This function is
an entanglement monotone under so-called local pure operations and classical communication which preserve
local dimensions. Moreover, it provides tight upper and lower bounds for negativity and concurrence. An
elementary quantum computing device estimating unknown two-qubit entanglement is designed.
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One of the main challenges of both theoretical and experi-
mental quantum-information theory �QIT� is the determina-
tion of entanglement properties of a given state. There is an
extensive literature covering the problem of determining the
entanglement of a state �1–7�. As one knows from the semi-
nal paper of Peres and Wootters �8�, collective measurement
on several copies of a system in a given quantum state may
provide better results than measurements performed on each
copy separately. This fact was reflected in the method of
entanglement detection with collective measurements. The
method, initiated for pure states �9,10�, and then developed
for mixed states with the help of quantum networks �11–17�
and the concept of collective entanglement witnesses �18�,
found its first experimental demonstration in coalescence-
anticoalescence coincidence experiments �19�. In particular,
somewhat surprisingly, it was shown how to estimate and/or
even measure the amount of entanglement �concurrence�
without prior state reconstruction �11–13�. Recently the
method got a new twist thanks to application of collective
measurements �20–22� that are directly related to quantum
concurrence �see �23��, including the photon polarization-
momentum experiments on pure states in distant laboratories
paradigm �20�. Recently, collective entanglement witnesses
were also shown to lead to easily measurable lower bounds
on entanglement �21�.

We show that a single observable, if measured on four
copies of an unknown two-qubit state, is sufficient for dis-
crimination between entanglement and separability of it.
Moreover it can serve limited quantitative purposes. With
this aim we explore the two-qubit separability test equivalent
to the positive partial transpose �PPT� one �2,24� stating that
a state is separable if and only if the determinant of its par-
tially transposed density matrix is non-negative �25,26�. The
result, known for a few years, has barely been mentioned in
the literature in that form �see, e.g., Ref. �27�� and to our
knowledge this is the first time an operative physical mean-
ing has been assigned to it. That is, we introduce a state
function, straightforwardly connected to the test, which is a
monotone under pure local operations and classical commu-

nication �PLOCC� with fixed dimensions �see Refs. �28,30��
and a single collective observable is enough to measure it
experimentally. Moreover, it provides tight upper and lower
bounds for the two-qubit negativity and concurrence.

Further, we discuss how the result allows us to build a
small quantum device implementing a kind of elementary
algorithm, namely, detecting entanglement in an unknown
two-qubit state. Our method has a significant advantage over
prior methods �12,13� as we require only one collective mea-
surement. In comparison to the result of Ref. �21�, where a
single observable provides a concurrence lower bound which
sometimes is not conclusive, we achieved a sharp test that is
to some extent quantitative.

We also discuss higher-dimensional and multiparty gener-
alizations. In particular, we find that the reduction criterion
�31,32� on composite 2 � d systems with the map applied to
the second subsystem is equivalent to a single determinant
condition, and as such can be checked via measurement of a
single observable.

Here we discuss the necessary and sufficient condition for
two-qubit separability in terms of a determinant of a partially
transposed density matrix. The observation follows from the
facts given by Sanpera et al. �25� and Verstraete et al. �26�.
Here we prove a more general statement about the reduction
criterion, exploiting its equivalence to the PPT test on two
qubits. Let us consider the reduction map defined as �r�A�
=Tr�A�1d−A on any d�d matrix A with 1d standing for an
identity acting on Cd. The following proposition holds.

Proposition 1. For any 2 � d state � the reduction crite-
rion with respect to the system B is satisfied if and only if

det��I � �r����� � 0. �1�

In particular any two-qubit state is separable if and only if

det �� � 0. �2�

Proof. The necessity of the condition is obvious. Let
us prove sufficiency. With this aim, we may assume that
our 2 � d state � has nonsingular reduced density matrix
�A=TrB�, as otherwise it would be a product state. Applying
a local filter VA= ��A

−1 /2�1/2 and utilizing previous ob-
servations, one obtains det�I � �r����= �det��A /2��2det��I*remik@mif.pg.gda.pl
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� �r���̃��, where the state �̃ is a result of local filtering. Now
there is an immediate observation that for any positive �
positivity of �I � ����� is equivalent to the positivity of the
new state being the result of local filtering on system A with
arbitrary nonsingular filter VA. Since we deal with the nons-
ingular VA, the original state � violates the reduction crite-
rion iff the state �̃ does. Suppose this is the case. Since the
first subsystem of the latter is in a maximally mixed state,
i.e., �̃A= �1 /2�12, one easily infers �cf. �15�� that in order to
violate the criterion �̃ must have one eigenvalue that is
greater than one-half. Then the operator �I � �r���̃�
= �1 /2�12d− �̃ clearly has a spectrum with all nonzero values
in which only one is negative. This finally gives det��I
� �r���̃���0 which �as we already mentioned� is equivalent
to det��I � �r������0. Thus violation of the reduction crite-
rion by a 2 � d state on the second subsystem is equivalent to
violation of �1�.

To prove the second part, we only need to observe that
det ��=det�12 � �y�

�12 � �y�=det��I � �r����� and recall
that the reduction criterion is equivalent to the PPT test on
two-qubit states. This concludes the proof.

A question important from an experimental point of view
is whether a function of �� can serve for quantitative pur-
poses. We obtain a partially positive answer.

First we introduce a function defined on d1 � d2 states,

�d1,d2
��� = �0, det �� � 0,

�d1d2
d1d2�	det��	 , det �� � 0.

�3�

Let us observe that for d1=d2=d, we have �d,d�	�
�
��d�	�
�=d 	det A�	2/d for any 	�
=�i,jAi,j

� 	 i
 	 j
. This leads
to �d�	�
�=Gd�	�
�, where Gd is called the G concurrence
and is defined as a geometric mean value of Schmidt num-
bers, scaled by the dimension factor �see �29,30��. It is
known to be a monotone under LOCC, not changing the
dimensions of the state, and as such is considered as an en-
tanglement measure �28–30�. Below we prove that �d1,d2

sat-
isfies the monotonicity property under some restricted class
of LOCC �invariance under local unitary operations is obvi-
ous�, namely, the ones for which local operations consist
only of a single Kraus operator. We call them pure LOCC.
Assuming nonseparability of � we have the following.

Proposition 2. For any PLOCC preserving the dimensions
of a state, which transform the initial state � to ��i� with
probability pi the following holds:

�
i

pi�d1,d2
���i�� 	 �d1,d2

��� . �4�

Proof. Reasoning from �33� �the measure is symmetric
under a change of particles� allows us to restrict ourselves to
a single measurement on Bob’s side, described by the family
of completely positive operators Mi with single Kraus
operators �we consider only PLOCC�, i.e., acting as
Mi���=1d1

� Mi�1d1
� Mi

†. We take the square Mi ��iMi
†Mi

	1d2
� to satisfy dimensionality preservation. Let D=d1d2;

then since �Mi�����A =Mi���A�, we have

�
i

pi�d1,d2
���i�� = �D�

i

pi	det�1/pi��Mi�����A	1/D

= �D�
i

	det Mi���A�	1/D

= �
i

�det�1d1
� Mi

†Mi��1/D �d1,d2
���

	 det�
i

1d1
� Mi

†Mi�1/D
�d1,d2

���

	 �d1,d2
��� ,

where the inequalities follow from the Minkowski determi-
nant theorem and the normalization condition for Mi.

It may be easily checked that �d1,d2
is not a monotone in

the weak sense in general. It suffices to apply the twirling on
entangled Bell-diagonal states, which increases the value of
�d1,d2

.
Let us now focus on two-qubit states. Below we will es-

tablish a connection of �2 with the concurrence C and nega-
tivity N �34�. As shown in Ref. �35�, the concurrence of a
density matrix transformed with a filter A � B changes by the
factor 	det AB 	 /Tr�AA† � BB†��. As it turns out, �2 of the
state transformed in this way changes identically. Moreover,
the filters are known to be sufficient for transformation of
any nonsingular two-qubit state to a Bell-diagonal one �36�.
It is then enough to check the relation between C and �2 for
these states. Taking the entangled state � to be a mixture of
Bell states with probabilities �pi�i=1

4 , we obtain �2���
=
i

�4 	1−2pi	, which with the assumption p1� pi gives
�2����2p1−1. This, however, means that �2 is bounded
from below by C as for Bell-diagonal states it is just equal to
the right-hand side of the above inequality. Obviously �2
provides also an upper bound for negativity as the latter is
always less than or equal to C �26�:

N��� 	 C��� 	 �2��� . �5�

One may also provide tight lower bounds on N��� and C���
in terms of �2���. With this aim, notice that �2���
=2�4 �1 /2�N����1�2�3, where the �i’s are the positive eigen-
values of ��. Their product is maximal when they are
equally distributed. This observation with the aid of the fact
that �i=1

3 �i−N /2=1 leads us to

�2��� 	�4 N���N��� + 2

3
�3

	�4 C���C��� + 2

3
�3

. �6�

In conclusion, �2, although not a full entanglement mono-
tone, quantifies all the two-qubit entanglement in a nontrivial
way, providing tight lower and upper bounds for other en-
tanglement measures �see Fig. 1�.

Now we address a natural question arising in the context
of the results from the previous section: Is a measurement of
a determinant of �� possible by means of a single observ-
able? Following Ref. �18� we define the collective witness to
be a Hermitian operator W�n�, whose mean value on n copies
of separable � is non-negative, i.e., ��W�n�

��n

: =Tr�W�n���n��0, and negative on some entangled state.
Reformulating this question in terms of the above, we ask if
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there exists such an observable that ��Wuniv
�4� 

��n =det ��. It

was shown �38� that any mth-degree polynomial of the ele-
ments of � �in particular, its determinant� may be found by
determining an expectation value of two observables each on
m copies of a state corresponding to the real and imaginary
parts of the value of the polynomial. With the guarantee �a
priori knowledge� that a polynomial is real valued, we need
only a single observable �cf. �18��. Obviously the determi-
nant �2� is such a polynomial. Its degree is four so the nec-
essary number of copies is also four. This positively resolves
the problem of the existence of a single observable Wuniv

�4� . To
find its explicit form, we first introduce the polynomials


k�x��=�i=1
m xi

k, which for x� =�� , a vector consisting of the ei-
genvalues of a given matrix, are its kth moments. We know

that each 
k��� � is a mean value of an observable
O�k�= �1 /2��V�k�+V�k�†� on k copies of � with
permutations V�k� defined as V�k� 	�1
¯ 	�k−1
 	�k

= 	�k
 	�1
¯ 	�k−1
 �k=1, . . . ,m�, with 	�i
�H.

Now the crucial step is to connect the determinant of a
matrix with its easily measurable moments. The
Newton-Girard formulas �39� provide us with det ��

= �1 /24��1−6
4��� �+8
3��� �+3
2
2��� �−6
2��� ��. Noting that

V�k� can be written as Ṽ�k� � Ṽ�k� where Ṽ�k� are permutations
on the same subsystems of ��k, and using the approach from
Ref. �14� we arrive at

Wuniv
�4� = �1/24�1256 − �1/8��Ṽ�4�

� Ṽ�4�T + Ṽ�4�T
� Ṽ�4��

+ �1/6�14 � �Ṽ�3�
� Ṽ�3�T + Ṽ�3�T

� Ṽ�3��

+ �1/8�V�2�
� V�2� − �1/4�116 � V�2�,

whose mean value on four copies of � gives det ��.
Next we consider the problem of the designation of a

network measuring Wuniv
�4� . The issue of avoiding unimportant

data �frequency probabilities corresponding to all eigenval-
ues of the observable� while measuring the observable was
considered in Refs. �15,40�. The question about the dimen-
sion of ancillas involved in the measurement was answered

in Ref. �41�, where it was shown that, via unitary interaction
with a single qubit and final measurement of �z on it, one
can get the mean value of an arbitrary observable with a
bounded spectrum. Finally, in Ref. �38� it was shown that
interaction between the systems in question and the ancilla
can be conducted as a controlled unitary operation. Note that
the above single-qubit universality in a mean value estima-
tion is compatible with the further proof that single qubits
are in a sense universal quantum interfaces �42�.

The most efficient network in number of systems involved
involves nine qubits interacting via unitary operations which
can be constructed in the way described in �14�. We present
here �Fig. 2� an alternative network that requires two more
ancillary qubits. However, with these additional systems we
achieve simplicity of the structure of the controlled unitary
operations, which are just SWAPs. This device shows how one
can easily combine mean values of many observables. We do
not go into detail concerning the optimality of both networks
in number of gates.

Now we discuss the above approach in the context of the
entanglement of an arbitrary bipartite state �. Let � be a
positive, but not completely positive, map. According to Ref.
�2�, � constitutes a necessary separability criterion for bipar-
tite states, which now can be easily reformulated in terms of
a determinant.

Fact. Let � be a positive map. If �I � ������0 holds,
then det��I � �������0.

In general, the converse fails, which can be shown by
embedding an entangled 2 � 2 state in a 3 � 3 space. Note
that, as shown in Proposition 1, it is true for reduction ap-
plied to the second subsystem of a 2 � d system, which is
useful in the context of entanglement distillability �see �31��.

Construction of the observable along the lines of Ref. �14�
gives the one whose mean value reproduces the desired de-

terminant, i.e., ��W̃�
�n�

��n =det��I � ������. The idea gener-

alizes immediately to the multiparty case, where maps posi-
tive on product states �43� are involved.

In conclusion, we have constructed a single-observable
test that detects entanglement of an unknown two-qubit state.
In addition, the function corresponding to it provides bounds
for the negativity and concurrence. We have also designed a
quantum network that can also be interpreted as a quantum
computing method that solves quantitatively a problem with
quantum data structure �cf. �11��.

0.2 0.4 0.6 0.8 1
N,C

0.2

0.4

0.6

0.8

1

Π

FIG. 1. Plot of �2 versus N �or C� for randomly generated
density matrices with bounds obtained in �5� and �6�. The bound
�2	 �1 /2��N+1� obtained from the geometric-arithmetic inequality
applied to the absolute values of the eigenvalues of �� is added.
The reader is encouraged to consult �37�.

|φ〉 • • • �������� �������� ��������

• • �������� • • ��������

|0〉 H π • • π • • H
	


���

�

U4

U3

U2 U2
�

�
U2

�

FIG. 2. Network determining entanglement properties of a two-
qubit state by a single measurement of ��z
 on a control qubit. Here
	
= �1 /�23���3 	00
+�6 	01
+�8 	10
+�6 	11
�; unitary Ui’s are
combinations of SWAP operations such that Tr�Ui�

� i�=
i. The state
would be declared entangled if and only if the measurement yielded
a result less than −1 /23.
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Some research toward higher-dimensional generalizations
has been initialized; however, the results suffer from a lack
of sufficient character. Nevertheless, a very natural question
arises: is there a way to generalize the main result, i.e., to
find a single collective observable detecting entanglement of
other d1 � d2 quantum systems without ambiguity �see, e.g.,
Ref. �44� for some partial results�. One would first need a
counterpart of the analytical criterion �2�, the existence of
which is a long-standing open problem in QIT. The first
question could be whether there exists a positive map which,

applied to one subsystem of any bipartite density matrix,
produces a full-rank matrix with an odd number of negative
eigenvalues so that the criterion based on the determinant
remains true.
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